Icositrigon: Difference between revisions

Content deleted Content added
m v2.04b - Bot T19 CW#25 - Fix errors for CW project (Heading hierarchy - Reference before punctuation - Link equal to linktext)
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
 
(28 intermediate revisions by 15 users not shown)
Line 1:
{{short description|Polygon with 23 sides}}
{{Regular polygon db|Regular polygon stat table|p23}}
 
Line 6 ⟶ 7:
A ''[[regular polygon|regular]] icositrigon'' is represented by [[Schläfli symbol]] {23}.
 
A regular icositrigon has [[internal angle]]s of <math display="inline">\frac{3780}{23}</math> degrees, with an area of <math display="inline">A = \frac{23}{4}a^2 \cot \frac{\pi}{23} = 23r^2 \tan \frac{\pi}{23} \simeq 41.8344\,a^2,</math> where <math>a</math> is side length and <math>r</math> is the inradius, or [[apothem]].
 
InThe additionregular toicositrigon notis beingnot [[Constructible polygon|constructible]] with a [[Straightedge and compass construction|compass and straightedge]] or [[angle trisection]],<ref>''{{Cite OEIS|A048136|Tomahawk-nonconstructible <math>n</math>-gons'' [[OEIS]]; https://oeis.org/A048136}}</ref> on account of the [[23 (number)|number 23]] being neither a [[Fermat prime|Fermat]] nor [[Pierpont prime#Polygon construction|Pierpont prime]]. In addition, the regular icositrigon is the [[Neusis construction#Use of the neusis|smallest regular polygon that is not constructible even with neusis]], after the discovery of neusis construction of the [[hendecagon]] by Elliot Benjamin and Chip Snyder in 2014.<ref>Benjamin, Elliot; Snyder, C. Mathematical Proceedings of the Cambridge Philosophical Society156.3 (May 2014): 409-424.; https://dx.doi.org/10.1017/S0305004113000753</ref>
 
Concerning the nonconstructability of the regular icositrigon, A. Baragar (2002) showed it is not possible to construct a regular 23-gon using only a compass and twice-notched straightedge by demonstrating that every point constructible with said method lies in a tower of [[Field (mathematics)|fields]] over <math>\Q</math> such that <math>\Q = K_0 \subset K_1 \subset \dots \subset K_n = K</math>, being a sequence of nested fields in which the degree of the extension at each step is 2, 3, 5, or 6.
 
Suppose <math>\alpha</math> in <math>\CComplex</math> is constructible using a compass and twice-notched
straightedge. Then <math>\alpha</math> belongs to a field <math>K</math> that lies in a tower of fields
<math>\Q = K_0 \subset K_1 \subset \dots \subset K_n = K</math>
for which the index [<math>[K_j</math> : K_{{math|''K''<sub>''j−1''j - 1}]</submath>}}] at each step is 2, 3, 5, or 6. In particular, if <math>N =</math> [<math>K</math> :
<math>\Q]</math>], then the only primes dividing <math>N</math> are 2, 3, and 5. (Theorem 5.1)
 
If we can construct the regular p-gon, then we can construct <math>\zeta_p = e^\frac{2\pi i}{p}</math>, which is the root of an [[irreducible polynomial]] of degree <math>p</math> {{math|−}}- <math>1</math>. By Theorem 5.1, <math>\zeta_p</math> lies in a field <math>K</math> of degree <math>N</math> over <math>\Q</math>, where the only primes that divide <math>N</math> are 2, 3, and 5. But <math>\Q</math>[<math>\zeta_p]</math>] is a subfield of <math>K</math>, so <math>p</math> {{math|−}}- <math>1</math> divides <math>N</math>. In particular, for <math>p = 23</math>, <math>N</math> must be divisible by 11, and for <math>p = 29</math>, ''N'' must be divisible by 7.<ref>Arthur{{cite journal
| last1=Baragar (| first1=Arthur
| date=2002)
| title=Constructions Using a Compass and TwiceNotchedTwice-Notched Straightedge,
| journal=The American Mathematical Monthly, 109:2, 151-164, DOI:
| volume=109
10.1080/00029890.2002.11919848
| issue=2
https://doi.org/10.1080/00029890.2002.11919848</ref><span>∎
| pages=151-164
| doi=10.1080/00029890.2002.11919848}}</ref>
 
This result establishes, considering prime-power regular polygons less than the 100-gon, that it is impossible to construct the 23-, 29-, 43-, 47-, 49-, 53-, 59-, 67-, 71-, 79-, 83-, and 89-gons with neusis. But it is not strong enough to decide the cases of the [[hendecagon|11-]], 25-, 31-, 41-, and 61-gons. Elliot Benjamin and Chip Snyder discovered in 2014 that the regular hendecagon (11-gon) is neusis constructible; the remaining cases are still open.<ref>{{cite journal
It should also be noted that an icositrigon is not [[Mathematics of paper folding#Constructions|origami constructible]] either, given 23 is not a Pierpont prime, nor a [[Powers of two|power of two]] or [[Power of three|three]].<ref>Young Lee, H. (2017) ''Origami-Constructible Numbers'' University of Georgia
| last1=Benjamin | first1=Elliot
https://getd.libs.uga.edu/pdfs/lee_hwa-young_201712_ma.pdf</ref> However, it can be made constructible via the use of the [[Quadratrix of Hippias]], [[Archimedean spiral]], and other [[Angle_trisection#With_an_auxiliary_curve|auxiliary curves]]; yet this is true for all regular polygons.<ref>P. Milici, R. Dawson ''The equiangular compass'' December 1st, 2012, The Mathematical Intelligencer, Vol. 34, Issue 4 https://www.researchgate.net/profile/Pietro_Milici2/publication/257393577_The_Equiangular_Compass/links/5d4c687da6fdcc370a8725e0/The-Equiangular-Compass.pdf</ref>
| last2=Snyder | first2=C.
| title=On the construction of the regular hendecagon by marked ruler and compass
| journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]]
| volume=156
| issue=3
| date=May 2014
| pages=409-424
| doi=10.1017/S0305004113000753}}</ref>
 
It should also be noted that anAn icositrigon is not [[Mathematics of paper folding#Constructions|origami constructible]] either, givenbecause 23 is not a Pierpont prime, nor a [[Powers of two|power of two]] or [[Power of three|three]].<ref>Young Lee, H. (2017) ''Origami-Constructible Numbers'' University of Georgia
 
https://getd.libs.uga.edu/pdfs/lee_hwa-young_201712_ma.pdf</ref> It can be constructed using the [[quadratrix of Hippias]], [[Archimedean spiral]], and other [[Angle trisection#With an auxiliary curve|auxiliary curves]]; yet this is true for all regular polygons.<ref>{{cite journal
==Approximate construction==
| last1=Milici | first1=P.
 
| last2=Dawson | first2=R.
[[File:01-23-Näherung E-15-Animation.gif|500px|thumb|left|A proximity construction animation]]
| title=The equiangular compass
{{clear}}
| date=December 2012
 
| journal=The Mathematical Intelligencer
=== Based on the unit circle r = 1 [unit of length] ===
| volume=34
* Constructed side length of the icositrigon in [https://de.wikipedia.org/wiki/GeoGebra GeoGebra] (Display max 15 decimal places) <math> a = 0.272333298192493\; [unit\;of\;length]</math>
| issue=4
* Side length of the icositrigon <math> a_{target} = 2 \cdot \sin\left(\frac{180^\circ}{23} \right) = 0.272333298192493\ldots\;[unit\;of\;length]</math>
| pages=63–67
* Absolute error of the constructed side length
| doi=10.1007/s00283-012-9308-x
: Up to the max. displayed 15 decimal places is the absolute error<math> F_a = a - a_{target} = 0.0\; [unit\;of\;length]</math>
| url=https://www.researchgate.net/profile/Pietro_Milici2/publication/257393577_The_Equiangular_Compass/links/5d4c687da6fdcc370a8725e0/The-Equiangular-Compass.pdf}}</ref>
* Constructed central angle of the icositrigon in GeoGebra (display significant 13 decimal places, rounded) <math> \mu = 15.6521739130435^\circ</math>
* Central angle of the icositrigon <math> \mu_{target} = \frac{360^\circ}{23} = 15.65217391304347\ldots^\circ</math>
* Absolute error of the constructed central angle
: Up to the rounded significant 13 decimal places is the absolute error <math> F_\mu = \mu - \mu_{target} = 0^\circ</math>
 
=== Example to illustrate the error ===
At a circumscribed circle radius '''r = 1 billion km''' (the light needed for this distance about 55 minutes), the absolute error of the 1st side would be '''< 1&nbsp;mm'''.
 
==Related figures==
Below is a table of fiveten regular icositrigrams, or [[Star polygons|star]] 23-gons, labeled with their respective [[Schläfli symbol]] {23/q}, 2 <small><math>\leq</math></small> q <small><math>\leq</math></small> 11 where q is prime.
 
{| class="wikitable"
Line 51 ⟶ 60:
|[[File:Regular star polygon 23-2.svg|85px]]<br>{23/2}
|[[File:Regular star polygon 23-3.svg|85px]]<br>{23/3}
|[[File:Regular star polygon 23-4.svg|85px]]<br>{23/4}
|[[File:Regular star polygon 23-5.svg|85px]]<br>{23/5}
|[[File:Regular star polygon 23-6.svg|85px]]<br>{23/6}
|- align=center
|[[File:Regular star polygon 23-7.svg|85px]]<br>{23/7}
|[[File:Regular star polygon 23-8.svg|85px]]<br>{23/8}
|[[File:Regular star polygon 23-9.svg|85px]]<br>{23/9}
|[[File:Regular star polygon 23-10.svg|85px]]<br>{23/10}
|[[File:Regular star polygon 23-11.svg|85px]]<br>{23/11}
|}
Line 59 ⟶ 74:
{{Reflist}}
 
==External Linkslinks==
* {{cite journal
[https://link.springer.com/article/10.1007/s11786-020-00491-z|Automated Detection of Interesting Properties in Regular Polygons]
| last1=Kovács | first1=Zoltán
[https://link.springer.com/article/10.1007/s11786-020-00491-z| title=Automated Detection of Interesting Properties in Regular Polygons]
| journal=Mathematics in Computer Science
| volume=14
| pages=727–755
| date=2020
| doi=10.1007/s11786-020-00491-z| doi-access=free
}}
 
{{Polygons}}
 
[[Category:Polygons by the number of sides]]
[[Category: 23 (number)]]