Jump to content

Natural units: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
 
(927 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|Units of measurement based on universal physical constants}}
In [[physics]], '''natural units''' are [[physical units]] of [[measurement]] defined in terms of universal [[physical constants]] in such a manner that some chosen physical constants take on the numerical value of one when expressed in terms of a particular set of natural units. Natural units are intended to [[Nondimensionalization|elegantly simplify]] particular [[algebraic expression]]s appearing in physical law or to normalize some chosen physical quantities that are properties of universal [[elementary particle]]s and that may be reasonably believed to be constant. However, what may be believed and forced to be constant in one system of natural units can very well be allowed or even assumed to vary in another natural unit system. Natural units ''are'' natural because the origin of their definition comes only from properties of [[nature]] and not from any human construct. [[Planck units]] are often, without qualification, called "''natural units''" but are only one system of natural units among other systems. Planck units might be considered unique in that the set of units are not based on properties of any [[prototype]], object, or [[subatomic particle|particle]] but are based only on properties of [[free space]].
In [[physics]], '''natural unit''' systems are [[measurement]] systems for which selected [[physical constant]]s have been set to [[1]] through [[nondimensionalization]] of [[physical units]]. For example, the [[speed of light]] {{math|''c''}} may be set to 1, and it may then be omitted, equating mass and energy directly {{math|1=''E'' = ''m''}} rather than using {{math|''c''}} as a conversion factor in the typical [[mass–energy equivalence]] equation {{math|1=''E'' = ''mc''<sup>2</sup>}}. A purely natural [[system of units]] has all of its dimensions collapsed, such that the physical constants completely define the system of units and the relevant physical laws contain no conversion constants.


While natural unit systems simplify the form of each equation, it is still necessary to keep track of the non-collapsed dimensions of each quantity or expression in order to reinsert physical constants (such dimensions uniquely determine the full formula). [[Dimensional analysis]] in the collapsed system is uninformative as most quantities have the same dimensions.
As with any set of '''base units''' or [[fundamental units]] the base units of a set of natural units will include definitions and values for [[length]], [[mass]], [[time]], [[temperature]], and [[electric charge]]. Some physicists have not recognized temperature as a fundamental dimension of physical quantity since it simply expresses the energy per degree of freedom of a particle which can be expressed in terms of energy (or mass, length, and time). Virtually every system of natural units normalizes the [[Boltzmann constant]] to ''k''=1, which can be thought of as simply another expression of the definition of the unit temperature. In addition, some physicists recognize electric charge as a separate fundamental dimension of physical quantity, even if it has been expressed in terms of mass, length, and time in unit systems such as the electrostatic [[cgs]] system. Virtually every system of natural units normalize the [[permittivity of free space]] to &epsilon;<sub>0</sub>=(4&pi;)<sup>-1</sup>, which can be thought of as an expression of the definition of the unit charge.


==Candidate physical constants used in natural unit systems==
== Systems of natural units ==


=== Summary table ===
The candidate physical constants to be normalized are chosen from those in the following table. Note that only a smaller subset of the following can be normalized in any one system of units without contradiction in definition (i.e. ''m<sub>e</sub>'' and ''m<sub>p</sub>'' cannot both be defined as the unit mass in a single system).


{| class="wikitable" style="margin: 1em auto 1em auto;"
{| border="1" cellpadding="2" cellspacing="0"
|- align="left" style="background-color: #cccccc;"
! Constant
! Symbol
! Dimension
|-
| [[speed of light]] in vacuum
| <math>{ c } \ </math>
| [[Length|L]] [[Time|T]]<sup>-1</sup>
|-
|-
! Quantity
| [[Gravitational constant]]
! Planck
| <math>{ G } \ </math>
! Stoney
| [[Mass|M]]<sup>-1</sup>L<sup>3</sup>T<sup>-2</sup>
! Atomic
! Particle and atomic physics
! Strong
! Schrödinger
|-
|-
! Defining constants
| [[Dirac's constant]] or "reduced Planck's constant"
| <math>\hbar=\frac{h}{2 \pi}</math> where <math>{h} \ </math> is [[Planck's constant]]
| <math>c</math>, <math>G</math>, <math>\hbar</math>, <math>k_\text{B}</math>
| <math>c</math>, <math>G</math>, <math>e</math>, <math>k_\text{e}</math>
| ML<sup>2</sup>T<sup>-1</sup>
| <math>e</math>, <math>m_\text{e}</math>, <math>\hbar</math>, <math>k_\text{e}</math>
|-
| <math>c</math>, <math>m_\text{e}</math>, <math>\hbar</math>, <math>\varepsilon_0</math>
| [[Coulomb's law|Coulomb force constant]]
| <math> \frac{1}{4 \pi \epsilon_0} </math> where <math>{ \epsilon_0 } \ </math> is the [[permittivity of free space]]
| <math>c</math>, <math>m_\text{p}</math>, <math>\hbar</math>
| <math>\hbar</math>, <math>G</math>, <math>e</math>, <math>k_\text{e}</math>
| [[Electric charge|Q]]<sup>-2</sup> M L<sup>3</sup> T<sup>-2</sup>
|-
! [[Speed of light]] <math>c</math>
| <math>1</math>
| <math>1</math>
| <math>{1}/{\alpha}</math>
| <math>1</math>
| <math>1</math>
| <math>{1}/{\alpha}</math>
|-
|-
! [[Reduced Planck constant]] <math>\hbar</math>
| [[Elementary charge]]
| <math> e \ </math>
| <math>1</math>
| <math>{1}/{\alpha}</math>
| Q
| <math>1</math>
| <math>1</math>
| <math>1</math>
| <math>1</math>
|-
|-
! [[Elementary charge]] <math>e</math>
| [[Electron mass]]
| —
| <math> m_e \ </math>
| <math>1</math>
| M
| <math>1</math>
| <math>\sqrt{4\pi\alpha}</math>
| —
| <math>1</math>
|-
|-
! [[Vacuum permittivity]] <math>\varepsilon_0</math>
| [[Proton mass]]
| —
| <math> m_p \ </math>
| <math>{1}/{4\pi}</math>
| M
| <math>{1}/{4\pi}</math>
| <math>1</math>
| —
| <math>{1}/{4\pi}</math>
|-
|-
! [[Gravitational constant]] <math>G</math>
| [[Bohr radius]]
| <math> a_0 = \frac{(4 \pi \epsilon_0) \hbar^2}{m_e e^2} \ </math>
| <math>1</math>
| <math>1</math>
| L
| <math>{\eta_\mathrm{e}}/{\alpha}</math>
| <math>\eta_\mathrm{e}</math>
| <math>\eta_\mathrm{p}</math>
| <math>1</math>
|-
|-
| [[Boltzmann constant]]
| <math>{ k } \ </math>
| ML<sup>2</sup>T<sup>-2</sup>[[Temperature|Θ]]<sup>-1</sup>
|}
|}
where:
* {{math|''α''}} is the [[fine-structure constant]] ({{math|''α'' {{=}} ''e''{{sup|2}} / 4''πε''{{sub|0}}''ħc''}} ≈ 0.007297)
* {{math|1=''η''<sub>e</sub> = ''Gm''{{sub|e}}{{sup|2}} / ''ħc''}} ≈ {{val|1.7518|e=-45}}
* {{math|1=''η''<sub>p</sub> = ''Gm''{{sub|p}}{{sup|2}} / ''ħc''}} ≈ {{val|5.9061|e=-39}}
* A dash (—) indicates where the system is not sufficient to express the quantity.


=== Stoney units ===
[[Dimensionless]] [[fundamental physical constants]] such as the [[fine-structure constant]]
{{main|Stoney units}}


{| class="wikitable" align="right" style="margin-left: 1em;"
: <math> \alpha \equiv \frac{e^2}{\hbar c (4 \pi \epsilon_0)} = \frac{1}{137.03599911} </math>
|+ Stoney system dimensions in SI units

|-
cannot take on a different numerical value no matter what system of units are used. Judiciously choosing units can only normalize physical constants that have dimension. Since &alpha; is a fixed dimensionless number not equal to 1, it is not possible to define a system of natural units that will normalize '''all''' of the physical constants that comprise &alpha;. Any 3 of the 4 constants: ''c'', <math>\hbar</math>, ''e'', or 4&pi;&epsilon;<sub>0</sub>, can be normalized (leaving the remaining physical constant to take on a value that is a simple function of &alpha;, alluding to the fundamental nature of the fine-structure constant) but not all 4.
! Quantity

! Expression
==Geometrized units==
! Approx.<br/>metric value
{{Main|Geometrized unit system}}

:<math> c = 1 \ </math>
:<math> G = 1 \ </math>

The [[Geometrized unit system]] is not a completely defined or unique system. In this system, the base physical units are chosen so that the [[speed of light]] and the [[gravitational constant]] are set equal to unity leaving latitude to also set some other constant such as the [[Boltzmann constant]] and [[Coulomb's law|Coulomb force constant]] equal to unity:
:<math> k = 1 \ </math>
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
If [[Dirac's constant]] (also called the "reduced Planck's constant") is also set equal to unity,
:<math> \hbar = 1 \ </math>
then geometrized units are identical to [[Planck units]].

==Planck units==
{{Main|Planck units}}

:<math> c = 1 \ </math>
:<math> G = 1 \ </math>
:<math> \hbar = 1 \ </math>
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
:<math> k = 1 \ </math>
:<math> e = \sqrt{\alpha} \ </math>

The physical constants that Planck units normalize are properties of [[free space]] and not properties (such as charge, mass, size or radius) of any object or [[elementary particle]] (that would have to be arbitrarily chosen). Being so, the Planck units are defined independently of the [[elementary charge]] which comes out to be the square root of the [[fine-structure constant]], &radic;&alpha; if measured in terms of Planck units. In Planck units a conceivable variation in the value of the dimensionless &alpha; would be considered to be due to a variation in the elementary charge.

{| border="1" cellspacing="0" cellpadding="2"
|- align="left" style="background-color: #cccccc;"
! Quantity
! Expression
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_P = \sqrt{\frac{\hbar G}{c^3}}</math>
| <math>\sqrt{{G k_\text{e} e^2} / {c^4}}</math>
| {{val|1.380|e=-36|u=m}}<ref name=barrow>{{citation |last=Barrow |first=John D. |url=https://articles.adsabs.harvard.edu/full/1983QJRAS..24...24B |title=Natural units before Planck |journal=Quarterly Journal of the Royal Astronomical Society |volume=24 |pages=24–26 |year=1983 |bibcode=1983QJRAS..24...24B }}</ref>
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_P = \sqrt{\frac{\hbar c}{G}}</math>
| <math display>\sqrt{{k_\text{e} e^2} / {G}}</math>
| {{val|1.859|e=-9|u=kg}}<ref name=barrow />
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_P = \sqrt{\frac{\hbar G}{c^5}} </math>
| <math>\sqrt{{G k_\text{e} e^2} / {c^6}}</math>
| {{val|4.605|e=-45|u=s}}<ref name=barrow />
|-
|-
| [[Electric charge]] (Q)
| [[Electric charge]]
| <math>q_P = \sqrt{\hbar c (4 \pi \epsilon_0)} </math>
| <math>e</math>
| {{val|1.602|e=-19|u=C}}
|-
|-
| [[Temperature]] (&Theta;)
| <math>T_P = \sqrt{\frac{\hbar c^5}{G k^2}}</math>
|}
|}


The Stoney unit system uses the following defining constants:
==Stoney units==
: {{math|1=''c''}}, {{math|''G''}}, {{math|''k''{{sub|e}}}}, {{math|''e''}},
where {{math|''c''}} is the [[speed of light]], {{math|''G''}} is the [[gravitational constant]], {{math|''k''{{sub|e}}}} is the [[Coulomb constant]], and {{math|''e''}} is the [[elementary charge]].


[[George Johnstone Stoney]]'s unit system preceded that of Planck by 30 years. He presented the idea in a lecture entitled "On the Physical Units of Nature" delivered to the [[British Association]] in 1874.<ref>
:<math> c = 1 \ </math>
{{cite journal
:<math> G = 1 \ </math>
| last=Ray | first = T.P.
:<math> e = 1 \ </math>
| year=1981
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
| title=Stoney's Fundamental Units
:<math> k = 1 \ </math>
| journal=Irish Astronomical Journal
:<math> \hbar = \frac{1}{\alpha} \ </math>
| volume=15
| page=152
|bibcode = 1981IrAJ...15..152R
}}</ref>
Stoney units did not consider the [[Planck constant]], which was discovered only after Stoney's proposal.
{{clear}}


=== Planck units ===
Proposed by [[George Stoney]] in 1881. Stoney units fix the [[elementary charge]] and allow [[Planck's constant]] to float. They can be obtained from [[Planck units]] with the substitution:
{{Main|Planck units}}
:<math> \hbar \leftarrow \alpha \hbar = \frac{e^2}{c (4 \pi \epsilon_0)} </math>.
This removes Planck's constant from the definitions and the value it takes on in Stoney units is the reciprocal of the [[fine-structure constant]], 1/&alpha;. In Stoney units a conceivable variation in the value of the dimensionless &alpha; would be considered to be due to a variation in Planck's constant.


{| class="wikitable" align="right" style="margin-left: 1em;"
{| border="1" cellspacing="0" cellpadding="2"
|+ Planck dimensions in SI units
|- align="left" style="background-color: #cccccc;"
|-
! Quantity
! Quantity
! Expression
! Expression
! Approx.<br/>metric value
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_S = \sqrt{\frac{G e^2}{c^4 (4 \pi \epsilon_0)}}</math>
| <math>\sqrt{{\hbar G} / {c^3}}</math>
| {{val|1.616|e=-35|u=m}}{{physconst|lP|ref=only}}
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_S = \sqrt{\frac{e^2}{G (4 \pi \epsilon_0)}}</math>
| <math>\sqrt{{\hbar c} / {G}}</math>
| {{val|2.176|e=-8|u=kg}}{{physconst|mP|ref=only}}
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_S = \sqrt{\frac{G e^2}{c^6 (4 \pi \epsilon_0)}} </math>
| <math>\sqrt{{\hbar G} / {c^5}}</math>
| {{val|5.391|e=-44|u=s}}{{physconst|tP|ref=only}}
|-
|-
| [[Electric charge]] (Q)
| [[Temperature]]
| <math>q_S = e \ </math>
| <math>\sqrt{{\hbar c^5} / {G {k_\text{B}}^2}}</math>
| {{val|1.417|e=32|u=K}}{{physconst|TP|ref=only}}
|-
|-
| [[Temperature]] (&Theta;)
| <math>T_S = \sqrt{\frac{c^4 e^2}{G (4 \pi \epsilon_0) k^2}}</math>
|}
|}


The Planck unit system uses the following defining constants:
=="Schrödinger" units==
: {{math|''c''}}, {{math|''ħ''}}, {{math|''G''}}, {{math|''k''{{sub|B}}}},
where {{math|''c''}} is the [[speed of light]], {{math|''ħ''}} is the [[reduced Planck constant]], {{math|''G''}} is the [[gravitational constant]], and {{math|''k''{{sub|B}}}} is the [[Boltzmann constant]].


Planck units form a system of natural units that is not defined in terms of properties of any prototype, physical object, or even [[elementary particle]]. They only refer to the basic structure of the laws of physics: {{math|''c''}} and {{math|''G''}} are part of the structure of [[spacetime]] in [[general relativity]], and {{math|''ħ''}} is at the foundation of [[quantum mechanics]]. This makes Planck units particularly convenient and common in theories of [[quantum gravity]], including [[string theory]].{{citation needed|date=September 2020}}
:<math> e = 1 \ </math>
:<math> G = 1 \ </math>
:<math> \hbar = 1 \ </math>
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
:<math> k = 1 \ </math>
:<math> c = \frac{1}{\alpha} \ </math>


Planck considered only the units based on the universal constants {{math|''G''}}, {{math|''h''}}, {{math|''c''}}, and {{math|''k''}}<sub>B</sub> to arrive at natural units for [[length]], [[time]], [[mass]], and [[temperature]], but no electromagnetic units.<ref>However, if it is assumed that at the time the Gaussian definition of electric charge was used and hence not regarded as an independent quantity, 4{{math|''πε''}}{{sub|0}} would be implicitly in the list of defining constants, giving a charge unit {{math|{{radic|4''πε''{{sub|0}}''ħc''}}}}.</ref> The Planck system of units is now understood to use the reduced Planck constant, {{math|''ħ''}}, in place of the Planck constant, {{math|''h''}}.<ref name="TOM">Tomilin, K. A., 1999, "[http://old.ihst.ru/personal/tomilin/papers/tomil.pdf Natural Systems of Units: To the Centenary Anniversary of the Planck System] {{Webarchive|url=https://web.archive.org/web/20201212041222/http://old.ihst.ru/personal/tomilin/papers/tomil.pdf |date=2020-12-12 }}", 287–296.</ref>
The name coined by [[Michael Duff]][http://www.arxiv.org/abs/hep-th/0208093]. They can be obtained from [[Planck units]] with the substitution:
{{Clear}}
:<math> c \leftarrow \alpha c = \frac{e^2}{\hbar (4 \pi \epsilon_0)} </math>.
This removes the [[speed of light]] from the definitions and the value it takes on in Schrödinger units is the reciprocal of the [[fine-structure constant]], 1/&alpha;. In Schrödinger units a conceivable variation in the value of the dimensionless &alpha; would be considered to be due to a variation in the speed of light.


=== Schrödinger units ===
{| border="1" cellspacing="0" cellpadding="2"

|- align="left" style="background-color: #cccccc;"
{| class="wikitable" align="right" style="margin-left: 1em;"
! Quantity
|+Schrödinger system dimensions in SI units
! Expression
|-
! Quantity
! Expression
! Approx.<br/>metric value
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_{\psi} = \sqrt{\frac{\hbar^4 G (4 \pi \epsilon_0)^3}{e^6}}</math>
| <math>\sqrt{{\hbar^4 G (4 \pi \varepsilon_0)^3} / {e^6}}</math>
| {{val|2.593|e=-32|u=m}}
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_{\psi} = \sqrt{\frac{e^2}{G (4 \pi \epsilon_0)}}</math>
| <math>\sqrt{{e^2} / {4 \pi \varepsilon_0 G}}</math>
| {{val|1.859|e=-9|u=kg}}
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_{\psi} = \sqrt{\frac{\hbar^6 G (4 \pi \epsilon_0)^5}{e^{10}}} </math>
| <math>\sqrt{{\hbar^6 G (4 \pi \varepsilon_0)^5} / {e^{10}}}</math>
| {{val|1.185|e=-38|u=s}}
|-
|-
| [[Electric charge]] (Q)
| [[Electric charge]]
| <math>q_{\psi} = e \ </math>
| <math>e</math>
| {{val|1.602|e=-19|u=C}}{{physconst|e|ref=only}}
|-
|-
| [[Temperature]] (&Theta;)
| <math>T_{\psi} = \sqrt{\frac{e^{10}}{\hbar^4 (4 \pi \epsilon_0)^5 G k^2}}</math>
|}
|}


The Schrödinger system of units (named after Austrian physicist [[Erwin Schrödinger]]) is seldom mentioned in literature. Its defining constants are:<ref>
==Atomic units (Hartree)==
{{cite book
{{Main|Atomic units}}
| last1 = Stohner | first1 = Jürgen
| last2 = Quack | first2 = Martin
| year = 2011
| title = Handbook of High-resolution Spectroscopy
| chapter = Conventions, Symbols, Quantities, Units and Constants for High-Resolution Molecular Spectroscopy
| url = https://www.ir.ethz.ch/handbook/MQ333_Handbook_Stohner_Quack_bearbeitet.pdf
| page = 304
| access-date = 19 March 2023
| doi = 10.1002/9780470749593.hrs005 | isbn = 9780470749593
}}</ref><ref>
{{cite arXiv
| last = Duff | first = Michael James | author-link = Michael James Duff
| date = 11 July 2004
| title = Comment on time-variation of fundamental constants
| page = 3
| eprint = hep-th/0208093
}}</ref>
: {{math|''e''}}, {{math|''ħ''}}, {{math|''G''}}, {{math|''k''{{sub|e}}}}.


=== Geometrized units ===
:<math> e = 1 \ </math>
{{Main|Geometrized unit system}}
:<math> m_e = 1 \ </math>
:<math> \hbar = 1 \ </math>
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
:<math> a_0 = 1 \ </math>
:<math> k = 1 \ </math>
:<math> c = \frac{1}{\alpha} \ </math>


Defining constants:
First proposed by [[Douglas Hartree]] to simplify the physics of the [[Hydrogen atom]]. [[Michael Duff]][http://www.arxiv.org/abs/hep-th/0208093] calls these "Bohr units". The unit [[energy]] in this system is the total energy of the [[electron]] in the first circular orbit of the [[Bohr atom]] and called the [[Hartree energy]], ''E''<sub>h</sub>. The unit velocity is the velocity of that electron, the unit mass is the [[electron mass]], ''m''<sub>e</sub>, and the unit length is the [[Bohr radius]], ''a''<sub>0</sub>. They can be obtained from '''“Schrödinger” units''' with the substitution:
: {{math|''c''}}, {{math|''G''}}.
:<math> G \leftarrow \alpha G \left( \frac{m_P}{m_e} \right)^2 = \frac{e^2}{4 \pi \epsilon_0 m_e^2} \ </math>.
This removes the [[speed of light]] (as well as the [[gravitational constant]]) from the definitions and the value it takes on in atomic units is the reciprocal of the [[fine-structure constant]], 1/&alpha;. In atomic units a conceivable variation in the value of the dimensionless &alpha; would be considered to be due to a variation in the speed of light.


The geometrized unit system,<ref name=MisnerThorneWheeler>
{| border="1" cellspacing="0" cellpadding="2"
{{cite book
|- align="left" style="background-color: #cccccc;"
|last1=Misner |first1=Charles W.
! Quantity
|last2=Thorne |first2=Kip S.
! Expression
|last3=Wheeler |first3=John Archibald
|date=2008
|title=Gravitation
|edition=27. printing
|location=New York, NY
|publisher=Freeman
|isbn=978-0-7167-0344-0
}}</ref>{{rp|36}} used in [[general relativity]], the base physical units are chosen so that the [[speed of light]], {{math|''c''}}, and the [[gravitational constant]], {{math|''G''}}, are set to one.

=== Atomic units ===
{{main|Atomic units}}

{| class="wikitable" align="right" style="margin-left: 1em;"
|+ Atomic-unit dimensions in SI units
|-
! Quantity
! Expression
! Metric value
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_A = \frac{\hbar^2 (4 \pi \epsilon_0)}{m_e e^2}</math>
| <math>{(4 \pi \epsilon_0) \hbar^2} / {m_\text{e} e^2}</math>
| {{val|5.292|e=-11|u=m}}<ref>{{cite web |title=2018 CODATA Value: atomic unit of length |work=The NIST Reference on Constants, Units, and Uncertainty |url=http://physics.nist.gov/cgi-bin/cuu/Value?Abohrrada0 |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2023-12-31 }}</ref>
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_A = m_e \ </math>
| <math>m_\text{e} </math>
| {{val|9.109|e=-31|u=kg}}<ref>{{cite web |title=2018 CODATA Value: atomic unit of mass |work=The NIST Reference on Constants, Units, and Uncertainty |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ame |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2023-12-31 }}</ref>
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_A = \frac{\hbar^3 (4 \pi \epsilon_0)^2}{m_e e^4} </math>
| <math>{(4 \pi \epsilon_0)^2 \hbar^3} / {m_\text{e} e^4}</math>
| {{val|2.419|e=-17|u=s}}<ref>{{cite web |title=2018 CODATA Value: atomic unit of time |work=The NIST Reference on Constants, Units, and Uncertainty |url=http://physics.nist.gov/cgi-bin/cuu/Value?aut |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2023-12-31 }}</ref>
|-
|-
| [[Electric charge]] (Q)
| [[Electric charge]]
| <math>q_A = e \ </math>
| <math>e </math>
| {{val|1.602|e=-19|u=C}}<ref>{{cite web |title=2018 CODATA Value: atomic unit of charge |work=The NIST Reference on Constants, Units, and Uncertainty |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ae |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2023-12-31 }}</ref>
|-
|-
| [[Temperature]] (&Theta;)
| <math>T_A = \frac{m_e e^4}{\hbar^2 (4 \pi \epsilon_0)^2 k}</math>
|}
|}


The atomic unit system<ref>
==Electronic system of units==
{{cite journal
|last1=Shull | first1=H.
|last2=Hall | first2=G. G.
|year=1959
|title=Atomic Units
|journal=[[Nature (journal)|Nature]]
|volume=184 |issue=4698 |page=1559
|doi=10.1038/1841559a0 |bibcode = 1959Natur.184.1559S | s2cid=23692353
}}</ref> uses the following defining constants:<ref name=Levine4/>{{rp|349}}<ref>
{{cite journal
|last=McWeeny |first=R.
|date=May 1973
|title=Natural Units in Atomic and Molecular Physics
|url=https://www.nature.com/articles/243196a0
|journal=Nature
|language=en
|volume=243 |issue=5404 |pages=196–198
|doi=10.1038/243196a0 |bibcode=1973Natur.243..196M |s2cid=4164851 |issn=0028-0836
}}</ref>
: {{math|''m''{{sub|e}}}}, {{math|''e''}}, {{math|''ħ''}}, {{math|4''πε''<sub>0</sub>}}.


The atomic units were first proposed by [[Douglas Hartree]] and are designed to simplify atomic and molecular physics and chemistry, especially the [[hydrogen atom]].<ref name=Levine4>
:<math> c = 1 \ </math>
{{cite book
:<math> e = 1 \ </math>
|last=Levine |first=Ira N.
:<math> m_e = 1 \ </math>
|date=1991
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
|title=Quantum chemistry
:<math> k = 1 \ </math>
|edition=4
:<math> \hbar = \frac{1}{\alpha} \ </math>
|series=Pearson advanced chemistry series
|location=Englewood Cliffs, NJ
|publisher=Prentice-Hall International
|isbn=978-0-205-12770-2
}}</ref>{{rp|349}} For example, in atomic units, in the [[Bohr model]] of the hydrogen atom an electron in the ground state has orbital radius, orbital velocity and so on with particularly simple numeric values.
{{clear}}


=== Natural units (particle and atomic physics) ===
[[Michael Duff]][http://www.arxiv.org/abs/hep-th/0208093] calls these "Dirac units". They can be obtained from '''Stoney units''' with the substitution:
:<math> G \leftarrow \alpha G \left( \frac{m_P}{m_e} \right)^2 = \frac{e^2}{4 \pi \epsilon_0 m_e^2} \ </math>.
They can be also obtained from [[Atomic units]] with the substitution:
:<math> \hbar \leftarrow \alpha \hbar = \frac{e^2}{c (4 \pi \epsilon_0)} </math>.
Similarly to Stoney units, a conceivable variation in the value of &alpha; would be considered to be due to a variation in Planck's constant.


{| class="wikitable" align="right" style="margin-left: 1em;"
{| border="1" cellspacing="0" cellpadding="2"
|-
|- align="left" style="background-color: #cccccc;"
! Quantity
! Quantity
! Expression
! Expression
! Metric value
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_e = \frac{e^2}{c^2 m_e (4 \pi \epsilon_0)}</math>
| <math>{\hbar} / {m_\text{e} c}</math>
| {{val|3.862|e=-13|u=m}}<ref>{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?eqNecomwlbar |title=2018 CODATA Value: natural unit of length |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2020-05-31}}</ref>
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_e = m_e \ </math>
| <math>m_\text{e}</math>
| {{val|9.109|e=-31|u=kg}}<ref>{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?Nme |title=2018 CODATA Value: natural unit of mass |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2020-05-31}}</ref>
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_e = \frac{e^2}{c^3 m_e (4 \pi \epsilon_0)} </math>
| <math>{\hbar} / {m_\text{e} c^2}</math>
| {{val|1.288|e=-21|u=s}}<ref>{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?nut |title=2018 CODATA Value: natural unit of time |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2020-05-31}}</ref>
|-
|-
| [[Electric charge]] (Q)
| [[Electric charge]]
| <math>q_e = e \ </math>
| <math>\sqrt{\varepsilon_0 \hbar c}</math>
| {{val|5.291|e=-19|u=C}}
|-
|-
| [[Temperature]] (&Theta;)
| <math>T_e = \frac{m_e c^2}{k}</math>
|}
|}


This natural unit system, used only in the fields of particle and atomic physics, uses the following defining constants:<ref name="Wiley-VCH Verlag GmbH pp. 509–514">
==Quantum electrodynamical system of units (Stille)==
{{cite book
|first=Mike |last=Guidry
|date=1991
|title=Gauge Field Theories
|chapter=Appendix A: Natural Units
|pages=509–514
|publication-place=Weinheim, Germany
|publisher=Wiley-VCH Verlag
|doi=10.1002/9783527617357.app1
|isbn=978-0-471-63117-0
}}</ref>{{rp|509}}
: {{math|''c''}}, {{math|''m''{{sub|e}}}}, {{math|''ħ''}}, {{math|''ε''<sub>0</sub>}},
where {{math|''c''}} is the [[speed of light]], {{math|''m''}}<sub>e</sub> is the [[electron mass]], {{math|''ħ''}} is the [[reduced Planck constant]], and {{math|''ε''}}<sub>0</sub> is the [[vacuum permittivity]].


The vacuum permittivity {{math|''ε''}}<sub>0</sub> is implicitly used as a [[nondimensionalization]] constant, as is evident from the physicists' expression for the [[fine-structure constant]], written {{math|1=''α'' = ''e''{{i sup|2}}/(4''π'')}},<ref>
:<math> c = 1 \ </math>
{{citation
:<math> e = 1 \ </math>
|author=Frank Wilczek
:<math> m_p = 1 \ </math>
|year=2005
:<math> \frac{1}{4 \pi \epsilon_0} = 1 </math>
|title=On Absolute Units, I: Choices
:<math> k = 1 \ </math>
|journal=Physics Today |volume=58 |issue=10 |page=12
:<math> \hbar = \frac{1}{\alpha} \ </math>
|doi=10.1063/1.2138392 |bibcode=2005PhT....58j..12W
|access-date=2020-05-31
|url=http://ctpweb.lns.mit.edu/physics_today/phystoday/Abs_limits388.pdf |url-status=dead
|archive-url=https://web.archive.org/web/20200613120809/http://ctpweb.lns.mit.edu/physics_today/phystoday/Abs_limits388.pdf
|archive-date=2020-06-13
}}</ref><ref>
{{citation
|author=Frank Wilczek
|year=2006
|title=On Absolute Units, II: Challenges and Responses
|journal=Physics Today |volume=59 |issue=1 |page=10
|doi=10.1063/1.2180151 |bibcode=2006PhT....59a..10W
|access-date=2020-05-31
|url=http://ctpweb.lns.mit.edu/physics_today/phystoday/Abs_limits393.pdf |url-status=dead
|archive-url=https://web.archive.org/web/20170812231026/http://ctpweb.lns.mit.edu/physics_today/phystoday/Abs_limits393.pdf
|archive-date=2017-08-12
}}</ref> which may be compared to the corresponding expression in SI: {{math|1=''α'' = ''e''{{i sup|2}}/(4''πε''<sub>0</sub>''ħc'')}}.<ref>{{SIbrochure9th}}</ref>{{rp|128}}
{{clear}}


=== Strong units ===
Similar to the '''electronic system of units''' except that the [[proton mass]] is normalized rather that the [[electron mass]]. Also a conceivable variation in the value of &alpha; would be considered to be due to a variation in Planck's constant.


{| class="wikitable" align="right" style="margin-left: 1em;"

|+ Strong-unit dimensions in SI units
{| border="1" cellspacing="0" cellpadding="2"
|-
|- align="left" style="background-color: #cccccc;"
! Quantity
! Quantity
! Expression
! Expression
! Metric value
|- align="left"
|- align="left"
| [[Length]] (L)
| [[Length]]
| <math>l_{\mathrm{QED}} = \frac{e^2}{c^2 m_p (4 \pi \epsilon_0)}</math>
| <math>{\hbar} / {m_\text{p} c}</math>
| {{val|2.103|e=-16|u=m}}
|-
|-
| [[Mass]] (M)
| [[Mass]]
| <math>m_{\mathrm{QED}} = m_p \ </math>
| <math>m_\text{p}</math>
| {{val|1.673|e=-27|u=kg}}
|-
|-
| [[Time]] (T)
| [[Time]]
| <math>t_{\mathrm{QED}} = \frac{e^2}{c^3 m_p (4 \pi \epsilon_0)} </math>
| <math>{\hbar} / {m_\text{p} c^2}</math>
| {{val|7.015|e=-25|u=s}}
|-
|-
| [[Electric charge]] (Q)
| <math>q_{\mathrm{QED}} = e \ </math>
|-
| [[Temperature]] (&Theta;)
| <math>T_{\mathrm{QED}} = \frac{m_p c^2}{k}</math>
|}
|}


Defining constants:
==See also==
: {{math|''c''}}, {{math|''m''{{sub|p}}}}, {{math|''ħ''}}.

Here, {{math|''m''{{sub|p}}}} is the [[proton]] rest mass. ''Strong units'' are "convenient for work in [[Quantum chromodynamics|QCD]] and nuclear physics, where quantum mechanics and relativity are omnipresent and the proton is an object of central interest".<ref>
{{cite arXiv
|last=Wilczek |first=Frank
|year=2007
|eprint=0708.4361
|title=Fundamental Constants
|class=hep-ph
}}. Further [http://frankwilczek.com/2013/units.pdf see].</ref>

In this system of units the speed of light changes in inverse proportion to the fine-structure constant, therefore it has gained some interest recent years in the niche hypothesis of [[time-variation of fundamental constants]].<ref>
{{cite arXiv
| last = Davis
| first = Tamara Maree
| author-link = Tamara Davis
| eprint = astro-ph/0402278
| title = Fundamental Aspects of the Expansion of the Universe and Cosmic Horizons
| date = 12 February 2004
| page = 103
| quote = In this set of units the speed of light changes in inverse proportion to the fine structure constant. From this we can conclude that if ''c'' changes but ''e'' and ℏ remain constant then the speed of light in Schrödinger units, ''c''<sub>''ψ''</sub> changes in proportion to ''c'' but the speed of light in Planck units, ''c''<sub>P</sub> stays the same. Whether or not the “speed of light” changes depends on our measuring system (three possible definitions of the “speed of light” are ''c'', ''c''<sub>P</sub> and ''c''<sub>''ψ''</sub>). Whether or not ''c'' changes is unambiguous because the measuring system has been defined.
}}</ref>

== See also ==
{{colbegin}}
* [[Anthropic units]]
* [[Astronomical system of units]]
* [[Dimensionless physical constant]]
* [[International System of Units]]
* [[N-body units|''N''-body units]]
* [[Outline of metrology and measurement]]
* [[Unit of measurement]]
{{colend}}


== Notes and references ==
* [[fundamental unit]]
{{reflist}}
* [[dimensional analysis]]
* [[physical constant]]s


==External links==
== External links ==
{{Commonscat}}
*[http://physics.nist.gov/cuu/ The NIST website]([[NIST|National Institute of Standards and Technology]]) is a convenient source of data on the commonly recognized constants.
* [http://physics.nist.gov/cuu/ The NIST website] ([[NIST|National Institute of Standards and Technology]]) is a convenient source of data on the commonly recognized constants.
*[http://dbserv.ihep.su/~pubs/tconf99/ps/tomil.pdf K.A. Tomilin: ''NATURAL SYSTEMS OF UNITS; To the Centenary Anniversary of the Planck System''] A comparative overview/tutorial of various systems of natural units having historical use.
* [http://www.ihst.ru/personal/tomilin/papers/tomil.pdf K.A. Tomilin: ''NATURAL SYSTEMS OF UNITS; To the Centenary Anniversary of the Planck System''] {{Webarchive|url=https://web.archive.org/web/20160512174540/http://www.ihst.ru/personal/tomilin/papers/tomil.pdf |date=2016-05-12 }} A comparative overview/tutorial of various systems of natural units having historical use.
* [http://www.quantumfieldtheory.info Pedagogic Aides to Quantum Field Theory] Click on the link for Chap. 2 to find an extensive, simplified introduction to natural units.
* [https://www.seas.upenn.edu/~amyers/NaturalUnits.pdf Natural System Of Units In General Relativity (PDF)], by Alan L. Myers (University of Pennsylvania). Equations for conversions from natural to SI units.


{{Systems of measurement}}
{{Planckunits}}
{{SI units}}


[[Category:Natural units]]
{{DEFAULTSORT:Natural Units}}
[[Category:Natural units| ]]
[[Category:Metrology]]

Latest revision as of 03:21, 15 November 2024

In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc2. A purely natural system of units has all of its dimensions collapsed, such that the physical constants completely define the system of units and the relevant physical laws contain no conversion constants.

While natural unit systems simplify the form of each equation, it is still necessary to keep track of the non-collapsed dimensions of each quantity or expression in order to reinsert physical constants (such dimensions uniquely determine the full formula). Dimensional analysis in the collapsed system is uninformative as most quantities have the same dimensions.

Systems of natural units

[edit]

Summary table

[edit]
Quantity Planck Stoney Atomic Particle and atomic physics Strong Schrödinger
Defining constants , , , , , , , , , , , , , , , , ,
Speed of light
Reduced Planck constant
Elementary charge
Vacuum permittivity
Gravitational constant

where:

  • α is the fine-structure constant (α = e2 / 4πε0ħc ≈ 0.007297)
  • ηe = Gme2 / ħc1.7518×10−45
  • ηp = Gmp2 / ħc5.9061×10−39
  • A dash (—) indicates where the system is not sufficient to express the quantity.

Stoney units

[edit]
Stoney system dimensions in SI units
Quantity Expression Approx.
metric value
Length 1.380×10−36 m[1]
Mass 1.859×10−9 kg[1]
Time 4.605×10−45 s[1]
Electric charge 1.602×10−19 C

The Stoney unit system uses the following defining constants:

c, G, ke, e,

where c is the speed of light, G is the gravitational constant, ke is the Coulomb constant, and e is the elementary charge.

George Johnstone Stoney's unit system preceded that of Planck by 30 years. He presented the idea in a lecture entitled "On the Physical Units of Nature" delivered to the British Association in 1874.[2] Stoney units did not consider the Planck constant, which was discovered only after Stoney's proposal.

Planck units

[edit]
Planck dimensions in SI units
Quantity Expression Approx.
metric value
Length 1.616×10−35 m[3]
Mass 2.176×10−8 kg[4]
Time 5.391×10−44 s[5]
Temperature 1.417×1032 K[6]

The Planck unit system uses the following defining constants:

c, ħ, G, kB,

where c is the speed of light, ħ is the reduced Planck constant, G is the gravitational constant, and kB is the Boltzmann constant.

Planck units form a system of natural units that is not defined in terms of properties of any prototype, physical object, or even elementary particle. They only refer to the basic structure of the laws of physics: c and G are part of the structure of spacetime in general relativity, and ħ is at the foundation of quantum mechanics. This makes Planck units particularly convenient and common in theories of quantum gravity, including string theory.[citation needed]

Planck considered only the units based on the universal constants G, h, c, and kB to arrive at natural units for length, time, mass, and temperature, but no electromagnetic units.[7] The Planck system of units is now understood to use the reduced Planck constant, ħ, in place of the Planck constant, h.[8]

Schrödinger units

[edit]
Schrödinger system dimensions in SI units
Quantity Expression Approx.
metric value
Length 2.593×10−32 m
Mass 1.859×10−9 kg
Time 1.185×10−38 s
Electric charge 1.602×10−19 C[9]

The Schrödinger system of units (named after Austrian physicist Erwin Schrödinger) is seldom mentioned in literature. Its defining constants are:[10][11]

e, ħ, G, ke.

Geometrized units

[edit]

Defining constants:

c, G.

The geometrized unit system,[12]: 36  used in general relativity, the base physical units are chosen so that the speed of light, c, and the gravitational constant, G, are set to one.

Atomic units

[edit]
Atomic-unit dimensions in SI units
Quantity Expression Metric value
Length 5.292×10−11 m[13]
Mass 9.109×10−31 kg[14]
Time 2.419×10−17 s[15]
Electric charge 1.602×10−19 C[16]

The atomic unit system[17] uses the following defining constants:[18]: 349 [19]

me, e, ħ, 4πε0.

The atomic units were first proposed by Douglas Hartree and are designed to simplify atomic and molecular physics and chemistry, especially the hydrogen atom.[18]: 349  For example, in atomic units, in the Bohr model of the hydrogen atom an electron in the ground state has orbital radius, orbital velocity and so on with particularly simple numeric values.

Natural units (particle and atomic physics)

[edit]
Quantity Expression Metric value
Length 3.862×10−13 m[20]
Mass 9.109×10−31 kg[21]
Time 1.288×10−21 s[22]
Electric charge 5.291×10−19 C

This natural unit system, used only in the fields of particle and atomic physics, uses the following defining constants:[23]: 509 

c, me, ħ, ε0,

where c is the speed of light, me is the electron mass, ħ is the reduced Planck constant, and ε0 is the vacuum permittivity.

The vacuum permittivity ε0 is implicitly used as a nondimensionalization constant, as is evident from the physicists' expression for the fine-structure constant, written α = e2/(4π),[24][25] which may be compared to the corresponding expression in SI: α = e2/(4πε0ħc).[26]: 128 

Strong units

[edit]
Strong-unit dimensions in SI units
Quantity Expression Metric value
Length 2.103×10−16 m
Mass 1.673×10−27 kg
Time 7.015×10−25 s

Defining constants:

c, mp, ħ.

Here, mp is the proton rest mass. Strong units are "convenient for work in QCD and nuclear physics, where quantum mechanics and relativity are omnipresent and the proton is an object of central interest".[27]

In this system of units the speed of light changes in inverse proportion to the fine-structure constant, therefore it has gained some interest recent years in the niche hypothesis of time-variation of fundamental constants.[28]

See also

[edit]

Notes and references

[edit]
  1. ^ a b c Barrow, John D. (1983), "Natural units before Planck", Quarterly Journal of the Royal Astronomical Society, 24: 24–26, Bibcode:1983QJRAS..24...24B
  2. ^ Ray, T.P. (1981). "Stoney's Fundamental Units". Irish Astronomical Journal. 15: 152. Bibcode:1981IrAJ...15..152R.
  3. ^ "2022 CODATA Value: Planck length". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  4. ^ "2022 CODATA Value: Planck mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  5. ^ "2022 CODATA Value: Planck time". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  6. ^ "2022 CODATA Value: Planck temperature". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  7. ^ However, if it is assumed that at the time the Gaussian definition of electric charge was used and hence not regarded as an independent quantity, 4πε0 would be implicitly in the list of defining constants, giving a charge unit 4πε0ħc.
  8. ^ Tomilin, K. A., 1999, "Natural Systems of Units: To the Centenary Anniversary of the Planck System Archived 2020-12-12 at the Wayback Machine", 287–296.
  9. ^ "2022 CODATA Value: elementary charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  10. ^ Stohner, Jürgen; Quack, Martin (2011). "Conventions, Symbols, Quantities, Units and Constants for High-Resolution Molecular Spectroscopy". Handbook of High-resolution Spectroscopy (PDF). p. 304. doi:10.1002/9780470749593.hrs005. ISBN 9780470749593. Retrieved 19 March 2023.
  11. ^ Duff, Michael James (11 July 2004). "Comment on time-variation of fundamental constants". p. 3. arXiv:hep-th/0208093.
  12. ^ Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (2008). Gravitation (27. printing ed.). New York, NY: Freeman. ISBN 978-0-7167-0344-0.
  13. ^ "2018 CODATA Value: atomic unit of length". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2023-12-31.
  14. ^ "2018 CODATA Value: atomic unit of mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2023-12-31.
  15. ^ "2018 CODATA Value: atomic unit of time". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2023-12-31.
  16. ^ "2018 CODATA Value: atomic unit of charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2023-12-31.
  17. ^ Shull, H.; Hall, G. G. (1959). "Atomic Units". Nature. 184 (4698): 1559. Bibcode:1959Natur.184.1559S. doi:10.1038/1841559a0. S2CID 23692353.
  18. ^ a b Levine, Ira N. (1991). Quantum chemistry. Pearson advanced chemistry series (4 ed.). Englewood Cliffs, NJ: Prentice-Hall International. ISBN 978-0-205-12770-2.
  19. ^ McWeeny, R. (May 1973). "Natural Units in Atomic and Molecular Physics". Nature. 243 (5404): 196–198. Bibcode:1973Natur.243..196M. doi:10.1038/243196a0. ISSN 0028-0836. S2CID 4164851.
  20. ^ "2018 CODATA Value: natural unit of length". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2020-05-31.
  21. ^ "2018 CODATA Value: natural unit of mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2020-05-31.
  22. ^ "2018 CODATA Value: natural unit of time". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2020-05-31.
  23. ^ Guidry, Mike (1991). "Appendix A: Natural Units". Gauge Field Theories. Weinheim, Germany: Wiley-VCH Verlag. pp. 509–514. doi:10.1002/9783527617357.app1. ISBN 978-0-471-63117-0.
  24. ^ Frank Wilczek (2005), "On Absolute Units, I: Choices" (PDF), Physics Today, 58 (10): 12, Bibcode:2005PhT....58j..12W, doi:10.1063/1.2138392, archived from the original (PDF) on 2020-06-13, retrieved 2020-05-31
  25. ^ Frank Wilczek (2006), "On Absolute Units, II: Challenges and Responses" (PDF), Physics Today, 59 (1): 10, Bibcode:2006PhT....59a..10W, doi:10.1063/1.2180151, archived from the original (PDF) on 2017-08-12, retrieved 2020-05-31
  26. ^ The International System of Units (PDF) (9th ed.), International Bureau of Weights and Measures, Dec 2022, ISBN 978-92-822-2272-0
  27. ^ Wilczek, Frank (2007). "Fundamental Constants". arXiv:0708.4361 [hep-ph].. Further see.
  28. ^ Davis, Tamara Maree (12 February 2004). "Fundamental Aspects of the Expansion of the Universe and Cosmic Horizons". p. 103. arXiv:astro-ph/0402278. In this set of units the speed of light changes in inverse proportion to the fine structure constant. From this we can conclude that if c changes but e and ℏ remain constant then the speed of light in Schrödinger units, cψ changes in proportion to c but the speed of light in Planck units, cP stays the same. Whether or not the "speed of light" changes depends on our measuring system (three possible definitions of the "speed of light" are c, cP and cψ). Whether or not c changes is unambiguous because the measuring system has been defined.
[edit]