Jump to content

Mass deacidification: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Rescuing 13 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(39 intermediate revisions by 20 users not shown)
Line 1: Line 1:
{{Short description|Measure against the degradation of books made of acidic paper}}
'''Mass deacidification''' is a term used in [[Library and Information Science]] for one possible measure against the degradation of [[paper]] in old [[books]] (the so-called "[[slow fires]]"). The goal of the process is to increase the [[pH]] of [[acid paper|acidic paper]] on a large scale. Although [[acid-free paper]] has become more common, a large body of acidic paper still exists in books made after the 1850s because of its cheaper and simpler production methods. Acidic paper, especially when exposed to [[light]], [[air pollution]], or high [[relative humidity]], yellows and becomes brittle over time.<ref>Cheradame, H et al. (2003).Mass Deacidification of paper and books: I: study of the limitations of the gas phase process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'', 24, 227.</ref> During mass deacidification an [[alkali]]ne agent is deposited in the paper to neutralize existing acid and prevent further decay.<ref>Lienardy, A. & Van Damme, P.
'''Mass deacidification''' is a term used in [[library and information science]] as one possible measure against the degradation of [[paper]] in old [[book]]s, the so-called "[[slow fire]]s". The goal of the process is to increase the [[pH]] of [[acid paper|acidic paper]]. Although [[acid-free paper]] has become more common, a large body of acidic paper still exists in books made after the 1850s; this is because of its cheaper and simpler production methods. Acidic paper, especially when exposed to [[light]], [[air pollution]], or high [[relative humidity]], yellows and becomes brittle over time.<ref>Cheradame, H et al. (2003). Mass Deacidification of paper and books: I: study of the limitations of the gas phase process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'', 24, 227.</ref> During mass deacidification an [[Alkaline earth metal|alkaline]] agent is deposited in the paper to neutralize existing acid and prevent further decay.<ref>Lienardy, A. & Van Damme, P. (1990). Practical Deacidification, ''Restaurator: International Journal for the Preservation of Library and Archival Material'', 11,2.</ref> Mass deacidification is intended for objects on acidic paper that will be lost if no action is performed.
(1990).Practical Deacidification, ''Restaurator: International Journal for the Preservation of Library and Archival Material'', 11,2.</ref>


== History of research and process development ==
==Current services==
Mass deacidification—along with [[Microform|microfilm]] and [[lamination]]—was developed during the early and mid-20th century as a response to the chemical process of [[hydrolysis]] by which the fibers that constitute paper, providing its structure and strength, have their bonds broken, resulting in paper that becomes increasingly brittle over time. [[Environmental pollutants]] can react with paper to form acids that promote oxidation, creating more acid as a by-product, which results in a positive feedback loop of autocatalytic destruction.<ref>Library of Congress. (1994). ''An evaluation of the BookKeeper mass deacidification process: Technical Evaluation Team Report for the Preservation Directorate'', Library of Congress, Appendix E.</ref> Supported in part by grants from the Council on Library Resources, William J. Barrow conducted research into paper decay and found that no more than three percent of books published between 1900 and 1949 would survive more than fifty years. In response to this, a Standing Committee on the Preservation of Research Library Materials was formed by the Association of Research Libraries (ARL) in 1960.<ref>Marcum, D. & Friedlander, D. (2003). [http://www.dlib.org/dlib/may03/friedlander/05friedlander.html Keepers of the Crumbling Culture: What Digital Preservation Can Learn from Library History] {{Webarchive|url=https://web.archive.org/web/20080514190831/http://www.dlib.org/dlib/may03/friedlander/05friedlander.html |date=2008-05-14 }}. URL accessed April 28, 2008.</ref>
There are several commercial deacidification techniques currently on the market.


Barrow also invented an aqueous process to neutralize acid in paper while depositing an alkaline buffer that would slow the rate of decay.<ref name="Ritzenthaler1">Ritzenthaler, M. (1993). ''Preserving Archives and Manuscripts''</ref> In addition to Barrow's original method, both non-aqueous—employing organic solvents—and vaporous—the Library of Congress' DEZ (diethyl zinc) treatment—methods of achieving the same results have been researched in an attempt to reduce time, labor, and cost requirements.<ref name="ifla1">Pillete, R. (2003). [http://www.ifla.org/IV/ifla69/papers/030e-Pilette.pdf Mass Deacidification: A Preservation Option for Libraries] {{Webarchive|url=https://web.archive.org/web/20080516071808/http://www.ifla.org/IV/ifla69/papers/030e-Pilette.pdf |date=2008-05-16 }} ''World Library and Information Congress: 69th IFLA General Conference and Council''. URL accessed April 28, 2008.</ref>
:*The BookKeeper process is a non-aqueous, liquid phase process that uses [[magnesium oxide]].<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck4.htm BookKeeper]. URL accessed December 1, 2007.</ref> BookKeeper is available through Preservation Technologies, L.P. with plants in the U.S., Spain, Japan, Poland, The Netherlands, and South Africa.<ref>{{cite web |url = http://www.ptlp.com |title = PTLP: Home |accessdate = 2008-06-07}}</ref>


One technique proposed is to place books in an evacuated chamber, then introduce [[diethylzinc]] (DEZ). In theory, the diethylzinc would react with acidic residues in the paper, leaving an alkaline residue that would protect the paper against further degradation.<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck5.htm DEZ] {{Webarchive|url=https://web.archive.org/web/20080311000502/http://www.knaw.nl/ecpa/PUBL/porck5.htm |date=2008-03-11}}. URL accessed December 2, 2007.</ref> In practice, the heating required to remove trace water from the books before reaction (DEZ reacts violently with water) caused an accelerated degradation of the paper, a series of chemical reactions between DEZ and other components of the book (glues, bindings), caused further damage, and produced unpleasant aromas. In the 1980s, a pilot plant for mass deacidification, using this process, was constructed by [[NASA]] and was tested on books provided by the Library of Congress.<ref>Harris, K. & Shahani, C. (1994) Library of Congress. Preservation.
:*The CSC Book Saver uses carbonated magnesium propylate for deacidification.<ref name="deacidification1">Banik, G. (2003).Mass deacidification technology in Germany and its Quality Control. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',26, 64.</ref> It is available through Conservación de Sustratos Celulósicos S.L. (CSC) (Barcelona, Spain).<ref>{{cite web |url = http://www.cscbooksaver.com |title = CSC |accessdate = 2008-06-07}}</ref>
[https://www.loc.gov/preserv/deacid/proceva1.html Mass deacidification: An initiative to refine the diethyl zinc process] {{Webarchive|url=https://web.archive.org/web/20100811073926/http://www.loc.gov/preserv/deacid/proceva1.html |date=2010-08-11 }} URL accessed December 1, 2007.</ref> In 1986 it was discovered that the DEZ had not been removed in one of the deacidification runs and pooled in the bottom of the chamber, possibly remaining within the plumbing. DEZ is violently flammable when it comes in contact with either oxygen or water vapor, so the vacuum chamber could not be opened to remove the books within. Eventually, explosives were used to rupture the suspect plumbing; suspicions of the presence of residual DEZ were confirmed by the subsequent fire that destroyed the plant. In his book ''[[Double Fold]]'', [[Nicholson Baker]] discusses the failure of the NASA program at great length.


The chemical company [[AkzoNobel]] made later attempts at refining the process. The risks of fire and explosions were reduced by a better process design, however, damage and odors remained a problem. In the end, AkzoNobel determined the process was not a viable commercial proposition and shut down their research at the end of 1994.
:*The Papersave process was developed by Battelle Ingenieurtechnik GmbH and is, therefore, sometimes referred to as "the Battelle Process". The process uses magnesium titanium alkoxide.<ref name="deacidification1"/> It is available in Europe through Nitrochemie Wimmis (Wimmis, Switzerland) under the name of Papersave Swiss<ref>http://www.nitrochemie.com/pdfdoc/papersave/papersave-swiss-brosch_en.pdf</ref> and the Zentrum für Bucherhaltung (Leipzig, Germany).<ref>{{cite web |url = http://www.zfb.com/pages/services/mass_inc.php |first=Manfred |last=Anders|title = Mass Deacidification - Conservation for Libraries, Archives und Museums - ZFB GmbH Leipzig - Massenentsäuerung |accessdate = 2008-06-07}}</ref>

:*The Wei T'o process uses methoxy magnesium methyl carbonate, or isopropoxy magnesium isopropyl carbonate,<ref name="Porck1996">Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck4.htm Wei T'o and Sable]. URL accessed October 5, 2007.</ref> and new products are coming out in 2008. Wei T'o is less commonly used for mass deacidification treatment than for single item deacidification. Wei T'o products are available through Wei T'o Associates Inc.(Matteson, USA).<ref>{{cite web |url = http://www.weito.com |title = Wei T'o Index - Cover Page |accessdate = 2008-06-07}}</ref>

BookKeeper, CSC Booksaver, Papersave and Wei T'o are also available as a hand held sprays.

==Goals==
These are the results that the [[Library of Congress]] expected of an ideal mass deacidification treatment in 1994.


== Goals ==
These are the results that the [[Library of Congress]] expected of an ideal mass deacidification treatment in 1994:
*neutralize acidic paper and add an alkaline reserve.
*neutralize acidic paper and add an alkaline reserve.
*produce a pH value between 6.8 and 10.4 which is evenly distributed throughout the book.
*produce a pH value between 6.8 and 10.4 that is evenly distributed throughout the book.
*should not cause any damage to adhesives, inks or dyes.
*should not cause any damage to adhesives, inks, or dyes.
*should not cause any odor or any change in the color of the paper.
*should not cause an odor or any change in the color of the paper.
*should not cause loss of pliancy or mechanical strength.<ref name="loc1994">Library of Congress. (1994). [http://www.loc.gov/preserv/deacid/bkkeep1.html An evaluation of the BookKeeper mass deacidification process: Technical evaluation team report] URL accessed September 29, 2007.</ref>
*should not cause loss of [[flexibility|pliancy]] or mechanical strength.<ref name="loc1994">Library of Congress. (1994). [https://www.loc.gov/preservation/resources/rt/deacrept.html] {{Webarchive|url=https://web.archive.org/web/20220405212908/https://www.loc.gov/preservation/resources/rt/deacrept.html |date=2022-04-05 }} URL accessed April 5th,2022.</ref>

Faculty members of the Slovak University of Technology added these further requirements.


Faculty members of the [[Slovak University of Technology in Bratislava|Slovak University of Technology]] added these further requirements:
*the chemicals used have to be safe.
*the chemicals used have to be safe.
*the process has to be able to be applied to any kind of paper.
*the process has to be able to be applied to any kind of paper.
*the process can not cause swelling or warping of the paper.<ref>Cedzova, M. et al. (2006). Patents for Paper Deacidification. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',27, 36.</ref>
*the process can not cause swelling or warping of the paper.<ref>Cedzova, M. et al. (2006). Patents for Paper Deacidification. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',27, 36.</ref>


==Effects==
== Effects ==
All of the processes imparted an adequately high pH in studies conducted by the European Commission on Preservation and Access, the Library of Congress, and a team of scientists from the Centre de Recherches sur la Conservation des Documents Graphiques in the early and mid-nineties. BookKeeper produced a pH of 9-10.<ref name="loc1994"/> CSC Book Saver gives a pH of 8.78-10.5.<ref>Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',23, 40.</ref> Wei T'o gives 7.5 to 10.4,<ref>Brandis, L. (1994). Summary and evaluation of the testing sponsored by the Library of Congress of books deacidified by the FMC, AKSO and Wei T'o mass deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',15, 112.</ref> and Papersave gives a pH of 7.5-9.<ref>Wittekind, J. (1994). The Battelle mass deacidification process: A New method for
All of the processes imparted an adequately high pH in studies conducted by the European Commission on Preservation and Access, the Library of Congress, and a team of scientists from the Centre de Recherches sur la Conservation des Documents Graphiques in the early and mid-nineties. BookKeeper produced a pH of 9–10.<ref name="loc1994" /> CSC Book Saver yielded a pH of 8.78–10.5.<ref>Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',23, 40.</ref> Wei T'o gives 7.5 to 10.4,<ref>Brandis, L. (1994). Summary and evaluation of the testing sponsored by the Library of Congress of books deacidified by the FMC, AKSO, and Wei T'o mass deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',15, 112.</ref> and Papersave gives a pH of 7.5–9.<ref>Wittekind, J. (1994). The Battelle mass deacidification process: A New method for deacidifying books and archival materials. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',15, 195.</ref>
deacidifying books and archival materials. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',15, 195.</ref>


The same studies also found that the processes had negative cosmetic side effects. BookKeeper left "a palpable residue", clamp marks on the covers, and caused some of the colored inks to rub off.<ref name="loc1994"/> CSC Book Saver left a "white powdery deposit" on books.<ref>Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',23, 45.</ref> Papersave caused "discoloration, white deposit, Newton rings, bleeding of inks and dyes, odor and different 'feel' of the paper."<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck3.htm Battelle]. URL accessed December 1, 2007.</ref> Wei T'o caused "odor, white residues, rings, cockling, (yellow) discolorations and adhesive bleeding."<ref name="Porck1996"/>
The same studies also found that the processes had adverse cosmetic side effects. BookKeeper left "a palpable residue", clamp marks on the covers, and caused some of the colored inks to rub off.<ref name="loc1994" /> CSC Book Saver left a "white powdery deposit" on books.<ref>Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',23, 45.</ref> Papersave caused "discoloration, white deposit, [[Newton's rings]], bleeding of inks and dyes, odor and different 'feel' of the paper."<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck3.htm Battelle] {{Webarchive|url=https://web.archive.org/web/20080311000457/http://www.knaw.nl/ecpa/PUBL/porck3.htm |date=2008-03-11}}. URL accessed December 1, 2007.</ref> Wei T'o caused "odor, white residues, rings, cockling, (yellow) discolorations and adhesive bleeding."<ref name="Porck1996" />


Conservators from the British Library acknowledge that the existing mass deacidification processes are still developing and further research needs to be conducted on their chemical and mechanical effects.<ref>Knight, B. (2004). [http://www.bl.uk/aboutus/stratpolprog/ccare/introduction/research/consresstratfinal.pdf A Conservation research strategy for the British Library]. pg. 4. URL accessed December 1, 2007.</ref>
Conservators from the British Library acknowledge that the existing mass deacidification processes are still being developed and further research needs to be conducted on their chemical and mechanical effects.<ref>Knight, B. (2004). [http://www.bl.uk/aboutus/stratpolprog/ccare/introduction/research/consresstratfinal.pdf A Conservation research strategy for the British Library] {{Webarchive|url=https://web.archive.org/web/20110521164558/http://www.bl.uk/aboutus/stratpolprog/ccare/introduction/research/consresstratfinal.pdf |date=2011-05-21}}. pg. 4. URL accessed December 1, 2007.</ref>


== Services ==
==History of research and process development==
Several commercial deacidification techniques are on the market {{As of|2008|lc=y}}:
Mass deacidification - along with [[microfilm]] and [[lamination]] - was developed during the early- and mid-20th century as a response to the chemical process of [[hydrolysis]] by which the fibers that constitute paper, providing its structure and strength, have their bonds broken, resulting in paper that becomes increasingly brittle over time. Environmental pollutants can react with paper to form acids that promote oxidation, creating more acid as a by-product, which results in a positive feedback loop of autocatalytic destruction.<ref>Library of Congress. (1994). An evaluation of the BookKeeper mass deacidification process: Technical Evaluation Team Report for the Preservation Directorate, Library of Congress, Appendix E.</ref> Supported in part by grants from the Council on Library Resources, William J. Barrow conducted research into paper decay and found that no more than three percent of the books published between 1900 and 1949 would survive more than fifty years. In response to this, a Standing Committee on the Preservation of Research Library Materials was formed by the Association of Research Libraries (ARL) in 1960.<ref>Marcum, D. & Friedlander, D. (2003). [http://www.dlib.org/dlib/may03/friedlander/05friedlander.html Keepers of the Crumbling Culture: What Digital Preservation Can Learn from Library History]. URL accessed April 28, 2008.</ref>
*The BookKeeper process is a [[Aqueous solution|non-aqueous]], liquid phase process that uses [[magnesium oxide]].<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck4.htm BookKeeper] {{Webarchive|url=https://web.archive.org/web/20060719180139/http://www.knaw.nl/ecpa/publ/porck4.htm |date=2006-07-19}}. URL accessed December 1, 2007.</ref> BookKeeper is available through Preservation Technologies, L.P. with plants in the U.S., Spain, Japan, Poland, The Netherlands, South Africa, and Qatar.<ref>{{Cite web |url = http://www.ptlp.com/ |title = PTLP: Home |access-date = 2008-06-07 |archive-date = 2008-05-22 |archive-url = https://web.archive.org/web/20080522153323/http://www.ptlp.com/ |url-status = live }}</ref>
*The CSC Book Saver uses carbonated magnesium propylate for deacidification.<ref name="deacidification1">Banik, G. (2003). Mass deacidification technology in Germany and its Quality Control. ''Restaurator: International Journal for the Preservation of Library and Archival Material'',26, 64.</ref> The CSC Book Saver is available in Europe through Conservación de Sustratos Celulósicos S.L. (CSC) (Barcelona, Spain).<ref>{{Cite web |url = http://www.cscbooksaver.com/ |title = CSC |access-date = 2008-06-07 |archive-date = 2008-07-02 |archive-url = https://web.archive.org/web/20080702163846/http://www.cscbooksaver.com/ |url-status = live }}</ref>
*The Papersave process was developed by Battelle Ingenieurtechnik GmbH and is, therefore, sometimes referred to as "the Battelle Process". The process uses magnesium titanium alkoxide.<ref name="deacidification1" /> The Papersave process is available in Europe through Nitrochemie Wimmis (Wimmis, Switzerland) under the name of Papersave Swiss<ref>http://www.nitrochemie.com/pdfdoc/papersave/papersave-swiss-brosch_en.pdf{{Dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes}}</ref> and the Zentrum für Bucherhaltung (Leipzig, Germany).<ref>{{Cite web |url = http://www.zfb.com/pages/services/mass_inc.php |first = Manfred |last = Anders |title = Mass Deacidification&nbsp;— Conservation for Libraries, Archives und Museums&nbsp;— ZFB GmbH Leipzig&nbsp;— Massenentsäuerung |access-date = 2008-06-07 |archive-url = https://web.archive.org/web/20071026003001/http://www.zfb.com/pages/services/mass_inc.php |archive-date = 2007-10-26 |url-status = dead}}</ref>
*The Wei T'o process uses methoxy magnesium methyl carbonate, or isopropoxy magnesium isopropyl carbonate,<ref name="Porck1996">Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck4.htm Wei T'o and Sable] {{Webarchive|url=https://web.archive.org/web/20060719180139/http://www.knaw.nl/ecpa/publ/porck4.htm |date=2006-07-19}}. URL accessed October 5, 2007.</ref> and new products are coming out in 2008. Wei T'o is less commonly used for mass deacidification treatment than for single item deacidification. Wei T'o products are available through Wei T'o Associates Inc. (Matteson, US).<ref>{{Cite web |url = http://www.weito.com |title = Wei T'o Index&nbsp;— Cover Page |access-date = 2008-06-07 |archive-date = 2019-01-10 |archive-url = https://web.archive.org/web/20190110040934/http://weito.com/ |url-status = dead }}</ref>


BookKeeper, CSC Booksaver, Papersave, and Wei T'o are also available as hand-held sprays.
Barrow also invented an aqueous process to neutralize acid in paper while depositing an alkaline buffer that would retard the rate of decay.<ref name="Ritzenthaler1">Ritzenthaler, M. (1993). Preserving Archives and Manuscripts, .</ref> In addition to Barrow’s original method, both non-aqueous - employing organic solvents - and vaporous - the Library of Congress’ DEZ (diethyl zinc) treatment - methods of achieving the same results have been researched in an attempt to reduce time, labor, and cost requirements.<ref name="ifla1">Pillete, R. (2003). [http://www.ifla.org/IV/ifla69/papers/030e-Pilette.pdf Mass Deacidification: A Preservation Option for Libraries] ''World Library and Information Congress: 69th IFLA General Conference and Council''. URL accessed April 28, 2008.</ref>


== Adoption and costs ==
One technique proposed was to place books in an evacuated chamber, then introduce [[diethylzinc]] (DEZ). In theory, the diethylzinc would react with acidic residues in the paper, leaving an alkaline residue that would protect the paper against further degradation.<ref>Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. [http://www.knaw.nl/ecpa/PUBL/porck5.htm DEZ]. URL accessed December 2, 2007.</ref> In practice, the heating required to remove trace water from the books before reaction (DEZ reacts violently with water) caused an accelerated degradation of the paper, and a range of other chemical reactions between DEZ and other components of the book (glues, bindings) caused further damage and the production of unpleasant smells. Regardless, in the 1980s, a pilot plant for mass deacidification using this process was constructed by [[NASA]] and was tested on books provided by the Library of Congress.<ref>Harris, K. & Shahani, C. (1994) Library of Congress. Preservation.
While deacidification has been adopted by major research libraries such as the Library of Congress and the New York Public Library, it is not clear whether many archives, particularly those in the United States, have followed suit. Some European national archives have tested deacidification techniques. The United States' [[National Archives and Records Administration]] (NARA), which pioneered an aqueous technique that improved upon Barrow's, chose to invest its preservation dollars elsewhere.<ref name="Ritzenthaler1" /> In 2000, the Chief of the NARA Document Conservation Laboratory defended the lack of a mass deacidification program by pointing to differences between library and archival collections. For example, noting that many of the papers coming to NARA were of a higher quality than those in library collections; that the Archives does not receive records from federal government agencies until they are at least 30 years old, by which time acidic paper will have already been irrevocably weakened, and that limited resources might best be applied elsewhere, such as climate control. Under the Archives' Twenty-Year Preservation Plan, emphasis was placed on achieving the "maximum benefit for the greatest number of records."<ref>Jones, N. (2000). [https://www.archives.gov/preservation/conservation/mass-deacidification.html Mass Deacidification: Considerations for Archives] {{Webarchive|url=https://web.archive.org/web/20170720015213/https://www.archives.gov/preservation/conservation/mass-deacidification.html |date=2017-07-20 }} ''National Archives and Records Administration 15th Annual Preservation Conference.'' Washington, D.C., March 2000, URL accessed April 28, 2008.</ref>
[http://www.loc.gov/preserv/deacid/proceva1.html Mass deacidification: An initiative to refine the diethyl zinc process] URL accessed December 1, 2007.</ref> However, it was discovered in 1986 that the DEZ had not been removed in one of the deacidification runs and was pooled in the bottom of the chamber, and probably remained within some of the plumbing. DEZ is violently flammable when it comes in contact with either oxygen or water vapor, so the vacuum chamber could not be opened to remove the books within. Eventually, explosives were used to rupture the suspect plumbing; suspicions of the presence of residual DEZ were confirmed by the subsequent fire that destroyed the plant. In his book [[Double Fold]], [[Nicholson Baker]] discusses the failure of the NASA program at great length.


Though now dated, several sources estimate the costs and suitability of deacidification treatment. Studies conducted by the [[Harry Ransom Humanities Research Center]] and the General State Archive of the Netherlands found the DEZ method might be particularly applicable to archival materials.<ref>Harris, K. & Shahani, C. (1994). [https://www.loc.gov/preserv/deacid/dezeval.html Mass Deacidification: An Initiative to Refine the Diethyl Zinc Process] {{Webarchive|url=https://web.archive.org/web/20090911094109/http://www.loc.gov/preserv/deacid/dezeval.html |date=2009-09-11 }}</ref> It was estimated that deacidification costs, excluding transportation and handling, during the early 1990s was $5–10 per volume.<ref>Sparks, Peter G. (1990). [http://www.clir.org/pubs/reports/sparks/sparks.html Technical Considerations in Choosing Mass Deacidification Processes] {{Webarchive|url=https://web.archive.org/web/20071205030139/http://clir.org/pubs/reports/sparks/sparks.html |date=2007-12-05 }}. URL accessed April 28, 2008.</ref> During 1995–1997, the Library of Congress received $2 million in appropriations to deacidify 72,000 books using the Bookkeeper commercial method and evaluate alternative methods. The actual cost per book was $11.70.<ref>Dalrymple, W. (1997). [https://www.loc.gov/loc/lcib/970421/deacid.html A Paper Chase: Technology Helps Library Save its Paper Collections] {{Webarchive|url=https://web.archive.org/web/20170118134111/http://www.loc.gov/loc/lcib/970421/deacid.html |date=2017-01-18 }}. ''LC Information Bulletin''. URL accessed April 28, 2008.</ref> Finally, a recent cost comparison with reformatting options per volume yielded $125 for microfilming, $50 for scanning and minimal indexing and, based on a New York Public Library project, $16.20 for deacidification.<ref name="ifla1" />
The chemical company Akzo made later attempts at refining the process; though the risks of fire and explosions were reduced by better process design, damage and odours remained a problem. In the end, Akzo decided the process was not a viable commercial proposition, and shut down their research at the end of 1994.


As of 2022, there were five mass deacidification plants in the world.<ref>{{cite web | url=https://www.qnl.qa/en/about/news/qatar-national-library-inaugurates-its-first-mass-deacidification-plant-middle-east | title=Qatar National Library Inaugurates its First Mass Deacidification Plant in the Middle East &#124; Qatar National Library | access-date=2023-01-28 | archive-date=2023-01-25 | archive-url=https://web.archive.org/web/20230125175634/https://www.qnl.qa/en/about/news/qatar-national-library-inaugurates-its-first-mass-deacidification-plant-middle-east | url-status=live }}</ref>
==Adoption and costs==
While deacidification has been adopted by major research libraries such as the Library of Congress and the New York Public Library, it is not clear that many archives, particularly those in the United States, have followed suit. Whereas some European national archives have tested deacidification techniques, the United States’ [[National Archives and Records Administration]] (NARA), which pioneered an aqueous technique that improved upon Barrow’s, has chosen to invest its preservation dollars elsewhere.<ref name="Ritzenthaler1"/> In 2000, the Chief of the NARA Document Conservation Laboratory defended the lack of a mass deacidification program by pointing to differences between library and archival collections, for example noting that many of the papers coming to NARA were of a higher quality than those in library collections; that the Archives does not receive records from federal government agencies until they are at least 30 years old, by which time acidic paper will have already been
irrevocably weakened; and that limited resources might best be applied elsewhere, such as climate control, as under the Archives' Twenty-Year Preservation Plan, the emphasis was on "maximum benefit for the greatest number of records."<ref>Jones, N. (2000). [http://www.archives.gov/preservation/conservation/mass-deacidification.html Mass Deacidification: Considerations for Archives] ''National Archives and
Records Administration 15th Annual Preservation Conference." Washington, DC, March 2000, URL accessed April 28, 2008.</ref>


== See also ==
Though now dated, several sources estimate the costs and suitability of deacidification treatment. Studies conducted by the Harry Ransom Humanities Research Center and the General State Archive of the Netherlands found the DEZ method, properly used, might be particularly applicable to archival materials.<ref>Harris, K. & Shahani, C. (1994). [http://www.loc.gov/preserv/deacid/dezeval.html Mass Deacidification: An Initiative to Refine the Diethyl Zinc Process]</ref> It was estimated that deacidification costs, excluding transportation and handling, during the early 1990s was $5–10 per volume.<ref>Sparks, Peter G. (1990). [http://www.clir.org/pubs/reports/sparks/sparks.html Technical Considerations in Choosing Mass Deacidification Processes]. URL accessed April 28, 2008.</ref> During 1995-1997, the Library of Congress received $2 million in appropriations to deacidify 72,000 books using the Bookkeeper commercial method and evaluate alternative methods. The actual cost per book was $11.70.<ref>Dalrymple,
* [[Preservation (library and archive)]]
W. (1997). [http://www.loc.gov/loc/lcib/970421/deacid.html A Paper Chase: Technology Helps Library Save its Paper Collections]. ''LC Information Bulletin''. URL accessed April 28, 2008.</ref> Finally, a recent cost comparison with reformatting options per volume yielded $125 for microfilming, $50 for scanning and minimal indexing, and, based on a New York Public Library project, $16.20 for deacidification.<ref name="ifla1"/>
* ''[[Double Fold]]''
* [[Paper]]
* [[Pulp (paper)]]
* [[Preservation survey]]
* [[Foxing]]
*[[Rare Books and Manuscripts Section]]
* [[Paper chemicals|Paper Chemicals]]


==See also==
== References ==
{{Reflist|30em}}
*[[Preservation: Library and Archival Science]]
*''[[Double Fold]]''
*[[Paper]]
*[[Wood-pulp paper]]
*[[Preservation survey]]
*[[Foxing]]


== External links ==
==References==
* [https://www.loc.gov/preserv/pubsdeac.html The Library of Congress' links to Mass Deacidification Publications] {{Webarchive|url=https://web.archive.org/web/20091012201221/http://www.loc.gov/preserv/pubsdeac.html |date=2009-10-12 }}
{{Reflist}}
* [http://www.cci-icc.gc.ca/publications/cidb/view-document_e.aspx?Document_ID=126 The Canadian Conservation Institute's study on Evaluating Commercial Deacidification Processes]{{Dead link|date=January 2018 |bot=InternetArchiveBot |fix-attempted=yes}}

* [http://www.clir.org/pubs/reports/sparks/sparks.html Council on Library and Information Resources report on the Technical Considerations in Choosing a Mass Deacidification Process] {{Webarchive|url=https://web.archive.org/web/20071205030139/http://clir.org/pubs/reports/sparks/sparks.html |date=2007-12-05 }}
==External links==
* [http://www.loc.gov/preserv/pubsdeac.html The Library of Congress' links to Mass Deacidification Publications]
* [http://www.cci-icc.gc.ca/publications/cidb/view-document_e.aspx?Document_ID=126 The Canadian Conservation Institute's study on Evaluating Commercial Deacidification Processes]
* [http://www.clir.org/pubs/reports/sparks/sparks.html Council on Library and Information Resources report on the Technical Considerations in Choosing a Mass Deacidification Process]


{{Authority control}}
{{Authority control}}

{{DEFAULTSORT:Mass Deacidification}}
{{Cultural Conservation-Restoration |state=expanded}}
{{Cultural Conservation-Restoration |state=expanded}}


{{DEFAULTSORT:Mass deacidification}}
[[Category:Preservation (library and archival science)]]
[[Category:Preservation (library and archival science)]]
[[Category:Paper]]
[[Category:Chemical processes]]

Latest revision as of 14:33, 7 June 2024

Mass deacidification is a term used in library and information science as one possible measure against the degradation of paper in old books, the so-called "slow fires". The goal of the process is to increase the pH of acidic paper. Although acid-free paper has become more common, a large body of acidic paper still exists in books made after the 1850s; this is because of its cheaper and simpler production methods. Acidic paper, especially when exposed to light, air pollution, or high relative humidity, yellows and becomes brittle over time.[1] During mass deacidification an alkaline agent is deposited in the paper to neutralize existing acid and prevent further decay.[2] Mass deacidification is intended for objects on acidic paper that will be lost if no action is performed.

History of research and process development

[edit]

Mass deacidification—along with microfilm and lamination—was developed during the early and mid-20th century as a response to the chemical process of hydrolysis by which the fibers that constitute paper, providing its structure and strength, have their bonds broken, resulting in paper that becomes increasingly brittle over time. Environmental pollutants can react with paper to form acids that promote oxidation, creating more acid as a by-product, which results in a positive feedback loop of autocatalytic destruction.[3] Supported in part by grants from the Council on Library Resources, William J. Barrow conducted research into paper decay and found that no more than three percent of books published between 1900 and 1949 would survive more than fifty years. In response to this, a Standing Committee on the Preservation of Research Library Materials was formed by the Association of Research Libraries (ARL) in 1960.[4]

Barrow also invented an aqueous process to neutralize acid in paper while depositing an alkaline buffer that would slow the rate of decay.[5] In addition to Barrow's original method, both non-aqueous—employing organic solvents—and vaporous—the Library of Congress' DEZ (diethyl zinc) treatment—methods of achieving the same results have been researched in an attempt to reduce time, labor, and cost requirements.[6]

One technique proposed is to place books in an evacuated chamber, then introduce diethylzinc (DEZ). In theory, the diethylzinc would react with acidic residues in the paper, leaving an alkaline residue that would protect the paper against further degradation.[7] In practice, the heating required to remove trace water from the books before reaction (DEZ reacts violently with water) caused an accelerated degradation of the paper, a series of chemical reactions between DEZ and other components of the book (glues, bindings), caused further damage, and produced unpleasant aromas. In the 1980s, a pilot plant for mass deacidification, using this process, was constructed by NASA and was tested on books provided by the Library of Congress.[8] In 1986 it was discovered that the DEZ had not been removed in one of the deacidification runs and pooled in the bottom of the chamber, possibly remaining within the plumbing. DEZ is violently flammable when it comes in contact with either oxygen or water vapor, so the vacuum chamber could not be opened to remove the books within. Eventually, explosives were used to rupture the suspect plumbing; suspicions of the presence of residual DEZ were confirmed by the subsequent fire that destroyed the plant. In his book Double Fold, Nicholson Baker discusses the failure of the NASA program at great length.

The chemical company AkzoNobel made later attempts at refining the process. The risks of fire and explosions were reduced by a better process design, however, damage and odors remained a problem. In the end, AkzoNobel determined the process was not a viable commercial proposition and shut down their research at the end of 1994.

Goals

[edit]

These are the results that the Library of Congress expected of an ideal mass deacidification treatment in 1994:

  • neutralize acidic paper and add an alkaline reserve.
  • produce a pH value between 6.8 and 10.4 that is evenly distributed throughout the book.
  • should not cause any damage to adhesives, inks, or dyes.
  • should not cause an odor or any change in the color of the paper.
  • should not cause loss of pliancy or mechanical strength.[9]

Faculty members of the Slovak University of Technology added these further requirements:

  • the chemicals used have to be safe.
  • the process has to be able to be applied to any kind of paper.
  • the process can not cause swelling or warping of the paper.[10]

Effects

[edit]

All of the processes imparted an adequately high pH in studies conducted by the European Commission on Preservation and Access, the Library of Congress, and a team of scientists from the Centre de Recherches sur la Conservation des Documents Graphiques in the early and mid-nineties. BookKeeper produced a pH of 9–10.[9] CSC Book Saver yielded a pH of 8.78–10.5.[11] Wei T'o gives 7.5 to 10.4,[12] and Papersave gives a pH of 7.5–9.[13]

The same studies also found that the processes had adverse cosmetic side effects. BookKeeper left "a palpable residue", clamp marks on the covers, and caused some of the colored inks to rub off.[9] CSC Book Saver left a "white powdery deposit" on books.[14] Papersave caused "discoloration, white deposit, Newton's rings, bleeding of inks and dyes, odor and different 'feel' of the paper."[15] Wei T'o caused "odor, white residues, rings, cockling, (yellow) discolorations and adhesive bleeding."[16]

Conservators from the British Library acknowledge that the existing mass deacidification processes are still being developed and further research needs to be conducted on their chemical and mechanical effects.[17]

Services

[edit]

Several commercial deacidification techniques are on the market as of 2008:

  • The BookKeeper process is a non-aqueous, liquid phase process that uses magnesium oxide.[18] BookKeeper is available through Preservation Technologies, L.P. with plants in the U.S., Spain, Japan, Poland, The Netherlands, South Africa, and Qatar.[19]
  • The CSC Book Saver uses carbonated magnesium propylate for deacidification.[20] The CSC Book Saver is available in Europe through Conservación de Sustratos Celulósicos S.L. (CSC) (Barcelona, Spain).[21]
  • The Papersave process was developed by Battelle Ingenieurtechnik GmbH and is, therefore, sometimes referred to as "the Battelle Process". The process uses magnesium titanium alkoxide.[20] The Papersave process is available in Europe through Nitrochemie Wimmis (Wimmis, Switzerland) under the name of Papersave Swiss[22] and the Zentrum für Bucherhaltung (Leipzig, Germany).[23]
  • The Wei T'o process uses methoxy magnesium methyl carbonate, or isopropoxy magnesium isopropyl carbonate,[16] and new products are coming out in 2008. Wei T'o is less commonly used for mass deacidification treatment than for single item deacidification. Wei T'o products are available through Wei T'o Associates Inc. (Matteson, US).[24]

BookKeeper, CSC Booksaver, Papersave, and Wei T'o are also available as hand-held sprays.

Adoption and costs

[edit]

While deacidification has been adopted by major research libraries such as the Library of Congress and the New York Public Library, it is not clear whether many archives, particularly those in the United States, have followed suit. Some European national archives have tested deacidification techniques. The United States' National Archives and Records Administration (NARA), which pioneered an aqueous technique that improved upon Barrow's, chose to invest its preservation dollars elsewhere.[5] In 2000, the Chief of the NARA Document Conservation Laboratory defended the lack of a mass deacidification program by pointing to differences between library and archival collections. For example, noting that many of the papers coming to NARA were of a higher quality than those in library collections; that the Archives does not receive records from federal government agencies until they are at least 30 years old, by which time acidic paper will have already been irrevocably weakened, and that limited resources might best be applied elsewhere, such as climate control. Under the Archives' Twenty-Year Preservation Plan, emphasis was placed on achieving the "maximum benefit for the greatest number of records."[25]

Though now dated, several sources estimate the costs and suitability of deacidification treatment. Studies conducted by the Harry Ransom Humanities Research Center and the General State Archive of the Netherlands found the DEZ method might be particularly applicable to archival materials.[26] It was estimated that deacidification costs, excluding transportation and handling, during the early 1990s was $5–10 per volume.[27] During 1995–1997, the Library of Congress received $2 million in appropriations to deacidify 72,000 books using the Bookkeeper commercial method and evaluate alternative methods. The actual cost per book was $11.70.[28] Finally, a recent cost comparison with reformatting options per volume yielded $125 for microfilming, $50 for scanning and minimal indexing and, based on a New York Public Library project, $16.20 for deacidification.[6]

As of 2022, there were five mass deacidification plants in the world.[29]

See also

[edit]

References

[edit]
  1. ^ Cheradame, H et al. (2003). Mass Deacidification of paper and books: I: study of the limitations of the gas phase process. Restaurator: International Journal for the Preservation of Library and Archival Material, 24, 227.
  2. ^ Lienardy, A. & Van Damme, P. (1990). Practical Deacidification, Restaurator: International Journal for the Preservation of Library and Archival Material, 11,2.
  3. ^ Library of Congress. (1994). An evaluation of the BookKeeper mass deacidification process: Technical Evaluation Team Report for the Preservation Directorate, Library of Congress, Appendix E.
  4. ^ Marcum, D. & Friedlander, D. (2003). Keepers of the Crumbling Culture: What Digital Preservation Can Learn from Library History Archived 2008-05-14 at the Wayback Machine. URL accessed April 28, 2008.
  5. ^ a b Ritzenthaler, M. (1993). Preserving Archives and Manuscripts
  6. ^ a b Pillete, R. (2003). Mass Deacidification: A Preservation Option for Libraries Archived 2008-05-16 at the Wayback Machine World Library and Information Congress: 69th IFLA General Conference and Council. URL accessed April 28, 2008.
  7. ^ Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. DEZ Archived 2008-03-11 at the Wayback Machine. URL accessed December 2, 2007.
  8. ^ Harris, K. & Shahani, C. (1994) Library of Congress. Preservation. Mass deacidification: An initiative to refine the diethyl zinc process Archived 2010-08-11 at the Wayback Machine URL accessed December 1, 2007.
  9. ^ a b c Library of Congress. (1994). [1] Archived 2022-04-05 at the Wayback Machine URL accessed April 5th,2022.
  10. ^ Cedzova, M. et al. (2006). Patents for Paper Deacidification. Restaurator: International Journal for the Preservation of Library and Archival Material,27, 36.
  11. ^ Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. Restaurator: International Journal for the Preservation of Library and Archival Material,23, 40.
  12. ^ Brandis, L. (1994). Summary and evaluation of the testing sponsored by the Library of Congress of books deacidified by the FMC, AKSO, and Wei T'o mass deacidification process. Restaurator: International Journal for the Preservation of Library and Archival Material,15, 112.
  13. ^ Wittekind, J. (1994). The Battelle mass deacidification process: A New method for deacidifying books and archival materials. Restaurator: International Journal for the Preservation of Library and Archival Material,15, 195.
  14. ^ Dupont, A. et al. (2002). Testing CSC Book Saver, a commercial deacidification process. Restaurator: International Journal for the Preservation of Library and Archival Material,23, 45.
  15. ^ Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. Battelle Archived 2008-03-11 at the Wayback Machine. URL accessed December 1, 2007.
  16. ^ a b Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. Wei T'o and Sable Archived 2006-07-19 at the Wayback Machine. URL accessed October 5, 2007.
  17. ^ Knight, B. (2004). A Conservation research strategy for the British Library Archived 2011-05-21 at the Wayback Machine. pg. 4. URL accessed December 1, 2007.
  18. ^ Porck, H. (1996). Mass deacidification. An update of possibilities and limitations. BookKeeper Archived 2006-07-19 at the Wayback Machine. URL accessed December 1, 2007.
  19. ^ "PTLP: Home". Archived from the original on 2008-05-22. Retrieved 2008-06-07.
  20. ^ a b Banik, G. (2003). Mass deacidification technology in Germany and its Quality Control. Restaurator: International Journal for the Preservation of Library and Archival Material,26, 64.
  21. ^ "CSC". Archived from the original on 2008-07-02. Retrieved 2008-06-07.
  22. ^ http://www.nitrochemie.com/pdfdoc/papersave/papersave-swiss-brosch_en.pdf[permanent dead link]
  23. ^ Anders, Manfred. "Mass Deacidification — Conservation for Libraries, Archives und Museums — ZFB GmbH Leipzig — Massenentsäuerung". Archived from the original on 2007-10-26. Retrieved 2008-06-07.
  24. ^ "Wei T'o Index — Cover Page". Archived from the original on 2019-01-10. Retrieved 2008-06-07.
  25. ^ Jones, N. (2000). Mass Deacidification: Considerations for Archives Archived 2017-07-20 at the Wayback Machine National Archives and Records Administration 15th Annual Preservation Conference. Washington, D.C., March 2000, URL accessed April 28, 2008.
  26. ^ Harris, K. & Shahani, C. (1994). Mass Deacidification: An Initiative to Refine the Diethyl Zinc Process Archived 2009-09-11 at the Wayback Machine
  27. ^ Sparks, Peter G. (1990). Technical Considerations in Choosing Mass Deacidification Processes Archived 2007-12-05 at the Wayback Machine. URL accessed April 28, 2008.
  28. ^ Dalrymple, W. (1997). A Paper Chase: Technology Helps Library Save its Paper Collections Archived 2017-01-18 at the Wayback Machine. LC Information Bulletin. URL accessed April 28, 2008.
  29. ^ "Qatar National Library Inaugurates its First Mass Deacidification Plant in the Middle East | Qatar National Library". Archived from the original on 2023-01-25. Retrieved 2023-01-28.
[edit]