Jump to content

CENPJ: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Moved to section
Removal request "Removing spammy content from c. 270 gene articles" from WP:AWBTASKS
 
(18 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{short description|Centromere- and microtubule-associated protein}}
{{Infobox gene}}
{{Infobox gene}}
'''Centromere protein J''' is a [[protein]] that in humans is encoded by the ''CENPJ'' [[gene]].<ref name="pmid11003675">{{cite journal | vauthors = Hung LY, Tang CJ, Tang TK | title = Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex | journal = Molecular and Cellular Biology | volume = 20 | issue = 20 | pages = 7813–25 | date = Oct 2000 | pmid = 11003675 | pmc = 86375 | doi = 10.1128/MCB.20.20.7813-7825.2000 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: CENPJ centromere protein J| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55835| accessdate = }}</ref> It is also known as [[centrosome|centrosomal]] [[EPB41|P4.1]]-associated protein (CPAP). During [[cell division]], this protein plays a structural role in the maintenance of [[centrosome]] integrity and normal [[Spindle apparatus|spindle]] morphology, and it is involved in [[microtubule]] disassembly at the centrosome. This protein can function as a transcriptional coactivator in the [[Stat5]] signaling pathway and also as a coactivator of [[NF-kappaB]]-mediated transcription, likely via its interaction with the coactivator p300/[[CREB-binding protein]].
'''Centromere protein J''' is a [[protein]] that in humans is encoded by the ''CENPJ'' [[gene]].<ref name="pmid11003675">{{cite journal | vauthors = Hung LY, Tang CJ, Tang TK | title = Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex | journal = Molecular and Cellular Biology | volume = 20 | issue = 20 | pages = 7813–25 | date = Oct 2000 | pmid = 11003675 | pmc = 86375 | doi = 10.1128/MCB.20.20.7813-7825.2000 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: CENPJ centromere protein J| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55835}}</ref> It is also known as '''centrosomal P4.1-associated protein''' ('''CPAP'''). During [[cell division]], this protein plays a structural role in the maintenance of [[centrosome]] integrity and normal [[Spindle apparatus|spindle]] morphology, and it is involved in [[microtubule]] disassembly at the centrosome. This protein can function as a transcriptional coactivator in the [[Stat5]] signaling pathway and also as a coactivator of [[NF-kappaB]]-mediated transcription, likely via its interaction with the coactivator p300/[[CREB-binding protein]].


The ''[[Drosophila]]'' ortholog, '''sas-4''', has been shown to be a [[Scaffold protein|scaffold]] for a [[cytoplasm]]ic complex of [[CDK5RAP2|Cnn]], [[CEP152|Asl]], CP-190, [[tubulin]] and D-PLP (similar to the human proteins [[PCNT]] and [[AKAP9]]). These complexes are then anchored at the [[centriole]] to begin formation of the centrosome.<ref name="pmid21694707">{{cite journal | vauthors = Gopalakrishnan J, Mennella V, Blachon S, Zhai B, Smith AH, Megraw TL, Nicastro D, Gygi SP, Agard DA, Avidor-Reiss T | title = Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome | journal = Nature Communications | volume = 2 | issue = | pages = 359 | year = 2011 | pmid = 21694707 | pmc = 3677532 | doi = 10.1038/ncomms1367 | bibcode = 2011NatCo...2E.359G }}</ref>
The ''[[Drosophila]]'' ortholog, '''sas-4''', has been shown to be a [[Scaffold protein|scaffold]] for a [[cytoplasm]]ic complex of [[CDK5RAP2|Cnn]], [[CEP152|Asl]], CP-190, [[tubulin]] and D-PLP (similar to the human proteins [[PCNT]] and [[AKAP9]]). These complexes are then anchored at the [[centriole]] to begin formation of the centrosome.<ref name="pmid21694707">{{cite journal | vauthors = Gopalakrishnan J, Mennella V, Blachon S, Zhai B, Smith AH, Megraw TL, Nicastro D, Gygi SP, Agard DA, Avidor-Reiss T | title = Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome | journal = Nature Communications | volume = 2 | pages = 359 | year = 2011 | pmid = 21694707 | pmc = 3677532 | doi = 10.1038/ncomms1367 | bibcode = 2011NatCo...2..359G }}</ref>

==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Cenpj'' knockout mouse phenotype
|-
! Characteristic!! Phenotype

|-
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
|-
| [[Recessive]] lethal study || bgcolor="#488ED3"|Normal
|-
| Homozygous Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#C40000"|Abnormal<ref name="Body weight">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/weight-curves/ |title=Body weight data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#C40000"|Abnormal<ref name="Anxiety">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/open-field/ |title=Anxiety data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#C40000"|Abnormal<ref name="Dysmorphology">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/dysmorphology/ |title=Dysmorphology data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Indirect calorimetry]] || bgcolor="#C40000"|Abnormal<ref name="Indirect calorimetry">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/indirect-calorimetry/ |title=Indirect calorimetry data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Glucose tolerance test]] || bgcolor="#C40000"|Abnormal<ref name="Glucose tolerance test">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/glucose-tolerance-ip/ |title=Glucose tolerance test data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#C40000"|Abnormal<ref name="DEXA">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/body-composition-dexa/ |title=DEXA data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Radiography]] || bgcolor="#C40000"|Abnormal<ref name="Radiography">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/x-ray-imaging/ |title=Radiography data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#C40000"|Abnormal<ref name="Clinical chemistry">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/plasma-chemistry/ |title=Clinical chemistry data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Peripheral blood lymphocyte]]s || bgcolor="#C40000"|Abnormal<ref name="Peripheral blood lymphocytes">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/peripheral-blood-lymphocytes/ |title=Peripheral blood lymphocytes data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Micronucleus test]] || bgcolor="#C40000"|Abnormal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#C40000"|Abnormal
|-
| Eye Histopathology || bgcolor="#C40000"|Abnormal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/salmonella-challenge/ |title=''Salmonella'' infection data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKA/citrobacter-challenge/ |title=''Citrobacter'' infection data for Cenpj |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages = 925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of CENPJ function. A conditional [[knockout mouse]] line, called ''Cenpj<sup>tm1a(EUCOMM)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Cenpj |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4432238 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program—a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–342 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref>

Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}</ref> Twenty five tests were carried out on [[mutant]] mice and thirteen significant abnormalities were observed. [[Homozygous]] mutants were [[Perinatal mortality|subviable]], had a decreased body weight, abnormal [[Open Field (animal test)|open field]], body composition, X-ray imaging, peripheral blood lymphocytes and [[indirect calorimetry]] parameters, abnormal head, genitalia and tail morphology, an impaired [[glucose tolerance]], [[hypoalbuminemia]], a 1.5 fold increase in [[micronucleus test|micronuclei]], a reduction in [[dentate gyrus]] length and abnormal [[corneal epithelium]] and endothelium.<ref name="mgp_reference" />

A more detailed analysis revealed this mutant to model a number of aspects of Seckel syndrome (type 4). The authors concluded that, "increased cell death due to mitotic failure during [[embryonic development]] is likely to contribute to the proportionate [[dwarfism]]" that is characteristic of the disorder.<ref name="pmid23166506">{{cite journal | vauthors = McIntyre RE, Lakshminarasimhan Chavali P, Ismail O, Carragher DM, Sanchez-Andrade G, Forment JV, Fu B, Del Castillo Velasco-Herrera M, Edwards A, van der Weyden L, Yang F, Ramirez-Solis R, Estabel J, Gallagher FA, Logan DW, Arends MJ, Tsang SH, Mahajan VB, Scudamore CL, White JK, Jackson SP, Gergely F, Adams DJ | title = Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome | journal = PLoS Genetics | volume = 8 | issue = 11 | pages = e1003022 | year = 2012 | pmid = 23166506 | pmc = 3499256 | doi = 10.1371/journal.pgen.1003022 }}</ref>


== Clinical significance ==
== Clinical significance ==
Mutations in ''CENPJ'' are associated with [[Seckel syndrome]] type 4 and primary autosomal recessive [[microcephaly]], a disorder characterized by severely reduced [[brain]] size and [[mental retardation]].<ref name="entrez" /><ref name="pmid20522431">{{cite journal|vauthors=Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS|date=Jun 2010|title=Novel CENPJ mutation causes Seckel syndrome|url=|journal=Journal of Medical Genetics|volume=47|issue=6|pages=411–4|doi=10.1136/jmg.2009.076646|pmc=|pmid=20522431}}</ref><ref>{{cite journal|vauthors=Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W|year=2006|title=A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly|journal=Journal of Human Genetics|volume=51|issue=9|pages=760–4|doi=10.1007/s10038-006-0017-1|pmid=16900296}}</ref>
Mutations in ''CENPJ'' are associated with [[Seckel syndrome]] type 4 and primary autosomal recessive [[microcephaly]], a disorder characterized by severely reduced [[brain]] size and [[intellectual disability]].<ref name="entrez" /><ref name="pmid20522431">{{cite journal|vauthors=Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS|date=Jun 2010|title=Novel CENPJ mutation causes Seckel syndrome|journal=Journal of Medical Genetics|volume=47|issue=6|pages=411–4|doi=10.1136/jmg.2009.076646|pmid=20522431|s2cid=35159613}}</ref><ref>{{cite journal|vauthors=Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W|year=2006|title=A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly|journal=Journal of Human Genetics|volume=51|issue=9|pages=760–4|doi=10.1007/s10038-006-0017-1|pmid=16900296|doi-access=free}}</ref> Interestingly, CENPJ interacts with other microcephaly aossciated proteins such as [[WDR62]] and both coordinate a regulatory function neocortical development and brain growth. <ref> {{cite journal | vauthors = Shohayeb, B, et al. | title = The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development | journal = Human Molecular Genetics| volume = 29 | issue = 2 | pages = 248–263 |date=January 2020 | doi = 10.1093/hmg/ddz281 | pmid = 31816041 | doi-access = free }}</ref>


== Interactions ==
== Interactions ==


CENPJ has been shown to [[Protein-protein interaction|interact]] with [[EPB41]].<ref name="pmid11003675"/>
CENPJ has been shown to [[Protein-protein interaction|interact]] with [[EPB41]].<ref name="pmid11003675"/>

== See also ==

* ''[[CENPE]]''
* ''[[CENPF]]''
* ''[[CENPT]]''


== References ==
== References ==
Line 81: Line 23:
== Further reading ==
== Further reading ==
{{refbegin|32em}}
{{refbegin|32em}}
* {{cite journal | vauthors = Bonaldo MF, Lennon G, Soares MB | title = Normalization and subtraction: two approaches to facilitate gene discovery | journal = Genome Research | volume = 6 | issue = 9 | pages = 791–806 | date = Sep 1996 | pmid = 8889548 | doi = 10.1101/gr.6.9.791 }}
* {{cite journal | vauthors = Bonaldo MF, Lennon G, Soares MB | title = Normalization and subtraction: two approaches to facilitate gene discovery | journal = Genome Research | volume = 6 | issue = 9 | pages = 791–806 | date = Sep 1996 | pmid = 8889548 | doi = 10.1101/gr.6.9.791 | doi-access = free }}
* {{cite journal | vauthors = Iouzalen N, Andreae S, Hannier S, Triebel F | title = LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway | journal = European Journal of Immunology | volume = 31 | issue = 10 | pages = 2885–91 | date = Oct 2001 | pmid = 11592063 | doi = 10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2 }}
* {{cite journal | vauthors = Iouzalen N, Andreae S, Hannier S, Triebel F | title = LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway | journal = European Journal of Immunology | volume = 31 | issue = 10 | pages = 2885–91 | date = Oct 2001 | pmid = 11592063 | doi = 10.1002/1521-4141(2001010)31:10<2885::AID-IMMU2885>3.0.CO;2-2 | s2cid = 26417417 }}
* {{cite journal | vauthors = Tchernev VT, Mansfield TA, Giot L, Kumar AM, Nandabalan K, Li Y, Mishra VS, Detter JC, Rothberg JM, Wallace MR, Southwick FS, Kingsmore SF | title = The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins | journal = Molecular Medicine | volume = 8 | issue = 1 | pages = 56–64 | date = Jan 2002 | pmid = 11984006 | pmc = 2039936 | doi = 10.1007/BF03402003}}
* {{cite journal | vauthors = Tchernev VT, Mansfield TA, Giot L, Kumar AM, Nandabalan K, Li Y, Mishra VS, Detter JC, Rothberg JM, Wallace MR, Southwick FS, Kingsmore SF | title = The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins | journal = Molecular Medicine | volume = 8 | issue = 1 | pages = 56–64 | date = Jan 2002 | pmid = 11984006 | pmc = 2039936 | doi = 10.1007/BF03402003}}
* {{cite journal | vauthors = Peng B, Sutherland KD, Sum EY, Olayioye M, Wittlin S, Tang TK, Lindeman GJ, Visvader JE | title = CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity | journal = Molecular Endocrinology | volume = 16 | issue = 9 | pages = 2019–33 | date = Sep 2002 | pmid = 12198240 | doi = 10.1210/me.2002-0108 }}
* {{cite journal | vauthors = Peng B, Sutherland KD, Sum EY, Olayioye M, Wittlin S, Tang TK, Lindeman GJ, Visvader JE | title = CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity | journal = Molecular Endocrinology | volume = 16 | issue = 9 | pages = 2019–33 | date = Sep 2002 | pmid = 12198240 | doi = 10.1210/me.2002-0108 | doi-access = free }}
* {{cite journal | vauthors = Leal GF, Roberts E, Silva EO, Costa SM, Hampshire DJ, Woods CG | title = A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2 | journal = Journal of Medical Genetics | volume = 40 | issue = 7 | pages = 540–2 | date = Jul 2003 | pmid = 12843329 | pmc = 1735531 | doi = 10.1136/jmg.40.7.540 }}
* {{cite journal | vauthors = Leal GF, Roberts E, Silva EO, Costa SM, Hampshire DJ, Woods CG | title = A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2 | journal = Journal of Medical Genetics | volume = 40 | issue = 7 | pages = 540–2 | date = Jul 2003 | pmid = 12843329 | pmc = 1735531 | doi = 10.1136/jmg.40.7.540 }}
* {{cite journal | vauthors = Hung LY, Chen HL, Chang CW, Li BR, Tang TK | title = Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly | journal = Molecular Biology of the Cell | volume = 15 | issue = 6 | pages = 2697–706 | date = Jun 2004 | pmid = 15047868 | pmc = 420094 | doi = 10.1091/mbc.E04-02-0121 }}
* {{cite journal | vauthors = Hung LY, Chen HL, Chang CW, Li BR, Tang TK | title = Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly | journal = Molecular Biology of the Cell | volume = 15 | issue = 6 | pages = 2697–706 | date = Jun 2004 | pmid = 15047868 | pmc = 420094 | doi = 10.1091/mbc.E04-02-0121 }}
* {{cite journal | vauthors = Koyanagi M, Hijikata M, Watashi K, Masui O, Shimotohno K | title = Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappaB | journal = The Journal of Biological Chemistry | volume = 280 | issue = 13 | pages = 12430–7 | date = Apr 2005 | pmid = 15687488 | doi = 10.1074/jbc.M410420200 }}
* {{cite journal | vauthors = Koyanagi M, Hijikata M, Watashi K, Masui O, Shimotohno K | title = Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappaB | journal = The Journal of Biological Chemistry | volume = 280 | issue = 13 | pages = 12430–7 | date = Apr 2005 | pmid = 15687488 | doi = 10.1074/jbc.M410420200 | doi-access = free }}
* {{cite journal | vauthors = Bond J, Roberts E, Springell K, Lizarraga SB, Lizarraga S, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG | title = A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size | journal = Nature Genetics | volume = 37 | issue = 4 | pages = 353–5 | date = Apr 2005 | pmid = 15793586 | doi = 10.1038/ng1539 }}
* {{cite journal | vauthors = Bond J, Roberts E, Springell K, Lizarraga SB, Lizarraga S, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG | title = A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size | journal = Nature Genetics | volume = 37 | issue = 4 | pages = 353–5 | date = Apr 2005 | pmid = 15793586 | doi = 10.1038/ng1539 | s2cid = 1763877 }}
* {{cite journal | vauthors = Cho JH, Chang CJ, Chen CY, Tang TK | title = Depletion of CPAP by RNAi disrupts centrosome integrity and induces multipolar spindles | journal = Biochemical and Biophysical Research Communications | volume = 339 | issue = 3 | pages = 742–7 | date = Jan 2006 | pmid = 16316625 | doi = 10.1016/j.bbrc.2005.11.074 }}
* {{cite journal | vauthors = Cho JH, Chang CJ, Chen CY, Tang TK | title = Depletion of CPAP by RNAi disrupts centrosome integrity and induces multipolar spindles | journal = Biochemical and Biophysical Research Communications | volume = 339 | issue = 3 | pages = 742–7 | date = Jan 2006 | pmid = 16316625 | doi = 10.1016/j.bbrc.2005.11.074 }}
* {{cite journal | vauthors = Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S | title = Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes | journal = Genome Research | volume = 16 | issue = 1 | pages = 55–65 | date = Jan 2006 | pmid = 16344560 | pmc = 1356129 | doi = 10.1101/gr.4039406 }}
* {{cite journal | vauthors = Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S | title = Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes | journal = Genome Research | volume = 16 | issue = 1 | pages = 55–65 | date = Jan 2006 | pmid = 16344560 | pmc = 1356129 | doi = 10.1101/gr.4039406 }}
* {{cite journal | vauthors = Chen CY, Olayioye MA, Lindeman GJ, Tang TK | title = CPAP interacts with 14-3-3 in a cell cycle-dependent manner | journal = Biochemical and Biophysical Research Communications | volume = 342 | issue = 4 | pages = 1203–10 | date = Apr 2006 | pmid = 16516142 | doi = 10.1016/j.bbrc.2006.02.089 }}
* {{cite journal | vauthors = Chen CY, Olayioye MA, Lindeman GJ, Tang TK | title = CPAP interacts with 14-3-3 in a cell cycle-dependent manner | journal = Biochemical and Biophysical Research Communications | volume = 342 | issue = 4 | pages = 1203–10 | date = Apr 2006 | pmid = 16516142 | doi = 10.1016/j.bbrc.2006.02.089 }}
* {{cite journal | vauthors = Evans PD, Vallender EJ, Lahn BT | title = Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ | journal = Gene | volume = 375 | issue = | pages = 75–9 | date = Jun 2006 | pmid = 16631324 | doi = 10.1016/j.gene.2006.02.019 }}
* {{cite journal | vauthors = Evans PD, Vallender EJ, Lahn BT | title = Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ | journal = Gene | volume = 375 | pages = 75–9 | date = Jun 2006 | pmid = 16631324 | doi = 10.1016/j.gene.2006.02.019 }}
* {{cite journal | vauthors = Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY | title = A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration | journal = Cell | volume = 125 | issue = 4 | pages = 801–14 | date = May 2006 | pmid = 16713569 | doi = 10.1016/j.cell.2006.03.032 }}
* {{cite journal | vauthors = Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY | title = A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration | journal = Cell | volume = 125 | issue = 4 | pages = 801–14 | date = May 2006 | pmid = 16713569 | doi = 10.1016/j.cell.2006.03.032 | s2cid = 13709685 | doi-access = free }}
{{refend}}
{{refend}}



Latest revision as of 02:38, 19 December 2023

CENPJ
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCENPJ, BM032, CENP-J, CPAP, LAP, LIP1, MCPH6, SASS4, SCKL4, Sas-4, centromere protein J
External IDsOMIM: 609279; MGI: 2684927; HomoloGene: 10204; GeneCards: CENPJ; OMA:CENPJ - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_018451

NM_001014996

RefSeq (protein)

NP_060921

NP_001014996
NP_001390462
NP_001390463

Location (UCSC)Chr 13: 24.88 – 24.92 MbChr 14: 56.76 – 56.81 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Centromere protein J is a protein that in humans is encoded by the CENPJ gene.[5][6] It is also known as centrosomal P4.1-associated protein (CPAP). During cell division, this protein plays a structural role in the maintenance of centrosome integrity and normal spindle morphology, and it is involved in microtubule disassembly at the centrosome. This protein can function as a transcriptional coactivator in the Stat5 signaling pathway and also as a coactivator of NF-kappaB-mediated transcription, likely via its interaction with the coactivator p300/CREB-binding protein.

The Drosophila ortholog, sas-4, has been shown to be a scaffold for a cytoplasmic complex of Cnn, Asl, CP-190, tubulin and D-PLP (similar to the human proteins PCNT and AKAP9). These complexes are then anchored at the centriole to begin formation of the centrosome.[7]

Clinical significance

[edit]

Mutations in CENPJ are associated with Seckel syndrome type 4 and primary autosomal recessive microcephaly, a disorder characterized by severely reduced brain size and intellectual disability.[6][8][9] Interestingly, CENPJ interacts with other microcephaly aossciated proteins such as WDR62 and both coordinate a regulatory function neocortical development and brain growth. [10]

Interactions

[edit]

CENPJ has been shown to interact with EPB41.[5]

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000151849Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000064128Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Hung LY, Tang CJ, Tang TK (Oct 2000). "Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex". Molecular and Cellular Biology. 20 (20): 7813–25. doi:10.1128/MCB.20.20.7813-7825.2000. PMC 86375. PMID 11003675.
  6. ^ a b "Entrez Gene: CENPJ centromere protein J".
  7. ^ Gopalakrishnan J, Mennella V, Blachon S, Zhai B, Smith AH, Megraw TL, Nicastro D, Gygi SP, Agard DA, Avidor-Reiss T (2011). "Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome". Nature Communications. 2: 359. Bibcode:2011NatCo...2..359G. doi:10.1038/ncomms1367. PMC 3677532. PMID 21694707.
  8. ^ Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS (Jun 2010). "Novel CENPJ mutation causes Seckel syndrome". Journal of Medical Genetics. 47 (6): 411–4. doi:10.1136/jmg.2009.076646. PMID 20522431. S2CID 35159613.
  9. ^ Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W (2006). "A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly". Journal of Human Genetics. 51 (9): 760–4. doi:10.1007/s10038-006-0017-1. PMID 16900296.
  10. ^ Shohayeb, B, et al. (January 2020). "The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development". Human Molecular Genetics. 29 (2): 248–263. doi:10.1093/hmg/ddz281. PMID 31816041.

Further reading

[edit]
[edit]