Jump to content

Lunar Laser Ranging experiments: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: template type. Add: page, s2cid, journal, authors 1-10. Removed proxy/dead URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 190/3850
m fixed wikilink
 
(35 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Measuring the distance between the Earth and the Moon with laser light}}
{{Short description|Measuring the distance between the Earth and the Moon with laser light}}
{{Use dmy dates|date=March 2018}}
[[Image:Apollo 11 Lunar Laser Ranging Experiment.jpg|thumb|Lunar Laser Ranging Experiment from the Apollo 11 mission]]
[[Image:Apollo 11 Lunar Laser Ranging Experiment.jpg|thumb|Lunar Laser Ranging Experiment from the Apollo 11 mission]]


'''Lunar Laser Ranging''' (LLR) is the practice of measuring [[Lunar distance (astronomy)|the distance]] between the surfaces of the [[Earth]] and the [[Moon]] using [[Lidar|laser ranging]]. The distance can be calculated from the [[Round-trip delay|round-trip time]] of [[laser]] light pulses travelling at the [[speed of light]], which are reflected back to Earth by the Moon's surface or by [[List of retroreflectors on the Moon|one of five]] [[retroreflector]]s installed on the Moon during the [[Apollo program]] ([[Apollo 11|11]], [[Apollo 14|14]], and [[Apollo 15|15]]) and [[Lunokhod programme|Lunokhod 1 and 2 missions]].<ref name="Lunakhod 2">{{cite journal |last1=Chapront |first1=J. |last2=Chapront-Touzé |first2=M. |last3=Francou |first3=G. |date=1999 |title=Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data |journal=[[Astronomy and Astrophysics]] |volume=343 |pages=624–633 |bibcode=1999A&A...343..624C }}</ref>
'''Lunar Laser Ranging''' (LLR) is the practice of measuring [[Lunar distance (astronomy)|the distance]] between the surfaces of the [[Earth]] and the [[Moon]] using [[Lidar|laser ranging]]. The distance can be calculated from the [[Round-trip delay|round-trip time]] of [[laser]] light pulses travelling at the [[speed of light]], which are reflected back to Earth by the Moon's surface or by [[List of retroreflectors on the Moon|one of several]] [[retroreflector]]s installed on the Moon. Three were placed by the United States' [[Apollo program]] ([[Apollo 11|11]], [[Apollo 14|14]], and [[Apollo 15|15]]), two by the Soviet [[Lunokhod programme|Lunokhod 1 and 2 missions]],<ref name="Lunakhod 2">{{cite journal |last1=Chapront |first1=J. |last2=Chapront-Touzé |first2=M. |last3=Francou |first3=G. |date=1999 |title=Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data |journal=[[Astronomy and Astrophysics]] |volume=343 |pages=624–633 |bibcode=1999A&A...343..624C }}</ref> and one by India's [[Chandrayaan-3]] mission.<ref>{{Cite web |title=Chandrayaan-3 |url=https://www.isro.gov.in/Chandrayaan3_Details.html |access-date=15 August 2023 |website=ISRO}}</ref><ref name=":5">{{Cite news |title=India lands spacecraft near south pole of moon in historic first |url=https://www.theguardian.com/science/2023/aug/23/india-chandrayaan-3-moon-landing-mission |last=Dhillon |first=Amrit |date=2023-08-23 |access-date=2023-08-23 |work=[[The Guardian]]}}</ref>

Although it is possible to reflect light or radio waves directly from the Moon's surface (a process known as [[Earth–Moon–Earth communication|EME]]), a much more precise range measurement can be made using retroreflectors, since because of their small size, the temporal spread in the reflected signal is much smaller.


A review of Lunar Laser Ranging is available.<ref>{{Cite journal|last1=Müller|first1=Jürgen|last2=Murphy|first2=Thomas W.|last3=Schreiber|first3=Ulrich|last4=Shelus|first4=Peter J.|last5=Torre|first5=Jean-Marie|last6=Williams|first6=James G.|last7=Boggs|first7=Dale H.|last8=Bouquillon|first8=Sebastien|last9=Bourgoin|first9=Adrien|last10=Hofmann|first10=Franz|date=2019|title=Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science|url=https://doi.org/10.1007/s00190-019-01296-0|journal=Journal of Geodesy|language=en|volume=93|issue=11|pages=2195–2210|doi=10.1007/s00190-019-01296-0|bibcode=2019JGeod..93.2195M|s2cid=202641440|issn=1432-1394}}</ref>
Although it is possible to reflect light or radio waves directly from the Moon's surface (a process known as [[Earth–Moon–Earth communication|EME]]), a much more precise range measurement can be made using retroreflectors, since because of their small size, the temporal spread in the reflected signal is much smaller<ref>{{Cite journal|last1=Müller|first1=Jürgen|last2=Murphy|first2=Thomas W.|last3=Schreiber|first3=Ulrich|last4=Shelus|first4=Peter J.|last5=Torre|first5=Jean-Marie|last6=Williams|first6=James G.|last7=Boggs|first7=Dale H.|last8=Bouquillon|first8=Sebastien|last9=Bourgoin|first9=Adrien|last10=Hofmann|first10=Franz|date=2019|title=Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science|url=https://doi.org/10.1007/s00190-019-01296-0|journal=Journal of Geodesy|language=en|volume=93|issue=11|pages=2195–2210|doi=10.1007/s00190-019-01296-0|bibcode=2019JGeod..93.2195M|s2cid=202641440|issn=1432-1394}}</ref> and because the return will be more evenly reflected with less diffusion.


Laser ranging measurements can also be made with retroreflectors installed on [[List of missions to the Moon|Moon-orbiting satellites]] such as the [[Lunar Reconnaissance Orbiter|LRO]].<ref>{{Cite journal|last1=Mazarico|first1=Erwan|last2=Sun|first2=Xiaoli|last3=Torre|first3=Jean-Marie|last4=Courde|first4=Clément|last5=Chabé|first5=Julien|last6=Aimar|first6=Mourad|last7=Mariey|first7=Hervé|last8=Maurice|first8=Nicolas|last9=Barker|first9=Michael K.|last10=Mao|first10=Dandan|last11=Cremons|first11=Daniel R.|last12=Bouquillon|first12=Sébastien|last13=Carlucci|first13=Teddy|last14=Viswanathan|first14=Vishnu|last15=Lemoine|first15=Frank|last16=Bourgoin|first16=Adrien|last17=Exertier|first17=Pierre|last18=Neumann|first18=Gregory|last19=Zuber|first19=Maria|last20=Smith|first20=David|date=2020-08-06|title=First two-way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO's retro-reflector array|journal=Earth, Planets and Space|volume=72|issue=1|pages=113|doi=10.1186/s40623-020-01243-w|bibcode=2020EP&S...72..113M|issn=1880-5981|doi-access=free}}</ref><ref>{{Cite news|last=Kornei|first=Katherine|date=2020-08-15|title=How Do You Solve a Moon Mystery? Fire a Laser at It|language=en-US|work=The New York Times|url=https://www.nytimes.com/2020/08/15/science/moon-lasers-dust.html|access-date=2021-06-01|issn=0362-4331}}</ref>
Laser ranging measurements can also be made with retroreflectors installed on [[List of missions to the Moon|Moon-orbiting satellites]] such as the [[Lunar Reconnaissance Orbiter|LRO]].<ref>{{Cite journal|last1=Mazarico|first1=Erwan|last2=Sun|first2=Xiaoli|last3=Torre|first3=Jean-Marie|last4=Courde|first4=Clément|last5=Chabé|first5=Julien|last6=Aimar|first6=Mourad|last7=Mariey|first7=Hervé|last8=Maurice|first8=Nicolas|last9=Barker|first9=Michael K.|last10=Mao|first10=Dandan|last11=Cremons|first11=Daniel R.|last12=Bouquillon|first12=Sébastien|last13=Carlucci|first13=Teddy|last14=Viswanathan|first14=Vishnu|last15=Lemoine|first15=Frank|last16=Bourgoin|first16=Adrien|last17=Exertier|first17=Pierre|last18=Neumann|first18=Gregory|last19=Zuber|first19=Maria|last20=Smith|first20=David|date=2020-08-06|title=First two-way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO's retro-reflector array|journal=Earth, Planets and Space|volume=72|issue=1|pages=113|doi=10.1186/s40623-020-01243-w|bibcode=2020EP&S...72..113M|issn=1880-5981|doi-access=free|hdl=11603/19523|hdl-access=free}}</ref><ref>{{Cite news|last=Kornei|first=Katherine|date=2020-08-15|title=How Do You Solve a Moon Mystery? Fire a Laser at It|language=en-US|work=The New York Times|url=https://www.nytimes.com/2020/08/15/science/moon-lasers-dust.html|access-date=2021-06-01|issn=0362-4331}}</ref>


==History==
==History==
Line 14: Line 13:
[[Image:Laser Ranging Retroreflector Apollo 15.svg|thumb|Apollo 15 LRRR schematic]]
[[Image:Laser Ranging Retroreflector Apollo 15.svg|thumb|Apollo 15 LRRR schematic]]


The first successful lunar ranging tests were carried out in 1962 when [[Louis Smullin]] and [[Giorgio Fiocco]] from the [[Massachusetts Institute of Technology]] succeeded in observing laser pulses reflected from the Moon's surface using a laser with a 50J 0.5 millisecond pulse length.<ref>{{cite journal |last1=Smullin |first1=Louis D. |last2=Fiocco |first2=Giorgio |year=1962 |title=Optical Echoes from the Moon |journal=[[Nature (journal)|Nature]] |volume=194 |issue=4835 |pages=1267 |bibcode=1962Natur.194.1267S |doi=10.1038/1941267a0|s2cid=4145783 }}</ref> Similar measurements were obtained later the same year by a Soviet team at the [[Crimean Astrophysical Observatory]] using a [[Q-switching|Q-switched]] [[ruby laser]].<ref>{{cite journal |last1=Bender |first1=P. L. |display-authors=etal |year=1973 |title=The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information |url=http://www.physics.ucsd.edu/~tmurphy/apollo/doc/Bender.pdf |journal=[[Science (journal)|Science]] |volume=182 |issue=4109 |pages=229–238 |bibcode=1973Sci...182..229B |doi=10.1126/science.182.4109.229 |pmid=17749298|s2cid=32027563 }}</ref>
The first successful lunar ranging tests were carried out in 1962 when [[Louis Smullin]] and [[Giorgio Fiocco]] from the [[Massachusetts Institute of Technology]] succeeded in observing laser pulses reflected from the Moon's surface using a laser with a 50J 0.5 millisecond pulse length.<ref>{{cite journal |last1=Smullin |first1=Louis D. |last2=Fiocco |first2=Giorgio |year=1962 |title=Optical Echoes from the Moon |journal=[[Nature (journal)|Nature]] |volume=194 |issue=4835 |pages=1267 |bibcode=1962Natur.194.1267S |doi=10.1038/1941267a0|s2cid=4145783 |doi-access=free }}</ref> Similar measurements were obtained later the same year by a Soviet team at the [[Crimean Astrophysical Observatory]] using a [[Q-switching|Q-switched]] [[ruby laser]].<ref>{{cite journal |last1=Bender |first1=P. L. |display-authors=etal |year=1973 |title=The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information |url=http://www.physics.ucsd.edu/~tmurphy/apollo/doc/Bender.pdf |journal=[[Science (journal)|Science]] |volume=182 |issue=4109 |pages=229–238 |bibcode=1973Sci...182..229B |doi=10.1126/science.182.4109.229 |pmid=17749298|s2cid=32027563 }}</ref>


Shortly thereafter, [[Princeton University]] graduate student [[James E. Faller|James Faller]] proposed placing optical reflectors on the Moon to improve the accuracy of the measurements.<ref name=":0">{{Cite journal|last=Newman|first=Michael E.|date=2017-09-26|title=To the Moon and Back … in 2.5 Seconds|url=https://www.nist.gov/nist-time-capsule/any-object-any-need-call-nist/moon-and-back-25-seconds|access-date=2021-01-27|journal=NIST|language=en}}</ref> This was achieved following the installation of a [[retroreflector]] array on July 21, 1969 by the crew of [[Apollo 11]]. Two more retroreflector arrays were left by the [[Apollo 14]] and [[Apollo 15]] missions. Successful lunar laser range measurements to the [[retroreflectors]] were first reported on Aug. 1, 1969 by the 3.1&nbsp;m telescope at [[Lick Observatory]].<ref name=":0" /> Observations from [[Air Force Cambridge Research Laboratories]] Lunar Ranging Observatory in Arizona, the [[Pic du Midi de Bigorre|Pic du Midi Observatory]] in France, the Tokyo [[National Astronomical Observatory of Japan|Astronomical Observatory]], and [[McDonald Observatory]] in Texas soon followed.
Shortly thereafter, [[Princeton University]] graduate student [[James E. Faller|James Faller]] proposed placing optical reflectors on the Moon to improve the accuracy of the measurements.<ref name=":0">{{Cite journal|last=Newman|first=Michael E.|date=2017-09-26|title=To the Moon and Back … in 2.5 Seconds|url=https://www.nist.gov/nist-time-capsule/any-object-any-need-call-nist/moon-and-back-25-seconds|access-date=2021-01-27|journal=NIST|language=en}}</ref> This was achieved following the installation of a [[retroreflector]] array on July 21, 1969 by the crew of [[Apollo 11]]. Two more retroreflector arrays were left by the [[Apollo 14]] and [[Apollo 15]] missions. Successful lunar laser range measurements to the [[retroreflectors]] were first reported on Aug. 1, 1969 by the 3.1&nbsp;m telescope at [[Lick Observatory]].<ref name=":0" /> Observations from [[Air Force Cambridge Research Laboratories]] Lunar Ranging Observatory in Arizona, the [[Pic du Midi de Bigorre|Pic du Midi Observatory]] in France, the Tokyo [[National Astronomical Observatory of Japan|Astronomical Observatory]], and [[McDonald Observatory]] in Texas soon followed.


The uncrewed Soviet ''[[Lunokhod 1]]'' and ''[[Lunokhod 2]]'' rovers carried smaller arrays. Reflected signals were initially received from ''Lunokhod 1'' by the Soviet Union up to 1974, but not by western observatories that did not have precise information about location. In 2010 [[NASA]]'s [[Lunar Reconnaissance Orbiter]] located the Lunokhod 1 rover on images and in April 2010 a team from University of California ranged the array.<ref>{{cite news |last=McDonald |first=K. |date=26 April 2010 |title=UC San Diego Physicists Locate Long Lost Soviet Reflector on Moon |url=http://ucsdnews.ucsd.edu/newsrel/science/04-26SovietReflector.asp |publisher=University of California, San Diego |access-date=27 April 2010}}</ref> ''Lunokhod 2''{{'s}} array continues to return signals to Earth.<ref name="jwjd1">{{cite conference |url=https://ilrs.cddis.eosdis.nasa.gov/docs/williams_lw13.pdf |title=Lunar Geophysics, Geodesy, and Dynamics |conference=13th International Workshop on Laser Ranging. 7–11 October 2002. Washington, D. C. |first1=James G. |last1=Williams |first2=Jean O. |last2=Dickey |date=2002}}</ref> The Lunokhod arrays suffer from decreased performance in direct sunlight—a factor considered in reflector placement during the Apollo missions.<ref name="UniverseToday">{{cite news |title=It's Not Just The Astronauts That Are Getting Older |date=10 March 2010 |work=[[Universe Today]] |url=http://www.universetoday.com/59310/its-not-just-the-astronauts-that-are-getting-older/ |access-date=24 August 2012}}</ref>
The uncrewed Soviet ''[[Lunokhod 1]]'' and ''[[Lunokhod 2]]'' rovers carried smaller arrays. Reflected signals were initially received from ''Lunokhod 1'' by the Soviet Union up to 1974, but not by western observatories that did not have precise information about location. In 2010 [[NASA]]'s [[Lunar Reconnaissance Orbiter]] located the Lunokhod 1 rover on images and in April 2010 a team from University of California ranged the array.<ref>{{cite news |last=McDonald |first=K. |date=26 April 2010 |title=UC San Diego Physicists Locate Long Lost Soviet Reflector on Moon |url=http://ucsdnews.ucsd.edu/newsrel/science/04-26SovietReflector.asp |publisher=University of California, San Diego |access-date=27 April 2010|archive-date=30 April 2010|archive-url=https://web.archive.org/web/20100430164946/http://ucsdnews.ucsd.edu/newsrel/science/04-26SovietReflector.asp|url-status=dead}}</ref> ''Lunokhod 2''{{'s}} array continues to return signals to Earth.<ref name="jwjd1">{{cite conference |url=https://ilrs.cddis.eosdis.nasa.gov/docs/williams_lw13.pdf |title=Lunar Geophysics, Geodesy, and Dynamics |conference=13th International Workshop on Laser Ranging. 7–11 October 2002. Washington, D. C. |first1=James G. |last1=Williams |first2=Jean O. |last2=Dickey |date=2002}}</ref> The Lunokhod arrays suffer from decreased performance in direct sunlight—a factor considered in reflector placement during the Apollo missions.<ref name="UniverseToday">{{cite news |title=It's Not Just The Astronauts That Are Getting Older |date=10 March 2010 |work=[[Universe Today]] |url=http://www.universetoday.com/59310/its-not-just-the-astronauts-that-are-getting-older/ |access-date=24 August 2012}}</ref>


The Apollo 15 array is three times the size of the arrays left by the two earlier Apollo missions. Its size made it the target of three-quarters of the sample measurements taken in the first 25 years of the experiment. Improvements in technology since then have resulted in greater use of the smaller arrays, by sites such as the [[Côte d'Azur Observatory]] in [[Nice]], France; and the [[Apache Point Observatory Lunar Laser-ranging Operation]] (APOLLO) at the [[Apache Point Observatory]] in [[New Mexico]].
The Apollo 15 array is three times the size of the arrays left by the two earlier Apollo missions. Its size made it the target of three-quarters of the sample measurements taken in the first 25 years of the experiment. Improvements in technology since then have resulted in greater use of the smaller arrays, by sites such as the [[Côte d'Azur Observatory]] in [[Nice]], France; and the [[Apache Point Observatory Lunar Laser-ranging Operation]] (APOLLO) at the [[Apache Point Observatory]] in [[New Mexico]].


In the 2010s several [[List of retroreflectors on the Moon|new retroreflectors]] were planned. The [[MoonLIGHT (experiment)|MoonLIGHT]] reflector, which was to be placed by the private [[MX-1E]] lander, was designed to increase measurement accuracy up to 100 times over existing systems.<ref name="Currie 2011">{{cite journal|last1=Currie|first1=Douglas|last2=Dell'Agnello|first2=Simone|last3=Delle Monache|first3=Giovanni|date=April–May 2011|title=A Lunar Laser Ranging Retroreflector Array for the 21st Century|journal=Acta Astronautica|volume=68|issue=7–8|pages=667–680|bibcode=2011AcAau..68..667C|doi=10.1016/j.actaastro.2010.09.001}}</ref><ref name="Tune 2015">{{cite news|last=Tune|first=Lee|date=10 June 2015|title=UMD, Italy & MoonEx Join to Put New Laser-Reflecting Arrays on Moon|work=UMD Right Now|publisher=University of Maryland|url=https://umdrightnow.umd.edu/news/umd-italy-moonex-join-put-new-laser-reflecting-arrays-moon}}</ref><ref name="MX-1">{{Cite news|last=Boyle|first=Alan|date=12 July 2017|title=Moon Express unveils its roadmap for giant leaps to the lunar surface ... and back again|work=GeekWire|url=https://www.geekwire.com/2017/moon-express-unveils-roadmap-giant-leaps-lunar-surface-back/|access-date=15 March 2018}}</ref> MX-1E was set to launch in July 2020,<ref>{{Citation|title=Moon Express Lunar Scout (MX-1E)|url=https://www.rocketlaunch.live/launch/lunar-scout|publisher=RocketLaunch.Live|access-date=27 July 2019}}</ref> however, as of February 2020, the launch of the MX-1E has been canceled.<ref>{{cite web|title=MX-1E 1, 2, 3|url=https://space.skyrocket.de/doc_sdat/mx-1e.htm|access-date=24 May 2020}}</ref>
In the 2010s several [[List of retroreflectors on the Moon|new retroreflectors]] were planned. The [[MoonLIGHT (experiment)|MoonLIGHT]] reflector, which was to be placed by the private [[MX-1E]] lander, was designed to increase measurement accuracy up to 100 times over existing systems.<ref name="Currie 2011">{{cite journal|last1=Currie|first1=Douglas|last2=Dell'Agnello|first2=Simone|last3=Delle Monache|first3=Giovanni|date=April–May 2011|title=A Lunar Laser Ranging Retroreflector Array for the 21st Century|journal=Acta Astronautica|volume=68|issue=7–8|pages=667–680|bibcode=2011AcAau..68..667C|doi=10.1016/j.actaastro.2010.09.001|url=https://www.openaccessrepository.it/record/137265 }}</ref><ref name="Tune 2015">{{cite news|last=Tune|first=Lee|date=10 June 2015|title=UMD, Italy & MoonEx Join to Put New Laser-Reflecting Arrays on Moon|work=UMD Right Now|publisher=University of Maryland|url=https://umdrightnow.umd.edu/news/umd-italy-moonex-join-put-new-laser-reflecting-arrays-moon|access-date=21 March 2018|archive-date=22 March 2018|archive-url=https://web.archive.org/web/20180322081731/https://umdrightnow.umd.edu/news/umd-italy-moonex-join-put-new-laser-reflecting-arrays-moon|url-status=dead}}</ref><ref name="MX-1">{{Cite news|last=Boyle|first=Alan|date=12 July 2017|title=Moon Express unveils its roadmap for giant leaps to the lunar surface ... and back again|work=GeekWire|url=https://www.geekwire.com/2017/moon-express-unveils-roadmap-giant-leaps-lunar-surface-back/|access-date=15 March 2018}}</ref> MX-1E was set to launch in July 2020,<ref>{{Citation|title=Moon Express Lunar Scout (MX-1E)|url=https://www.rocketlaunch.live/launch/lunar-scout|publisher=RocketLaunch.Live|access-date=27 July 2019|archive-date=27 July 2019|archive-url=https://web.archive.org/web/20190727095927/https://www.rocketlaunch.live/launch/lunar-scout|url-status=dead}}</ref> however, as of February 2020, the launch of the MX-1E has been canceled.<ref>{{cite web|title=MX-1E 1, 2, 3|url=https://space.skyrocket.de/doc_sdat/mx-1e.htm|access-date=24 May 2020}}</ref> India's [[Chandrayaan-3]] lunar lander successfully placed a sixth reflector on the Moon in August 2023.<ref name=":5" /> MoonLIGHT will be launched in early 2024 with a [[Commercial Lunar Payload Services]] (CLPS) mission.<ref>{{Cite web |title=NASA Payloads for (CLPS PRISM) CP-11 |url=https://science.nasa.gov/lunar-discovery/deliveries/cp-11}}</ref>


==Principle==
==Principle==
{{see also|Apache Point Observatory Lunar Laser-ranging Operation#Principle of operation}}
{{see also|Apache Point Observatory Lunar Laser-ranging Operation#Principles of operation}}
[[File:Lunar_retroreflector_locations.jpg|thumb|right|250px|Annotated image of the near side of the Moon showing the location of retroreflectors left on the surface by Apollo and Lunokhod missions<ref name="llrnasa">{{cite journal |url=http://science.nasa.gov/science-news/science-at-nasa/2004/06may_lunarranging/|title=Was Galileo Wrong? &#124; Science Mission Directorate}}</ref>]]
[[File:Lunar_retroreflector_locations.jpg|thumb|right|250px|Annotated image of the near side of the Moon showing the location of retroreflectors left on the surface by Apollo and Lunokhod missions<ref name="llrnasa">{{cite web |url=http://science.nasa.gov/science-news/science-at-nasa/2004/06may_lunarranging/ |title=Was Galileo Wrong? |publisher=[[NASA]] |date=6 May 2004 |url-status=live |archive-url=https://web.archive.org/web/20220430111349/https://science.nasa.gov/science-news/science-at-nasa/2004/06may_lunarranging/ |archive-date=30 April 2022 }}</ref>]]
The distance to the Moon is calculated {{em|approximately}} using the equation:
The distance to the Moon is calculated {{em|approximately}} using the equation:
{{math|1=distance {{=}} (speed of light × duration of delay due to reflection) / 2}}. Since the [[speed of light]] is a defined constant, conversion between distance and time of flight can be made without ambiguity.
{{serif|1=''distance'' {{=}} (''speed of light'' × ''duration of delay due to reflection'')&nbsp;/&nbsp;2}}. Since the [[speed of light]] is a defined constant, conversion between distance and time of flight can be made without ambiguity.


To compute the lunar distance precisely, many factors must be considered in addition to the round-trip time of about 2.5 seconds. These factors include the location of the Moon in the sky, the relative motion of Earth and the Moon, Earth's rotation, [[lunar libration]], [[polar motion]], [[weather]], speed of light in various parts of air, propagation delay through [[Atmosphere of Earth|Earth's atmosphere]], the location of the observing station and its motion due to [[plate tectonics|crustal motion]] and [[tide]]s, and [[Theory of relativity|relativistic effects]].<ref>{{cite book |title=Satellite Geodesy |url=https://archive.org/details/satellitegeodesy00seeb |url-access=limited |publisher=de Gruyter |first=Günter |last=Seeber |edition=2nd |page=[https://archive.org/details/satellitegeodesy00seeb/page/n458 439] |date=2003 |isbn=978-3-11-017549-3 |oclc=52258226}}</ref><ref>{{Cite web|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2020|title=The JPL Lunar Laser range model 2020|url=https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/|access-date=2021-05-24|website=ssd.jpl.nasa.gov}}</ref> The distance continually changes for a number of reasons, but averages {{convert|385000.6|km|mi|abbr=on}} between the center of the Earth and the center of the Moon.<ref name="millimeter challenge">{{cite journal |last1=Murphy |first1=T. W. |date=2013 |title=Lunar laser ranging: the millimeter challenge |url=http://physics.ucsd.edu/~tmurphy/papers/rop-llr.pdf |journal=[[Reports on Progress in Physics]] |volume=76 |issue=7 |page=2 |arxiv=1309.6294 |bibcode=2013RPPh...76g6901M |doi=10.1088/0034-4885/76/7/076901|pmid=23764926 |s2cid=15744316 }}</ref> The orbits of the Moon and planets are integrated numerically along with the orientation of the Moon called physical [[Libration]].<ref name=":3">{{Cite journal|last1=Park|first1=Ryan S.|last2=Folkner|first2=William M.|last3=Williams|first3=James G.|last4=Boggs|first4=Dale H.|date=2021|title=The JPL Planetary and Lunar Ephemerides DE440 and DE441|journal=The Astronomical Journal|language=en|volume=161|issue=3|pages=105|doi=10.3847/1538-3881/abd414|bibcode=2021AJ....161..105P|s2cid=233943954|issn=1538-3881|doi-access=free}}</ref>
To compute the lunar distance precisely, many factors must be considered in addition to the round-trip time of about 2.5 seconds. These factors include the location of the Moon in the sky, the relative motion of Earth and the Moon, Earth's rotation, [[lunar libration]], [[polar motion]], [[weather]], speed of light in various parts of air, propagation delay through [[Atmosphere of Earth|Earth's atmosphere]], the location of the observing station and its motion due to [[plate tectonics|crustal motion]] and [[tide]]s, and [[Theory of relativity|relativistic effects]].<ref>{{cite book |title=Satellite Geodesy |url=https://archive.org/details/satellitegeodesy00seeb |url-access=limited |publisher=de Gruyter |first=Günter |last=Seeber |edition=2nd |page=[https://archive.org/details/satellitegeodesy00seeb/page/n458 439] |date=2003 |isbn=978-3-11-017549-3 |oclc=52258226}}</ref><ref>{{Cite web|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2020|title=The JPL Lunar Laser range model 2020|url=https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/|access-date=2021-05-24|website=ssd.jpl.nasa.gov}}</ref> The distance continually changes for a number of reasons, but averages {{convert|385000.6|km|mi|abbr=on}} between the center of the Earth and the center of the Moon.<ref name="millimeter challenge">{{cite journal |last1=Murphy |first1=T. W. |date=2013 |title=Lunar laser ranging: the millimeter challenge |url=http://physics.ucsd.edu/~tmurphy/papers/rop-llr.pdf |journal=[[Reports on Progress in Physics]] |volume=76 |issue=7 |page=2 |arxiv=1309.6294 |bibcode=2013RPPh...76g6901M |doi=10.1088/0034-4885/76/7/076901|pmid=23764926 |s2cid=15744316 }}</ref> The orbits of the Moon and planets are integrated numerically along with the orientation of the Moon called physical [[libration]].<ref name=":3">{{Cite journal|last1=Park|first1=Ryan S.|last2=Folkner|first2=William M.|last3=Williams|first3=James G.|last4=Boggs|first4=Dale H.|date=2021|title=The JPL Planetary and Lunar Ephemerides DE440 and DE441|journal=The Astronomical Journal|language=en|volume=161|issue=3|pages=105|doi=10.3847/1538-3881/abd414|bibcode=2021AJ....161..105P|s2cid=233943954|issn=1538-3881|doi-access=free}}</ref>


At the Moon's surface, the beam is about {{convert|6.5|km|mi|sp=us}} wide<ref name=ApolloLaser >{{cite web
At the Moon's surface, the beam is about {{convert|6.5|km|mi|sp=us}} wide<ref name=ApolloLaser >{{cite web
|last=Espenek |first=F. |date=August 1994 |title=NASA - Accuracy of Eclipse Predictions
|last=Espenek |first=F. |date=August 1994 |title=NASA Accuracy of Eclipse Predictions
|url=http://eclipse.gsfc.nasa.gov/SEhelp/ApolloLaser.html
|url=http://eclipse.gsfc.nasa.gov/SEhelp/ApolloLaser.html
|publisher=NASA/GSFC
|publisher=NASA/GSFC
|access-date=4 May 2008
|access-date=4 May 2008
}}</ref>{{efn-lr|During the round-trip time, an Earth observer will have moved by around {{val|1|u=km}} (depending on their latitude). This has been presented, incorrectly, as a 'disproof' of the ranging experiment, the claim being that the beam to such a small reflector cannot hit such a moving target. However the size of the beam is far larger than any movement, especially for the returned beam.}} and scientists liken the task of aiming the beam to using a rifle to hit a moving [[Dime (United States coin)|dime]] {{convert|3|km|mi|sp=us}} away. The reflected light is too weak to see with the human eye. Out of {{10^|21}}&nbsp;photons aimed at the reflector, only one is received back on Earth, even under good conditions.<ref>{{Cite journal|last=Merkowitz|first=Stephen M.|date=2010-11-02|title=Tests of Gravity Using Lunar Laser Ranging|url= |journal=Living Reviews in Relativity|language=en|volume=13|issue=1|pages=7|doi=10.12942/lrr-2010-7|issn=1433-8351|pmc=5253913|pmid=28163616|bibcode=2010LRR....13....7M}}</ref> They can be identified as originating from the laser because the laser is highly [[monochromatic]].
}}</ref>{{efn-lr|During the round-trip time, an Earth observer will have moved by around {{val|1|u=km}} (depending on their latitude). This has been presented, incorrectly, as a 'disproof' of the ranging experiment, the claim being that the beam to such a small reflector cannot hit such a moving target. However the size of the beam is far larger than any movement, especially for the returned beam.}} and scientists liken the task of aiming the beam to using a rifle to hit a moving [[Dime (United States coin)|dime]] {{convert|3|km|mi|sp=us}} away. The reflected light is too weak to see with the human eye. Out of a pulse of 3×10<sup>17</sup> photons<ref>{{cite web |title=The Basics of Lunar Ranging |url=https://tmurphy.physics.ucsd.edu/apollo/basics.html |access-date=21 July 2023}}</ref> aimed at the reflector, only about 1{{ndash}}5 are received back on Earth, even under good conditions.<ref>{{Cite journal|last=Merkowitz|first=Stephen M.|date=2010-11-02|title=Tests of Gravity Using Lunar Laser Ranging|url= |journal=Living Reviews in Relativity|language=en|volume=13|issue=1|pages=7|doi=10.12942/lrr-2010-7|doi-access=free |issn=1433-8351|pmc=5253913|pmid=28163616|bibcode=2010LRR....13....7M}}</ref> They can be identified as originating from the laser because the laser is highly [[monochromatic]].


As of 2009, the distance to the Moon can be measured with millimeter precision.<ref name=":1" /> In a relative sense, this is one of the most precise distance measurements ever made, and is equivalent in accuracy to determining the distance between Los Angeles and New York to within the width of a human hair.
As of 2009, the distance to the Moon can be measured with millimeter precision.<ref name=":1" /> In a relative sense, this is one of the most precise distance measurements ever made, and is equivalent in accuracy to determining the distance between Los Angeles and New York to within the width of a human hair.
Line 61: Line 60:
1985–2013
1985–2013
|2.7 m
|2.7 m
|694 nm, 7 J
|694&nbsp;nm, 7 J
532 nm, 200 ps, 150 mJ
532&nbsp;nm, 200 ps, 150 mJ
|
|
|<ref>{{Cite journal|last1=Bender|first1=P. L.|last2=Currie|first2=D. G.|last3=Dickey|first3=R. H.|last4=Eckhardt|first4=D. H.|last5=Faller|first5=J. E.|last6=Kaula|first6=W. M.|last7=Mulholland|first7=J. D.|last8=Plotkin|first8=H. H.|last9=Poultney|first9=S. K.|last10=Silverberg|first10=E. C.|last11=Wilkinson|display-authors=9|date=1973|title=The Lunar Laser Ranging Experiment|url=https://www.science.org/doi/10.1126/science.182.4109.229|journal=Science|language=en|volume=182|issue=4109|pages=229–238|doi=10.1126/science.182.4109.229|pmid=17749298|bibcode=1973Sci...182..229B|s2cid=32027563|issn=0036-8075}}</ref>
|<ref>{{Cite journal|last1=Bender|first1=P. L.|last2=Currie|first2=D. G.|last3=Dickey|first3=R. H.|last4=Eckhardt|first4=D. H.|last5=Faller|first5=J. E.|last6=Kaula|first6=W. M.|last7=Mulholland|first7=J. D.|last8=Plotkin|first8=H. H.|last9=Poultney|first9=S. K.|last10=Silverberg|first10=E. C.|last11=Wilkinson|display-authors=9|date=1973|title=The Lunar Laser Ranging Experiment|url=https://www.science.org/doi/10.1126/science.182.4109.229|journal=Science|language=en|volume=182|issue=4109|pages=229–238|doi=10.1126/science.182.4109.229|pmid=17749298|bibcode=1973Sci...182..229B|s2cid=32027563|issn=0036-8075}}</ref>
Line 71: Line 70:
|1974, 1982–1984
|1974, 1982–1984
|
|
|694 nm
|694&nbsp;nm
|3.0–0.6 m
|3.0–0.6 m
|<ref>{{Cite web|last=Yagudina|date=2018|title=Processing and analysis of lunar laser ranging observations in Crimea in 1974-1984|url=http://iaaras.ru/en/library/paper/1943/|access-date=2021-06-01|website=Institute of Applied Astronomy of the Russian Academy of Sciences}}</ref>
|<ref>{{Cite web|last=Yagudina|date=2018|title=Processing and analysis of lunar laser ranging observations in Crimea in 1974-1984|url=http://iaaras.ru/en/library/paper/1943/|access-date=2021-06-01|website=Institute of Applied Astronomy of the Russian Academy of Sciences}}</ref>
Line 82: Line 81:
2010–present (2021)
2010–present (2021)
|
|
|694 nm
|694&nbsp;nm
532 nm, 70 ps, 75 mJ
532&nbsp;nm, 70 ps, 75 mJ


532/1064 nm
532/1064&nbsp;nm
|
|
|<ref name="millimeter challenge" /><ref>{{Cite journal|last1=Chabé|first1=Julien|last2=Courde|first2=Clément|last3=Torre|first3=Jean-Marie|last4=Bouquillon|first4=Sébastien|last5=Bourgoin|first5=Adrien|last6=Aimar|first6=Mourad|last7=Albanèse|first7=Dominique|last8=Chauvineau|first8=Bertrand|last9=Mariey|first9=Hervé|last10=Martinot-Lagarde|first10=Grégoire|last11=Maurice|first11=Nicolas|date=2020|title=Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000785|journal=Earth and Space Science|language=en|volume=7|issue=3|pages=e2019EA000785|doi=10.1029/2019EA000785|bibcode=2020E&SS....700785C|s2cid=212785296 |issn=2333-5084}}</ref>
|<ref name="millimeter challenge" /><ref>{{Cite journal|last1=Chabé|first1=Julien|last2=Courde|first2=Clément|last3=Torre|first3=Jean-Marie|last4=Bouquillon|first4=Sébastien|last5=Bourgoin|first5=Adrien|last6=Aimar|first6=Mourad|last7=Albanèse|first7=Dominique|last8=Chauvineau|first8=Bertrand|last9=Mariey|first9=Hervé|last10=Martinot-Lagarde|first10=Grégoire|last11=Maurice|first11=Nicolas|date=2020|title=Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station|journal=Earth and Space Science|language=en|volume=7|issue=3|pages=e2019EA000785|doi=10.1029/2019EA000785|bibcode=2020E&SS....700785C|s2cid=212785296 |issn=2333-5084|doi-access=free}}</ref>
|-
|-
|[[Haleakalā Observatory|Haleakala Observatory]], Hawaii, US
|[[Haleakalā Observatory|Haleakala Observatory]], Hawaii, US
Line 93: Line 92:
|1984–1990
|1984–1990
|
|
|532 nm, 200 ps, 140 mJ
|532&nbsp;nm, 200 ps, 140 mJ
|2.0 cm
|2.0&nbsp;cm
|<ref name="millimeter challenge" /><ref>{{Cite web|date=2002-01-29|title=Lure Observatory|url=http://koa.ifa.hawaii.edu/Lure/|access-date=2021-06-03|website=Institute for Astronomy, University of Hawaii}}</ref>
|<ref name="millimeter challenge" /><ref>{{Cite web|date=2002-01-29|title=Lure Observatory|url=http://koa.ifa.hawaii.edu/Lure/|access-date=2021-06-03|website=Institute for Astronomy, University of Hawaii}}</ref>
|-
|-
Line 101: Line 100:
|2003–present (2021)
|2003–present (2021)
|
|
|532 nm
|532&nbsp;nm
|
|
|
|
Line 107: Line 106:
|[[Apache Point Observatory]], New Mexico, US
|[[Apache Point Observatory]], New Mexico, US
|[[Apache Point Observatory Lunar Laser-ranging Operation|APOLLO]]
|[[Apache Point Observatory Lunar Laser-ranging Operation|APOLLO]]
|2006–2021
|2006–2020
2021–present (2023)
|
|
|532 nm, 100 ps, 115 mJ
|532&nbsp;nm, 100 ps, 115 mJ
|1.1 mm
|1.1&nbsp;mm
|<ref name="millimeter challenge" />
|<ref name="millimeter challenge" />
<ref>{{Cite web |title=APOL - Apache Point Observatory|url=https://space-geodesy.nasa.gov/NSGN/sites/Apache_Point/Apache_Point.html}}</ref>
|-
|-
|[[Geodetic Observatory Wettzell]], Germany
|[[Geodetic Observatory Wettzell]], Germany
Line 117: Line 118:
|2018–present (2021)
|2018–present (2021)
|
|
|1064 nm, 10 ps, 75 mJ
|1064&nbsp;nm, 10 ps, 75 mJ
|
|
|<ref>{{Cite journal|last1=Eckl|first1=Johann J.|last2=Schreiber|first2=K. Ulrich|last3=Schüler|first3=Torben|editor1-first=Peter|editor1-last=Domokos|editor2-first=Ralph B|editor2-last=James|editor3-first=Ivan|editor3-last=Prochazka|editor4-first=Roman|editor4-last=Sobolewski|editor5-first=Adam|editor5-last=Gali|date=2019-04-30|title=Lunar laser ranging utilizing a highly efficient solid-state detector in the near-IR|url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11027/1102708/Lunar-laser-ranging-utilizing-a-highly-efficient-solid-state-detector/10.1117/12.2521133.short|journal=Quantum Optics and Photon Counting 2019|publisher=International Society for Optics and Photonics|volume=11027|pages=1102708|doi=10.1117/12.2521133|bibcode=2019SPIE11027E..08E|isbn=9781510627208|s2cid=155720383}}</ref>
|<ref>{{Cite book|last1=Eckl|first1=Johann J.|last2=Schreiber|first2=K. Ulrich|last3=Schüler|first3=Torben|title=Quantum Optics and Photon Counting 2019 |chapter=Lunar laser ranging utilizing a highly efficient solid-state detector in the near-IR |editor1-first=Peter|editor1-last=Domokos|editor2-first=Ralph B|editor2-last=James|editor3-first=Ivan|editor3-last=Prochazka|editor4-first=Roman|editor4-last=Sobolewski|editor5-first=Adam|editor5-last=Gali|date=2019-04-30|chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11027/1102708/Lunar-laser-ranging-utilizing-a-highly-efficient-solid-state-detector/10.1117/12.2521133.short|publisher=International Society for Optics and Photonics|volume=11027|pages=1102708|doi=10.1117/12.2521133|bibcode=2019SPIE11027E..08E|isbn=9781510627208|s2cid=155720383}}</ref>
|-
|-
|[[Yunnan Astronomical Observatory]], Kunming, China
|[[Yunnan Astronomical Observatory]], Kunming, China
Line 125: Line 126:
|2018
|2018
|1.2 m
|1.2 m
|532 nm, 10 ns, 3 J
|532&nbsp;nm, 10 ns, 3 J
|meter level
|meter level
|<ref>{{Cite journal|date=2019-01-27|title=Research and Experiment of Lunar Laser Ranging in Yunnan Observatories|url=http://www.opticsjournal.net/Articles/Abstract/zgjg/46/1/0104004.cshtml|journal=Chinese Journal of Lasers|volume=46|issue=1|doi=10.3788/CJL201946.0104004|last1=Li Yuqiang |first1=李语强 |last2=Fu Honglin |first2=伏红林 |last3=Li Rongwang |first3=李荣旺 |last4=Tang Rufeng |first4=汤儒峰 |last5=Li Zhulian |first5=李祝莲 |last6=Zhai Dongsheng |first6=翟东升 |last7=Zhang Haitao |first7=张海涛 |last8=Pi Xiaoyu |first8=皮晓宇 |last9=Ye Xianji |first9=叶贤基 |last10=Xiong Yaoheng |first10=熊耀恒 |page=0104004 |s2cid=239211201 }}</ref>
|<ref>{{Cite journal|date=2019-01-27|title=Research and Experiment of Lunar Laser Ranging in Yunnan Observatories|url=http://www.opticsjournal.net/Articles/Abstract/zgjg/46/1/0104004.cshtml|journal=Chinese Journal of Lasers|volume=46|issue=1|doi=10.3788/CJL201946.0104004|last1=Li Yuqiang |first1=李语强 |last2=Fu Honglin |first2=伏红林 |last3=Li Rongwang |first3=李荣旺 |last4=Tang Rufeng |first4=汤儒峰 |last5=Li Zhulian |first5=李祝莲 |last6=Zhai Dongsheng |first6=翟东升 |last7=Zhang Haitao |first7=张海涛 |last8=Pi Xiaoyu |first8=皮晓宇 |last9=Ye Xianji |first9=叶贤基 |last10=Xiong Yaoheng |first10=熊耀恒 |page=0104004 |s2cid=239211201 }}</ref>
Line 131: Line 132:


== Data analysis ==
== Data analysis ==
The Lunar Laser Ranging data is collected in order to extract numerical values for a number of parameters. Analyzing the range data involves dynamics, terrestrial geophysics, and lunar geophysics. The modeling problem involves two aspects: an accurate computation of the lunar orbit and lunar orientation, and an accurate model for the time of flight from an observing station to a retroreflector and back to the station. Modern Lunar Laser Ranging data can be fit with a 1 cm weighted rms residual.
The Lunar Laser Ranging data is collected in order to extract numerical values for a number of parameters. Analyzing the range data involves dynamics, terrestrial geophysics, and lunar geophysics. The modeling problem involves two aspects: an accurate computation of the lunar orbit and lunar orientation, and an accurate model for the time of flight from an observing station to a retroreflector and back to the station. Modern Lunar Laser Ranging data can be fit with a 1&nbsp;cm weighted rms residual.


* The center of Earth to center of Moon distance is computed by a computer program that numerically integrates the lunar and planetary orbits accounting for the gravitational attraction of the Sun, planets, and a selection of asteroids.<ref name=":4">{{Cite journal|last1=Pavlov|first1=Dmitry A.|last2=Williams|first2=James G.|last3=Suvorkin|first3=Vladimir V.|date=2016|title=Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models|url=http://link.springer.com/10.1007/s10569-016-9712-1|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=61–88|doi=10.1007/s10569-016-9712-1|issn=0923-2958|arxiv=1606.08376|bibcode=2016CeMDA.126...61P|s2cid=119116627}}</ref><ref name=":3" />
* The center of Earth to center of Moon distance is computed by a program that numerically integrates the lunar and planetary orbits accounting for the gravitational attraction of the Sun, planets, and a selection of asteroids.<ref name=":4">{{Cite journal|last1=Pavlov|first1=Dmitry A.|last2=Williams|first2=James G.|last3=Suvorkin|first3=Vladimir V.|date=2016|title=Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models|url=http://link.springer.com/10.1007/s10569-016-9712-1|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=61–88|doi=10.1007/s10569-016-9712-1|issn=0923-2958|arxiv=1606.08376|bibcode=2016CeMDA.126...61P|s2cid=119116627}}</ref><ref name=":3" />
* The same program integrates the 3-axis orientation of the Moon called physical [[Libration]].


The range model includes<ref name=":4" /><ref>{{Cite web|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2020|title=The JPL Lunar Laser range model 2020|url=https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/|access-date=2021-06-01|website=ssd.jpl.nasa.gov}}</ref>
* The same program integrates the 3-axis orientation of the Moon called physical [[Libration]].

The range model includes<ref name=":4" /><ref>{{Cite web|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2020|title=The JPL Lunar Laser range model 2020|url=https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/|access-date=2021-06-01|website=ssd.jpl.nasa.gov}}</ref>


* The position of the ranging station accounting for motion due to [[plate tectonics]], [[Earth's rotation|Earth rotation]], [[Axial precession|precession]], [[nutation]], and [[polar motion]].
* The position of the ranging station accounting for motion due to [[plate tectonics]], [[Earth's rotation|Earth rotation]], [[Axial precession|precession]], [[nutation]], and [[polar motion]].

* Tides in the solid Earth and seasonal motion of the solid Earth with respect to its center of mass.
* Tides in the solid Earth and seasonal motion of the solid Earth with respect to its center of mass.
* Relativistic transformation of time and space coordinates from a frame moving with the station to a frame fixed with respect to the solar system center of mass. Lorentz contraction of the Earth is part of this transformation.
* Relativistic transformation of time and space coordinates from a frame moving with the station to a frame fixed with respect to the solar system center of mass. Lorentz contraction of the Earth is part of this transformation.
* Delay in the Earth’s atmosphere.
* Delay in the Earth's atmosphere.
* Relativistic delay due to the gravity fields of the Sun, Earth, and Moon.
* Relativistic delay due to the gravity fields of the Sun, Earth, and Moon.
* The position of the retroreflector accounting for orientation of the Moon and solid-body tides.
* The position of the retroreflector accounting for orientation of the Moon and solid-body tides.
* Lorentz contraction of the Moon.
* [[Length contraction|Lorentz contraction]] of the Moon.
* Thermal expansion and contraction of the retroreflector mounts.
* [[Thermal expansion]] and contraction of the retroreflector mounts.


For the terrestrial model, the IERS Conventions (2010) is a source of detailed information.<ref>{{Cite web|title=IERS - IERS Technical Notes - IERS Conventions (2010)|url=https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html|access-date=2021-06-01|website=www.iers.org}}</ref>
For the terrestrial model, the IERS Conventions (2010) is a source of detailed information.<ref>{{Cite web|title=IERS - IERS Technical Notes - IERS Conventions (2010)|url=https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html|access-date=2021-06-01|website=www.iers.org}}</ref>
Line 156: Line 155:
=== Properties of the Moon ===
=== Properties of the Moon ===
* The distance to the Moon can be measured with millimeter precision.<ref name=":1">{{cite journal|last1=Battat|first1=J. B. R.|last2=Murphy|first2=T. W.|last3=Adelberger|first3=E. G.|last4=Gillespie|first4=B.|last5=Hoyle|first5=C. D.|last6=McMillan|first6=R. J.|last7=Michelsen|first7=E. L.|last8=Nordtvedt|first8=K.|last9=Orin|first9=A. E.|last10=Stubbs|first10=C. W.|last11=Swanson|first11=H. E.|display-authors=3|date=January 2009|title=The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range1|journal=Publications of the Astronomical Society of the Pacific|volume=121|issue=875|pages=29–40|bibcode=2009PASP..121...29B|doi=10.1086/596748|jstor=10.1086/596748|doi-access=free}}</ref>
* The distance to the Moon can be measured with millimeter precision.<ref name=":1">{{cite journal|last1=Battat|first1=J. B. R.|last2=Murphy|first2=T. W.|last3=Adelberger|first3=E. G.|last4=Gillespie|first4=B.|last5=Hoyle|first5=C. D.|last6=McMillan|first6=R. J.|last7=Michelsen|first7=E. L.|last8=Nordtvedt|first8=K.|last9=Orin|first9=A. E.|last10=Stubbs|first10=C. W.|last11=Swanson|first11=H. E.|display-authors=3|date=January 2009|title=The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range1|journal=Publications of the Astronomical Society of the Pacific|volume=121|issue=875|pages=29–40|bibcode=2009PASP..121...29B|doi=10.1086/596748|jstor=10.1086/596748|doi-access=free}}</ref>
*The Moon is spiraling away from Earth at a rate of {{val|3.8|u=cm|up=year}}.{{r|ApolloLaser}}<ref>{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2016|title=Secular tidal changes in lunar orbit and Earth rotation|url=http://link.springer.com/10.1007/s10569-016-9702-3|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=89–129|doi=10.1007/s10569-016-9702-3|bibcode=2016CeMDA.126...89W|s2cid=124256137|issn=0923-2958}}</ref> This rate has been described as anomalously high.<ref>{{Cite journal |last1=Bills |first1=B. G. |last2=Ray |first2=R. D. |year=1999 |title=Lunar Orbital Evolution: A Synthesis of Recent Results |journal=[[Geophysical Research Letters]] |volume=26 |issue=19 |pages=3045–3048 |bibcode=1999GeoRL..26.3045B |doi=10.1029/1999GL008348|doi-access=free }}</ref>
*The Moon is spiraling away from Earth at a rate of {{val|3.8|u=cm|up=year}}.{{r|ApolloLaser}}<ref name="link.springer.com">{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2016|title=Secular tidal changes in lunar orbit and Earth rotation|url=http://link.springer.com/10.1007/s10569-016-9702-3|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=89–129|doi=10.1007/s10569-016-9702-3|bibcode=2016CeMDA.126...89W|s2cid=124256137|issn=0923-2958}}</ref> This rate has been described as anomalously high.<ref>{{Cite journal |last1=Bills |first1=B. G. |last2=Ray |first2=R. D. |year=1999 |title=Lunar Orbital Evolution: A Synthesis of Recent Results |journal=[[Geophysical Research Letters]] |volume=26 |issue=19 |pages=3045–3048 |bibcode=1999GeoRL..26.3045B |doi=10.1029/1999GL008348|doi-access=free }}</ref>
*The fluid core of the Moon was detected from the effects of core/mantle boundary dissipation.<ref>{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|last3=Yoder|first3=Charles F.|last4=Ratcliff|first4=J. Todd|last5=Dickey|first5=Jean O.|date=2001|title=Lunar rotational dissipation in solid body and molten core|journal=Journal of Geophysical Research: Planets|language=en|volume=106|issue=E11|pages=27933–27968|doi=10.1029/2000JE001396|bibcode=2001JGR...10627933W|doi-access=free}}</ref>
*The fluid core of the Moon was detected from the effects of core/mantle boundary dissipation.<ref>{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|last3=Yoder|first3=Charles F.|last4=Ratcliff|first4=J. Todd|last5=Dickey|first5=Jean O.|date=2001|title=Lunar rotational dissipation in solid body and molten core|journal=Journal of Geophysical Research: Planets|language=en|volume=106|issue=E11|pages=27933–27968|doi=10.1029/2000JE001396|bibcode=2001JGR...10627933W|doi-access=free}}</ref>
*The Moon has free physical [[librations]] that require one or more stimulating mechanisms.<ref>{{Cite journal|last1=Rambaux|first1=N.|last2=Williams|first2=J. G.|date=2011|title=The Moon's physical librations and determination of their free modes|journal=Celestial Mechanics and Dynamical Astronomy|volume=109|pages=85–100|doi=10.1007/s10569-010-9314-2|s2cid=45209988|url=https://hal.archives-ouvertes.fr/hal-00588671/file/PEER_stage2_10.1007%252Fs10569-010-9314-2.pdf}}</ref>
*The Moon has free physical [[librations]] that require one or more stimulating mechanisms.<ref>{{Cite journal|last1=Rambaux|first1=N.|last2=Williams|first2=J. G.|date=2011|title=The Moon's physical librations and determination of their free modes|journal=Celestial Mechanics and Dynamical Astronomy|volume=109|issue=1 |pages=85–100|doi=10.1007/s10569-010-9314-2|bibcode=2011CeMDA.109...85R |s2cid=45209988|url=https://hal.archives-ouvertes.fr/hal-00588671/file/PEER_stage2_10.1007%252Fs10569-010-9314-2.pdf}}</ref>
*Tidal dissipation in the Moon depends on tidal frequency.<ref name="link.springer.com"/>
*Tidal dissipation in the Moon depends on tidal frequency.<ref>{{Cite journal|last1=Williams|first1=James G.|last2=Boggs|first2=Dale H.|date=2016|title=Secular tidal changes in lunar orbit and Earth rotation|url=http://link.springer.com/10.1007/s10569-016-9702-3|journal=Celestial Mechanics and Dynamical Astronomy|language=en|volume=126|issue=1|pages=89–129|doi=10.1007/s10569-016-9702-3|bibcode=2016CeMDA.126...89W|s2cid=124256137|issn=0923-2958}}</ref>
* The Moon probably has a liquid core of about 20% of the Moon's radius.{{r|jwjd1}} The radius of the lunar core-mantle boundary is determined as {{val|381|12|u=km}}.{{r|viswanathan2019grl}}
* The Moon probably has a liquid core of about 20% of the Moon's radius.{{r|jwjd1}} The radius of the lunar core-mantle boundary is determined as {{val|381|12|u=km}}.{{r|viswanathan2019grl}}
*The polar [[flattening]] of the lunar core-mantle boundary is determined as {{val|2.2|0.6|e=-4}}.{{r|viswanathan2019grl}}
*The polar [[flattening]] of the lunar core-mantle boundary is determined as {{val|2.2|0.6|e=-4}}.{{r|viswanathan2019grl}}
*The free core [[nutation]] of the Moon is determined as {{val|367|100|u=yr}}.<ref name="viswanathan2019grl">{{cite journal|last1=Viswanathan|first1=V.|last2=Rambaux|first2=N.|last3=Fienga|first3=A.|last4=Laskar|first4=J.|last5=Gastineau|first5=M.|date=9 July 2019|title=Observational Constraint on the Radius and Oblateness of the Lunar Core‐Mantle Boundary|journal=[[Geophysical Research Letters]]|volume=46|issue=13|pages=7295–7303|arxiv=1903.07205|doi=10.1029/2019GL082677|bibcode=2019GeoRL..46.7295V|s2cid=119508748}}</ref>
*The free core [[nutation]] of the Moon is determined as {{val|367|100|u=yr}}.<ref name="viswanathan2019grl">{{cite journal|last1=Viswanathan|first1=V.|last2=Rambaux|first2=N.|last3=Fienga|first3=A.|last4=Laskar|first4=J.|last5=Gastineau|first5=M.|date=9 July 2019|title=Observational Constraint on the Radius and Oblateness of the Lunar Core-Mantle Boundary|journal=[[Geophysical Research Letters]]|volume=46|issue=13|pages=7295–7303|arxiv=1903.07205|doi=10.1029/2019GL082677|bibcode=2019GeoRL..46.7295V|s2cid=119508748}}</ref>
*Accurate locations for retroreflectors serve as reference points visible to orbiting spacecraft.<ref>{{Cite journal|last1=Wagner|first1=R. V.|last2=Nelson|first2=D. M.|last3=Plescia|first3=J. B.|last4=Robinson|first4=M. S.|last5=Speyerer|first5=E. J.|last6=Mazarico|first6=E.|date=2017|title=Coordinates of anthropogenic features on the Moon|url=https://www.sciencedirect.com/science/article/abs/pii/S0019103516301518|journal=Icarus|language=en|volume=283|pages=92–103|doi=10.1016/j.icarus.2016.05.011|bibcode=2017Icar..283...92W|issn=0019-1035}}</ref>
*Accurate locations for retroreflectors serve as reference points visible to orbiting spacecraft.<ref>{{Cite journal|last1=Wagner|first1=R. V.|last2=Nelson|first2=D. M.|last3=Plescia|first3=J. B.|last4=Robinson|first4=M. S.|last5=Speyerer|first5=E. J.|last6=Mazarico|first6=E.|date=2017|title=Coordinates of anthropogenic features on the Moon|journal=Icarus|language=en|volume=283|pages=92–103|doi=10.1016/j.icarus.2016.05.011|bibcode=2017Icar..283...92W|issn=0019-1035|doi-access=free}}</ref>


=== Gravitational physics ===
=== Gravitational physics ===
*[[Albert Einstein|Einstein's]] theory of gravity (the [[General relativity|general theory of relativity]]) predicts the [[Orbit of the Moon|Moon's orbit]] to within the accuracy of the laser ranging measurements.{{r|jwjd1}}<ref name=":2" />
*[[Albert Einstein|Einstein's]] theory of gravity (the [[General relativity|general theory of relativity]]) predicts the [[Orbit of the Moon|Moon's orbit]] to within the accuracy of the laser ranging measurements.{{r|jwjd1}}<ref name=":2" />
* [[Gauge fixing|Gauge freedom]] plays a major role in a correct physical interpretation of the relativistic effects in the Earth-Moon system observed with LLR technique.<ref>{{cite journal |last1=Kopeikin |first1=S. |last2=Xie |first2=Y. |year=2010 |title=Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth–Moon system |journal=[[Celestial Mechanics and Dynamical Astronomy]] |volume=108 |issue=3 |pages=245–263 |bibcode=2010CeMDA.108..245K |doi=10.1007/s10569-010-9303-5|s2cid=122789819 }}</ref>
* [[Gauge fixing|Gauge freedom]] plays a major role in a correct physical interpretation of the relativistic effects in the Earth-Moon system observed with LLR technique.<ref>{{cite journal |last1=Kopeikin |first1=S. |last2=Xie |first2=Y. |year=2010 |title=Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth–Moon system |journal=[[Celestial Mechanics and Dynamical Astronomy]] |volume=108 |issue=3 |pages=245–263 |bibcode=2010CeMDA.108..245K |doi=10.1007/s10569-010-9303-5|s2cid=122789819 }}</ref>
* The likelihood of any [[Nordtvedt effect]] (a hypothetical differential acceleration of the Moon and Earth towards the Sun caused by their different degrees of compactness) has been ruled out to high precision,<ref>{{cite journal|last1=Adelberger|first1=E. G.|last2=Heckel|first2=B. R.|last3=Smith|first3=G.|last4=Su|first4=Y.|last5=Swanson|first5=H. E.|year=1990|title=Eötvös experiments, lunar ranging and the strong equivalence principle|journal=[[Nature (journal)|Nature]]|volume=347|issue=6290|pages=261–263|bibcode=1990Natur.347..261A|doi=10.1038/347261a0|s2cid=4286881}}</ref><ref name=":2">{{cite journal|last1=Williams|first1=J. G.|last2=Newhall|first2=X. X.|last3=Dickey|first3=J. O.|year=1996|title=Relativity parameters determined from lunar laser ranging|journal=[[Physical Review D]]|volume=53|issue=12|pages=6730–6739|bibcode=1996PhRvD..53.6730W|doi=10.1103/PhysRevD.53.6730|pmid=10019959}}</ref><ref>{{cite journal|last1=Viswanathan|first1=V|last2=Fienga|first2=A|last3=Minazzoli|first3=O|last4=Bernus|first4=L|last5=Laskar|first5=J|last6=Gastineau|first6=M|date=May 2018|title=The new lunar ephemeris INPOP17a and its application to fundamental physics|journal=Monthly Notices of the Royal Astronomical Society|volume=476|issue=2|pages=1877–1888|arxiv=1710.09167|doi=10.1093/mnras/sty096}}</ref> strongly supporting the [[strong equivalence principle]].
* The likelihood of any [[Nordtvedt effect]] (a hypothetical differential acceleration of the Moon and Earth towards the Sun caused by their different degrees of compactness) has been ruled out to high precision,<ref>{{cite journal|last1=Adelberger|first1=E. G.|last2=Heckel|first2=B. R.|last3=Smith|first3=G.|last4=Su|first4=Y.|last5=Swanson|first5=H. E.|year=1990|title=Eötvös experiments, lunar ranging and the strong equivalence principle|journal=[[Nature (journal)|Nature]]|volume=347|issue=6290|pages=261–263|bibcode=1990Natur.347..261A|doi=10.1038/347261a0|s2cid=4286881}}</ref><ref name=":2">{{cite journal|last1=Williams|first1=J. G.|last2=Newhall|first2=X. X.|last3=Dickey|first3=J. O.|year=1996|title=Relativity parameters determined from lunar laser ranging|journal=[[Physical Review D]]|volume=53|issue=12|pages=6730–6739|bibcode=1996PhRvD..53.6730W|doi=10.1103/PhysRevD.53.6730|pmid=10019959}}</ref><ref>{{cite journal|last1=Viswanathan|first1=V|last2=Fienga|first2=A|last3=Minazzoli|first3=O|last4=Bernus|first4=L|last5=Laskar|first5=J|last6=Gastineau|first6=M|date=May 2018|title=The new lunar ephemeris INPOP17a and its application to fundamental physics|journal=Monthly Notices of the Royal Astronomical Society|volume=476|issue=2|pages=1877–1888|arxiv=1710.09167|doi=10.1093/mnras/sty096|doi-access=free|bibcode=2018MNRAS.476.1877V}}</ref> strongly supporting the [[strong equivalence principle]].
* The universal force of [[gravity]] is very stable. The experiments have constrained the change in [[Isaac Newton|Newton's]] [[gravitational constant]] ''G'' to a factor of {{val|2|7|e=-13}} per year.<ref>{{cite journal|last1=Müller|first1=J.|last2=Biskupek|first2=L.|year=2007|title=Variations of the gravitational constant from lunar laser ranging data|journal=[[Classical and Quantum Gravity]]|volume=24|issue=17|page=4533|doi=10.1088/0264-9381/24/17/017|s2cid=120195732 }}</ref>
* The universal force of [[gravity]] is very stable. The experiments have constrained the change in [[Isaac Newton|Newton's]] [[gravitational constant]] ''G'' to a factor of {{val|2|7|e=-13}} per year.<ref>{{cite journal|last1=Müller|first1=J.|last2=Biskupek|first2=L.|year=2007|title=Variations of the gravitational constant from lunar laser ranging data|journal=[[Classical and Quantum Gravity]]|volume=24|issue=17|page=4533|doi=10.1088/0264-9381/24/17/017|s2cid=120195732 }}</ref>


Line 208: Line 207:
{{The Moon}}
{{The Moon}}
{{Apollo program hardware}}
{{Apollo program hardware}}
{{Authority control}}


{{Use dmy dates|date=March 2018}}

[[Category:Lunar science]]
[[Category:Apollo program hardware]]
[[Category:Apollo program hardware]]
[[Category:Tests of general relativity]]
[[Category:Tests of general relativity]]

Latest revision as of 19:55, 4 December 2024

Lunar Laser Ranging Experiment from the Apollo 11 mission

Lunar Laser Ranging (LLR) is the practice of measuring the distance between the surfaces of the Earth and the Moon using laser ranging. The distance can be calculated from the round-trip time of laser light pulses travelling at the speed of light, which are reflected back to Earth by the Moon's surface or by one of several retroreflectors installed on the Moon. Three were placed by the United States' Apollo program (11, 14, and 15), two by the Soviet Lunokhod 1 and 2 missions,[1] and one by India's Chandrayaan-3 mission.[2][3]

Although it is possible to reflect light or radio waves directly from the Moon's surface (a process known as EME), a much more precise range measurement can be made using retroreflectors, since because of their small size, the temporal spread in the reflected signal is much smaller[4] and because the return will be more evenly reflected with less diffusion.

Laser ranging measurements can also be made with retroreflectors installed on Moon-orbiting satellites such as the LRO.[5][6]

History

[edit]
Apollo 15 LRRR
Apollo 15 LRRR schematic

The first successful lunar ranging tests were carried out in 1962 when Louis Smullin and Giorgio Fiocco from the Massachusetts Institute of Technology succeeded in observing laser pulses reflected from the Moon's surface using a laser with a 50J 0.5 millisecond pulse length.[7] Similar measurements were obtained later the same year by a Soviet team at the Crimean Astrophysical Observatory using a Q-switched ruby laser.[8]

Shortly thereafter, Princeton University graduate student James Faller proposed placing optical reflectors on the Moon to improve the accuracy of the measurements.[9] This was achieved following the installation of a retroreflector array on July 21, 1969 by the crew of Apollo 11. Two more retroreflector arrays were left by the Apollo 14 and Apollo 15 missions. Successful lunar laser range measurements to the retroreflectors were first reported on Aug. 1, 1969 by the 3.1 m telescope at Lick Observatory.[9] Observations from Air Force Cambridge Research Laboratories Lunar Ranging Observatory in Arizona, the Pic du Midi Observatory in France, the Tokyo Astronomical Observatory, and McDonald Observatory in Texas soon followed.

The uncrewed Soviet Lunokhod 1 and Lunokhod 2 rovers carried smaller arrays. Reflected signals were initially received from Lunokhod 1 by the Soviet Union up to 1974, but not by western observatories that did not have precise information about location. In 2010 NASA's Lunar Reconnaissance Orbiter located the Lunokhod 1 rover on images and in April 2010 a team from University of California ranged the array.[10] Lunokhod 2's array continues to return signals to Earth.[11] The Lunokhod arrays suffer from decreased performance in direct sunlight—a factor considered in reflector placement during the Apollo missions.[12]

The Apollo 15 array is three times the size of the arrays left by the two earlier Apollo missions. Its size made it the target of three-quarters of the sample measurements taken in the first 25 years of the experiment. Improvements in technology since then have resulted in greater use of the smaller arrays, by sites such as the Côte d'Azur Observatory in Nice, France; and the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) at the Apache Point Observatory in New Mexico.

In the 2010s several new retroreflectors were planned. The MoonLIGHT reflector, which was to be placed by the private MX-1E lander, was designed to increase measurement accuracy up to 100 times over existing systems.[13][14][15] MX-1E was set to launch in July 2020,[16] however, as of February 2020, the launch of the MX-1E has been canceled.[17] India's Chandrayaan-3 lunar lander successfully placed a sixth reflector on the Moon in August 2023.[3] MoonLIGHT will be launched in early 2024 with a Commercial Lunar Payload Services (CLPS) mission.[18]

Principle

[edit]
Annotated image of the near side of the Moon showing the location of retroreflectors left on the surface by Apollo and Lunokhod missions[19]

The distance to the Moon is calculated approximately using the equation: distance = (speed of light × duration of delay due to reflection) / 2. Since the speed of light is a defined constant, conversion between distance and time of flight can be made without ambiguity.

To compute the lunar distance precisely, many factors must be considered in addition to the round-trip time of about 2.5 seconds. These factors include the location of the Moon in the sky, the relative motion of Earth and the Moon, Earth's rotation, lunar libration, polar motion, weather, speed of light in various parts of air, propagation delay through Earth's atmosphere, the location of the observing station and its motion due to crustal motion and tides, and relativistic effects.[20][21] The distance continually changes for a number of reasons, but averages 385,000.6 km (239,228.3 mi) between the center of the Earth and the center of the Moon.[22] The orbits of the Moon and planets are integrated numerically along with the orientation of the Moon called physical libration.[23]

At the Moon's surface, the beam is about 6.5 kilometers (4.0 mi) wide[24][i] and scientists liken the task of aiming the beam to using a rifle to hit a moving dime 3 kilometers (1.9 mi) away. The reflected light is too weak to see with the human eye. Out of a pulse of 3×1017 photons[25] aimed at the reflector, only about 1–5 are received back on Earth, even under good conditions.[26] They can be identified as originating from the laser because the laser is highly monochromatic.

As of 2009, the distance to the Moon can be measured with millimeter precision.[27] In a relative sense, this is one of the most precise distance measurements ever made, and is equivalent in accuracy to determining the distance between Los Angeles and New York to within the width of a human hair.

List of retroreflectors

[edit]

List of observatories

[edit]

The table below presents a list of active and inactive Lunar Laser Ranging stations on Earth.[22][28]

Lunar Laser Ranging stations
Observatory Project Operating timespan Telescope Laser Range accuracy Ref.
McDonald Observatory, Texas, US MLRS 1969–1985

1985–2013

2.7 m 694 nm, 7 J

532 nm, 200 ps, 150 mJ

[29]

[22]

Crimean Astrophysical Observatory (CrAO), USSR 1974, 1982–1984 694 nm 3.0–0.6 m [30]
Côte d'Azur Observatory (OCA), Grasse, France MeO 1984–1986

1986–2010

2010–present (2021)

694 nm

532 nm, 70 ps, 75 mJ

532/1064 nm

[22][31]
Haleakala Observatory, Hawaii, US LURE 1984–1990 532 nm, 200 ps, 140 mJ 2.0 cm [22][32]
Matera Laser Ranging Observatory (MLRO), Italy 2003–present (2021) 532 nm
Apache Point Observatory, New Mexico, US APOLLO 2006–2021

2021–present (2023)

532 nm, 100 ps, 115 mJ 1.1 mm [22]

[33]

Geodetic Observatory Wettzell, Germany WLRS 2018–present (2021) 1064 nm, 10 ps, 75 mJ [34]
Yunnan Astronomical Observatory, Kunming, China 2018 1.2 m 532 nm, 10 ns, 3 J meter level [35]

Data analysis

[edit]

The Lunar Laser Ranging data is collected in order to extract numerical values for a number of parameters. Analyzing the range data involves dynamics, terrestrial geophysics, and lunar geophysics. The modeling problem involves two aspects: an accurate computation of the lunar orbit and lunar orientation, and an accurate model for the time of flight from an observing station to a retroreflector and back to the station. Modern Lunar Laser Ranging data can be fit with a 1 cm weighted rms residual.

  • The center of Earth to center of Moon distance is computed by a program that numerically integrates the lunar and planetary orbits accounting for the gravitational attraction of the Sun, planets, and a selection of asteroids.[36][23]
  • The same program integrates the 3-axis orientation of the Moon called physical Libration.

The range model includes[36][37]

  • The position of the ranging station accounting for motion due to plate tectonics, Earth rotation, precession, nutation, and polar motion.
  • Tides in the solid Earth and seasonal motion of the solid Earth with respect to its center of mass.
  • Relativistic transformation of time and space coordinates from a frame moving with the station to a frame fixed with respect to the solar system center of mass. Lorentz contraction of the Earth is part of this transformation.
  • Delay in the Earth's atmosphere.
  • Relativistic delay due to the gravity fields of the Sun, Earth, and Moon.
  • The position of the retroreflector accounting for orientation of the Moon and solid-body tides.
  • Lorentz contraction of the Moon.
  • Thermal expansion and contraction of the retroreflector mounts.

For the terrestrial model, the IERS Conventions (2010) is a source of detailed information.[38]

Results

[edit]

Lunar laser ranging measurement data is available from the Paris Observatory Lunar Analysis Center,[39] the International Laser Ranging Service archives,[40][41] and the active stations. Some of the findings of this long-term experiment are:[22]

Properties of the Moon

[edit]
  • The distance to the Moon can be measured with millimeter precision.[27]
  • The Moon is spiraling away from Earth at a rate of 3.8 cm/year.[24][42] This rate has been described as anomalously high.[43]
  • The fluid core of the Moon was detected from the effects of core/mantle boundary dissipation.[44]
  • The Moon has free physical librations that require one or more stimulating mechanisms.[45]
  • Tidal dissipation in the Moon depends on tidal frequency.[42]
  • The Moon probably has a liquid core of about 20% of the Moon's radius.[11] The radius of the lunar core-mantle boundary is determined as 381±12 km.[46]
  • The polar flattening of the lunar core-mantle boundary is determined as (2.2±0.6)×10−4.[46]
  • The free core nutation of the Moon is determined as 367±100 yr.[46]
  • Accurate locations for retroreflectors serve as reference points visible to orbiting spacecraft.[47]

Gravitational physics

[edit]
[edit]

See also

[edit]

References

[edit]
  1. ^ During the round-trip time, an Earth observer will have moved by around 1 km (depending on their latitude). This has been presented, incorrectly, as a 'disproof' of the ranging experiment, the claim being that the beam to such a small reflector cannot hit such a moving target. However the size of the beam is far larger than any movement, especially for the returned beam.
  1. ^ Chapront, J.; Chapront-Touzé, M.; Francou, G. (1999). "Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data". Astronomy and Astrophysics. 343: 624–633. Bibcode:1999A&A...343..624C.
  2. ^ "Chandrayaan-3". ISRO. Retrieved 15 August 2023.
  3. ^ a b Dhillon, Amrit (23 August 2023). "India lands spacecraft near south pole of moon in historic first". The Guardian. Retrieved 23 August 2023.
  4. ^ Müller, Jürgen; Murphy, Thomas W.; Schreiber, Ulrich; Shelus, Peter J.; Torre, Jean-Marie; Williams, James G.; Boggs, Dale H.; Bouquillon, Sebastien; Bourgoin, Adrien; Hofmann, Franz (2019). "Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science". Journal of Geodesy. 93 (11): 2195–2210. Bibcode:2019JGeod..93.2195M. doi:10.1007/s00190-019-01296-0. ISSN 1432-1394. S2CID 202641440.
  5. ^ Mazarico, Erwan; Sun, Xiaoli; Torre, Jean-Marie; Courde, Clément; Chabé, Julien; Aimar, Mourad; Mariey, Hervé; Maurice, Nicolas; Barker, Michael K.; Mao, Dandan; Cremons, Daniel R.; Bouquillon, Sébastien; Carlucci, Teddy; Viswanathan, Vishnu; Lemoine, Frank; Bourgoin, Adrien; Exertier, Pierre; Neumann, Gregory; Zuber, Maria; Smith, David (6 August 2020). "First two-way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO's retro-reflector array". Earth, Planets and Space. 72 (1): 113. Bibcode:2020EP&S...72..113M. doi:10.1186/s40623-020-01243-w. hdl:11603/19523. ISSN 1880-5981.
  6. ^ Kornei, Katherine (15 August 2020). "How Do You Solve a Moon Mystery? Fire a Laser at It". The New York Times. ISSN 0362-4331. Retrieved 1 June 2021.
  7. ^ Smullin, Louis D.; Fiocco, Giorgio (1962). "Optical Echoes from the Moon". Nature. 194 (4835): 1267. Bibcode:1962Natur.194.1267S. doi:10.1038/1941267a0. S2CID 4145783.
  8. ^ Bender, P. L.; et al. (1973). "The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information" (PDF). Science. 182 (4109): 229–238. Bibcode:1973Sci...182..229B. doi:10.1126/science.182.4109.229. PMID 17749298. S2CID 32027563.
  9. ^ a b Newman, Michael E. (26 September 2017). "To the Moon and Back … in 2.5 Seconds". NIST. Retrieved 27 January 2021.
  10. ^ McDonald, K. (26 April 2010). "UC San Diego Physicists Locate Long Lost Soviet Reflector on Moon". University of California, San Diego. Archived from the original on 30 April 2010. Retrieved 27 April 2010.
  11. ^ a b c Williams, James G.; Dickey, Jean O. (2002). Lunar Geophysics, Geodesy, and Dynamics (PDF). 13th International Workshop on Laser Ranging. 7–11 October 2002. Washington, D. C.
  12. ^ "It's Not Just The Astronauts That Are Getting Older". Universe Today. 10 March 2010. Retrieved 24 August 2012.
  13. ^ Currie, Douglas; Dell'Agnello, Simone; Delle Monache, Giovanni (April–May 2011). "A Lunar Laser Ranging Retroreflector Array for the 21st Century". Acta Astronautica. 68 (7–8): 667–680. Bibcode:2011AcAau..68..667C. doi:10.1016/j.actaastro.2010.09.001.
  14. ^ Tune, Lee (10 June 2015). "UMD, Italy & MoonEx Join to Put New Laser-Reflecting Arrays on Moon". UMD Right Now. University of Maryland. Archived from the original on 22 March 2018. Retrieved 21 March 2018.
  15. ^ Boyle, Alan (12 July 2017). "Moon Express unveils its roadmap for giant leaps to the lunar surface ... and back again". GeekWire. Retrieved 15 March 2018.
  16. ^ Moon Express Lunar Scout (MX-1E), RocketLaunch.Live, archived from the original on 27 July 2019, retrieved 27 July 2019
  17. ^ "MX-1E 1, 2, 3". Retrieved 24 May 2020.
  18. ^ "NASA Payloads for (CLPS PRISM) CP-11".
  19. ^ "Was Galileo Wrong?". NASA. 6 May 2004. Archived from the original on 30 April 2022.
  20. ^ Seeber, Günter (2003). Satellite Geodesy (2nd ed.). de Gruyter. p. 439. ISBN 978-3-11-017549-3. OCLC 52258226.
  21. ^ Williams, James G.; Boggs, Dale H. (2020). "The JPL Lunar Laser range model 2020". ssd.jpl.nasa.gov. Retrieved 24 May 2021.
  22. ^ a b c d e f g Murphy, T. W. (2013). "Lunar laser ranging: the millimeter challenge" (PDF). Reports on Progress in Physics. 76 (7): 2. arXiv:1309.6294. Bibcode:2013RPPh...76g6901M. doi:10.1088/0034-4885/76/7/076901. PMID 23764926. S2CID 15744316.
  23. ^ a b Park, Ryan S.; Folkner, William M.; Williams, James G.; Boggs, Dale H. (2021). "The JPL Planetary and Lunar Ephemerides DE440 and DE441". The Astronomical Journal. 161 (3): 105. Bibcode:2021AJ....161..105P. doi:10.3847/1538-3881/abd414. ISSN 1538-3881. S2CID 233943954.
  24. ^ a b Espenek, F. (August 1994). "NASA – Accuracy of Eclipse Predictions". NASA/GSFC. Retrieved 4 May 2008.
  25. ^ "The Basics of Lunar Ranging". Retrieved 21 July 2023.
  26. ^ Merkowitz, Stephen M. (2 November 2010). "Tests of Gravity Using Lunar Laser Ranging". Living Reviews in Relativity. 13 (1): 7. Bibcode:2010LRR....13....7M. doi:10.12942/lrr-2010-7. ISSN 1433-8351. PMC 5253913. PMID 28163616.
  27. ^ a b Battat, J. B. R.; Murphy, T. W.; Adelberger, E. G.; et al. (January 2009). "The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range1". Publications of the Astronomical Society of the Pacific. 121 (875): 29–40. Bibcode:2009PASP..121...29B. doi:10.1086/596748. JSTOR 10.1086/596748.
  28. ^ Biskupek, Liliane; Müller, Jürgen; Torre, Jean-Marie (3 February 2021). "Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters". Universe. 7 (2): 34. arXiv:2012.12032. Bibcode:2021Univ....7...34B. doi:10.3390/universe7020034.
  29. ^ Bender, P. L.; Currie, D. G.; Dickey, R. H.; Eckhardt, D. H.; Faller, J. E.; Kaula, W. M.; Mulholland, J. D.; Plotkin, H. H.; Poultney, S. K.; et al. (1973). "The Lunar Laser Ranging Experiment". Science. 182 (4109): 229–238. Bibcode:1973Sci...182..229B. doi:10.1126/science.182.4109.229. ISSN 0036-8075. PMID 17749298. S2CID 32027563.
  30. ^ Yagudina (2018). "Processing and analysis of lunar laser ranging observations in Crimea in 1974-1984". Institute of Applied Astronomy of the Russian Academy of Sciences. Retrieved 1 June 2021.
  31. ^ Chabé, Julien; Courde, Clément; Torre, Jean-Marie; Bouquillon, Sébastien; Bourgoin, Adrien; Aimar, Mourad; Albanèse, Dominique; Chauvineau, Bertrand; Mariey, Hervé; Martinot-Lagarde, Grégoire; Maurice, Nicolas (2020). "Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station". Earth and Space Science. 7 (3): e2019EA000785. Bibcode:2020E&SS....700785C. doi:10.1029/2019EA000785. ISSN 2333-5084. S2CID 212785296.
  32. ^ "Lure Observatory". Institute for Astronomy, University of Hawaii. 29 January 2002. Retrieved 3 June 2021.
  33. ^ "APOL - Apache Point Observatory".
  34. ^ Eckl, Johann J.; Schreiber, K. Ulrich; Schüler, Torben (30 April 2019). "Lunar laser ranging utilizing a highly efficient solid-state detector in the near-IR". In Domokos, Peter; James, Ralph B; Prochazka, Ivan; Sobolewski, Roman; Gali, Adam (eds.). Quantum Optics and Photon Counting 2019. Vol. 11027. International Society for Optics and Photonics. p. 1102708. Bibcode:2019SPIE11027E..08E. doi:10.1117/12.2521133. ISBN 9781510627208. S2CID 155720383.
  35. ^ Li Yuqiang, 李语强; Fu Honglin, 伏红林; Li Rongwang, 李荣旺; Tang Rufeng, 汤儒峰; Li Zhulian, 李祝莲; Zhai Dongsheng, 翟东升; Zhang Haitao, 张海涛; Pi Xiaoyu, 皮晓宇; Ye Xianji, 叶贤基; Xiong Yaoheng, 熊耀恒 (27 January 2019). "Research and Experiment of Lunar Laser Ranging in Yunnan Observatories". Chinese Journal of Lasers. 46 (1): 0104004. doi:10.3788/CJL201946.0104004. S2CID 239211201.
  36. ^ a b Pavlov, Dmitry A.; Williams, James G.; Suvorkin, Vladimir V. (2016). "Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models". Celestial Mechanics and Dynamical Astronomy. 126 (1): 61–88. arXiv:1606.08376. Bibcode:2016CeMDA.126...61P. doi:10.1007/s10569-016-9712-1. ISSN 0923-2958. S2CID 119116627.
  37. ^ Williams, James G.; Boggs, Dale H. (2020). "The JPL Lunar Laser range model 2020". ssd.jpl.nasa.gov. Retrieved 1 June 2021.
  38. ^ "IERS - IERS Technical Notes - IERS Conventions (2010)". www.iers.org. Retrieved 1 June 2021.
  39. ^ "Lunar Laser Ranging Observations from 1969 to May 2013". SYRTE Paris Observatory. Retrieved 3 June 2014.
  40. ^ "International Laser Ranging Service".
  41. ^ "International Laser Ranging Service".
  42. ^ a b Williams, James G.; Boggs, Dale H. (2016). "Secular tidal changes in lunar orbit and Earth rotation". Celestial Mechanics and Dynamical Astronomy. 126 (1): 89–129. Bibcode:2016CeMDA.126...89W. doi:10.1007/s10569-016-9702-3. ISSN 0923-2958. S2CID 124256137.
  43. ^ Bills, B. G.; Ray, R. D. (1999). "Lunar Orbital Evolution: A Synthesis of Recent Results". Geophysical Research Letters. 26 (19): 3045–3048. Bibcode:1999GeoRL..26.3045B. doi:10.1029/1999GL008348.
  44. ^ Williams, James G.; Boggs, Dale H.; Yoder, Charles F.; Ratcliff, J. Todd; Dickey, Jean O. (2001). "Lunar rotational dissipation in solid body and molten core". Journal of Geophysical Research: Planets. 106 (E11): 27933–27968. Bibcode:2001JGR...10627933W. doi:10.1029/2000JE001396.
  45. ^ Rambaux, N.; Williams, J. G. (2011). "The Moon's physical librations and determination of their free modes" (PDF). Celestial Mechanics and Dynamical Astronomy. 109 (1): 85–100. Bibcode:2011CeMDA.109...85R. doi:10.1007/s10569-010-9314-2. S2CID 45209988.
  46. ^ a b c Viswanathan, V.; Rambaux, N.; Fienga, A.; Laskar, J.; Gastineau, M. (9 July 2019). "Observational Constraint on the Radius and Oblateness of the Lunar Core-Mantle Boundary". Geophysical Research Letters. 46 (13): 7295–7303. arXiv:1903.07205. Bibcode:2019GeoRL..46.7295V. doi:10.1029/2019GL082677. S2CID 119508748.
  47. ^ Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E. (2017). "Coordinates of anthropogenic features on the Moon". Icarus. 283: 92–103. Bibcode:2017Icar..283...92W. doi:10.1016/j.icarus.2016.05.011. ISSN 0019-1035.
  48. ^ a b Williams, J. G.; Newhall, X. X.; Dickey, J. O. (1996). "Relativity parameters determined from lunar laser ranging". Physical Review D. 53 (12): 6730–6739. Bibcode:1996PhRvD..53.6730W. doi:10.1103/PhysRevD.53.6730. PMID 10019959.
  49. ^ Kopeikin, S.; Xie, Y. (2010). "Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth–Moon system". Celestial Mechanics and Dynamical Astronomy. 108 (3): 245–263. Bibcode:2010CeMDA.108..245K. doi:10.1007/s10569-010-9303-5. S2CID 122789819.
  50. ^ Adelberger, E. G.; Heckel, B. R.; Smith, G.; Su, Y.; Swanson, H. E. (1990). "Eötvös experiments, lunar ranging and the strong equivalence principle". Nature. 347 (6290): 261–263. Bibcode:1990Natur.347..261A. doi:10.1038/347261a0. S2CID 4286881.
  51. ^ Viswanathan, V; Fienga, A; Minazzoli, O; Bernus, L; Laskar, J; Gastineau, M (May 2018). "The new lunar ephemeris INPOP17a and its application to fundamental physics". Monthly Notices of the Royal Astronomical Society. 476 (2): 1877–1888. arXiv:1710.09167. Bibcode:2018MNRAS.476.1877V. doi:10.1093/mnras/sty096.
  52. ^ Müller, J.; Biskupek, L. (2007). "Variations of the gravitational constant from lunar laser ranging data". Classical and Quantum Gravity. 24 (17): 4533. doi:10.1088/0264-9381/24/17/017. S2CID 120195732.
[edit]