Jump to content

Largest known prime number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tag: Reverted
No edit summary
Tag: Reverted
Line 6: Line 6:
A [[prime number]] is a [[natural number]] greater than 1 with no [[divisor]]s other than 1 and itself. According to [[Euclid's theorem]] there are infinitely many prime numbers, so there is no largest prime.
A [[prime number]] is a [[natural number]] greater than 1 with no [[divisor]]s other than 1 and itself. According to [[Euclid's theorem]] there are infinitely many prime numbers, so there is no largest prime.


Many of the largest known primes are [[Mersenne prime]]s, numbers that are one less than a power of two, because they can utilize a [[Lucas–Lehmer primality test| specialized primality test]] that is faster than the general one. {{As of|2024|October}}, the seven largest known primes are Mersenne primes.<ref>{{cite web |url=https://t5k.org/primes/search.php?Number=100 |title=The largest known primes – Database Search Output |publisher=Prime Pages |access-date=19 March 2023}}</ref> The last eighteen record primes were Mersenne primes.<ref name="computer history">{{cite web |url=http://t5k.org/notes/by_year.html |title=The Largest Known Prime by Year: A Brief History |first1=Chris |last1=Caldwell |publisher=Prime Pages |access-date=19 March 2023}}</ref><ref>The last non-Mersenne to be the largest known prime, was [http://t5k.org/primes/page.php?id=390 391,581 ⋅ 2<sup>216,193</sup> − 1]; see also [http://t5k.org/notes/by_year.html The Largest Known Prime by year: A Brief History] originally by Caldwell.</ref> The binary representation of any Mersenne prime is composed of all ones, since the binary form of 2''<sup>k</sup>'' − 1 is simply ''k'' ones.<ref>{{Cite web|url=http://www.personal.psu.edu/sxt104/class/Math140H/PerfectNum.html|title=Perfect Numbers|website=Penn State University|access-date=6 October 2019|quote=An interesting side note is about the binary representations of those numbers...}}</ref>
Many of the largest known primes are [[Mersenne prime]]s, numbers that are one less than a power of two, because they can utilize a [[Lucas–Lehmer primality test|specialized primality test]] that is faster than the general one. {{As of|2024|October}}, the seven largest known primes are Mersenne primes.<ref>{{cite web |url=https://t5k.org/primes/search.php?Number=100 |title=The largest known primes – Database Search Output |publisher=Prime Pages |access-date=19 March 2023}}</ref> The last eighteen record primes were Mersenne primes.<ref name="computer history">{{cite web |url=http://t5k.org/notes/by_year.html |title=The Largest Known Prime by Year: A Brief History |first1=Chris |last1=Caldwell |publisher=Prime Pages |access-date=19 March 2023}}</ref><ref>The last non-Mersenne to be the largest known prime, was [http://t5k.org/primes/page.php?id=390 391,581 ⋅ 2<sup>216,193</sup> − 1]; see also [http://t5k.org/notes/by_year.html The Largest Known Prime by year: A Brief History] originally by Caldwell.</ref> The binary representation of any Mersenne prime is composed of all ones, since the binary form of 2''<sup>k</sup>'' − 1 is simply ''k'' ones.<ref>{{Cite web|url=http://www.personal.psu.edu/sxt104/class/Math140H/PerfectNum.html|title=Perfect Numbers|website=Penn State University|access-date=6 October 2019|quote=An interesting side note is about the binary representations of those numbers...}}</ref>


Finding larger prime numbers is sometimes presented as a means to stronger [[encryption]], but this is not the case.<ref>{{Cite news |last=McKinnon |first=Mika |date=January 4, 2018 |title=This Is the Largest Known Prime Number Yet |url=https://www.smithsonianmag.com/smart-news/largest-prime-number-we-know-180967739/ |access-date=July 6, 2024 |work=[[Smithsonian (magazine)|Smithsonian]]}}</ref><ref>{{Cite web |last=Johnston |first=Nathaniel |date=September 11, 2009 |title=No, Primes with Millions of Digits Are Not Useful for Cryptography |url=https://njohnston.ca/2009/09/no-primes-with-millions-of-digits-are-not-useful-for-cryptography/ |access-date=July 6, 2024 |website=njohnston.ca}}</ref>
Finding larger prime numbers is sometimes presented as a means to stronger [[encryption]], but this is not the case.<ref>{{Cite news |last=McKinnon |first=Mika |date=January 4, 2018 |title=This Is the Largest Known Prime Number Yet |url=https://www.smithsonianmag.com/smart-news/largest-prime-number-we-know-180967739/ |access-date=July 6, 2024 |work=[[Smithsonian (magazine)|Smithsonian]]}}</ref><ref>{{Cite web |last=Johnston |first=Nathaniel |date=September 11, 2009 |title=No, Primes with Millions of Digits Are Not Useful for Cryptography |url=https://njohnston.ca/2009/09/no-primes-with-millions-of-digits-are-not-useful-for-cryptography/ |access-date=July 6, 2024 |website=njohnston.ca}}</ref>

Revision as of 02:04, 25 November 2024

The largest known prime number is 2136,279,841 − 1, a number which has 41,024,320 digits when written in the decimal system. It was found on October 12, 2024 on a cloud-based virtual machine volunteered by Luke Durant to the Great Internet Mersenne Prime Search (GIMPS).[1]

A plot of the number of digits in the largest known prime by year, since the electronic computer. The vertical scale is logarithmic.

A prime number is a natural number greater than 1 with no divisors other than 1 and itself. According to Euclid's theorem there are infinitely many prime numbers, so there is no largest prime.

Many of the largest known primes are Mersenne primes, numbers that are one less than a power of two, because they can utilize a specialized primality test that is faster than the general one. As of October 2024, the seven largest known primes are Mersenne primes.[2] The last eighteen record primes were Mersenne primes.[3][4] The binary representation of any Mersenne prime is composed of all ones, since the binary form of 2k − 1 is simply k ones.[5]

Finding larger prime numbers is sometimes presented as a means to stronger encryption, but this is not the case.[6][7]

Current record

The record is currently held by 2136,279,841 − 1 with 41,024,320 digits, found by GIMPS on October 12, 2024.[1] The first and last 120 digits of its value are:[8]

881694327503833265553939100378117358971207354509066041067156376412422630694756841441725990347723283108837509739959776874 ...

(41,024,080 digits skipped)

... 852806517931459412567957568284228288124096109707961148305849349766085764170715060409404509622104665555076706219486871551

As of October 2024, the previously discovered prime M82589933, having 24,862,048 digits, held the record for almost 6 years, longer than any other prime since M19937 (which held the record for 7 years from 1971 to 1978).[citation needed]

Prizes

There are several prizes offered by the Electronic Frontier Foundation (EFF) for record primes.[9] A prime with one million digits was found in 1999, earning the discoverer a US$50,000 prize.[10] In 2008, a ten-million-digit prime won a US$100,000 prize and a Cooperative Computing Award from the EFF.[9] Time called this prime the 29th top invention of 2008.[11]

Both of these primes were discovered through the Great Internet Mersenne Prime Search (GIMPS), which coordinates long-range search efforts among tens of thousands of computers and thousands of volunteers. The $50,000 prize went to the discoverer and the $100,000 prize went to GIMPS. GIMPS will split the US$150,000 prize for the first prime of over 100 million digits with the winning participant. A further US$250,000 prize is offered for the first prime with at least one billion digits.[9]

GIMPS also offers a US$3,000 research discovery award for participants who discover a new Mersenne prime of less than 100 million digits.[12]

History

Commemorative postmark used by the UIUC Math Department after proving that M11213 is prime

The following table lists the progression of the largest known prime number in ascending order.[3] Here Mp = 2p − 1 is the Mersenne number with exponent p, where p is a prime number. The longest record-holder known was M19 = 524,287, which was the largest known prime for 144 years. No records are known prior to 1456.[citation needed]

GIMPS volunteers found the sixteen latest records, all of them Mersenne primes. They were found on ordinary personal computers until the most recent one, found by Luke Durant using a network of thousands of dedicated graphics processing units.[1]

Number Digits First 120 digits Last 120 digits Year found Discoverer
M13 4 8191 8191 1456 Anonymous
M17 6 131071 131071 1588 Pietro Cataldi
M19 6 524287 524287 1588 Pietro Cataldi
7 6700417 6700417 1732 Leonhard Euler?
Euler did not explicitly publish the primality of 6,700,417, but the techniques he had used to factorise 232 + 1 meant that he had already done most of the work needed to prove this, and some experts believe he knew of it.[13]
M31 10 2147483647 2147483647 1772 Leonhard Euler
12 999999000001 999999000001 1851 Included (but question-marked) in a list of primes by Looff. Given his uncertainty, some do not include this as a record.
14 67280421310721 67280421310721 1855 Thomas Clausen (but no proof was provided).
M127 39 170141183460469231731687303715884105727 170141183460469231731687303715884105727 1876 Édouard Lucas
44 20988936657440586486151264256610222593863921 20988936657440586486151264256610222593863921 1951 Aimé Ferrier with a mechanical calculator; the largest record not set by computer.
180×(M127)2+1 79 5210644015679228794060694325390955853335898483908056458352183851018372555735221 5210644015679228794060694325390955853335898483908056458352183851018372555735221 1951 J. C. P. Miller & D. J. Wheeler[14]
Using Cambridge's EDSAC computer
M521 157 686479766013060971498190079908139321726943530014330540939446345918554318339765605212255964066145455497729631139148085803 269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151 1952 Raphael M. Robinson
M607 183 531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015 200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127 1952 Raphael M. Robinson
M1279 386 104079321946643990819252403273640855386152622472667048053191123504036080596733602980122394417323241848424216139542810077 828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087 1952 Raphael M. Robinson
M2203 664 147597991521418023508489862273738173631206614533316977514777121647857029787807894937740733704938928938274850753149648047 519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007 1952 Raphael M. Robinson
M2281 687 446087557183758429571151706402101809886208632412859901111991219963404685792820473369112545269003989026153245931124316702 954917139758796061223803393537381034666494402951052059047968693255388647930440925104186817009640171764133172418132836351 1952 Raphael M. Robinson
M3217 969 259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177 594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071 1957 Hans Riesel
M4423 1332 285542542228279613901563566102164008326164238644702889199247456602284400390600653875954571505539843239754513915896150297 821067601768750977866100460014602138408448021225053689054793742003095722096732954750721718115531871310231057902608580607 1961 Alexander Hurwitz
M9689 2917 478220278805461202952839298660005909741497172402236500851334510991837895094266297027892768611270789458682472098152425631 965025070819730466422826105697510564289798951182192885976352229053898948737614642139910911535864505818992696826225754111 1963 Donald B. Gillies
M9941 2993 346088282490851215242960395767413316722628668900238547790489283445006220809834114464364375544153707533664486747635050186 859250834761894788889552527898400988196200014868575640233136509145628127191354858275083907891469979019426224883789463551 1963 Donald B. Gillies
M11213 3376 281411201369737313339315297584258419181866238201360078789241934934551517668227631381071509474563325707419878930853507153 875669140320724978568586718527586602439602335283513944980064327030278104224144971883680541689784796267391476087696392191 1963 Donald B. Gillies
M19937 6002 431542479738816264805523551633791983905393504322671150516525054140333068013765809113045136293185846655452699382576488353 607278955495487742140753570621217198252192978869786916734625618430175454903864111585429504569920905636741539030968041471 1971 Bryant Tuckerman
M21701 6533 448679166119043334794951410361591778727209023729388613010364804475127856091580536371620183959201831086891496139730355336 333698966933544361629391311041730956501694662754558875644345191269279600693551809271956450264294092857410828353511882751 1978 Laura A. Nickel and Landon Curt Noll[15]
M23209 6987 402874115778988778181873329071591767722438506891622420041029963578694595240887400867639861461466537103833299413586592359 499907856117575009515746557862539764756574427752110896827606786025282039152876055050854511817293890036743355523779264511 1979 Landon Curt Noll[15]
M44497 13395 854509824303633803193300705318403036509901591304021058343269258282290064782167635856200500014457645861481315295253223674 191074429639783599094899320410039863575946472558059877105808942471773922977396345497637789562340536844867686961011228671 1979 David Slowinski and Harry L. Nelson[15]
M86243 25962 536927995502756321522338277992945300611020994042124005915678639443353462982103479896439555141314059601329696868637207994 573518625192289399588469376105905697705415089600178032945914353201376915456322320250960867906195719699857021709433438207 1982 David Slowinski[15]
M132049 39751 512740276269320723812785763620340221880046586227069926831240384185823127430562036107774949909290873212555709320045159618 892561883906376602193683236736730822711678956149432532644153240796400485109329883378631644703566339852138578455730061311 1983 David Slowinski[15]
M216091 65050 746093103064661343687339579400511489540228754084977328805113304977793662725270968780664395635140955730008364494154882757 417964416162136915976643526881405458724691315195450691201831185384118052177506846932786764514111877691336204103815528447 1985 David Slowinski[15]
65087 148140632376406627518989611668150215261614869061837067878963231694600933849993554003556474875248189629946106929509682950 828198684493330234010439275917658630333622389718952919899041016380462685295158957611844988078723043689626791836387377151 1989 A group, "Amdahl Six": John Brown, Landon Curt Noll, B. K. Parady, Gene Ward Smith, Joel F. Smith, Sergio E. Zarantonello.[16][17]
Largest non-Mersenne prime that was the largest known prime when it was discovered.
M756839 227832 174135906820087097325163599245903327890779363690507030974654735538382721562066257631914797436422461610635130071368293660 196197247890145658094439640926716840918349113692649241768590511342720126927068487680404055813342880902603793328544677887 1992 David Slowinski and Paul Gage[15]
M859433 258712 129498125604207649666533485255562073384162019917416569370190662675678147240849529691989319107835468155567280151644798137 703661384301046744041729168775671683165419536906002518061544662110876076895213848743252624596572158902414267243500142591 1994 David Slowinski and Paul Gage[15]
M1257787 378632 1996 David Slowinski and Paul Gage[15]
M1398269 420921 1996 GIMPS, Joel Armengaud
M2976221 895932 1997 GIMPS, Gordon Spence
M3021377 909526 1998 GIMPS, Roland Clarkson
M6972593 2098960 1999 GIMPS, Nayan Hajratwala
M13466917 4053946 2001 GIMPS, Michael Cameron
M20996011 6320430 2003 GIMPS, Michael Shafer
M24036583 7235733 2004 GIMPS, Josh Findley
M25964951 7816230 2005 GIMPS, Martin Nowak
M30402457 9152052 315416475618846080936303028664545170126519656262323870316323710795135387449006934620943862947517029663623614229944506869 299045184502541709583894239304960675189653422547853529862010437135830915777499500274882218550846708611134297411652943871 2005 GIMPS, University of Central Missouri professors Curtis Cooper and Steven Boone
M32582657 9808358 124575026015369455400855501574799503122795985151151842843670475662591115235997397380559759606616845939100419886882111308 726604958937322582512072612621443114535641869584273577446330457465821333212445737104635692000092659011752880154053967871 2006 GIMPS, Curtis Cooper and Steven Boone
M43112609 12978189 316470269330255923143453723949337516054106188475264644140304176732811247493069368692043185121611837856726816539985465097 159279791908398130223304824083119093195998014562456347941202195900928079670729447921616491887478265780022181166697152511 2008 GIMPS, Edson Smith
M57885161 17425170 581887266232246442175100212113232368636370852325421589325781704480584492761707442316428281349423376942979071335489886655 196964400898981891179715830393827598062506665259086044516822494937745410942833323095203705645658725746141988071724285951 2013 GIMPS, Curtis Cooper
M74207281 22338618 300376418084606182052986098359166050056875863030301484843941693345547723219067994296893655300772688320448214882399426727 717774014762912462113646879425801445107393100212927181629335931494239018213879217671164956287190498687010073391086436351 2016 GIMPS, Curtis Cooper
M77232917 23249425 467333183359231099988335585561115521251321102817714495798582338593567923480521177207484311099740208849621368090038049317 285376004518786055402223376672925679282131965467343395945397370476369279894627999939614659217371136582730618069762179071 2017 GIMPS, Jonathan Pace
M82589933 24862048 148894445742041325547806458472397916603026273992795324185271289425213239361064475310309971132180337174752834401423587560 062107557947958297531595208807192693676521782184472526640076912114355308311969487633766457823695074037951210325217902591 2018 GIMPS, Patrick Laroche
M136279841 41024320 881694327503833265553939100378117358971207354509066041067156376412422630694756841441725990347723283108837509739959776874 852806517931459412567957568284228288124096109707961148305849349766085764170715060409404509622104665555076706219486871551 2024 GIMPS, Luke Durant

Twenty largest

A list of the 5,000 largest known primes is maintained by the PrimePages,[18] of which the twenty largest are listed below.[19]

Rank Number Discovered Digits First 120 digits Last 120 digits Form Ref
1 2136279841 − 1 2024-10-12 41,024,320 881694327503833265553939100378117358971207354509066041067156376412422630694756841441725990347723283108837509739959776874 852806517931459412567957568284228288124096109707961148305849349766085764170715060409404509622104665555076706219486871551 Mersenne [1]
2 282589933 − 1 2018-12-07 24,862,048 148894445742041325547806458472397916603026273992795324185271289425213239361064475310309971132180337174752834401423587560 062107557947958297531595208807192693676521782184472526640076912114355308311969487633766457823695074037951210325217902591 Mersenne [20]
3 277232917 − 1 2017-12-26 23,249,425 467333183359231099988335585561115521251321102817714495798582338593567923480521177207484311099740208849621368090038049317 285376004518786055402223376672925679282131965467343395945397370476369279894627999939614659217371136582730618069762179071 Mersenne [21]
4 274207281 − 1 2016-01-07 22,338,618 300376418084606182052986098359166050056875863030301484843941693345547723219067994296893655300772688320448214882399426727 717774014762912462113646879425801445107393100212927181629335931494239018213879217671164956287190498687010073391086436351 Mersenne [22]
5 257885161 − 1 2013-01-25 17,425,170 581887266232246442175100212113232368636370852325421589325781704480584492761707442316428281349423376942979071335489886655 196964400898981891179715830393827598062506665259086044516822494937745410942833323095203705645658725746141988071724285951 Mersenne [23]
6 243112609 − 1 2008-08-23 12,978,189 316470269330255923143453723949337516054106188475264644140304176732811247493069368692043185121611837856726816539985465097 159279791908398130223304824083119093195998014562456347941202195900928079670729447921616491887478265780022181166697152511 Mersenne [24]
7 242643801 − 1 2009-06-04 12,837,064 169873516452741622470289870751176471359103325776997255365512600205053731092186212259929275603767842564017793851584510263 897932668352485917446406064918592713491473117475647591955485698679274561135375114913346097842895644384101954765562314751 Mersenne [25]
8 Φ3(−5166931048576) 2023-10-02 11,981,518 134029067964892223575224682200088180125241118044574855268822407870494687133376055019759794599622919143176765531862533944 451024496329780704168934197056201791102084113168162771694298544157790738745689439141605978233461709567178301964288000001 Generalized unique [26]
9 Φ3(−4658591048576) 2023-05-31 11,887,192 173954421630664273240409594753092701442923721230469791611973131803785926614928675829726706326196678592548252101237137788 852789146757482085025522647380128909550368054401147310815004885629180849743706989516340549025225237263508838734878474241 Generalized unique [27]
10 237156667 − 1 2008-09-06 11,185,272 202254406890977335534188152263156829946846602582743182989551057360547514579758125084672139009589634530142096674488997709 147287875518990485391699162223200100596666765048100145151363483942997444933581352189386657048742961021340265022308220927 Mersenne [24]
11 232582657 − 1 2006-09-04 9,808,358 124575026015369455400855501574799503122795985151151842843670475662591115235997397380559759606616845939100419886882111308 726604958937322582512072612621443114535641869584273577446330457465821333212445737104635692000092659011752880154053967871 Mersenne [28]
12 10223 × 231172165 + 1 2016-10-31 9,383,761 506250269209963430777628203243906760483590666966114515920950456406334120434303598881589505617111617551873728066666193155 918921349188269389765577968021833436880088050529917153697492609159673798701470352487810580255039413786610918915347316737 Proth [29]
13 230402457 − 1 2005-12-15 9,152,052 315416475618846080936303028664545170126519656262323870316323710795135387449006934620943862947517029663623614229944506869 299045184502541709583894239304960675189653422547853529862010437135830915777499500274882218550846708611134297411652943871 Mersenne [30]
14 4 × 511786358 + 1 2024-10-01 8,238,312 201569983962616621752835988936793026568150456335975784718728382563271053348148726967915531872296348477606435567527820548 967090578310428930492113269781311199806454292933825858091969627637056928939982697324140303862805012613534927368164062501 Generalized Proth [31]
15 225964951 − 1 2005-02-18 7,816,230 122164630061277948107753964031288439267361424223075246409537660469964558090568615690774851269040418246405468474387100505 828416059182182998777703986977744437276713026360619053009303039928104331685207750711330535159626516698933257280577077247 Mersenne [32]
16 69 × 224612729 − 1 2024-08-13 7,409,102 349138574949426455377752819354107024574351335040706255350040227024504468217000672882788745395069820763928288182629713589 056951375824974885957912160423560165320859352298128248331223491602902201935355097165749260230517487393807281434214268927 Riesel [33]
17 224036583 − 1 2004-05-15 7,235,733 299410429404157172089048926340446938257367722975418473547677348600097640221100741026265865109912320858493344156415212635 973679318356495493326241342950374855425955207718464378183256423142526858687039800556031269118412915067436921882733969407 Mersenne [34]
18 107347 × 223427517 − 1 2024-08-04 7,052,391 235351926465351791163894609406347465876468924164622481357963629770990775271599602204907041616335735057403900382750381230 940890168715716887570983869979457502800254586750694611329151020528855689168545112969621237629609735946366182881423785983 Riesel [35]
19 3 × 222103376 − 1 2024-09-30 6,653,780 455575752018367973917792469475086352147998028844478065239917786523839155006607903158579793644289400165356897435998223877 924201372881926905039132202706328967212539967518049052118055784168845674267837489880025759437132629313552387699174801407 Thabit [36]
20 19637361048576 + 1 2022-09-24 6,598,776 806516370873634050383436179156872779770158073966695963388273297118503195122784527726266972007175400030028539895066510961 565539633777293016571495966607681037716524885272924136913514082083513254983021618860984106074928637574080313425433460737 Generalized Fermat [37]

See also

References

  1. ^ a b c d "GIMPS Project Discovers Largest Known Prime Number: 2136,279,841-1". Mersenne Research, Inc. 21 October 2024. Retrieved 21 October 2024.
  2. ^ "The largest known primes – Database Search Output". Prime Pages. Retrieved 19 March 2023.
  3. ^ a b Caldwell, Chris. "The Largest Known Prime by Year: A Brief History". Prime Pages. Retrieved 19 March 2023.
  4. ^ The last non-Mersenne to be the largest known prime, was 391,581 ⋅ 2216,193 − 1; see also The Largest Known Prime by year: A Brief History originally by Caldwell.
  5. ^ "Perfect Numbers". Penn State University. Retrieved 6 October 2019. An interesting side note is about the binary representations of those numbers...
  6. ^ McKinnon, Mika (January 4, 2018). "This Is the Largest Known Prime Number Yet". Smithsonian. Retrieved July 6, 2024.
  7. ^ Johnston, Nathaniel (September 11, 2009). "No, Primes with Millions of Digits Are Not Useful for Cryptography". njohnston.ca. Retrieved July 6, 2024.
  8. ^ "List of known Mersenne prime numbers - PrimeNet". www.mersenne.org. "41024320" link is to a zip file with the digits. Retrieved 2024-10-21.
  9. ^ a b c "Record 12-Million-Digit Prime Number Nets $100,000 Prize". Electronic Frontier Foundation. Electronic Frontier Foundation. October 14, 2009. Retrieved November 26, 2011.
  10. ^ Electronic Frontier Foundation, Big Prime Nets Big Prize.
  11. ^ "Best Inventions of 2008 - 29. The 46th Mersenne Prime". Time. Time Inc. October 29, 2008. Archived from the original on November 2, 2008. Retrieved January 17, 2012.
  12. ^ "GIMPS by Mersenne Research, Inc". mersenne.org. Retrieved 21 November 2022.
  13. ^ Edward Sandifer, C. (19 November 2014). How Euler Did Even More. The Mathematical Association of America. ISBN 9780883855843.
  14. ^ Miller, J. C. P. (1951). "Large Prime Numbers". Nature. 168 (4280): 838. Bibcode:1951Natur.168..838M. doi:10.1038/168838b0.
  15. ^ a b c d e f g h i Landon Curt Noll, Large Prime Number Found by SGI/Cray Supercomputer.
  16. ^ Brown, John; Noll, Landon Curt; Parady, B. K.; Smith, Joel F.; Zarantonello, Sergio E.; Smith, Gene Ward; Robinson, Raphael M.; Andrews, George E. (1990). "Letters to the Editor". The American Mathematical Monthly. 97 (3): 214–215. doi:10.1080/00029890.1990.11995576. JSTOR 2324686.
  17. ^ Proof-code: Z, The Prime Pages.
  18. ^ "The Prime Database: The List of Largest Known Primes Home Page". t5k.org/primes. Retrieved 19 March 2023.
  19. ^ "The Top Twenty: Largest Known Primes". Retrieved 19 March 2023.
  20. ^ "GIMPS Project Discovers Largest Known Prime Number: 282,589,933-1". Mersenne Research, Inc. 21 December 2018. Retrieved 21 December 2018.
  21. ^ "GIMPS Project Discovers Largest Known Prime Number: 277,232,917-1". mersenne.org. Great Internet Mersenne Prime Search. Retrieved 3 January 2018.
  22. ^ "GIMPS Project Discovers Largest Known Prime Number: 274,207,281-1". mersenne.org. Great Internet Mersenne Prime Search. Retrieved 29 September 2017.
  23. ^ "GIMPS Discovers 48th Mersenne Prime, 257,885,161-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 5 February 2013. Retrieved 29 September 2017.
  24. ^ a b "GIMPS Discovers 45th and 46th Mersenne Primes, 243,112,609-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 15 September 2008. Retrieved 29 September 2017.
  25. ^ "GIMPS Discovers 47th Mersenne Prime, 242,643,801-1 is newest, but not the largest, known Mersenne Prime". mersenne.org. Great Internet Mersenne Prime Search. 12 April 2009. Retrieved 29 September 2017.
  26. ^ "PrimePage Primes: Phi(3, - 516693^1048576)". t5k.org.
  27. ^ "PrimePage Primes: Phi(3, - 465859^1048576)". t5k.org.
  28. ^ "GIMPS Discovers 44th Mersenne Prime, 232,582,657-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 11 September 2006. Retrieved 29 September 2017.
  29. ^ "PrimeGrid's Seventeen or Bust Subproject" (PDF). primegrid.com. PrimeGrid. Retrieved 30 September 2017.
  30. ^ "GIMPS Discovers 43rd Mersenne Prime, 230,402,457-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 24 December 2005. Retrieved 29 September 2017.
  31. ^ "4 × 511786358 + 1". t5k.org. PrimePages. 1 October 2024. Retrieved 5 October 2024.
  32. ^ "GIMPS Discovers 42nd Mersenne Prime, 225,964,951-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 27 February 2005. Retrieved 29 September 2017.
  33. ^ "69 × 224612729 − 1". t5k.org. PrimePages. 13 August 2024. Retrieved 29 August 2024.
  34. ^ "GIMPS Discovers 41st Mersenne Prime, 224,036,583-1 is now the Largest Known Prime". mersenne.org. Great Internet Mersenne Prime Search. 28 May 2004. Retrieved 29 September 2017.
  35. ^ "107347 × 223427517 − 1". t5k.org. PrimePages. 4 August 2024. Retrieved 25 August 2024.
  36. ^ "PrimeGrid's 321 Prime Search" (PDF). primegrid.com.[dead link]
  37. ^ "PrimeGrid's Generalized Fermat Prime Search" (PDF). primegrid.com. PrimeGrid. Retrieved 7 October 2022.