Jump to content

Histone deacetylase 5: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
KolbertBot (talk | contribs)
Citation bot (talk | contribs)
Add: s2cid. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 2284/2499
 
(28 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
{{Infobox_gene}}
'''Histone deacetylase 5''' is an [[enzyme]] that in humans is encoded by the ''HDAC5'' [[gene]].<ref name="pmid10220385">{{cite journal |vauthors=Grozinger CM, Hassig CA, Schreiber SL | title = Three proteins define a class of human histone deacetylases related to yeast Hda1p | journal = Proc Natl Acad Sci U S A | volume = 96 | issue = 9 | pages = 4868–73 |date=June 1999 | pmid = 10220385 | pmc = 21783 | doi =10.1073/pnas.96.9.4868 }}</ref><ref name="pmid9610721">{{cite journal |vauthors=Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ | title = Characterization of human colon cancer antigens recognized by autologous antibodies | journal = Int J Cancer | volume = 76 | issue = 5 | pages = 652–8 |date=June 1998 | pmid = 9610721 | pmc = | doi =10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P }}</ref><ref name="entrez">{{Cite web| title = Entrez Gene: HDAC5 histone deacetylase 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014| accessdate = }}</ref>
'''Histone deacetylase 5''' is an [[enzyme]] that in humans is encoded by the ''HDAC5'' [[gene]].<ref name="pmid10220385">{{cite journal | vauthors = Grozinger CM, Hassig CA, Schreiber SL | title = Three proteins define a class of human histone deacetylases related to yeast Hda1p | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 96 | issue = 9 | pages = 4868–73 | date = April 1999 | pmid = 10220385 | pmc = 21783 | doi = 10.1073/pnas.96.9.4868 | bibcode = 1999PNAS...96.4868G | doi-access = free }}</ref><ref name="pmid9610721">{{cite journal | vauthors = Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Türeci O, Sahin U, Pfreundschuh M, Old LJ | display-authors = 6 | title = Characterization of human colon cancer antigens recognized by autologous antibodies | journal = International Journal of Cancer | volume = 76 | issue = 5 | pages = 652–8 | date = May 1998 | pmid = 9610721 | doi = 10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P | s2cid = 916155 | doi-access = }}</ref><ref name="entrez">{{Cite web| title = Entrez Gene: HDAC5 histone deacetylase 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10014}}</ref>


== Function ==
== Function ==
Line 6: Line 7:
[[Histone]]s play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters [[chromosome]] structure and affects [[transcription factor]] access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses [[histone deacetylase]] activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>
[[Histone]]s play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters [[chromosome]] structure and affects [[transcription factor]] access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses [[histone deacetylase]] activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.<ref name="entrez"/>


[[AMP-activated protein kinase]] regulation of the glucose transporter [[GLUT4]] occurs by [[phosphorylation]] of HDAC5.<ref>{{cite journal |vauthors=McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M | title=AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5 | journal=[[Diabetes (journal)|Diabetes]] | volume=57 | issue=4 | year=2008 | pages=860–867 | doi= 10.2337/db07-0843 | url = http://diabetes.diabetesjournals.org/content/57/4/860.long | id= | pmid=18184930}}</ref>
[[AMP-activated protein kinase]] regulation of the glucose transporter [[GLUT4]] occurs by [[phosphorylation]] of HDAC5.<ref>{{cite journal | vauthors = McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M | title = AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5 | journal = Diabetes | volume = 57 | issue = 4 | pages = 860–7 | date = April 2008 | pmid = 18184930 | doi = 10.2337/db07-0843 | url = http://diabetes.diabetesjournals.org/content/57/4/860.long | s2cid = 17274354 | doi-access = free }}</ref>


HDAC5 is involved in [[memory consolidation]] and suggests that development of more selective [[HDAC inhibitors]] for the treatment of [[Alzheimer's disease]] should avoid targeting HDAC5.<ref name="pmid22914591">{{cite journal |vauthors=Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A | title = Loss of HDAC5 impairs memory function: implications for Alzheimer's disease | journal = J Alzheimers Dis | volume = 33 | issue = 1 | pages = 35–44 |date=January 2013 | pmid = 22914591 | doi = 10.3233/JAD-2012-121009 }}</ref> Its function can be effectively examined by siRNA knockdown based on an independent validation.<ref>{{Cite journal|last=Munkácsy|first=Gyöngyi|last2=Sztupinszki|first2=Zsófia|last3=Herman|first3=Péter|last4=Bán|first4=Bence|last5=Pénzváltó|first5=Zsófia|last6=Szarvas|first6=Nóra|last7=Győrffy|first7=Balázs|date=2016-01-01|title=Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments|url=http://linkinghub.elsevier.com/retrieve/pii/S2162253117300859|journal=Molecular Therapy - Nucleic Acids|language=English|volume=5|doi=10.1038/mtna.2016.66|issn=2162-2531|pmc=5056990|pmid=27673562}}</ref>
HDAC5 is involved in [[memory consolidation]] and suggests that development of more selective [[HDAC inhibitors]] for the treatment of [[Alzheimer's disease]] should avoid targeting HDAC5.<ref name="pmid22914591">{{cite journal | vauthors = Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A | title = Loss of HDAC5 impairs memory function: implications for Alzheimer's disease | journal = Journal of Alzheimer's Disease | volume = 33 | issue = 1 | pages = 35–44 | date = January 2013 | pmid = 22914591 | doi = 10.3233/JAD-2012-121009 | hdl-access = free | hdl = 2434/223089 }}</ref> Its function can be effectively examined by siRNA knockdown based on an independent validation.<ref>{{cite journal | vauthors = Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B | title = Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments | language = en | journal = Molecular Therapy: Nucleic Acids | volume = 5 | issue = 9 | pages = e366 | date = September 2016 | pmid = 27673562 | pmc = 5056990 | doi = 10.1038/mtna.2016.66 }}</ref>

HDAC5 overexpression in [[Urothelial carcinoma|urothelial]] carcinoma cell lines inhibits long-term proliferation but can promote epithelial-to-mesenchymal transition ([[Epithelial–mesenchymal transition|EMT]])<ref>{{cite journal | vauthors = Jaguva Vasudevan AA, Hoffmann MJ, Beck ML, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G | display-authors = 6 | title = HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition | journal = International Journal of Molecular Sciences | volume = 20 | issue = 9 | pages = 2135 | date = April 2019 | pmid = 31052182 | pmc = 6539474 | doi = 10.3390/ijms20092135 | doi-access = free }}</ref>

== Interactions ==


==Interactions==
Histone deacetylase 5 has been shown to [[Protein-protein interaction|interact]] with:
Histone deacetylase 5 has been shown to [[Protein-protein interaction|interact]] with:
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[BCL6]],<ref name = pmid11929873/>
* [[BCL6]],<ref name = pmid11929873/>
* [[CBX5 (gene)|CBX5]],<ref name = pmid12242305>{{cite journal |vauthors=Zhang CL, McKinsey TA, Olson EN | title = Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation | journal = Mol. Cell. Biol. | volume = 22 | issue = 20 | pages = 7302–12 | year = 2002 | pmid = 12242305 | pmc = 139799 | doi = 10.1128/MCB.22.20.7302-7312.2002}}</ref>
* [[CBX5 (gene)|CBX5]],<ref name = pmid12242305>{{cite journal | vauthors = Zhang CL, McKinsey TA, Olson EN | title = Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation | journal = Molecular and Cellular Biology | volume = 22 | issue = 20 | pages = 7302–12 | date = October 2002 | pmid = 12242305 | pmc = 139799 | doi = 10.1128/MCB.22.20.7302-7312.2002 }}</ref>
* [[GATA1]],<ref name = pmid14668799>{{cite journal |vauthors=Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H | title = Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation | journal = Oncogene | volume = 22 | issue = 57 | pages = 9176–84 | year = 2003 | pmid = 14668799 | doi = 10.1038/sj.onc.1206902 }}</ref>
* [[GATA1]],<ref name = pmid14668799>{{cite journal | vauthors = Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H | display-authors = 6 | title = Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation | journal = Oncogene | volume = 22 | issue = 57 | pages = 9176–84 | date = December 2003 | pmid = 14668799 | doi = 10.1038/sj.onc.1206902 | s2cid = 24491249 | doi-access = }}</ref>
* [[HDAC3]],<ref name = pmid10220385 /><ref name = pmid11931768/><ref name = pmid11804585>{{cite journal |vauthors=Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E | title = Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR | journal = Mol. Cell | volume = 9 | issue = 1 | pages = 45–57 | year = 2002 | pmid = 11804585 | doi = 10.1016/S1097-2765(01)00429-4}}</ref><ref name = pmid10869435>{{cite journal |vauthors=Grozinger CM, Schreiber SL | title = Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 97 | issue = 14 | pages = 7835–40 | year = 2000 | pmid = 10869435 | pmc = 16631 | doi = 10.1073/pnas.140199597 }}</ref>
* [[HDAC3]],<ref name = pmid10220385 /><ref name = pmid11931768/><ref name = pmid11804585>{{cite journal | vauthors = Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E | title = Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR | journal = Molecular Cell | volume = 9 | issue = 1 | pages = 45–57 | date = January 2002 | pmid = 11804585 | doi = 10.1016/S1097-2765(01)00429-4 | hdl-access = free | hdl = 11858/00-001M-0000-002C-9FF9-9 }}</ref><ref name = pmid10869435>{{cite journal | vauthors = Grozinger CM, Schreiber SL | title = Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 14 | pages = 7835–40 | date = July 2000 | pmid = 10869435 | pmc = 16631 | doi = 10.1073/pnas.140199597 | bibcode = 2000PNAS...97.7835G | doi-access = free }}</ref>
* [[IKZF1]],<ref name = pmid12015313>{{cite journal |vauthors=Koipally J, Georgopoulos K | title = A molecular dissection of the repression circuitry of Ikaros | journal = J. Biol. Chem. | volume = 277 | issue = 31 | pages = 27697–705 | year = 2002 | pmid = 12015313 | doi = 10.1074/jbc.M201694200 }}</ref>
* [[IKZF1]],<ref name = pmid12015313>{{cite journal | vauthors = Koipally J, Georgopoulos K | title = A molecular dissection of the repression circuitry of Ikaros | journal = The Journal of Biological Chemistry | volume = 277 | issue = 31 | pages = 27697–705 | date = August 2002 | pmid = 12015313 | doi = 10.1074/jbc.M201694200 | doi-access = free }}</ref>
* [[Myocyte-specific enhancer factor 2A|MEF2A]],<ref name = pmid10748098>{{cite journal |vauthors=Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S | title = mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity | journal = J. Biol. Chem. | volume = 275 | issue = 20 | pages = 15594–9 | year = 2000 | pmid = 10748098 | doi = 10.1074/jbc.M908437199 }}</ref>
* [[Myocyte-specific enhancer factor 2A|MEF2A]],<ref name = pmid10748098>{{cite journal | vauthors = Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S | title = mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity | journal = The Journal of Biological Chemistry | volume = 275 | issue = 20 | pages = 15594–9 | date = May 2000 | pmid = 10748098 | doi = 10.1074/jbc.M908437199 | doi-access = free }}</ref>
* [[NRIP1]],<ref name = pmid15060175>{{cite journal |vauthors=Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V | title = Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition | journal = Nucleic Acids Res. | volume = 32 | issue = 6 | pages = 1957–66 | year = 2004 | pmid = 15060175 | pmc = 390375 | doi = 10.1093/nar/gkh524 }}</ref>
* [[NRIP1]],<ref name = pmid15060175>{{cite journal | vauthors = Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V | display-authors = 6 | title = Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition | journal = Nucleic Acids Research | volume = 32 | issue = 6 | pages = 1957–66 | year = 2004 | pmid = 15060175 | pmc = 390375 | doi = 10.1093/nar/gkh524 }}</ref>
* [[Nuclear receptor co-repressor 1|NCOR1]],<ref name = pmid11931768>{{cite journal |vauthors=Zhang J, Kalkum M, Chait BT, Roeder RG | title = The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2 | journal = Mol. Cell | volume = 9 | issue = 3 | pages = 611–23 | year = 2002 | pmid = 11931768 | doi = 10.1016/S1097-2765(02)00468-9}}</ref><ref name = pmid10640275>{{cite journal |vauthors=Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA | title = Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway | journal = Genes Dev. | volume = 14 | issue = 1 | pages = 45–54 | year = 2000 | pmid = 10640275 | pmc = 316335 | doi = }}</ref>
* [[Nuclear receptor co-repressor 1|NCOR1]],<ref name = pmid11931768>{{cite journal | vauthors = Zhang J, Kalkum M, Chait BT, Roeder RG | title = The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2 | journal = Molecular Cell | volume = 9 | issue = 3 | pages = 611–23 | date = March 2002 | pmid = 11931768 | doi = 10.1016/S1097-2765(02)00468-9 | doi-access = free }}</ref><ref name = pmid10640275>{{cite journal | vauthors = Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA | title = Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway | journal = Genes & Development | volume = 14 | issue = 1 | pages = 45–54 | date = January 2000 | doi = 10.1101/gad.14.1.45 | pmid = 10640275 | pmc = 316335 }}</ref>
* [[Nuclear receptor co-repressor 2|NCOR2]],<ref name = pmid10640275/>
* [[Nuclear receptor co-repressor 2|NCOR2]],<ref name = pmid10640275/>
* [[YWHAQ]],<ref name = pmid15367659>{{cite journal |vauthors=Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA | title = Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5 | journal = Mol. Cell. Biol. | volume = 24 | issue = 19 | pages = 8374–85 | year = 2004 | pmid = 15367659 | pmc = 516754 | doi = 10.1128/MCB.24.19.8374-8385.2004 }}</ref> and
* [[YWHAQ]],<ref name = pmid15367659>{{cite journal | vauthors = Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA | title = Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5 | journal = Molecular and Cellular Biology | volume = 24 | issue = 19 | pages = 8374–85 | date = October 2004 | pmid = 15367659 | pmc = 516754 | doi = 10.1128/MCB.24.19.8374-8385.2004 }}</ref> and
* [[Zinc finger and BTB domain-containing protein 16|ZBTB16]].<ref name = pmid11929873>{{cite journal |vauthors=Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S | title = Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor | journal = J. Biol. Chem. | volume = 277 | issue = 24 | pages = 22045–52 | year = 2002 | pmid = 11929873 | doi = 10.1074/jbc.M201736200 }}</ref><ref name = pmid15467736>{{cite journal |vauthors=Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A | title = HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF | journal = Oncogene | volume = 23 | issue = 54 | pages = 8777–84 | year = 2004 | pmid = 15467736 | doi = 10.1038/sj.onc.1208128 }}</ref>
* [[Zinc finger and BTB domain-containing protein 16|ZBTB16]].<ref name = pmid11929873>{{cite journal | vauthors = Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S | title = Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor | journal = The Journal of Biological Chemistry | volume = 277 | issue = 24 | pages = 22045–52 | date = June 2002 | pmid = 11929873 | doi = 10.1074/jbc.M201736200 | doi-access = free }}</ref><ref name = pmid15467736>{{cite journal | vauthors = Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A | display-authors = 6 | title = HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF | journal = Oncogene | volume = 23 | issue = 54 | pages = 8777–84 | date = November 2004 | pmid = 15467736 | doi = 10.1038/sj.onc.1208128 | s2cid = 26092755 | doi-access = }}</ref>
{{Div col end}}
{{Div col end}}


==See also==
== See also ==
* [[Histone deacetylase]]
* [[Histone deacetylase]]
{{Clear}}
{{Clear}}


==References==
== References ==
{{Reflist|35em}}
{{Reflist|35em}}


==Further reading==
== Further reading ==
{{Refbegin|35em}}
{{Refbegin|35em}}
* {{cite journal | vauthors = Verdin E, Dequiedt F, Kasler HG | title = Class II histone deacetylases: versatile regulators | journal = Trends in Genetics | volume = 19 | issue = 5 | pages = 286–93 | date = May 2003 | pmid = 12711221 | doi = 10.1016/S0168-9525(03)00073-8 | hdl = 2268/80861 | url = http://orbi.ulg.ac.be/bitstream/2268/80861/1/TGI2003.pdf }}
{{PBB_Further_reading
* {{cite journal | vauthors = Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA | title = Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway | journal = Genes & Development | volume = 14 | issue = 1 | pages = 45–54 | date = January 2000 | doi = 10.1101/gad.14.1.45 | pmid = 10640275 | pmc = 316335 }}
| citations =
*{{Cite journal |vauthors=Verdin E, Dequiedt F, Kasler HG |title=Class II histone deacetylases: versatile regulators |journal=Trends Genet. |volume=19 |issue= 5 |pages= 286–93 |year= 2003 |pmid= 12711221 |doi=10.1016/S0168-9525(03)00073-8 }}
* {{cite journal | vauthors = Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S | title = mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity | journal = The Journal of Biological Chemistry | volume = 275 | issue = 20 | pages = 15594–9 | date = May 2000 | pmid = 10748098 | doi = 10.1074/jbc.M908437199 | doi-access = free }}
* {{cite journal | vauthors = Grozinger CM, Schreiber SL | title = Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 14 | pages = 7835–40 | date = July 2000 | pmid = 10869435 | pmc = 16631 | doi = 10.1073/pnas.140199597 | bibcode = 2000PNAS...97.7835G | doi-access = free }}
*{{Cite journal | author=Huang EY |title=Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway |journal=Genes Dev. |volume=14 |issue= 1 |pages= 45–54 |year= 2000 |pmid= 10640275 |doi= | pmc=316335 |name-list-format=vanc| author2=Zhang J | author3=Miska EA | display-authors=3 | last4=Guenther | first4=MG | last5=Kouzarides | first5=T | last6=Lazar | first6=MA }}
* {{cite journal | vauthors = Huynh KD, Fischle W, Verdin E, Bardwell VJ | title = BCoR, a novel corepressor involved in BCL-6 repression | journal = Genes & Development | volume = 14 | issue = 14 | pages = 1810–23 | date = July 2000 | pmid = 10898795 | pmc = 316791 | doi = 10.1101/gad.14.14.1810 }}
*{{Cite journal | author=Lemercier C |title=mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity |journal=J. Biol. Chem. |volume=275 |issue= 20 |pages= 15594–9 |year= 2000 |pmid= 10748098 |doi= 10.1074/jbc.M908437199 |name-list-format=vanc| author2=Verdel A | author3=Galloo B | display-authors=3 | last4=Curtet | first4=S | last5=Brocard | first5=MP | last6=Khochbin | first6=S }}
*{{Cite journal |vauthors=Grozinger CM, Schreiber SL |title=Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3- 3-dependent cellular localization |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 14 |pages= 7835–40 |year= 2000 |pmid= 10869435 |doi= 10.1073/pnas.140199597 | pmc=16631 }}
* {{cite journal | vauthors = Mahlknecht U, Schnittger S, Ottmann OG, Schoch C, Mosebach M, Hiddemann W, Hoelzer D | title = Chromosomal organization and localization of the human histone deacetylase 5 gene (HDAC5) | journal = Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression | volume = 1493 | issue = 3 | pages = 342–8 | date = October 2000 | pmid = 11018260 | doi = 10.1016/S0167-4781(00)00191-3 | author-link = Mahlknecht U }}
*{{Cite journal |vauthors=Huynh KD, Fischle W, Verdin E, Bardwell VJ |title=BCoR, a novel corepressor involved in BCL-6 repression |journal=Genes Dev. |volume=14 |issue= 14 |pages= 1810–23 |year= 2000 |pmid= 10898795 |doi= 10.1101/gad.14.14.1810| pmc=316791 }}
* {{cite journal | vauthors = Zhang CL, McKinsey TA, Lu JR, Olson EN | title = Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor | journal = The Journal of Biological Chemistry | volume = 276 | issue = 1 | pages = 35–9 | date = January 2001 | pmid = 11022042 | doi = 10.1074/jbc.M007364200 | doi-access = free }}
* {{cite journal | vauthors = McKinsey TA, Zhang CL, Lu J, Olson EN | title = Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation | journal = Nature | volume = 408 | issue = 6808 | pages = 106–11 | date = November 2000 | pmid = 11081517 | pmc = 4459600 | doi = 10.1038/35040593 | bibcode = 2000Natur.408..106M }}
*{{Cite journal | author=[[Mahlknecht U]] |title=Chromosomal organization and localization of the human histone deacetylase 5 gene (HDAC5) |journal=Biochim. Biophys. Acta |volume=1493 |issue= 3 |pages= 342–8 |year= 2000 |pmid= 11018260 |doi= 10.1016/S0167-4781(00)00191-3|name-list-format=vanc| author2=Schnittger S | author3=Ottmann OG | display-authors=3 | last4=Schoch | first4=C | last5=Mosebach | first5=M | last6=Hiddemann | first6=W | last7=Hoelzer | first7=D }}
*{{Cite journal |vauthors=Zhang CL, McKinsey TA, Lu JR, Olson EN |title=Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor |journal=J. Biol. Chem. |volume=276 |issue= 1 |pages= 35–9 |year= 2001 |pmid= 11022042 |doi= 10.1074/jbc.M007364200 }}
* {{cite journal | vauthors = McKinsey TA, Zhang CL, Olson EN | title = Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5 | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 26 | pages = 14400–5 | date = December 2000 | pmid = 11114197 | pmc = 18930 | doi = 10.1073/pnas.260501497 | bibcode = 2000PNAS...9714400M | doi-access = free }}
*{{Cite journal |vauthors=McKinsey TA, Zhang CL, Lu J, Olson EN |title=Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation |journal=Nature |volume=408 |issue= 6808 |pages= 106–11 |year= 2000 |pmid= 11081517 |doi= 10.1038/35040593 }}
* {{cite journal | vauthors = Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E | title = Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo | journal = The Journal of Biological Chemistry | volume = 276 | issue = 38 | pages = 35826–35 | date = September 2001 | pmid = 11466315 | doi = 10.1074/jbc.M104935200 | doi-access = free }}
*{{Cite journal |vauthors=McKinsey TA, Zhang CL, Olson EN |title=Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 26 |pages= 14400–5 |year= 2001 |pmid= 11114197 |doi= 10.1073/pnas.260501497 | pmc=18930 }}
* {{cite journal | vauthors = McKinsey TA, Zhang CL, Olson EN | title = Identification of a signal-responsive nuclear export sequence in class II histone deacetylases | journal = Molecular and Cellular Biology | volume = 21 | issue = 18 | pages = 6312–21 | date = September 2001 | pmid = 11509672 | pmc = 87361 | doi = 10.1128/MCB.21.18.6312-6321.2001 }}
* {{cite journal | vauthors = Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H | display-authors = 6 | title = Histone deacetylase 3 associates with and represses the transcription factor GATA-2 | journal = Blood | volume = 98 | issue = 7 | pages = 2116–23 | date = October 2001 | pmid = 11567998 | doi = 10.1182/blood.V98.7.2116 | doi-access = }}
*{{Cite journal | author=Fischle W |title=Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo |journal=J. Biol. Chem. |volume=276 |issue= 38 |pages= 35826–35 |year= 2001 |pmid= 11466315 |doi= 10.1074/jbc.M104935200 |name-list-format=vanc| author2=Dequiedt F | author3=Fillion M | display-authors=3 | last4=Hendzel | first4=MJ | last5=Voelter | first5=W | last6=Verdin | first6=E }}
*{{Cite journal |vauthors=McKinsey TA, Zhang CL, Olson EN |title=Identification of a Signal-Responsive Nuclear Export Sequence in Class II Histone Deacetylases |journal=Mol. Cell. Biol. |volume=21 |issue= 18 |pages= 6312–21 |year= 2001 |pmid= 11509672 |doi=10.1128/MCB.21.18.6312-6321.2001 | pmc=87361 }}
* {{cite journal | vauthors = Potter GB, Beaudoin GM, DeRenzo CL, Zarach JM, Chen SH, Thompson CC | title = The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor | journal = Genes & Development | volume = 15 | issue = 20 | pages = 2687–701 | date = October 2001 | pmid = 11641275 | pmc = 312820 | doi = 10.1101/gad.916701 }}
* {{cite journal | vauthors = Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E | title = Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR | journal = Molecular Cell | volume = 9 | issue = 1 | pages = 45–57 | date = January 2002 | pmid = 11804585 | doi = 10.1016/S1097-2765(01)00429-4 | hdl-access = free | hdl = 11858/00-001M-0000-002C-9FF9-9 }}
*{{Cite journal | author=Ozawa Y |title=Histone deacetylase 3 associates with and represses the transcription factor GATA-2 |journal=Blood |volume=98 |issue= 7 |pages= 2116–23 |year= 2001 |pmid= 11567998 |doi=10.1182/blood.V98.7.2116 |name-list-format=vanc| author2=Towatari M | author3=Tsuzuki S | display-authors=3 | last4=Hayakawa | first4=F | last5=Maeda | first5=T | last6=Miyata | first6=Y | last7=Tanimoto | first7=M | last8=Saito | first8=H }}
* {{cite journal | vauthors = Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S | title = Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor | journal = The Journal of Biological Chemistry | volume = 277 | issue = 24 | pages = 22045–52 | date = June 2002 | pmid = 11929873 | doi = 10.1074/jbc.M201736200 | doi-access = free }}
*{{Cite journal | author=Potter GB |title=The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor |journal=Genes Dev. |volume=15 |issue= 20 |pages= 2687–701 |year= 2001 |pmid= 11641275 |doi= 10.1101/gad.916701 | pmc=312820 |name-list-format=vanc| author2=Beaudoin GM | author3=DeRenzo CL | display-authors=3 | last4=Zarach | first4=JM | last5=Chen | first5=SH | last6=Thompson | first6=CC }}
* {{cite journal | vauthors = Huang Y, Tan M, Gosink M, Wang KK, Sun Y | title = Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis | journal = Cancer Research | volume = 62 | issue = 10 | pages = 2913–22 | date = May 2002 | pmid = 12019172 }}
*{{Cite journal | author=Fischle W |title=Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR |journal=Mol. Cell |volume=9 |issue= 1 |pages= 45–57 |year= 2002 |pmid= 11804585 |doi=10.1016/S1097-2765(01)00429-4 |name-list-format=vanc| author2=Dequiedt F | author3=Hendzel MJ | display-authors=3 | last4=Guenther | first4=Matthew G | last5=Lazar | first5=Mitchell A | last6=Voelter | first6=Wolfgang | last7=Verdin | first7=Eric }}
*{{Cite journal | author=Lemercier C |title=Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor |journal=J. Biol. Chem. |volume=277 |issue= 24 |pages= 22045–52 |year= 2002 |pmid= 11929873 |doi= 10.1074/jbc.M201736200 |name-list-format=vanc| author2=Brocard MP | author3=Puvion-Dutilleul F | display-authors=3 | last4=Kao | first4=HY | last5=Albagli | first5=O | last6=Khochbin | first6=S }}
*{{Cite journal | author=Huang Y |title=Histone deacetylase 5 is not a p53 target gene, but its overexpression inhibits tumor cell growth and induces apoptosis |journal=Cancer Res. |volume=62 |issue= 10 |pages= 2913–22 |year= 2002 |pmid= 12019172 |doi= |name-list-format=vanc| author2=Tan M | author3=Gosink M | display-authors=3 | last4=Wang | first4=KK | last5=Sun | first5=Y }}
}}
{{Refend}}
{{Refend}}


==External links==
== External links ==
* {{MeshName|HDAC5+protein,+human}}
* {{MeshName|HDAC5+protein,+human}}


Line 62: Line 63:
{{Carbon-nitrogen non-peptide hydrolases}}
{{Carbon-nitrogen non-peptide hydrolases}}
{{Enzymes}}
{{Enzymes}}
{{Portal bar|Molecular and Cellular Biology|border=no}}
{{Portal bar|Biology|border=no}}


{{DEFAULTSORT:Histone Deacetylase 5}}
{{DEFAULTSORT:Histone Deacetylase 5}}

Latest revision as of 05:58, 6 December 2023

HDAC5
Identifiers
AliasesHDAC5, HD5, NY-CO-9, histone deacetylase 5
External IDsOMIM: 605315; MGI: 1333784; HomoloGene: 3995; GeneCards: HDAC5; OMA:HDAC5 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001015053
NM_005474
NM_139205
NM_001382393

RefSeq (protein)

NP_001015053
NP_005465
NP_001369322

n/a

Location (UCSC)Chr 17: 44.08 – 44.12 MbChr 11: 102.19 – 102.23 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.[5][6][7]

Function

[edit]

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the class II histone deacetylase/acuc/apha family. It possesses histone deacetylase activity and represses transcription when tethered to a promoter. It coimmunoprecipitates only with HDAC3 family member and might form multicomplex proteins. It also interacts with myocyte enhancer factor-2 (MEF2) proteins, resulting in repression of MEF2-dependent genes. This gene is thought to be associated with colon cancer. Two transcript variants encoding different isoforms have been found for this gene.[7]

AMP-activated protein kinase regulation of the glucose transporter GLUT4 occurs by phosphorylation of HDAC5.[8]

HDAC5 is involved in memory consolidation and suggests that development of more selective HDAC inhibitors for the treatment of Alzheimer's disease should avoid targeting HDAC5.[9] Its function can be effectively examined by siRNA knockdown based on an independent validation.[10]

HDAC5 overexpression in urothelial carcinoma cell lines inhibits long-term proliferation but can promote epithelial-to-mesenchymal transition (EMT)[11]

Interactions

[edit]

Histone deacetylase 5 has been shown to interact with:

See also

[edit]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000108840Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000008855Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Grozinger CM, Hassig CA, Schreiber SL (April 1999). "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proceedings of the National Academy of Sciences of the United States of America. 96 (9): 4868–73. Bibcode:1999PNAS...96.4868G. doi:10.1073/pnas.96.9.4868. PMC 21783. PMID 10220385.
  6. ^ Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, et al. (May 1998). "Characterization of human colon cancer antigens recognized by autologous antibodies". International Journal of Cancer. 76 (5): 652–8. doi:10.1002/(SICI)1097-0215(19980529)76:5<652::AID-IJC7>3.0.CO;2-P. PMID 9610721. S2CID 916155.
  7. ^ a b "Entrez Gene: HDAC5 histone deacetylase 5".
  8. ^ McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M (April 2008). "AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5". Diabetes. 57 (4): 860–7. doi:10.2337/db07-0843. PMID 18184930. S2CID 17274354.
  9. ^ Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (January 2013). "Loss of HDAC5 impairs memory function: implications for Alzheimer's disease". Journal of Alzheimer's Disease. 33 (1): 35–44. doi:10.3233/JAD-2012-121009. hdl:2434/223089. PMID 22914591.
  10. ^ Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B (September 2016). "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments". Molecular Therapy: Nucleic Acids. 5 (9): e366. doi:10.1038/mtna.2016.66. PMC 5056990. PMID 27673562.
  11. ^ Jaguva Vasudevan AA, Hoffmann MJ, Beck ML, Poschmann G, Petzsch P, Wiek C, et al. (April 2019). "HDAC5 Expression in Urothelial Carcinoma Cell Lines Inhibits Long-Term Proliferation but Can Promote Epithelial-to-Mesenchymal Transition". International Journal of Molecular Sciences. 20 (9): 2135. doi:10.3390/ijms20092135. PMC 6539474. PMID 31052182.
  12. ^ a b Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S (June 2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor". The Journal of Biological Chemistry. 277 (24): 22045–52. doi:10.1074/jbc.M201736200. PMID 11929873.
  13. ^ Zhang CL, McKinsey TA, Olson EN (October 2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Molecular and Cellular Biology. 22 (20): 7302–12. doi:10.1128/MCB.22.20.7302-7312.2002. PMC 139799. PMID 12242305.
  14. ^ Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, et al. (December 2003). "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene. 22 (57): 9176–84. doi:10.1038/sj.onc.1206902. PMID 14668799. S2CID 24491249.
  15. ^ a b Zhang J, Kalkum M, Chait BT, Roeder RG (March 2002). "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Molecular Cell. 9 (3): 611–23. doi:10.1016/S1097-2765(02)00468-9. PMID 11931768.
  16. ^ Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (January 2002). "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Molecular Cell. 9 (1): 45–57. doi:10.1016/S1097-2765(01)00429-4. hdl:11858/00-001M-0000-002C-9FF9-9. PMID 11804585.
  17. ^ Grozinger CM, Schreiber SL (July 2000). "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proceedings of the National Academy of Sciences of the United States of America. 97 (14): 7835–40. Bibcode:2000PNAS...97.7835G. doi:10.1073/pnas.140199597. PMC 16631. PMID 10869435.
  18. ^ Koipally J, Georgopoulos K (August 2002). "A molecular dissection of the repression circuitry of Ikaros". The Journal of Biological Chemistry. 277 (31): 27697–705. doi:10.1074/jbc.M201694200. PMID 12015313.
  19. ^ Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (May 2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". The Journal of Biological Chemistry. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098.
  20. ^ Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, et al. (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Research. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC 390375. PMID 15060175.
  21. ^ a b Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (January 2000). "Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway". Genes & Development. 14 (1): 45–54. doi:10.1101/gad.14.1.45. PMC 316335. PMID 10640275.
  22. ^ Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (October 2004). "Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5". Molecular and Cellular Biology. 24 (19): 8374–85. doi:10.1128/MCB.24.19.8374-8385.2004. PMC 516754. PMID 15367659.
  23. ^ Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, et al. (November 2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene. 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID 15467736. S2CID 26092755.

Further reading

[edit]
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.