Śleszyński–Pringsheim theorem: Difference between revisions
Appearance
Content deleted Content added
hist. part elabourated |
No edit summary |
||
(16 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Criterion for convergence of continued fractions}} |
|||
In mathematics, the '''Śleszyński–Pringsheim theorem''' is a statement about [[Convergent (continued fraction)|convergence]] of certain [[continued fraction]]s. It was discovered by [[Ivan Śleszyński]]<ref>{{cite journal|last=Слешинскій|first=И. В.|title=Дополненiе къ замѣткѣ о сходимости непрерывныхъ дробей|journal=Матем. |
In mathematics, the '''Śleszyński–Pringsheim theorem''' is a statement about [[Convergent (continued fraction)|convergence]] of certain [[continued fraction]]s. It was discovered by [[Ivan Śleszyński]]<ref>{{cite journal|last=Слешинскій|first=И. В.|title=Дополненiе къ замѣткѣ о сходимости непрерывныхъ дробей|journal=Матем. Сб.|volume=14|issue=3|year=1889|pages=436–438|url=http://mi.mathnet.ru/msb7210|language=Russian}}</ref> and [[Alfred Pringsheim]]<ref>{{cite journal|jfm=29.0178.02|last=Pringsheim|first=A.|title=Ueber die Convergenz unendlicher Kettenbrüche|language=German|journal=Münch. Ber.|volume=28|pages=295–324|year=1898}}</ref> in the late 19th century.<ref>W.J.Thron has found evidence that Pringsheim was aware of the work of Śleszyński before he published his article; see {{cite journal|mr=1192192|last=Thron|first=W. J.|title=Should the Pringsheim criterion be renamed the Śleszyński criterion?|journal=Comm. Anal. Theory Contin. Fractions|volume=1|year=1992|pages=13–20}}</ref> |
||
It states that if |
It states that if <math>a_n</math>, <math>b_n</math>, for <math>n=1,2,3,\ldots</math> are [[real number]]s and <math>|b_n|\geq |a_n|+1</math> for all <math>n</math>, then |
||
: <math> \cfrac{a_1}{b_1+\cfrac{a_2}{b_2+\cfrac{a_3}{b_3+ \ |
: <math> \cfrac{a_1}{b_1+\cfrac{a_2}{b_2+\cfrac{a_3}{b_3+ \ddots}}} </math> |
||
converges absolutely to a number <math>f</math> satisfying <math>0<|f|<1</math>,<ref>{{cite book|first1=L.|last1=Lorentzen|first2=H.|last2=Waadeland|title=Continued Fractions: Convergence theory|publisher=Atlantic Press|year=2008|page=129}}</ref> meaning that the series |
|||
:<math> f = \sum_n \left\{ \frac{A_n}{B_n} - \frac{A_{n-1}}{B_{n-1}}\right\},</math> |
|||
where <math>A_n / B_n</math> are the [[convergent (continued fraction)|convergents]] of the continued fraction, [[absolute convergence|converges absolutely]]. |
|||
==See also== |
==See also== |
||
Line 13: | Line 18: | ||
{{reflist}} |
{{reflist}} |
||
{{DEFAULTSORT:Sleszynski-Pringsheim Theorem}} |
|||
[[Category:Continued fractions]] |
[[Category:Continued fractions]] |
||
[[Category: |
[[Category:Theorems in real analysis]] |
||
{{mathanalysis-stub}} |
Latest revision as of 11:20, 24 July 2023
In mathematics, the Śleszyński–Pringsheim theorem is a statement about convergence of certain continued fractions. It was discovered by Ivan Śleszyński[1] and Alfred Pringsheim[2] in the late 19th century.[3]
It states that if , , for are real numbers and for all , then
converges absolutely to a number satisfying ,[4] meaning that the series
where are the convergents of the continued fraction, converges absolutely.
See also
[edit]Notes and references
[edit]- ^ Слешинскій, И. В. (1889). "Дополненiе къ замѣткѣ о сходимости непрерывныхъ дробей". Матем. Сб. (in Russian). 14 (3): 436–438.
- ^ Pringsheim, A. (1898). "Ueber die Convergenz unendlicher Kettenbrüche". Münch. Ber. (in German). 28: 295–324. JFM 29.0178.02.
- ^ W.J.Thron has found evidence that Pringsheim was aware of the work of Śleszyński before he published his article; see Thron, W. J. (1992). "Should the Pringsheim criterion be renamed the Śleszyński criterion?". Comm. Anal. Theory Contin. Fractions. 1: 13–20. MR 1192192.
- ^ Lorentzen, L.; Waadeland, H. (2008). Continued Fractions: Convergence theory. Atlantic Press. p. 129.