Stokes drift: Difference between revisions

Content deleted Content added
Line 71:
:<math>\dot{{\xi}}=\, {u}({\xi},t)= \hat{u} \sin\, \left( k \xi - \omega t \right),</math>
:<math>
\xi(\xi_0,t)\approx\xi_0+\frac{\hat{u}}{\omega}\cos(k\xi_0-\omega t)-\frac14\frac{k\hat{u}^2}{4\omega^2}\sin2(k\xi_0-\omega t)+\frac12\frac{k\hat{u}^2}{2\omega} t.
</math>
Here the last term describes the Stokes drift <math>\tfrac12 k\hat{u}^2/\omega.</math><ref>See [[#Falkovich|Falkovich (2011)]], pages 71–72. There is a typo in the coefficient of the superharmonic term in Eq. (2.20) on page 71, i.e <math>-\tfrac14</math> instead of <math>+\tfrac12.</math></ref>