Ordovician: Difference between revisions

Content deleted Content added
Changed the infobox image to one with a source.
Global/regional correlation: removing link since it redirects to this page!
 
(19 intermediate revisions by 12 users not shown)
Line 1:
{{shortShort description|Second period of the Paleozoic Era 485–444 million years ago}}
 
{{Infobox geologic timespan
Line 10:
| time_end_uncertainty = 1.5
| image_map = Mollweide Paleographic Map of Earth, 465 Ma (Darriwilian Age).png
| caption_map = A map of Earth as it appeared 465 million years ago during the Middle Ordovician, Darriwilian ageEpoch
| timeline = Ordovician
<!--Etymology-->
Line 37:
| lower_gssp_location = Greenpoint section, [[Green Point, Newfoundland|Green Point]], [[Newfoundland]], [[Canada]]
| lower_gssp_coords = {{Coord|49.6829|N|57.9653|W|display=inline}}
| lower_gssp_accept_date = 2000<ref>{{cite journal |last1=Cooper |first1=Roger |last2=Nowlan |first2=Godfrey |last3=Williams |first3=S. H. |title=Global Stratotype Section and Point for base of the Ordovician System |journal=Episodes |date=March 2001 |volume=24 |issue=1 |pages=19–28 |doi=10.18814/epiiugs/2001/v24i1/005 |doi-access=free |url=https://stratigraphy.org/gssps/files/tremadocian.pdf |access-date=6 December 2020 |archive-date=11 January 2021 |archive-url=https://web.archive.org/web/20210111103733/https://stratigraphy.org/gssps/files/tremadocian.pdf |url-status=live }}</ref>
| upper_boundary_def = FAD of the [[Graptolite]] ''[[Akidograptus ascensus]]''
| upper_gssp_location = [[Dob's Linn]], [[Moffat]], [[United Kingdom|U.K.]]
Line 49:
The Ordovician, named after the [[Celtic Britons|Welsh]] tribe of the [[Ordovices]], was defined by [[Charles Lapworth]] in 1879 to resolve a dispute between followers of [[Adam Sedgwick]] and [[Roderick Murchison]], who were placing the same [[Rock (geology)|rock]] beds in [[North Wales]] in the Cambrian and Silurian systems, respectively.<ref>Charles Lapworth (1879) [https://books.google.com/books?id=JJpZAAAYAAJ&pg=PA1 "On the Tripartite Classification of the Lower Palaeozoic Rocks"]{{Dead link|date=October 2023 |bot=InternetArchiveBot |fix-attempted=yes }}, ''Geological Magazine'', new series, '''6''' : 1-15. From pp. 13-14: "North Wales itself — at all events the whole of the great Bala district where Sedgwick first worked out the physical succession among the rocks of the intermediate or so-called ''Upper Cambrian'' or ''Lower Silurian'' system; and in all probability, much of the Shelve and the Caradoc area, whence Murchison first published its distinctive fossils — lay within the territory of the Ordovices; … Here, then, have we the hint for the appropriate title for the central system of the Lower Paleozoic. It should be called the Ordovician System, after this old British tribe."</ref> Lapworth recognized that the [[fossil]] [[fauna]] in the disputed [[Stratum|strata]] were different from those of either the Cambrian or the Silurian systems, and placed them in a system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it was adopted as an official period of the Paleozoic Era by the [[International Union of Geological Sciences|International Geological Congress]].
 
Life continued to flourish during the Ordovician as it didhad in the earlier Cambrian Period, although the end of the period was marked by the [[Ordovician–Silurian extinction events]]. Invertebrates, namely [[Mollusca|molluscs]] and [[arthropod]]s, dominated the oceans, with members of the latter group probably starting their establishment on land during this time, becoming fully established by the [[Devonian]]. The first [[land plants]] are known from this period. The [[Great Ordovician Biodiversification Event]] considerably increased the diversity of life. [[Fish]], the world's first true [[vertebrate]]s, continued to evolve, and [[Gnathostomata|those with jaws]] may have first appeared late in the period. About 100 times as many meteorites struck the Earth per year during the Ordovician compared with today in a period known as the [[Ordovician meteor event]].<ref>{{cite web | url=https://www.sciencedaily.com/releases/2016/06/160615135230.htm | title=New type of meteorite linked to ancient asteroid collision | website=Science Daily | date=15 June 2016 | access-date=20 June 2016 | archive-date=3 April 2019 | archive-url=https://web.archive.org/web/20190403222034/https://www.sciencedaily.com/releases/2016/06/160615135230.htm | url-status=live }}</ref> It has been theorized that this increase in impacts may originate from [[Rings of Earth|a ring system]] that formed around Earth at the time.<ref name=":0">{{Cite journal |lastlast1=Tomkins |firstfirst1=Andrew G. |last2=Martin |first2=Erin L. |last3=Cawood |first3=Peter A. |date=2024-11-15 |title=Evidence suggesting that earth had a ring in the Ordovician |url=https://linkinghub.elsevier.com/retrieve/pii/S0012821X24004230 |journal=Earth and Planetary Science Letters |volume=646 |pages=118991 |doi=10.1016/j.epsl.2024.118991 |issn=0012-821X|doi-access=free }}</ref>
 
==Subdivisions{{anchor|Subdivisions}}==
{{anchor|Tremadocian}}
In 2008, the [[International Classification for Standards|ICS]] erected a formal international system of subdivisions for the Ordovician Period and System.<ref>Details on the Dapingian are available at {{Cite journal| first1 = X.| first2 = S.| first3 = X.| first4 = Z.| first5 = C.| title = Dapingian Stage: standard name for the lowermost global stage of the Middle Ordovician Series| journal = [[Lethaia]]| volume = 42| issue = 3| pages = 377–380| last1 = Wang| year = 2009| doi = 10.1111/j.1502-3931.2009.00169.x| last2 = Stouge| last3 = Chen| last4 = Li| last5 = Wang}}</ref> Pre-existing Baltoscandic, British, Siberian, North American, Australian, Chinese, Mediterranean and North-[[Gondwana]]n regional stratigraphic schemes are also used locally.<ref>{{cite web |title=The Ordovician Period |url=https://ordovician.stratigraphy.org/period |website=Subcommission on Ordovician Stratigraphy |publisher=International Commission on Stratigraphy |access-date=7 June 2021 |date=2020 |archive-date=11 May 2022 |archive-url=https://web.archive.org/web/20220511072916/https://ordovician.stratigraphy.org/period |url-status=live }}</ref>
 
=== ICS (global) subdivisions ===
{| class="wikitable" width="37%" rules="all" cellpadding=1 style="margin-left:20px; font-size:95%;"
|+The Ordovician subdivisions with "[[GSSP|golden spikes]]" according to [[IUGS]]:<ref>{{cite web|url=https://stratigraphy.org/chart#latest-version|title=Latest version of international chronostratigraphic chart|website=International Commission on Stratigraphy|lang=en|access-date=2024-05-01|archive-date=2014-05-30|archive-url=https://web.archive.org/web/20140530005940/http://www.stratigraphy.org/index.php/ics-chart-timescale#latest-version|url-status=live}}</ref>
! System
! Series
! Stage/age
! Lower boundary ([[Annum|Ma]])
|-
| style="background-color: {{period color|Silurian}}" | <small>[[Silurian]]</small>
| style="background-color: {{period color|Llandovery}}" | <small>[[Llandovery Epoch|Llandovery]]</small>
| style="background-color: {{period color|Rhuddanian}}" | <small>[[Rhuddanian]]</small>
| style="background-color: {{period color|Rhuddanian}}" align="center"|<small>443.8±1.5</small>
|-
| rowspan="7" style="background-color: {{period color|Ordovician}}" | '''Ordovician'''
| rowspan="3" style="background-color: {{period color|Upper Ordovician}}" | [[Upper Ordovician]]
| style="background-color: {{period color|Hirnantian}}" | [[Hirnantian]]
| style="background-color: {{period color|Hirnantian}}" | [[File:Clavo dorado.svg|10px]]445.2±1.4
|-
| style="background-color: {{period color|Katian}}" | [[Katian]]
| style="background-color: {{period color|Katian}}" | [[File:Clavo dorado.svg|10px]]453.0±0.7
|-
| style="background-color: {{period color|Sandbian}}" | [[Sandbian]]
| style="background-color: {{period color|Sandbian}}" | [[File:Clavo dorado.svg|10px]]458.4±0.9
|-
| rowspan="2" style="background-color: {{period color|Middle Ordovician}}" | '''Middle Ordovician'''
| style="background-color: {{period color|Darriwilian}}" | [[Darriwilian]]
| style="background-color: {{period color|Darriwilian}}" | [[File:Clavo dorado.svg|10px]]467.3±1.1
|-
| style="background-color: {{period color|Dapingian}}" | [[Dapingian]]
| style="background-color: {{period color|Dapingian}}" | [[File:Clavo dorado.svg|10px]]470.0±1.4
|-
| rowspan="2" style="background-color: {{period color|Lower Ordovician}}" | [[Lower Ordovician]]
| style="background-color: {{period color|Floian}}" | [[Floian]]
| style="background-color: {{period color|Floian}}" | [[File:Clavo dorado.svg|10px]]477.7±1.4
|-
| style="background-color: {{period color|Tremadocian}}" | [[Tremadocian]]
| style="background-color: {{period color|Tremadocian}}" | [[File:Clavo dorado.svg|10px]]485.4±1.9
|-
| style="background-color: {{period color|Cambrian}}" |<small>[[Cambrian]]</small>
| style="background-color: #b6dcad;" |<small>[[Furongian]]</small>
| style="background-color: {{period color|Stage 10}}" |<small>[[Cambrian Stage 10|Stage 10]]</small>
| style="background-color: {{period color|Stage 10}}" align="center"|<small>'''older'''</small>
|}
 
=== Global/regional correlation ===
Line 130 ⟶ 86:
| rowspan="5" |
|-
| rowspan="5" |[[Middle Ordovician]]|| rowspan="3" |[[Darriwilian]]|| rowspan="2" |[[Llanvirn]]|| Llandeilo|| rowspan="3" | [[Darriwilian]]
| rowspan="3" |[[Darriwilian]]
|-
Line 180 ⟶ 136:
 
==Paleogeography and tectonics==
[[File:Earth Paleogeography 480 Ma (Early Ordovician, 470Tremadocian).svgpng|thumb|Paleogeographic map of the Earth in the middleearly Ordovician, 470480 million years ago]]
[[File:Earth Paleogeography 470 Ma (Early-Middle Ordovician, Dapingian).png|thumb|Paleogeographic map of the Earth in the middle Ordovician, 470 million years ago]]
[[File:Earth Paleogeography 450 Ma (Late Ordovician, Katian).png|thumb|Paleogeographic map of the Earth in the late Ordovician, 450 million years ago]]
During the Ordovician, the southern continents were assembled into [[Gondwana]], which reached from north of the [[equator]] to the [[South Pole]]. The Panthalassic Ocean, centered in the northern hemisphere, covered over half the globe.<ref>{{cite book |last1=Torsvik |first1=Trond H. |last2=Cocks |first2=L. Robin M. |title=Earth history and palaeogeography |date=2017 |publisher=Cambridge University Press |location=Cambridge, United Kingdom |isbn=9781107105324 |page=102}}</ref> At the start of the period, the continents of [[Laurentia]] (in present-day [[North America]]), [[Siberia (continent)|Siberia]], and [[Baltica]] (present-day northern Europe) were separated from Gondwana by over {{convert|5000|km||}} of ocean. These smaller continents were also sufficiently widely separated from each other to develop distinct communities of benthic organisms.{{sfn|Torsvik|Cocks|2017|p=102}} The small continent of [[Avalonia]] had just rifted from Gondwana and began to move north towards Baltica and Laurentia, opening the [[Rheic Ocean]] between Gondwana and Avalonia.<ref>{{cite journal |last1=Pollock |first1=Jeffrey C. |last2=Hibbard |first2=James P. |last3=Sylvester |first3=Paul J. |title=Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland |journal=[[Journal of the Geological Society]] |date=May 2009 |volume=166 |issue=3 |pages=501–515 |doi=10.1144/0016-76492008-088|bibcode=2009JGSoc.166..501P |s2cid=129091590 }}</ref><ref>{{cite journal |last1=Nance |first1=R. Damian |last2=Gutiérrez-Alonso |first2=Gabriel |last3=Keppie |first3=J. Duncan |last4=Linnemann |first4=Ulf |last5=Murphy |first5=J. Brendan |last6=Quesada |first6=Cecilio |last7=Strachan |first7=Rob A. |last8=Woodcock |first8=Nigel H. |title=A brief history of the Rheic Ocean |journal=Geoscience Frontiers |date=March 2012 |volume=3 |issue=2 |pages=125–135 |doi=10.1016/j.gsf.2011.11.008|doi-access=free }}</ref>{{sfn|Torsvik|Cocks|2017|p=103}} Avalonia collided with Baltica towards the end of Ordovician.<ref>{{cite journal |last1=Trela |first1=Wieslaw |date=15 July 2005 |title=Condensation and phosphatization of the Middle and Upper Ordovician limestones on the Malopolska Block (Poland): Response to paleoceanographic conditions |url=https://www.sciencedirect.com/science/article/abs/pii/S0037073805001910 |journal=Sedimentary Geology |volume=117 |issue=3–4 |pages=219–236 |doi=10.1016/j.sedgeo.2005.05.005 |access-date=21 May 2023 |archive-date=22 May 2023 |archive-url=https://web.archive.org/web/20230522055504/https://www.sciencedirect.com/science/article/abs/pii/S0037073805001910 |url-status=live }}</ref>{{sfn|Torsvik|Cocks|2017|p=112}}
 
Line 191 ⟶ 149:
The [[ash fall]] of the Millburg/Big Bentonite bed, at about 454 Ma, was the largest in the last 590 million years. This had a [[dense rock equivalent]] volume of as much as {{convert|1140|km3||}}. Remarkably, this appears to have had little impact on life.<ref>{{cite journal |last1=Huff |first1=Warren D. |last2=Bergström |first2=Stig M. |last3=Kolata |first3=Dennis R. |title=Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance |journal=[[Geology (journal)|Geology]] |date=1992-10-01 |volume=20 |issue=10 |pages=875–878 |doi=10.1130/0091-7613(1992)020<0875:GOVAFI>2.3.CO;2|bibcode=1992Geo....20..875H }}</ref>
 
There was vigorous tectonic activity along northwest margin of Gondwana during the Floian, 478 Ma, recorded in the Central Iberian Zone of Spain. The activity reached as far as Turkey by the end of Ordovician. The opposite margin of Gondwana, in Australia, faced a set of island arcs.{{sfn|Torsvik|Cocks|2017|p=102}} The accretion of these arcs to the eastern margin of Gondwana was responsible for the Benambran Orogeny of eastern Australia.<ref>{{cite journal |last1=Glen |first1=R. A. |last2=Meffre |first2=S. |last3=Scott |first3=R. J. |title=Benambran Orogeny in the Eastern Lachlan Orogen, Australia |journal=[[Australian Journal of Earth Sciences]] |date=March 2007 |volume=54 |issue=2–3 |pages=385–415 |doi=10.1080/08120090601147019|bibcode=2007AuJES..54..385G |s2cid=129843558 }}</ref>{{sfn|Torsvik|Cocks|2017|p=105}} Subduction also took place along what is now Argentina (Famatinian Orogeny) at 450 Ma.<ref>{{cite journalbook |last1=Ramos |first1=Victor A. |titlechapter=The Famatinian Orogen Along the Protomargin of Western Gondwana: Evidence for a Nearly Continuous Ordovician Magmatic Arc Between Venezuela and Argentina |journaltitle=The Evolution of the Chilean-Argentinean Andes |series=Springer Earth System Sciences |date=2018 |pages=133–161 |doi=10.1007/978-3-319-67774-3_6|isbn=978-3-319-67773-6 }}</ref> This involved significant back arc rifting.{{sfn|Torsvik|Cocks|2017|p=102}} The interior of Gondwana was tectonically quiet until the [[Triassic]].{{sfn|Torsvik|Cocks|2017|p=102}}
 
Towards the end of the period, Gondwana began to drift across the South Pole. This contributed to the Hibernian glaciation and the associated extinction event.{{sfn|Torsvik|Cocks|2017|pp=103–105}}
Line 206 ⟶ 164:
==Climate and sea level==
 
The Early Ordovician climate was very hot,<ref>{{Cite journal |last1=M. Marcilly |first1=Chloé |last2=Maffre |first2=Pierre |last3=Le Hir |first3=Guillaume |last4=Pohl |first4=Alexandre |last5=Fluteau |first5=Frédéric |last6=Goddéris |first6=Yves |last7=Donnadieu |first7=Yannick |last8=H. Heimdal |first8=Thea |last9=Torsvik |first9=Trond H. |date=15 September 2022 |title=Understanding the early Paleozoic carbon cycle balance and climate change from modelling |url=https://www.sciencedirect.com/science/article/pii/S0012821X22003533 |journal=[[Earth and Planetary Science Letters]] |volume=594 |pages=117717 |doi=10.1016/j.epsl.2022.117717 |issn=0012-821X |access-date=17 September 2023 |hdl=10852/94890 |hdl-access=free |archive-date=7 October 2023 |archive-url=https://web.archive.org/web/20231007025150/https://www.sciencedirect.com/science/article/pii/S0012821X22003533 |url-status=live }}</ref> with intense [[Greenhouse and icehouse Earth|greenhouse]] conditions and [[sea surface temperature]]s comparable to those during the Early Eocene Climatic Optimum.<ref>{{cite journal |last1=Bergmann |first1=Kristin D. |last2=Finnegan |first2=Seth |last3=Creel |first3=Roger |last4=Eiler |first4=John M. |last5=Hughes |first5=Nigel C. |last6=Popov |first6=Leonid E. |last7=Fischer |first7=Woodward W. |date=1 March 2018 |title=A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition |journal=[[Geochimica et Cosmochimica Acta]] |volume=224 |pages=18–41 |doi=10.1016/j.gca.2017.11.015 |bibcode=2018GeCoA.224...18B |doi-access=free }}</ref> [[Carbon dioxide]] levels were very high at the Ordovician period's beginning.<ref>{{Cite journal |lastlast1=Brandt |firstfirst1=Danita S. |last2=Elias |first2=Robert J. |date=1989 |title=Temporal variations in tempestite thickness may be a geologic record of atmospheric CO2 |url=https://pubs.geoscienceworld.org/geology/article/17/10/951-952/186520 |journal=[[Geology (journal)|Geology]] |language=en |volume=17 |issue=10 |pages=951 |doi=10.1130/0091-7613(1989)017<0951:TVITTM>2.3.CO;2 |issn=0091-7613 |access-date=30 September 2023}}</ref> By the late Early Ordovician, the Earth cooled,<ref name="MayaElrick">{{cite journal |last1=Elrick |first1=Maya |date=1 October 2022 |title=Orbital-scale climate changes detected in Lower and Middle Ordovician cyclic limestones using oxygen isotopes of conodont apatite |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=603 |page=111209 |doi=10.1016/j.palaeo.2022.111209 |bibcode=2022PPP...603k1209E |doi-access=free }}</ref> giving way to a more temperate climate in the Middle Ordovician,<ref>{{Cite journal|last1=Goldberg|first1=Samuel L.|last2=Present|first2=Theodore M.|last3=Finnegan|first3=Seth|last4=Bergmann|first4=Kristin D.|date=2021-02-09|title=A high-resolution record of early Paleozoic climate|journal=[[Proceedings of the National Academy of Sciences of the United States of America]]|language=en|volume=118|issue=6|pages=e2013083118|doi=10.1073/pnas.2013083118|pmid=33526667|pmc=8017688|bibcode=2021PNAS..11813083G|issn=0027-8424|doi-access=free }}</ref> with the Earth likely entering the [[Late Ordovician glaciation|Early Palaeozoic Ice Age]] during the Sandbian,<ref>{{cite journal |last1=Vandenbroucke |first1=Thijs R. A. |last2=Armstrong |first2=Howard A. |last3=Williams |first3=Mark |last4=Paris |first4=Florentin |last5=Sabbe |first5=Koen |last6=Zalasiewicz |first6=Jan A. |last7=Nõlvak |first7=Jaak |last8=Verniers |first8=Jacques |date=15 August 2010 |title=Epipelagic chitinozoan biotopes map a steep latitudinal temperature gradient for earliest Late Ordovician seas: Implications for a cooling Late Ordovician climate |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018209005215 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=294 |issue=3–4 |pages=202–219 |doi=10.1016/j.palaeo.2009.11.026 |bibcode=2010PPP...294..202V |access-date=29 December 2022 |archive-date=29 December 2022 |archive-url=https://web.archive.org/web/20221229202739/https://www.sciencedirect.com/science/article/abs/pii/S0031018209005215 |url-status=live }}</ref><ref>{{cite journal |last1=Rosenau |first1=Nicholas A. |last2=Hermann |first2=Achim D. |last3=Leslie |first3=Stephen A. |date=15 January 2012 |title=Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: Implications for initiation of Late Ordovician icehouse conditions |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018211005839 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=315-316 |pages=172–180 |doi=10.1016/j.palaeo.2011.12.003 |bibcode=2012PPP...315..172R |access-date=29 December 2022 |archive-date=7 April 2019 |archive-url=https://web.archive.org/web/20190407015109/https://www.sciencedirect.com/science/article/pii/S0031018211005839 |url-status=live }}</ref> and possibly as early as the Darriwilian<ref name ="EPIA">{{cite journal |last1=Pohl |first1=Alexandre |last2=Donnadieu |first2=Yannick |last3=Le Hir |first3=Guillaume |last4=Ladant |first4=Jean-Baptiste |last5=Dumas |first5=Christophe |last6=Alvarez-Solas |first6=Jorge |last7=Vandenbroucke |first7=Thijs R. A. |date=28 May 2016 |title=Glacial onset predated Late Ordovician climate cooling |journal=[[Paleoceanography and Paleoclimatology]] |volume=31 |issue=6 |pages=800–821 |doi=10.1002/2016PA002928 |bibcode=2016PalOc..31..800P |s2cid=133243759 |doi-access=free |hdl=1854/LU-8057556 |hdl-access=free }}</ref> or even the Floian.<ref name="MayaElrick" /> The Dapingian and Sandbian saw major humidification events evidenced by trace metal concentrations in Baltoscandia from this time.<ref name="HumidClimaticEvents">{{Cite journal |lastlast1=Kiipli |firstfirst1=Enli |last2=Kiipli |first2=Tarmo |last3=Kallaste |first3=Toivo |last4=Pajusaar |first4=Siim |date=December 2017 |title=Trace elements indicating humid climatic events in the Ordovician–early Silurian |url=https://linkinghub.elsevier.com/retrieve/pii/S0009281917300168 |journal=Geochemistry |language=en |volume=77 |issue=4 |pages=625–631 |doi=10.1016/j.chemer.2017.05.002 |access-date=23 July 2024 |via=Elsevier Science Direct}}</ref> Evidence suggests that global temperatures rose briefly in the early Katian (Boda Event), depositing bioherms and radiating fauna across Europe.<ref>{{cite journal |last1=Fortey |first1=Richard A. |last2=Cocks |first2=L. Robin M. |title=Late Ordovician global warming—The Boda event |journal=[[Geology (journal)|Geology]] |date=2005 |volume=33 |issue=5 |pages=405 |doi=10.1130/G21180.1|bibcode=2005Geo....33..405F }}</ref> The early Katian also witnessed yet another humidification event.<ref name="HumidClimaticEvents" /> Further cooling during the Hirnantian, at the end of the Ordovician, led to the [[Late Ordovician glaciation]].<ref>{{Cite journal|last1=Trotter|first1=J. A.|last2=Williams|first2=I. S.|last3=Barnes|first3=C. R.|last4=Lecuyer|first4=C.|last5=Nicoll|first5=R. S.|date=2008-07-25|title=Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry|url=https://www.science.org/doi/10.1126/science.1155814|journal=[[Science (journal)|Science]]|language=en|volume=321|issue=5888|pages=550–554|doi=10.1126/science.1155814|pmid=18653889|bibcode=2008Sci...321..550T|s2cid=28224399|issn=0036-8075|access-date=2022-06-30|archive-date=2022-10-06|archive-url=https://web.archive.org/web/20221006184654/https://www.science.org/doi/10.1126/science.1155814|url-status=live}}</ref>
 
The Ordovician saw the highest sea levels of the Paleozoic, and the low relief of the continents led to many shelf deposits being formed under hundreds of metres of water.<ref name=Munnecke2010/> The sea level rose more or less continuously throughout the Early Ordovician, leveling off somewhat during the middle of the period.<ref name=Munnecke2010/> Locally, some regressions occurred, but the sea level rise continued in the beginning of the Late Ordovician. Sea levels fell steadily due to the cooling temperatures for about 3 million years leading up to the Hirnantian glaciation. During this icy stage, sea level seems to have risen and dropped somewhat. Despite much study, the details remain unresolved.<ref name=Munnecke2010/> In particular, some researches interpret the fluctuations in sea level as pre-Hibernian glaciation,<ref>{{cite journal |last1=Rasmussen |first1=Christian M. Ø. |last2=Ullmann |first2=Clemens V. |last3=Jakobsen |first3=Kristian G. |last4=Lindskog |first4=Anders |last5=Hansen |first5=Jesper |last6=Hansen |first6=Thomas |last7=Eriksson |first7=Mats E. |last8=Dronov |first8=Andrei |last9=Frei |first9=Robert |last10=Korte |first10=Christoph |last11=Nielsen |first11=Arne T. |last12=Harper |first12=David A.T. |title=Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse |journal=[[Scientific Reports]] |date=May 2016 |volume=6 |issue=1 |pages=18884 |doi=10.1038/srep18884|pmid=26733399 |pmc=4702064 |bibcode=2016NatSR...618884R }}</ref> but sedimentary evidence of glaciation is lacking until the end of the period.{{sfn|Torsvik|Cocks|2017|p=112}} There is evidence of [[glacier]]s during the Hirnantian on the [[Gondwana|land we now know]] as Africa and South America, which were near the [[South Pole]] at the time, facilitating the formation of the [[ice cap]]s of the Hirnantian glaciation.
Line 221 ⟶ 179:
[[File:Isotelus trilobite from Wisconsin.jpg|thumb|The trilobite ''[[Isotelus]]'' from [[Wisconsin]]]]
On the whole, the fauna that emerged in the Ordovician were the template for the remainder of the Palaeozoic. The fauna was dominated by tiered communities of suspension feeders, mainly with short food chains. The ecological system reached a new grade of complexity far beyond that of the Cambrian fauna, which has persisted until the present day.<ref name=Munnecke2010>{{Cite journal| last1 = Munnecke| first1 = Axel| last2 = Calner| first2 = M.| last3 = Harper| first3 = David A. T.| author-link3 = David Harper (palaeontologist)| last4 = Servais| first4 = Thomas| title = Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis| journal = [[Palaeogeography, Palaeoclimatology, Palaeoecology]]| url = https://www.sciencedirect.com/science/article/abs/pii/S0031018210004785| volume = 296| issue = 3–4| pages = 389–413| year = 2010| doi = 10.1016/j.palaeo.2010.08.001| bibcode = 2010PPP...296..389M| access-date = 16 August 2023| archive-date = 17 August 2023| archive-url = https://web.archive.org/web/20230817055224/https://www.sciencedirect.com/science/article/abs/pii/S0031018210004785| url-status = live}}</ref> Though less famous than the [[Cambrian explosion]], the [[Ordovician radiation]] (also known as the Great Ordovician Biodiversification Event){{sfn|Torsvik|Cocks|2017|p=102}} was no less remarkable; marine faunal [[genus|genera]] increased fourfold, resulting in 12% of all known [[Phanerozoic]] marine fauna.<ref name="Dixon2001">{{cite book |title=Atlas of Life on Earth |last=Dixon |first=Dougal |year=2001 |publisher=Barnes & Noble Books |location=New York |isbn=978-0-7607-1957-2 |pages=87 |display-authors=etal}}</ref> Several animals also went through a miniaturization process, becoming much smaller than their Cambrian counterparts.{{Citation needed|date=September 2023}} Another change in the fauna was the strong increase in [[Filter feeder|filter-feeding]] organisms.<ref>[http://www.palaeos.com/Paleozoic/Ordovician/Ordovician.htm Palaeos Paleozoic : Ordovician : The Ordovician Period] {{webarchive|url=https://web.archive.org/web/20071221094614/http://www.palaeos.com/Paleozoic/Ordovician/Ordovician.htm |date=21 December 2007}}</ref> The trilobite, inarticulate brachiopod, [[Archaeocyatha|archaeocyathid]], and [[Eocrinoidea|eocrinoid]] faunas of the Cambrian were succeeded by those that dominated the rest of the Paleozoic, such as articulate brachiopods, [[cephalopod]]s, and [[crinoid]]s. Articulate brachiopods, in particular, largely replaced trilobites in [[continental shelf|shelf]] communities. Their success epitomizes the greatly increased diversity of [[calcium carbonate|carbonate]] shell-secreting organisms in the Ordovician compared to the Cambrian.<ref name="Cooper1986">{{cite book |title=A Trip Through Time: Principles of Historical Geology |last=Cooper |first=John D. |author2=Miller, Richard H. |author3=Patterson, Jacqueline |year=1986 |publisher=Merrill Publishing Company |location=Columbus |isbn=978-0-675-20140-7 |pages=[https://archive.org/details/tripthroughtimep0000coop/page/247 247, 255&ndash;259] |url=https://archive.org/details/tripthroughtimep0000coop/page/247 }}</ref>[[File:20191205 Aegirocassis benmoulai Aegirocassis benmoulae.png|left|thumb|''[[Aegirocassis]]'', a large filter-feeding [[Hurdiidae|hurdiid]] [[Radiodonta|radiodont]] from [[Morocco]] ]]
Ordovician geography had its effect on the diversity of fauna; Ordovician invertebrates displayed a very high degree of provincialism.<ref>{{cite journal |last1=Heim |first1=Noel A. |date=8 April 2016 |title=A null biogeographic model for quantifying the role of migration in shaping patterns of global taxonomic richness and differentiation diversity, with implications for Ordovician biogeography |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/null-biogeographic-model-for-quantifying-the-role-of-migration-in-shaping-patterns-of-global-taxonomic-richness-and-differentiation-diversity-with-implications-for-ordovician-biogeography/2FB3853AA935DAD151FC1FB35181A986 |journal=[[Paleobiology (journal)|Paleobiology]] |volume=34 |issue=2 |pages=195–209 |doi=10.1666/0094-8373(2008)034[0195:ANBMFQ]2.0.CO;2 |access-date=18 May 2023 |archive-date=19 May 2023 |archive-url=https://web.archive.org/web/20230519042939/https://www.cambridge.org/core/journals/paleobiology/article/abs/null-biogeographic-model-for-quantifying-the-role-of-migration-in-shaping-patterns-of-global-taxonomic-richness-and-differentiation-diversity-with-implications-for-ordovician-biogeography/2FB3853AA935DAD151FC1FB35181A986 |url-status=live }}</ref> The widely separated continents of Laurentia and Baltica, then positioned close to the tropics and boasting many shallow seas rich in life, developed distinct trilobite faunas from the trilobite fauna of Gondwana,<ref>{{Cite journal |last1=Cocks |first1=L. Robin M. |last2=Torsvik |first2=Trond H. |date=December 2021 |title=Ordovician palaeogeography and climate change |url=https://linkinghub.elsevier.com/retrieve/pii/S1342937X20302756 |journal=[[Gondwana Research]] |language=en |volume=100 |pages=53–72 |doi=10.1016/j.gr.2020.09.008 |access-date=17 September 2023 |doi-access=free |hdl=10852/83447 |hdl-access=free |archive-date=14 May 2023 |archive-url=https://web.archive.org/web/20230514075214/https://linkinghub.elsevier.com/retrieve/pii/S1342937X20302756 |url-status=live }}</ref> and Gondwana developed distinct fauna in its tropical and temperature zones.<ref>{{Cite journal |last1=Cocks |first1=L. R. M. |last2=Fortey |first2=R. A. |date=January 1990 |title=Biogeography of Ordovician and Silurian faunas |url=https://www.lyellcollection.org/doi/10.1144/GSL.MEM.1990.012.01.08 |journal=Geological Society, London, Memoirs |language=en |volume=12 |issue=1 |pages=97–104 |doi=10.1144/GSL.MEM.1990.012.01.08 |issn=0435-4052 |access-date=17 September 2023}}</ref> The Tien Shan terrane maintained a biogeographic affinity with Gondwana,<ref>{{Cite journal |last1=Fortey |first1=Richard A. |last2=Cocks |first2=L.Robin M. |date=June 2003 |title=Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions |url=https://www.sciencedirect.com/science/article/pii/S0012825202001150 |journal=[[Earth-Science Reviews]] |language=en |volume=61 |issue=3–4 |pages=245–307 |doi=10.1016/S0012-8252(02)00115-0 |access-date=17 September 2023}}</ref> and the Alborz margin of Gondwana was linked biogeographically to South China.<ref>{{Cite journal |last1=Ghobadi Pour |first1=M. |last2=Popov |first2=L. E. |last3=Álvaro |first3=J. J. |last4=Amini |first4=A. |last5=Hairapetian |first5=V. |last6=Jahangir |first6=H. |date=23 December 2022 |title=Ordovician of North Iran: New lithostratigraphy, palaeogeography and biogeographical links with South China and the Mediterranean peri-Gondwana margin |url=http://www.geology.cz/bulletin/contents/art1830 |journal=Bulletin of Geosciences |volume=97 |issue=4 |pages=465–538 |access-date=17 September 2023 |archive-date=14 October 2023 |archive-url=https://web.archive.org/web/20231014211020/http://www.geology.cz/bulletin/contents/art1830 |url-status=live }}</ref> Southeast Asia's fauna also maintained strong affinities to Gondwana's.<ref>{{Cite journal |last1=Burrett |first1=Clive |last2=Stait |first2=Bryan |date=October 1985 |title=South East Asia as a part of an Ordovician Gondwanaland—a palaeobiogeographic test of a tectonic hypothesis |url=https://linkinghub.elsevier.com/retrieve/pii/0012821X85901001 |journal=[[Earth and Planetary Science Letters]] |language=en |volume=75 |issue=2–3 |pages=184–190 |doi=10.1016/0012-821X(85)90100-1 |access-date=17 September 2023 |archive-date=22 April 2024 |archive-url=https://web.archive.org/web/20240422215157/https://linkinghub.elsevier.com/retrieve/pii/0012821X85901001 |url-status=live }}</ref> North China was biogeographically connected to Laurentia and the Argentinian margin of Gondwana.<ref>{{Cite journal |last1=Ebbestad |first1=Jan Ove R. |last2=Frýda |first2=Jiří |last3=Wagner |first3=Peter J. |last4=Horný |first4=Radvan J. |last5=Isakar |first5=Mare |last6=Stewart |first6=Sarah |last7=Percival |first7=Ian G. |last8=Bertero |first8=Verònica |last9=Rohr |first9=David M. |last10=Peel |first10=John S. |last11=Blodgett |first11=Robert B. |last12=Högström |first12=Anette E. S. |date=November 2013 |title=Biogeography of Ordovician and Silurian gastropods, monoplacophorans and mimospirids |url=https://www.lyellcollection.org/doi/10.1144/M38.15 |journal=Geological Society, London, Memoirs |language=en |volume=38 |issue=1 |pages=199–220 |doi=10.1144/M38.15 |issn=0435-4052 |access-date=17 September 2023}}</ref> A Celtic biogeographic province also existed, separate from the Laurentian and Baltican ones.<ref>{{Cite journal |last1=Harper |first1=D.A.T. |last2=Mac Niocaill |first2=C. |last3=Williams |first3=S.H. |date=May 1996 |title=The palaeogeography of early Ordovician Iapetus terranes: an integration of faunal and palaeomagnetic constraints |url=https://linkinghub.elsevier.com/retrieve/pii/0031018295000798 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=121 |issue=3–4 |pages=297–312 |doi=10.1016/0031-0182(95)00079-8 |access-date=17 September 2023 |archive-date=16 April 2024 |archive-url=https://web.archive.org/web/20240416004322/https://linkinghub.elsevier.com/retrieve/pii/0031018295000798 |url-status=live }}</ref> However, tropical articulate brachiopods had a more [[cosmopolitan distribution]], with less diversity on different continents. During the Middle Ordovician, beta diversity began a significant decline as marine taxa began to disperse widely across space.<ref>{{cite journal |last1=Penny |first1=Amelia |last2=Kröger |first2=Björn |date=18 November 2019 |title=Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity |url=https://www.nature.com/articles/s41559-019-1035-7 |journal=[[Nature Ecology and Evolution]] |volume=3 |issue=1 |pages=1655–1660 |doi=10.1038/s41559-019-1035-7 |access-date=3 June 2023 |hdl=10138/325369 |hdl-access=free |archive-date=3 June 2023 |archive-url=https://web.archive.org/web/20230603234416/https://www.nature.com/articles/s41559-019-1035-7 |url-status=live }}</ref> Faunas become less provincial later in the Ordovician, partly due to the narrowing of the Iapetus Ocean,<ref>{{Cite journal |last1=Pedersen |first1=R.B. |last2=Bruton |first2=D.L. |last3=Furnes |first3=H. |date=March 1992 |title=Ordovician faunas, island arcs and ophiolites in the Scandinavian Caledonides |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3121.1992.tb00475.x |journal=[[Terra Nova (journal)|Terra Nova]] |language=en |volume=4 |issue=2 |pages=217–222 |doi=10.1111/j.1365-3121.1992.tb00475.x |issn=0954-4879 |access-date=17 September 2023 |archive-date=14 October 2023 |archive-url=https://web.archive.org/web/20231014211020/https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3121.1992.tb00475.x |url-status=live }}</ref> though they were still distinguishable into the late Ordovician.{{sfn|Torsvik|Cocks|2017|p=112-113}}
[[File:Eurypterids Pentecopterus Vertical.jpg|thumb|''[[Pentecopterus]]'', the earliest known eurypterid, and found in [[Iowa]]]]
[[Trilobite]]s in particular were rich and diverse, and experienced rapid diversification in many regions.<ref>{{Cite journal |lastlast1=Zhiyi |firstfirst1=Zhou |last2=Wenwei |first2=Yuan |last3=Zhiqiang |first3=Zhou |date=19 March 2007 |title=Patterns, processes and likely causes of the Ordovician trilobite radiation in South China |url=https://onlinelibrary.wiley.com/doi/10.1002/gj.1076 |journal=[[Geological Journal]] |language=en |volume=42 |issue=3-43–4 |pages=297–313 |doi=10.1002/gj.1076 |issn=0072-1050 |access-date=12 September 2024 |via=Wiley Online Library}}</ref> Trilobites in the Ordovician were very different from their predecessors in the Cambrian. Many trilobites developed bizarre spines and nodules to defend against predators such as primitive [[eurypterid]]s and nautiloids while other trilobites such as ''Aeglina prisca'' evolved to become swimming forms. Some trilobites even developed shovel-like snouts for ploughing through muddy sea bottoms. Another unusual clade of trilobites known as the trinucleids developed a broad pitted margin around their head shields.<ref name="Palaeos.com">{{cite web |date=April 11, 2002 |title=Palaeos Paleozoic : Ordovician : The Ordovician Period |url=http://www.palaeos.com/Paleozoic/Ordovician/Ordovician.htm#Life |url-status=dead |archive-url=https://web.archive.org/web/20071221094614/http://www.palaeos.com/Paleozoic/Ordovician/Ordovician.htm#Life |archive-date=December 21, 2007}}</ref> Some trilobites such as ''Asaphus kowalewski'' evolved long eyestalks to assist in detecting predators whereas other trilobite eyes in contrast disappeared completely.<ref>{{cite web |title=A Guide to the Orders of Trilobites<!-- Bot generated title --> |url=http://www.trilobites.info/ |access-date=2007-12-13 |archive-date=2019-02-18 |archive-url=https://web.archive.org/web/20190218193216/http://www.trilobites.info/ |url-status=live }}</ref> Molecular clock analyses suggest that early arachnids started living on land by the end of the Ordovician.<ref>{{cite journal |last1=Garwood |first1=Russell J. |last2=Sharma |first2=Prashant P. |last3=Dunlop |first3=Jason A. |last4=Giribet |first4=Gonzalo |date=5 May 2014 |title=A Paleozoic Stem Group to Mite Harvestmen Revealed through Integration of Phylogenetics and Development |journal=[[Current Biology]] |volume=24 |issue=9 |pages=1017–1023 |doi=10.1016/j.cub.2014.03.039 |pmid=24726154 |doi-access=free }}</ref> Although solitary [[coral]]s date back to at least the [[Cambrian]], [[coral reef|reef]]-forming corals appeared in the early Ordovician, including the earliest known [[Octocorallia|octocorals]],<ref name="Taylor2013Pywackia">{{Cite journal|doi=10.1666/13-029|title=Reinterpretation of the Cambrian 'bryozoan' ''Pywackia'' as an octocoral|year=2013|last1=Taylor|first1=P.D.|last2=Berning|first2=B.|last3=Wilson|first3=M.A.|journal=Journal of Paleontology|volume=87|issue=6|pages=984–990|bibcode=2013JPal...87..984T|s2cid=129113026|url=https://zenodo.org/record/907861|access-date=2022-11-23|archive-date=2019-06-07|archive-url=https://web.archive.org/web/20190607161619/https://zenodo.org/record/907861|url-status=live}}</ref><ref>{{cite journal |last1=Bergström |first1=Stig M. |last2=Bergström |first2=Jan |last3=Kumpulainen |first3=Risto |last4=Ormö |first4=Jens |last5=Sturkell |first5=Erik |date=2007 |title=Maurits Lindström – A renaissance geoscientist |journal=[[GFF (journal)|GFF]] |volume=129 |issue=2 |pages=65–70 |doi=10.1080/11035890701292065 |s2cid=140593975}}</ref> corresponding to an increase in the stability of carbonate and thus a new abundance of calcifying animals.<ref name=Munnecke2010/> Brachiopods surged in diversity, adapting to almost every type of marine environment.<ref>{{cite journal |last1=Song |first1=Zhenyu |last2=Xiao |first2=Yunpeng |last3=Xiao |first3=Chuantao |date=19 February 2020 |title=Early–Middle Ordovician brachiopod diversification in the middle Yangtze region of South China |url=https://cdnsciencepub.com/doi/full/10.1139/cjes-2019-0141 |journal=[[Canadian Journal of Earth Sciences]] |volume=57 |issue=8 |pages=999–1009 |doi=10.1139/cjes-2019-0141 |bibcode=2020CaJES..57..999S |s2cid=213757467 |access-date=22 November 2022}}</ref><ref>{{cite journal |last1=Harper |first1=David A. T. |last2=Zhan |first2=Ren-Bin |last3=Jin |first3=Jisuo |date=March–June 2015 |title=The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity's big bang illustrated by mainly brachiopod data |url=https://www.sciencedirect.com/science/article/abs/pii/S1871174X15000153 |journal=[[Palaeoworld]] |volume=24 |issue=1–2 |pages=75–85 |doi=10.1016/j.palwor.2015.03.003 |access-date=12 November 2022 |archive-date=13 November 2022 |archive-url=https://web.archive.org/web/20221113060658/https://www.sciencedirect.com/science/article/abs/pii/S1871174X15000153 |url-status=live }}</ref><ref>{{cite journal |last1=Zhan |first1=Renbin |last2=Rong |first2=Jiayu |last3=Cheng |first3=Jinghui |last4=Chen |first4=Pengfei |date=May 2005 |title=Early-Mid Ordovician brachiopod diversification in South China |url=https://link.springer.com/article/10.1360/03yd0586 |journal=[[Science China Earth Sciences]] |volume=48 |issue=5 |pages=662–675 |doi=10.1360/03yd0586 |s2cid=130038222 |access-date=12 November 2022 |archive-date=13 November 2022 |archive-url=https://web.archive.org/web/20221113060655/https://link.springer.com/article/10.1360/03yd0586 |url-status=live }}</ref> Even after GOBE, there is evidence suggesting that Ordovician brachiopods maintained elevated rates of speciation.<ref>{{cite journal |last1=Patzkowsky |first1=Mark E. |last2=Holland |first2=Steven M. |date=Fall 1997 |title=Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States: a test of coordinated stasis |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/patterns-of-turnover-in-middle-and-upper-ordovician-brachiopods-of-the-eastern-united-states-a-test-of-coordinated-stasis/1A029B92CA2AEE70CE305DF94F7C3623 |journal=[[Paleobiology (journal)|Paleobiology]] |volume=23 |issue=4 |pages=420–443 |doi=10.1017/S0094837300019825 |access-date=23 July 2023 |archive-date=23 July 2023 |archive-url=https://web.archive.org/web/20230723235042/https://www.cambridge.org/core/journals/paleobiology/article/abs/patterns-of-turnover-in-middle-and-upper-ordovician-brachiopods-of-the-eastern-united-states-a-test-of-coordinated-stasis/1A029B92CA2AEE70CE305DF94F7C3623 |url-status=live }}</ref> [[Mollusca|Molluscs]], which appeared during the Cambrian or even the [[Ediacaran]], became common and varied, especially [[Bivalvia|bivalves]], [[Gastropoda|gastropods]], and [[nautiloid]] cephalopods.<ref name="Novack-GottshallMiller2003">{{cite journal |last1=Novack-Gottshall |first1=Philip M. |last2=Miller |first2=Arnold I. |date=Fall 2003 |title=Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician Radiation |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/comparative-geographic-and-environmental-diversity-dynamics-of-gastropods-and-bivalves-during-the-ordovician-radiation/1199817CD0DB79492093621E11DA7A56 |journal=[[Paleobiology (journal)|Paleobiology]] |volume=29 |issue=4 |pages=576–604 |doi=10.1666/0094-8373(2003)029<0576:CGAEDD>2.0.CO;2 |s2cid=85724505 |access-date=8 December 2022 |archive-date=13 August 2023 |archive-url=https://web.archive.org/web/20230813015225/https://www.cambridge.org/core/journals/paleobiology/article/abs/comparative-geographic-and-environmental-diversity-dynamics-of-gastropods-and-bivalves-during-the-ordovician-radiation/1199817CD0DB79492093621E11DA7A56 |url-status=live }}</ref><ref name="RexCrick">{{cite journal |last1=Crick |first1=Rex M. |date=Spring 1981 |title=Diversity and evolutionary rates of Cambro-Ordovician nautiloids |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/diversity-and-evolutionary-rates-of-cambroordovician-nautiloids/55BCD1C16ECA4FC01DFA2DA9092FE354 |journal=Paleobiology |volume=7 |issue=2 |pages=216–229 |doi=10.1017/S0094837300003997 |s2cid=83933056 |access-date=8 December 2022 |archive-date=13 August 2023 |archive-url=https://web.archive.org/web/20230813015225/https://www.cambridge.org/core/journals/paleobiology/article/abs/diversity-and-evolutionary-rates-of-cambroordovician-nautiloids/55BCD1C16ECA4FC01DFA2DA9092FE354 |url-status=live }}</ref> Cephalopods diversified from shallow marine tropical environments to dominate almost all marine environments.<ref name="KrögerAndYun-Bai2009">{{cite journal |last1=Kröger |first1=Björn |last2=Yun-Bai |first2=Zhang |title=Pulsed cephalopod diversification during the Ordovician |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |date=March 2009 |volume=273 |issue=1–2 |pages=174–183 |doi=10.1016/j.palaeo.2008.12.015|bibcode=2009PPP...273..174K }}</ref> Graptolites, which evolved in the preceding Cambrian period, thrived in the oceans.<ref>{{cite journal |last1=Heward |first1=A. P. |last2=Fortey |first2=R. A. |last3=Miller |first3=C. G. |last4=Booth |first4=G. A. |date=June 2023 |title=New Middle Ordovician (Darriwilian) faunas from the Sultanate of Oman |url=https://www.sciencedirect.com/science/article/abs/pii/S0016787823000202 |journal=Proceedings of the Geologists' Association |volume=134 |issue=3 |pages=251–268 |doi=10.1016/j.pgeola.2023.02.004 |access-date=16 August 2023 |archive-date=17 August 2023 |archive-url=https://web.archive.org/web/20230817055224/https://www.sciencedirect.com/science/article/abs/pii/S0016787823000202 |url-status=live }}</ref> This includes the distinctive ''Nemagraptus gracilis'' graptolite fauna, which was distributed widely during peak sea levels in the Sandbian.<ref name="FinneyAndBergström1986">{{cite journal |last1=Finney |first1=Stanley C. |last2=Bergström |first2=Stig M. |title=Biostratigraphy of the Ordovician Nemagraptus gracilis Zone |journal=Geological Society, London, Special Publications |date=1986 |volume=20 |issue=1 |pages=47–59 |doi=10.1144/GSL.SP.1986.020.01.06|bibcode=1986GSLSP..20...47F |s2cid=129733589 }}</ref>{{sfn|Torsvik|Cocks|2017|p=112}} Some new cystoids and crinoids appeared. It was long thought that the first true [[vertebrata|vertebrates]] (fish — [[Ostracoderm]]s) appeared in the Ordovician, but recent discoveries in [[China]] reveal that they probably originated in the Early [[Cambrian]].<ref>{{Cite web |date=2016-10-05 |title=12.7: Vertebrate Evolution |url=https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Introductory_Biology_(CK-12)/12%3A_Vertebrates/12.07%3A_Vertebrate_Evolution |access-date=2022-06-07 |website=Biology LibreTexts |language=en |archive-date=2022-07-03 |archive-url=https://web.archive.org/web/20220703173215/https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Introductory_Biology_(CK-12)/12%3A_Vertebrates/12.07%3A_Vertebrate_Evolution |url-status=live }}</ref> The first [[Gnathostomata|gnathostome]] (jawed fish) may have appeared in the [[Late Ordovician glaciation|Late Ordovician]] epoch.<ref name="Brazeau-Friedman-2015">{{cite journal |last1=Brazeau |first1=M. D. |last2=Friedman |first2=M. |date=2015 |title=The origin and early phylogenetic history of jawed vertebrates |journal=[[Nature (journal)|Nature]] |volume=520 |issue=7548 |pages=490–497 |bibcode=2015Natur.520..490B |doi=10.1038/nature14438 |pmc=4648279 |pmid=25903631}}</ref> Chitinozoans, which first appeared late in the Wuliuan, exploded in diversity during the Tremadocian, quickly becoming globally widespread.<ref name="NõlvakLiangHints2019PPP">{{cite journal |last1=Nõlvak |first1=Jaak |last2=Liang |first2=Yan |last3=Hints |first3=Olle |date=1 July 2019 |title=Early diversification of Ordovician chitinozoans on Baltica: New data from the Jägala waterfall section, northern Estonia |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018218309520 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=525 |pages=14–24 |doi=10.1016/j.palaeo.2019.04.002 |bibcode=2019PPP...525...14N |s2cid=135138918 |access-date=12 November 2022 |archive-date=13 November 2022 |archive-url=https://web.archive.org/web/20221113060656/https://www.sciencedirect.com/science/article/abs/pii/S0031018218309520 |url-status=live }}</ref><ref name="LiangEtAl2017PPP">{{cite journal |last1=Liang |first1=Yan |last2=Servais |first2=Thomas |last3=Tang |first3=Peng |last4=Lu |first4=Jianbo |last5=Wang |first5=Wenhui |date=December 2017 |title=Tremadocian (Early Ordovician) chitinozoan biostratigraphy of South China: An update |url=https://www.sciencedirect.com/science/article/abs/pii/S0034666716302676 |journal=[[Review of Palaeobotany and Palynology]] |volume=247 |pages=149–163 |doi=10.1016/j.revpalbo.2017.08.008 |access-date=12 November 2022 |archive-date=13 November 2022 |archive-url=https://web.archive.org/web/20221113060655/https://www.sciencedirect.com/science/article/abs/pii/S0034666716302676 |url-status=live }}</ref> Several groups of endobiotic symbionts appeared in the Ordovician.<ref name="VinnMotus2012">{{cite journal |author=Vinn, O. |author2=Mõtus, M.-A. |year=2012 |title=Diverse early endobiotic coral symbiont assemblage from the Katian (Late Ordovician) of Baltica |url=https://www.researchgate.net/publication/255569552 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=321–322 |pages=137–141 |bibcode=2012PPP...321..137V |doi=10.1016/j.palaeo.2012.01.028 |access-date=2014-06-11 |archive-date=2018-08-18 |archive-url=https://web.archive.org/web/20180818185257/https://www.researchgate.net/publication/255569552 |url-status=live }}</ref><ref name="VinnWilsonMotusToom2014">{{cite journal |last1=Vinn |first1=O. |last2=Wilson |first2=M.A. |last3=Mõtus |first3=M.-A. |last4=Toom |first4=U. |year=2014 |title=The earliest bryozoan parasite: Middle Ordovician (Darriwilian) of Osmussaar Island, Estonia |url=https://www.researchgate.net/publication/265853181 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=414 |pages=129–132 |bibcode=2014PPP...414..129V |doi=10.1016/j.palaeo.2014.08.021 |access-date=2014-01-09 |archive-date=2018-08-18 |archive-url=https://web.archive.org/web/20180818185255/https://www.researchgate.net/publication/265853181 |url-status=live }}</ref>
 
In the Early Ordovician, trilobites were joined by many new types of organisms, including [[Tabulata|tabulate]] corals, [[Strophomenida|strophomenid]], [[Rhynchonellida|rhynchonellid]], and many new [[Orthida|orthid]] brachiopods, bryozoans, planktonic graptolites and conodonts, and many types of molluscs and echinoderms, including the ophiuroids ("brittle stars") and the first [[Starfish|sea stars]]. Nevertheless, the arthropods remained abundant; all the Late Cambrian orders continued, and were joined by the new group [[Phacopida]]. The first evidence of land plants also appeared (see [[evolutionary history of life]]).
Line 257 ⟶ 215:
 
=== Microbiota ===
Though stromatolites had declined from their peak in the Proterozoic, they continued to exist in localised settings.<ref>{{Cite journal |lastlast1=Kershaw |firstfirst1=Stephen |last2=Chitnarin |first2=Anisong |last3=Noipow |first3=Nitipon |last4=Forel |first4=Marie-Béatrice |last5=Junrattanamanee |first5=Thitikan |last6=Charoenmit |first6=Jeerasak |date=10 June 2019 |title=Microbialites and associated facies of the Late Ordovician system in Thailand: paleoenvironments and paleogeographic implications |url=http://link.springer.com/10.1007/s10347-019-0579-y |journal=Facies |language=en |volume=65 |issue=3 |doi=10.1007/s10347-019-0579-y |issn=0172-9179 |access-date=13 September 2024 |via=Springer Link}}</ref>
 
==End of the period==
{{Main|Ordovician–Silurian extinction events}}
 
[[File:Anji Biota.jpg|thumb|The Anji Biota (Wenchang Formation, [[Zhejiang]] Province, [[China]]) preserves abundant and diverse [[Hexactinellid|glass sponges]] and graptolites as well as rare examples of other marine animals (such as the eurypterid [[Archopterus]]) living at a depth of several hundred metres. It is dated to just after the [[Late_Ordovician_mass_extinction|Hirnantian mass extinction]] at the end of the Ordovician period.<ref>{{Cite journal |last1=Wang |first1=Han |last2=Braddy |first2=Simon J. |last3=Botting |first3=Joseph |last4=Zhang |first4=Yuandong |date=2023 |title=The first documentation of an Ordovician eurypterid (Chelicerata) from China |url=https://www.cambridge.org/core/journals/journal-of-paleontology/article/first-documentation-of-an-ordovician-eurypterid-chelicerata-from-china/2F0762857D48061467555E2C91387957 |journal=Journal of Paleontology |language=en |volume=97 |issue=3 |pages=606–611 |doi=10.1017/jpa.2023.21 |issn=0022-3360}}</ref>]]
 
The Ordovician came to a close in a series of [[extinction event]]s that, taken together, comprise the second largest of the five major extinction events in [[History of Earth|Earth's history]] in terms of percentage of [[genus|genera]] that became extinct. The only larger one was the [[Permian–Triassic extinction event]].