Neusis construction: Difference between revisions

Content deleted Content added
Line 16:
 
A regular ''n''-gon is known to be neusis constructible for ''n'' =
:3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 45, 48, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 73, 74, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 95, 96, 97, 99, 102, 104, 105, 108, 109, 110, 111, 112, 114, 117, 119, 120, 126, 128, 130, 132, 135, 136, 140, 143, 144, 146, 148, 152, 153, 154, 156, 160, 162, 163, 165, 168, 170, 171, 176, 180, 182, 185, 187, 189, 190, 192, 193, 194, 195, 198, 204, 208, 209, 210, 216, 218, 219, 220, 221, 222, 224, 228, 231, 234, 238, 240, 243, 247, 252, 255, 256, 257, 259, 260, 264, 266, 270, 272, 273, 280, 285, 286, 288, 291, 292, 296, 297, 304, 306, 308, 312, 315, 320, 323, 324, 326, 327, 330, 333, 336, 340, 342, 350, 351, 352, 357, 360, 364, 365, 370, 374, 378, 380, 384, 385, 386, 388, 390, 396, 399, 405, 407, 408, 416, 418, 420, 429, 432, 433, 436, 438, 440, 442, 444, 448, ... {{OEIS|id=A122254}}, modified by the recent finding by Benjamin and Snyder that the regular [[hendecagon]] is neusis-constructible,<ref name="ElliotConstruction">{{cite journal |last1=Benjamin |first1=Elliot |last2=Snyder |first2=C |title=On the construction of the regular hendecagon by marked ruler and compass |journal=Mathematical Proceedings of the Cambridge Philosophical Society |date=May 2014 |volume=156 |issue=3 |pages=409–424 |doi=10.1017/S0305004113000753 |url=https://www.researchgate.net/publication/262991453 |access-date=26 September 2020|url-status=live|archive-url=https://archive.is/wip/Vt4Uc|archive-date=September 26, 2020}}</ref> such numbers are of the form ''k'' or 11''k'', where [[Euler totient function|<math>\varphi</math>]](''k'') is 3-[[smooth number|smooth]].
 
while a regular ''n''-gon is known to be not neusis-constructible for ''n'' =
:23, 29, 43, 46, 47, 49, 53, 58, 59, 67, 69, 71, 79, 83, 86, 87, 89, 92, 94, 98, 103, 106, 107, 113, 115, 116, 118, 121, 127, 129, 131, 134, 137, 138, 139, 141, 142, 145, 147, 149, 157, 158, 159, 161, 166, 167, 169, 172, 173, 174, 177, 178, 179, 184, 188, 191, 196, 197, 199, 201, 203, 206, 207, 211, 212, 213, 214, 215, 223, 226, 227, 229, 230, 232, 233, 235, 236, 237, 239, 242, 245, 249, 253, 254, 258, 261, 262, 263, 265, 267, 268, 269, 274, 276, 277, 278, 281, 282, 283, 284, 289, 290, 293, 294, 295, 298, 299, 301, 307, 309, 311, 313, 314, 316, 317, 318, 319, 321, 322, 329, 331, 332, 334, 335, 337, 338, 339, 343, 344, 345, 346, 347, 348, 349, 353, 354, 355, 356, 358, 359, 361, 363, 367, 368, 371, 373, 376, 377, 379, 381, 382, 383, 387, 389, 391, 392, 393, 394, 395, 397, 398, 402, 406, 409, 411, 412, 413, 414, 415, 417, 419, 421, 422, 423, 424, 426, 428, 430, 431, 435, 437, 439, 441, 443, 445, 446, 447, 449, ... {{OEIS|id=A048136}}, similarly modified, since there [[Euler totient function]] is not 5-[[smooth number|smooth]].
 
while the status is still an open question for ''n'' =
:25, 31, 41, 50, 61, 62, 75, 82, 93, 100, 101, 122, 123, 124, 125, 150, 151, 155, 164, 175, 181, 183, 186, 200, 202, 205, 217, 225, 241, 244, 246, 248, 250, 251, 271, 275, 279, 287, 300, 302, 303, 305, 310, 325, 328, 341, 362, 366, 369, 372, 375, 400, 401, 403, 404, 410, 425, 427, 434, 450, ...
 
== Waning popularity ==