Carbon cycle: Difference between revisions

Content deleted Content added
No edit summary
OAbot (talk | contribs)
m Open access bot: hdl updated in citation with #oabot.
 
(39 intermediate revisions by 13 users not shown)
Line 6:
{{Carbon cycle}}
 
The '''carbon cycle''' is that part of the [[biogeochemical cycle]] by which [[carbon]] is exchanged among the [[biosphere]], [[pedosphere]], [[geosphere]], [[hydrosphere]], and [[atmosphere of Earth]]. Other major biogeochemical cycles include the [[nitrogen cycle]] and the [[water cycle]]. Carbon is the main component of biological compounds as well as a major component of many mineralsrocks such as [[limestone]]. The carbon cycle comprises a sequence of events that are key to making Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of [[carbon sequestration]] (storage) to and release from [[carbon sink]]s.
 
To describe the dynamics of the carbon cycle, a distinction can be made between the ''fast'' and ''slow'' carbon cycle''. The fast carbon cycle is also referred to as the ''biological carbon cycle''. Fast carbon cycles can complete within years, moving substances from atmosphere to biosphere, then back to the atmosphere. Slow or geological cycles (also called [[deep carbon cycle]]) can take millions of years to complete, moving substances through the Earth's [[Earth's crust|crust]] between rocks, soil, ocean and atmosphere.<ref name="Libes2015">{{cite book |last1=Libes |first1=Susan M |chapter=Blue planet: The role of the oceans in nutrient cycling, maintain the atmosphere system, and modulating climate change |pages=89–107 |chapter-url={{GBurl|5tC9CgAAQBAJ|p=89}} |editor1-last=Smith |editor1-first=Hance D. |editor2-last=Suárez de Vivero |editor2-first=Juan Luis |editor3-last=Agardy |editor3-first=Tundi S. |title=Routledge Handbook of Ocean Resources and Management |date=2015 |publisher=Routledge |isbn=978-1-136-29482-2 }}</ref>
 
Humans have disturbed the carbon cycle for many centuries. They have done so by [[Land use change|modifying land use]] and by mining and burning carbon from ancient organic remains ([[coal]], [[petroleum]] and [[natural gas|gas]]).<ref name="nasacc" /> [[Carbon dioxide]] in the atmosphere has increased nearly 52% over pre-industrial levels by 2020, resulting in [[global warming]].<ref name="noaagi">{{Cite web |url=https://www.esrl.noaa.gov/gmd/aggi/ |title=The NOAA Annual Greenhouse Gas Index (AGGI) - An Introduction |publisher=[[NOAA]] Global Monitoring Laboratory/Earth System Research Laboratories |access-date=2020-10-30 }}</ref> The increased carbon dioxide has also caused a [[Ocean acidification|reduction in the ocean's pH value]] and is fundamentally altering [[marine chemistry]].<ref>{{Cite web |url=https://oceanservice.noaa.gov/facts/acidification.html |title=What is Ocean Acidification? |publisher=National Ocean Service, [[National Oceanic and Atmospheric Administration]] |access-date=2020-10-30}}</ref> Carbon dioxide is critical for photosynthesis.
 
==Main compartments of the Carbon Cycle==
The carbon cycle was first described by [[Antoine Lavoisier]] and [[Joseph Priestley]], and popularised by [[Humphry Davy]].<ref name="AOW">{{cite book |last1=Holmes |first1=Richard |title=The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science |date=2008 |publisher=Pantheon Books |isbn=978-0-375-42222-5 }}{{pn|date=July 2024}}</ref> The global carbon cycle is now usually divided into the following major ''reservoirs of carbon'' (also called [[Carbon pool|carbon pools]]) interconnected by pathways of exchange:<ref>{{cite book |last1=Archer |first1=David |title=The Global Carbon Cycle |date=2010 |publisher=Princeton University Press |isbn=978-1-4008-3707-6 |pages=5–6 }}</ref>
* [[Atmosphere]]
* Terrestrial [[biosphere]]
Line 35:
{{clear left}}
 
In the far future (2 to 3 billion years), the rate at which carbon dioxide is absorbed into the soil via the [[carbonate–silicate cycle]] will likely increase due to [[Formation and evolution of the Solar System#Future|expected changes in the sun]] as it ages. The expected increased luminosity of the Sun will likely speed up the rate of surface weathering.<ref name=swansong>{{cite journal |last1=O'Malley-James |first1=Jack T. |last2=Greaves |first2=Jane S. |last3=Raven |first3=John A. |last4=Cockell |first4=Charles S. |title=Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes |journal=[[International Journal of Astrobiology]] |date=2012 |volume=12 |issue=2 |pages=99–112 |arxiv=1210.5721 |bibcode=2013IJAsB..12...99O |doi=10.1017/S147355041200047X |s2cid=73722450 }}</ref> This will eventually cause most of the carbon dioxide in the atmosphere to be squelched into the Earth's crust as carbonate.<ref>{{cite journal |last1=Walker |first1=James C. G. |last2=Hays |first2=P. B. |last3=Kasting |first3=J. F. |title=A negative feedback mechanism for the long-term stabilization of Earth's surface temperature |journal=Journal of Geophysical Research: Oceans |date=20 October 1981 |volume=86 |issue=C10 |pages=9776–9782 |doi=10.1029/JC086iC10p09776 |bibcode=1981JGR....86.9776W }}</ref><ref name=":1">{{cite arXivreport |type=Preprint |last1=Heath |first1=Martin J. |last2=Doyle |first2=Laurance R.|date=2009-12-13 |title=Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions |classdate=astro-ph.EP2009 |eprintarxiv=0912.2482 }}</ref><ref>{{cite journal |last1=Crockford |first1=Peter W. |last2=Bar On |first2=Yinon M. |last3=Ward |first3=Luce M. |last4=Milo |first4=Ron |last5=Halevy |first5=Itay |title=The geologic history of primary productivity |journal=Current Biology |date=November 2023 |volume=33 |issue=21 |pages=4741–4750.e5 |doi=10.1016/j.cub.2023.09.040 |pmid=37827153 |bibcode=2023CBio...33E4741C }}</ref> Once the concentration of carbon dioxide in the atmosphere falls below approximately 50 parts per million (tolerances vary among species), [[C3 carbon fixation|C<sub>3</sub> photosynthesis]] will no longer be possible.<ref name=":1" /> This has been predicted to occur 600 million years from the present, though models vary.<ref>{{cite journal |last1=Lenton |first1=Timothy M. |last2=von Bloh |first2=Werner |title=Biotic feedback extends the life span of the biosphere |journal=Geophysical Research Letters |date=May 2001 |volume=28 |issue=9 |pages=1715–1718 |doi=10.1029/2000GL012198 |bibcode=2001GeoRL..28.1715L |doi-access=free }}</ref>
 
Once the oceans on the Earth evaporate in about 1.1 billion years from now,<ref name="swansong"/> plate tectonics will very likely stop due to the lack of water to lubricate them. The lack of volcanoes pumping out carbon dioxide will cause the carbon cycle to end between 1 billion and 2 billion years into the future.<ref>{{cite book | last1=Brownlee | first1=Donald E. | date=2010 | chapter=Planetary habitability on astronomical time scales | title=Heliophysics: Evolving Solar Activity and the Climates of Space and Earth | editor1-first=Carolus J. | editor1-last=Schrijver | editor2-first=George L. | editor2-last=Siscoe | editor2-link=George Siscoe | chapter-url=https://books.google.com/books?id=M8NwTYEl0ngC&pg=PA94 | publisher=Cambridge University Press | isbn=978-0-521-11294-9 | page=94 |doi=10.1017/CBO9780511760358 }}</ref>
 
===Terrestrial biosphere===
[[File:Carbon stored in ecosystems.png|thumb|right|upright=1.35|Amount of carbon stored in Earth's various terrestrial ecosystems, in gigatonnes.<ref name="janow">{{cite journalreport |doi=10.2737/WO-GTR-95 |doi-access=free |title=Considering Forest and Grassland Carbon in Land Management |journal=General Technical Report |date=2017 |last1=Janowiak |first1=M. |last2=Connelly |first2=W.J. |last3=Dante-Wood |first3=K. |last4=Domke |first4=G.M. |last5=Giardina |first5=C. |last6=Kayler |first6=Z. |last7=Marcinkowski |first7=K. |last8=Ontl |first8=T. |last9=Rodriguez-Franco |first9=C. |last10=Swanston |first10=C. |last11=Woodall |first11=C.W. |last12=Buford |first12=M. |display-authors=3 |publisher=United States Department of Agriculture, Forest Service |pages=1–68 }}</ref>]]
{{Main|Terrestrial biological carbon cycle}}
 
The terrestrial biosphere includes the organic carbon in all land-living organisms, both alive and dead, as well as carbon stored in [[soil]]s. About 500 gigatons of carbon are stored above ground in plants and other living organisms,<ref name=Prentice_etal_2001/> while soil holds approximately 1,500 gigatons of carbon.<ref>{{cite journal|last1=Rice|first1=Charles W.|title=Storing carbon in soil: Why and how?|journal=Geotimes|date=January 2002|volume=47|issue=1|pages=14&ndash;17|url=http://www.geotimes.org/jan02/feature_carbon.html|access-date=5 April 2018|archive-url=https://web.archive.org/web/20180405153123/http://www.geotimes.org/jan02/feature_carbon.html|archive-date=5 April 2018|url-status=live|df=dmy-all}}</ref> Most carbon in the terrestrial biosphere is organic carbon,<ref>{{cite journal|doi=10.1111/gcbb.12401|title=Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ<sup>13</sup>C) approach|journal=GCB Bioenergy|volume=9|issue=6|pages=1085–1099|year=2016|last1=Yousaf|first1=Balal|last2=Liu|first2=Guijian|last3=Wang|first3=Ruwei|last4=Abbas|first4=Qumber|last5=Imtiaz|first5=Muhammad|last6=Liu|first6=Ruijia|doi-access=free}}</ref> while about a third of [[soil carbon]] is stored in inorganic forms, such as [[calcium carbonate]].<ref name=Lal-2008>{{Cite journal |doi=10.1039/b809492f |title=Sequestration of atmospheric CO<sub>2</sub> in global carbon pools |last=Lal |first=Rattan |journal=Energy and Environmental Science |volume=1 |pages=86–100 |year=2008}}</ref> Organic carbon is a major component of all organisms living on earthEarth. [[Autotrophs]] extract it from the air in the form of carbon dioxide, converting it intoto organic carbon, while [[heterotrophs]] receive carbon by consuming other organisms.
 
Because carbon uptake in the terrestrial biosphere is dependent on biotic factors, it follows a diurnal and seasonal cycle. In CO<sub>2</sub> measurements, this feature is apparent in the [[Keeling curve]]. It is strongest in the northern [[Hemisphere of the Earth|hemisphere]] because this hemisphere has more land mass than the southern hemisphere and thus more room for ecosystems to absorb and emit carbon.
Line 97:
{{Main|Oceanic carbon cycle}}
 
The ocean can be conceptually divided into a [[surface layer]] within which water makes frequent (daily to annual) contact with the atmosphere, and a deep layer below the typical [[mixed layer]] depth of a few hundred meters or less, within which the time between consecutive contacts may be centuries. The [[dissolved inorganic carbon]] (DIC) in the surface layer is exchanged rapidly with the atmosphere, maintaining equilibrium. Partly because its concentration of DIC is about 15% higher<ref name=Sarmiento_and_Gruber_2006>{{cite book |last1=Sarmiento |first1=J.Jorge L. |last2=Gruber |first2=N.Nicolas |title=Ocean Biogeochemical Dynamics |yeardate=2006 |publisher=Princeton University Press, Princeton,|isbn=978-0-691-01707-5 New Jersey,}}{{pn|date=October US2024}}</ref> but mainly due to its larger volume, the deep ocean contains far more carbon—it is the largest pool of actively cycled carbon in the world, containing 50 times more than the atmosphere<ref name=GlobalCarbonCycle/>—but the timescale to reach equilibrium with the atmosphere is hundreds of years: the exchange of carbon between the two layers, driven by [[thermohaline circulation]], is slow.<ref name=GlobalCarbonCycle/>
 
Carbon enters the ocean mainly through the dissolution of atmospheric carbon dioxide, a small fraction of which is converted into [[carbonate]]. It can also enter the ocean through rivers as [[dissolved organic carbon]]. It is converted by organisms into organic carbon through [[photosynthesis]] and can either be exchanged throughout the food chain or precipitated into the oceans' deeper, more carbon-rich layers as dead soft tissue or in shells as [[calcium carbonate]]. It circulates in this layer for long periods of time before either being deposited as sediment or, eventually, returned to the surface waters through thermohaline circulation.<ref name=Prentice_etal_2001/>
Line 110:
Most of the Earth's carbon is stored inertly in the Earth's [[lithosphere]].<ref name=GlobalCarbonCycle/> Much of the carbon stored in the Earth's mantle was stored there when the Earth formed.<ref name=DiVenere2012>[http://www.columbia.edu/~vjd1/carbon.htm The Carbon Cycle and Earth's Climate] {{Webarchive|url=https://web.archive.org/web/20030623195122/http://www.columbia.edu/~vjd1/carbon.htm |date=23 June 2003 }} Information sheet for Columbia University Summer Session 2012 Earth and Environmental Sciences Introduction to Earth Sciences I</ref> Some of it was deposited in the form of organic carbon from the biosphere.<ref name=Berner1999>{{cite journal |last1=Berner |first1=Robert A. |title=A New Look at the Long-term Carbon Cycle|journal=GSA Today |date=November 1999 |volume=9 |issue=11 |pages=1&ndash;6 |url=https://www.geosociety.org/gsatoday/archive/9/11/pdf/gt9911.pdf |archive-url=https://web.archive.org/web/20190213183546/https://www.geosociety.org/gsatoday/archive/9/11/pdf/gt9911.pdf |archive-date=2019-02-13 |url-status=live }}</ref> Of the carbon stored in the geosphere, about 80% is [[limestone]] and its derivatives, which form from the sedimentation of [[calcium carbonate]] stored in the shells of marine organisms. The remaining 20% is stored as [[kerogen]]s formed through the sedimentation and burial of terrestrial organisms under high heat and pressure. Organic carbon stored in the geosphere can remain there for millions of years.<ref name=NASA/>
 
Carbon can leave the geosphere in several ways. Carbon dioxide is released during the [[metamorphism]] of carbonate rocks when they are [[Subduction|subducted]] into the earthEarth's mantle. This carbon dioxide can be released into the atmosphere and ocean through [[Volcanism|volcanoes]] and [[Hotspot (geology)|hotspots]].<ref name=DiVenere2012/> It can also be removed by humans through the direct extraction of kerogens in the form of [[fossil fuels]]. After extraction, fossil fuels are burned to release energy and emit the carbon they store into the atmosphere.
 
{{clear}}
Line 119:
There is a fast and a slow carbon cycle. The fast cycle operates in the [[biosphere]] and the slow cycle operates in [[rock (geology)|rocks]]. The fast or biological cycle can complete within years, moving carbon from atmosphere to biosphere, then back to the atmosphere. The slow or geological cycle may extend deep into the mantle and can take millions of years to complete, moving carbon through the Earth's [[Earth's crust|crust]] between rocks, soil, ocean and atmosphere.<ref name="Libes2015" />
 
The fast carbon cycle involves relatively short-term [[biogeochemical]] processes between the environment and living organisms in the biosphere (see diagram at [[#Top|start of article]]). It includes movements of carbon between the atmosphere and terrestrial and marine ecosystems, as well as soils and seafloor sediments. The fast cycle includes annual cycles involving photosynthesis and decadal cycles involving vegetative growth and decomposition. The reactions of the fast carbon cycle to human activities will determine many of the more immediate impacts of climate change.<ref name="Bush2020">{{cite book |doi=10.1007/978-3-030-15424-0_3 |chapter=The Carbon Cycle |title=Climate Change and Renewable Energy |date=2020 |last1=Bush |first1=Martin J. |pages=109–141 |isbn=978-3-030-15423-3 }}</ref><ref name=NASAfast>NASA Earth Observatory (16 June 2011). "The Fast Carbon Cycle". [https://earthobservatory.nasa.gov/features/CarbonCycle/page3.php Archive]. {{PD-notice}}</ref><ref>{{cite journal |last1=Rothman |first1=D. H. |year=2002 |title=Atmospheric carbon dioxide levels for the last 500 million years |journal=Proceedings of the National Academy of Sciences |volume=99 |issue=7 |pages=4167–4171 |bibcode=2002PNAS...99.4167R |doi=10.1073/pnas.022055499 |pmc=123620 |pmid=11904360 |doi-access=free}}</ref><ref name="Carpinteri2019">{{cite journal |last1=Carpinteri |first1=Alberto |last2=Niccolini |first2=Gianni |year=2019 |title=Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution |journal=Sci |volume=1 |page=17 |doi=10.3390/sci1010017 |doi-access=free}}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=yes}}</ref><ref>{{cite journal |last1=Rothman |first1=Daniel H. |title=Earth's carbon cycle: A mathematical perspective |journal=Bulletin of the American Mathematical Society |date=17 September 2014 |volume=52 |issue=1 |pages=47–64 |doi=10.1090/S0273-0979-2014-01471-5 |bibcode=2014BAMaS..52...47R |hdl-access=free |hdl=1721.1/97900 }}</ref>
 
The slow (or deep) carbon cycle involves medium to long-term [[geochemical]] processes belonging to the [[rock cycle]] (see diagram on the right). The exchange between the ocean and atmosphere can take centuries, and the weathering of rocks can take millions of years. Carbon in the ocean precipitates to the ocean floor where it can form [[sedimentary rock]] and be [[subducted]] into the [[Earth's mantle]]. [[Mountain building]] processes result in the return of this geologic carbon to the Earth's surface. There the rocks are weathered and carbon is returned to the atmosphere by [[degassing]] and to the ocean by rivers. Other geologic carbon returns to the ocean through the [[Hydrothermal circulation|hydrothermal emission]] of calcium ions. In a given year between 10 and 100 million tonnes of carbon moves around this slow cycle. This includes volcanoes returning geologic carbon directly to the atmosphere in the form of carbon dioxide. However, this is less than one percent of the carbon dioxide put into the atmosphere by burning fossil fuels.<ref name="Libes2015" /><ref name="Bush2020" /><ref name=NASAslow>NASA Earth Observatory (16 June 2011). "The Slow Carbon Cycle". [https://earthobservatory.nasa.gov/features/CarbonCycle/page2.php Archive]. {{PD-notice}}</ref>
 
== Sub-processesProcesses within fast carbon cycle ==
 
=== Terrestrial carbon in the water cycle ===
[[File:Where carbon goes when water flows.jpg|thumb|upright=2| {{center|Where terrestrial carbon goes when water flows{{hsp}}<ref name=Ward2017>{{cite journal |last1=Ward |first1=Nicholas D. |last2=Bianchi |first2=Thomas S. |last3=Medeiros |first3=Patricia M. |last4=Seidel |first4=Michael |last5=Richey |first5=Jeffrey E. |last6=Keil |first6=Richard G. |last7=Sawakuchi |first7=Henrique O. |title=Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum |journal=Frontiers in Marine Science |date=31 January 2017 |volume=4 |doi=10.3389/fmars.2017.00007 |doi-access=free }}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=yes}}</ref>}}]]
 
The movement of terrestrial carbon in the water cycle is shown in the diagram on the right and explained below:{{hsp}}<ref name=Ward2017 />
Line 134:
#Burning and volcanic eruptions produce highly condensed [[Polycyclic aromatic hydrocarbon|polycyclic aromatic molecules]] (i.e. [[black carbon]]) that is returned to the atmosphere along with greenhouse gases such as CO<sub>2</sub>.<ref name=Baldock2004>{{cite journal |last1=Baldock |first1=J.A. |last2=Masiello |first2=C.A. |last3=Gélinas |first3=Y. |last4=Hedges |first4=J.I. |title=Cycling and composition of organic matter in terrestrial and marine ecosystems |journal=Marine Chemistry |date=December 2004 |volume=92 |issue=1–4 |pages=39–64 |doi=10.1016/j.marchem.2004.06.016 |bibcode=2004MarCh..92...39B }}</ref><ref name=Myers-Pigg2016>{{cite journal |last1=Myers-Pigg |first1=Allison N. |last2=Griffin |first2=Robert J. |last3=Louchouarn |first3=Patrick |last4=Norwood |first4=Matthew J. |last5=Sterne |first5=Amanda |last6=Cevik |first6=Basak Karakurt |title=Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas |journal=Environmental Science & Technology |date=6 September 2016 |volume=50 |issue=17 |pages=9308–9314 |doi=10.1021/acs.est.6b02132 |pmid=27462728 |bibcode=2016EnST...50.9308M }}</ref>
#Terrestrial plants fix atmospheric CO<sub>2</sub> through [[photosynthesis]], returning a fraction back to the atmosphere through [[respiration (physiology)|respiration]].<ref name=Field1998>{{cite journal |last1=Field |first1=Christopher B. |last2=Behrenfeld |first2=Michael J. |last3=Randerson |first3=James T. |last4=Falkowski |first4=Paul |title=Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components |journal=Science |date=10 July 1998 |volume=281 |issue=5374 |pages=237–240 |doi=10.1126/science.281.5374.237 |pmid=9657713 |bibcode=1998Sci...281..237F |url=https://escholarship.org/uc/item/9gm7074q }}</ref> [[Lignin]] and [[cellulose]]s represent as much as 80% of the organic carbon in forests and 60% in pastures.<ref name=Martens2004>{{cite journal |last1=Martens |first1=Dean A. |last2=Reedy |first2=Thomas E. |last3=Lewis |first3=David T. |title=Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements |journal=Global Change Biology |date=January 2004 |volume=10 |issue=1 |pages=65–78 |doi=10.1046/j.1529-8817.2003.00722.x |bibcode=2004GCBio..10...65M |url=https://digitalcommons.unl.edu/agronomyfacpub/124 }}</ref><ref name=Bose2009>{{cite journal |last1=Bose |first1=Samar K. |last2=Francis |first2=Raymond C. |last3=Govender |first3=Mark |last4=Bush |first4=Tamara |last5=Spark |first5=Andrew |title=Lignin content versus syringyl to guaiacyl ratio amongst poplars |journal=Bioresource Technology |date=February 2009 |volume=100 |issue=4 |pages=1628–1633 |doi=10.1016/j.biortech.2008.08.046 |pmid=18954979 |bibcode=2009BiTec.100.1628B }}</ref>
#[[Litterfall]] and root organic carbon mix with sedimentary material to form organic soils where plant-derived and petrogenic organic carbon is both stored and transformed by microbial and fungal activity.<ref name=Schlesinger2000>{{cite journal |last1=Schlesinger |first1=William H. |last2=Andrews |first2=Jeffrey A. |title=Soil respiration and the global carbon cycle |journal=Biogeochemistry |date=2000 |volume=48 |issue=1 |pages=7–20 |doi=10.1023/A:1006247623877 |bibcode=2000Biogc..48....7S }}</ref><ref name=Schmidt2011>{{cite journal |last1=Schmidt |first1=Michael W. I. |last2=Torn |first2=Margaret S. |last3=Abiven |first3=Samuel |last4=Dittmar |first4=Thorsten |last5=Guggenberger |first5=Georg |last6=Janssens |first6=Ivan A. |last7=Kleber |first7=Markus |last8=Kögel-Knabner |first8=Ingrid |last9=Lehmann |first9=Johannes |last10=Manning |first10=David A. C. |last11=Nannipieri |first11=Paolo |last12=Rasse |first12=Daniel P. |last13=Weiner |first13=Steve |last14=Trumbore |first14=Susan E. |title=Persistence of soil organic matter as an ecosystem property |journal=Nature |date=October 2011 |volume=478 |issue=7367 |pages=49–56 |doi=10.1038/nature10386 |pmid=21979045 |bibcode=2011Natur.478...49S }}</ref><ref name=Lehmann2015>{{cite journal |last1=Lehmann |first1=Johannes |last2=Kleber |first2=Markus |title=The contentious nature of soil organic matter |journal=Nature |date=December 2015 |volume=528 |issue=7580 |pages=60–68 |doi=10.1038/nature16069 |pmid=26595271 |bibcode=2015Natur.528...60L }}</ref>
#Water absorbs plant and settled aerosol-derived [[dissolved organic carbon]] (DOC) and [[dissolved inorganic carbon]] (DIC) as it passes over forest canopies (i.e. [[throughfall]]) and along plant trunks/stems (i.e. [[stemflow]]).<ref>{{cite journal |last1=Qualls |first1=Robert G. |last2=Haines |first2=Bruce L. |title=Biodegradability of Dissolved Organic Matter in Forest Throughfall, Soil Solution, and Stream Water |journal=Soil Science Society of America Journal |date=March 1992 |volume=56 |issue=2 |pages=578–586 |doi=10.2136/sssaj1992.03615995005600020038x |bibcode=1992SSASJ..56..578Q }}</ref> Biogeochemical transformations take place as water soaks into soil solution and groundwater reservoirs<ref name=Grøn1992>{{cite journal |last1=Grøn |first1=Christian |last2=Tørsløv |first2=Jens |last3=Albrechtsen |first3=Hans-Jørgen |last4=Jensen |first4=Hanne Møller |title=Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer |journal=Science of the Total Environment |date=May 1992 |volume=117-118 |pages=241–251 |doi=10.1016/0048-9697(92)90091-6 |bibcode=1992ScTEn.117..241G }}</ref><ref name=Pabich2001>{{cite journal |last1=Pabich |first1=Wendy J. |last2=Valiela |first2=Ivan |last3=Hemond |first3=Harold F. |title=Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, U.S.A. |journal=Biogeochemistry |date=2001 |volume=55 |issue=3 |pages=247–268 |doi=10.1023/A:1011842918260 |bibcode=2001Biogc..55..247P }}</ref> and [[overland flow]] occurs when soils are completely saturated,<ref name=Linsley1975>{{cite book |last1=Linsley |first1=Ray K. |title=Solutions Manual to Accompany Hydrology for Engineers |date=1975 |publisher=McGraw-Hill |oclc=24765393 }}{{pn|date=July 2024}}</ref> or rainfall occurs more rapidly than saturation into soils.<ref name=Horton1933>{{cite journal |title=The Rôle of infiltration in the hydrologic cycle |journal=Eos, Transactions American Geophysical Union |date=June 1933 |volume=14 |issue=1 |pages=446–460 |doi=10.1029/TR014i001p00446 |bibcode=1933TrAGU..14..446H |last1=Horton |first1=Robert E. }}</ref>
#Organic carbon derived from the terrestrial biosphere and ''in situ'' [[primary production]] is decomposed by microbial communities in rivers and streams along with physical decomposition (i.e. [[photo-oxidation]]), resulting in a flux of CO<sub>2</sub> from rivers to the atmosphere that are the same order of magnitude as the amount of carbon sequestered annually by the terrestrial biosphere.<ref name=Richey2002>{{cite journal |last1=Richey |first1=Jeffrey E. |last2=Melack |first2=John M. |last3=Aufdenkampe |first3=Anthony K. |last4=Ballester |first4=Victoria M. |last5=Hess |first5=Laura L. |title=Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 |journal=Nature |date=April 2002 |volume=416 |issue=6881 |pages=617–620 |doi=10.1038/416617a |pmid=11948346 }}</ref><ref name=Cole2007>{{cite journal |last1=Cole |first1=J. J. |last2=Prairie |first2=Y. T. |last3=Caraco |first3=N. F. |last4=McDowell |first4=W. H. |last5=Tranvik |first5=L. J. |last6=Striegl |first6=R. G. |last7=Duarte |first7=C. M. |last8=Kortelainen |first8=P. |last9=Downing |first9=J. A. |last10=Middelburg |first10=J. J. |last11=Melack |first11=J. |title=Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget |journal=Ecosystems |date=February 2007 |volume=10 |issue=1 |pages=172–185 |doi=10.1007/s10021-006-9013-8 |bibcode=2007Ecosy..10..172C }}</ref><ref name=Raymond2013>{{cite journal |last1=Raymond |first1=Peter A. |last2=Hartmann |first2=Jens |last3=Lauerwald |first3=Ronny |last4=Sobek |first4=Sebastian |last5=McDonald |first5=Cory |last6=Hoover |first6=Mark |last7=Butman |first7=David |last8=Striegl |first8=Robert |last9=Mayorga |first9=Emilio |last10=Humborg |first10=Christoph |last11=Kortelainen |first11=Pirkko |last12=Dürr |first12=Hans |last13=Meybeck |first13=Michel |last14=Ciais |first14=Philippe |last15=Guth |first15=Peter |title=Global carbon dioxide emissions from inland waters |journal=Nature |date=21 November 2013 |volume=503 |issue=7476 |pages=355–359 |doi=10.1038/nature12760 |pmid=24256802 |bibcode=2013Natur.503..355R }}</ref> Terrestrially-derived macromolecules such as lignin{{hsp}}<ref name=Ward2013>{{cite journal |last1=Ward |first1=Nicholas D. |last2=Keil |first2=Richard G. |last3=Medeiros |first3=Patricia M. |last4=Brito |first4=Daimio C. |last5=Cunha |first5=Alan C. |last6=Dittmar |first6=Thorsten |last7=Yager |first7=Patricia L. |last8=Krusche |first8=Alex V. |last9=Richey |first9=Jeffrey E. |title=Degradation of terrestrially derived macromolecules in the Amazon River |journal=Nature Geoscience |date=July 2013 |volume=6 |issue=7 |pages=530–533 |doi=10.1038/ngeo1817 |bibcode=2013NatGe...6..530W }}</ref> and [[black carbon]]{{hsp}}<ref name=Myers-Pigg2015>{{cite journal |last1=Myers-Pigg |first1=Allison N. |last2=Louchouarn |first2=Patrick |last3=Amon |first3=Rainer M. W. |last4=Prokushkin |first4=Anatoly |last5=Pierce |first5=Kayce |last6=Rubtsov |first6=Alexey |title=Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages |journal=Geophysical Research Letters |date=28 January 2015 |volume=42 |issue=2 |pages=377–385 |doi=10.1002/2014GL062762 |bibcode=2015GeoRL..42..377M |doi-access=free }}</ref> are decomposed into smaller components and [[monomer]]s, ultimately being converted to CO<sub>2</sub>, metabolic intermediates, or [[Biomass (ecology)|biomass]].
#Lakes, reservoirs, and [[floodplain]]s typically store large amounts of organic carbon and sediments, but also experience net [[heterotrophy]] in the water column, resulting in a net flux of CO<sub>2</sub> to the atmosphere that is roughly one order of magnitude less than rivers.<ref name=Tranvik2009>{{cite journal |last1=Tranvik |first1=Lars J. |last2=Downing |first2=John A. |last3=Cotner |first3=James B. |last4=Loiselle |first4=Steven A. |last5=Striegl |first5=Robert G. |last6=Ballatore |first6=Thomas J. |last7=Dillon |first7=Peter |last8=Finlay |first8=Kerri |last9=Fortino |first9=Kenneth |last10=Knoll |first10=Lesley B. |last11=Kortelainen |first11=Pirkko L. |last12=Kutser |first12=Tiit |last13=Larsen |first13=Soren. |last14=Laurion |first14=Isabelle |last15=Leech |first15=Dina M. |last16=McCallister |first16=S. Leigh |last17=McKnight |first17=Diane M. |last18=Melack |first18=John M. |last19=Overholt |first19=Erin |last20=Porter |first20=Jason A. |last21=Prairie |first21=Yves |last22=Renwick |first22=William H. |last23=Roland |first23=Fabio |last24=Sherman |first24=Bradford S. |last25=Schindler |first25=David W. |last26=Sobek |first26=Sebastian |last27=Tremblay |first27=Alain |last28=Vanni |first28=Michael J. |last29=Verschoor |first29=Antonie M. |last30=von Wachenfeldt |first30=Eddie |last31=Weyhenmeyer |first31=Gesa A. |title=Lakes and reservoirs as regulators of carbon cycling and climate |journal=Limnology and Oceanography |date=November 2009 |volume=54 |issue=6part2 |pages=2298–2314 |doi=10.4319/lo.2009.54.6_part_2.2298 |bibcode=2009LimOc..54.2298T }}</ref><ref name=Raymond2013 /> Methane production is also typically high in the [[anoxic waters|anoxic]] sediments of floodplains, lakes, and reservoirs.<ref name=Bastviken2004>{{cite journal |last1=Bastviken |first1=David |last2=Cole |first2=Jonathan |last3=Pace |first3=Michael |last4=Tranvik |first4=Lars |title=Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate |journal=Global Biogeochemical Cycles |date=December 2004 |volume=18 |issue=4 |doi=10.1029/2004GB002238 |bibcode=2004GBioC..18.4009B }}</ref>
#Primary production is typically enhanced in [[river plume]]s due to the export of [[fluvial]] nutrients.<ref name=Cooley2007>{{cite journal |last1=Cooley |first1=S. R. |last2=Coles |first2=V. J. |last3=Subramaniam |first3=A. |last4=Yager |first4=P. L. |title=Seasonal variations in the Amazon plume-related atmospheric carbon sink |journal=Global Biogeochemical Cycles |date=September 2007 |volume=21 |issue=3 |doi=10.1029/2006GB002831 |bibcode=2007GBioC..21.3014C }}</ref><ref name=Subramaniam2008>{{cite journal |last1=Subramaniam |first1=A. |last2=Yager |first2=P. L. |last3=Carpenter |first3=E. J. |last4=Mahaffey |first4=C. |last5=Björkman |first5=K. |last6=Cooley |first6=S. |last7=Kustka |first7=A. B. |last8=Montoya |first8=J. P. |last9=Sañudo-Wilhelmy |first9=S. A. |last10=Shipe |first10=R. |last11=Capone |first11=D. G. |title=Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean |journal=Proceedings of the National Academy of Sciences |date=29 July 2008 |volume=105 |issue=30 |pages=10460–10465 |doi=10.1073/pnas.0710279105 |doi-access=free |pmid=18647838 |pmc=2480616 }}</ref> Nevertheless, [[estuarine]] waters are a source of CO<sub>2</sub> to the atmosphere, globally.<ref name=Cai2011>{{cite journal |last1=Cai |first1=Wei-Jun |title=Estuarine and Coastal Ocean Carbon Paradox: CO 2 Sinks or Sites of Terrestrial Carbon Incineration? |journal=Annual Review of Marine Science |date=15 January 2011 |volume=3 |issue=1 |pages=123–145 |doi=10.1146/annurev-marine-120709-142723 |pmid=21329201 |bibcode=2011ARMS....3..123C }}</ref>
#[[Coastal marsh]]es both store and export [[blue carbon]].<ref name=Odum1979>{{cite book |doi=10.1007/978-1-4615-9146-7 |title=Ecological Processes in Coastal and Marine Systems |date=1979 |isbn=978-1-4615-9148-1 |editor-last1=Livingston |editor-first1=Robert J. }}{{pn|date=July 2024}}</ref><ref name=Dittmar2001>{{cite journal |last1=Dittmar |first1=Thorsten |last2=Lara |first2=Rubén José |last3=Kattner |first3=Gerhard |title=River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters |journal=Marine Chemistry |date=March 2001 |volume=73 |issue=3–4 |pages=253–271 |doi=10.1016/s0304-4203(00)00110-9 |bibcode=2001MarCh..73..253D }}</ref><ref name=Moore2011>{{cite journal |last1=Moore |first1=W.S. |last2=Beck |first2=M. |last3=Riedel |first3=T. |last4=Rutgers van der Loeff |first4=M. |last5=Dellwig |first5=O. |last6=Shaw |first6=T.J. |last7=Schnetger |first7=B. |last8=Brumsack |first8=H.-J. |title=Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea |journal=Geochimica et Cosmochimica Acta |date=November 2011 |volume=75 |issue=21 |pages=6535–6555 |doi=10.1016/j.gca.2011.08.037 |bibcode=2011GeCoA..75.6535M }}</ref> [[Marsh]]es and [[wetland]]s are suggested to have an equivalent flux of CO<sub>2</sub> to the atmosphere as rivers, globally.<ref name=Wehrli2013>{{cite journal |last1=Wehrli |first1=Bernhard |title=Conduits of the carbon cycle |journal=Nature |date=November 2013 |volume=503 |issue=7476 |pages=346–347 |doi=10.1038/503346a |pmid=24256800 }}</ref>
#[[Continental shelves]] and the [[open ocean]] typically absorb CO<sub>2</sub> from the atmosphere.<ref name=Cai2011 />
#The marine [[biological pump]] sequesters a small but significant fraction of the absorbed CO<sub>2</sub> as organic carbon in [[marine sediment]]s ([[#The marine biological pump|see below]]).<ref name=Moran2016>{{cite journal |last1=Moran |first1=Mary Ann |last2=Kujawinski |first2=Elizabeth B. |last3=Stubbins |first3=Aron |last4=Fatland |first4=Rob |last5=Aluwihare |first5=Lihini I. |last6=Buchan |first6=Alison |last7=Crump |first7=Byron C. |last8=Dorrestein |first8=Pieter C. |last9=Dyhrman |first9=Sonya T. |last10=Hess |first10=Nancy J. |last11=Howe |first11=Bill |last12=Longnecker |first12=Krista |last13=Medeiros |first13=Patricia M. |last14=Niggemann |first14=Jutta |last15=Obernosterer |first15=Ingrid |last16=Repeta |first16=Daniel J. |last17=Waldbauer |first17=Jacob R. |title=Deciphering ocean carbon in a changing world |journal=Proceedings of the National Academy of Sciences |date=22 March 2016 |volume=113 |issue=12 |pages=3143–3151 |doi=10.1073/pnas.1514645113 |doi-access=free |pmid=26951682 |pmc=4812754 |bibcode=2016PNAS..113.3143M }}</ref><ref name=Ward2017 />
Line 146:
 
=== Terrestrial runoff to the ocean ===
[[File:Terrestrial carbon escaping from inland waters.jpg|thumb|upright=2| {{center|'''How carbon moves from inland waters to the ocean'''}} Carbon dioxide exchange, photosynthetic production and respiration of terrestrial vegetation, rock weathering, and sedimentation occur in terrestrial ecosystems. Carbon transports to the ocean through the land-river-estuary continuum in the form of organic carbon and inorganic carbon. Carbon exchange at the air-water interface, transportation, transformation and sedimentation occur in oceanic ecosystems..<ref name="Gao2022">{{cite journal |last1=Gao |first1=Yang |last2=JiaLu |first2=JunjieYao |last3=LuDungait |first3=YaoJennifer A. J. |last4=SunLiu |first4=KunJianbao |last5=WangLin |first5=JingShunhe |last6=WangJia |first6=ShuoyueJunjie |yearlast7=2022Yu |first7=Guirui |title=CarbonThe transportation,'Regulator' transformation,Function andof sedimentationViruses processeson atEcosystem theCarbon land-river-estuaryCycling continuumin the Anthropocene |journal=FundamentalFrontiers Researchin Public Health |publisherdate=Elsevier29 BVMarch 2022 |volume=10 |doi=10.10163389/j.fmrefpubh.2022.07.007858615 |pmid=35425734 |doi-access=free |s2cidpmc=9001988 }}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=251168582yes}}</ref>
]]
 
Terrestrial and marine ecosystems are chiefly connected through [[riverine]] transport, which acts as the main channel through which erosive terrestrially derived substances enter into oceanic systems. Material and energy exchanges between the terrestrial [[biosphere]] and the [[lithosphere]] as well as [[organic carbon]] fixation and oxidation processes together regulate ecosystem carbon and [[dioxygen]] (O<sub>2</sub>) pools.<ref name="Gao2022" />
 
Riverine transport, being the main connective channel of these pools, will act to transport [[net primary productivity]] (primarily in the form of [[dissolved organic carbon]] (DOC) and [[particulate organic carbon]] (POC)) from terrestrial to oceanic systems.<ref>{{cite journal |last1=Schlünz |first1=B. |last2=Schneider |first2=R. R. |date=2000-03-22 |title=Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates |journal=International Journal of Earth Sciences |publisher=Springer Science and Business Media LLC |volume=88 |issue=4 |pages=599–606 |bibcode=2000IJEaS..88..599S |doi=10.1007/s005310050290 |s2cid=128411658 }}</ref> During transport, part of DOC will rapidly return to the atmosphere through [[redox reaction]]s, causing "carbon degassing" to occur between land-atmosphere storage layers.<ref>{{cite journal |last1=Blair |first1=Neal E. |last2=Leithold |first2=Elana L. |last3=Aller |first3=Robert C. |year=2004 |title=From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems |journal=Marine Chemistry |volume=92 |issue=1–4 |pages=141–156 |doi=10.1016/j.marchem.2004.06.023|bibcode=2004MarCh..92..141B }}</ref><ref>{{cite journal |last1=Bouchez |first1=Julien |last2=Beyssac |first2=Olivier |last3=Galy |first3=Valier |last4=Gaillardet |first4=Jérôme |last5=France-Lanord |first5=Christian |last6=Maurice |first6=Laurence |last7=Moreira-Turcq |first7=Patricia |year=2010 |title=Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2 |journal=Geology |publisher=Geological Society of America |volume=38 |issue=3 |pages=255–258 |bibcode=2010Geo....38..255B |doi=10.1130/g30608.1 |s2cid=53512466 }}</ref> The remaining DOC and [[dissolved inorganic carbon]] (DIC) are also exported to the ocean.<ref>{{cite journal |last1=Regnier |first1=Pierre |last2=Friedlingstein |first2=Pierre |last3=Ciais |first3=Philippe |last4=Mackenzie |first4=Fred T. |last5=Gruber |first5=Nicolas |last6=Janssens |first6=Ivan A. |last7=Laruelle |first7=Goulven G. |last8=Lauerwald |first8=Ronny |last9=Luyssaert |first9=Sebastiaan |last10=Andersson |first10=Andreas J. |last11=Arndt |first11=Sandra |last12=Arnosti |first12=Carol |last13=Borges |first13=Alberto V. |last14=Dale |first14=Andrew W. |last15=Gallego-Sala |first15=Angela |last16=Goddéris |first16=Yves |last17=Goossens |first17=Nicolas |last18=Hartmann |first18=Jens |last19=Heinze |first19=Christoph |last20=Ilyina |first20=Tatiana |last21=Joos |first21=Fortunat |last22=LaRowe |first22=Douglas E. |last23=Leifeld |first23=Jens |last24=Meysman |first24=Filip J. R. |last25=Munhoven |first25=Guy |last26=Raymond |first26=Peter A. |last27=Spahni |first27=Renato |last28=Suntharalingam |first28=Parvadha |last29=Thullner |first29=Martin |title=Anthropogenic perturbation of the carbon fluxes from land to ocean |journal=Nature Geoscience |date=August 2013 |volume=6 |issue=8 |pages=597–607 |doi=10.1038/ngeo1830 |bibcode=2013NatGe...6..597R |hdl=10871/18939 |hdl-access=free }}</ref><ref name="Bauer2013">{{cite journal |last1=Bauer |first1=James E. |last2=Cai |first2=Wei-Jun |last3=Raymond |first3=Peter A. |last4=Bianchi |first4=Thomas S. |last5=Hopkinson |first5=Charles S. |last6=Regnier |first6=Pierre A. G. |title=The changing carbon cycle of the coastal ocean |journal=Nature |date=5 December 2013 |volume=504 |issue=7478 |pages=61–70 |doi=10.1038/nature12857 |pmid=24305149 |bibcode=2013Natur.504...61B |s2cid=4399374 }}</ref><ref>{{cite journal |last1=Cai |first1=Wei-Jun |title=Estuarine and Coastal Ocean Carbon Paradox: CO 2 Sinks or Sites of Terrestrial Carbon Incineration? |journal=Annual Review of Marine Science |date=15 January 2011 |volume=3 |issue=1 |pages=123–145 |doi=10.1146/annurev-marine-120709-142723 |bibcode=2011ARMS....3..123C |pmid=21329201 }}</ref> In 2015, inorganic and organic carbon export fluxes from global rivers were assessed as 0.50–0.70 [[petagram|Pg]] C y<sup>−1</sup> and 0.15–0.35 Pg C y<sup>−1</sup> respectively.<ref name="Bauer2013" /> On the other hand, POC can remain buried in sediment over an extensive period, and the annual global terrestrial to oceanic POC flux has been estimated at 0.20<small> (+0.13,-0.07)</small> [[gigagram|Gg]] C y<sup>−1</sup>.<ref>{{cite journal |last1=Galy |first1=Valier |last2=Peucker-Ehrenbrink |first2=Bernhard |last3=Eglinton |first3=Timothy |title=Global carbon export from the terrestrial biosphere controlled by erosion |journal=Nature |date=May 2015 |volume=521 |issue=7551 |pages=204–207 |doi=10.1038/nature14400 |pmid=25971513 |bibcode=2015Natur.521..204G |s2cid=205243485 }}</ref><ref name="Gao2022" />
 
=== Biological pump in the ocean ===
Line 156 ⟶ 157:
{{main|Biological pump}}
 
The ocean [[biological pump]] is the ocean's biologically driven sequestration of [[carbon]] from the atmosphere and land runoff to the deep ocean interior and [[seafloor sediments]].<ref name="Sigman DM 2006. pp. 491-528">Sigman DM &{{cite GHbook Haug|doi=10.1016/B0-08-043751-6/06118-1 2006|bibcode=2003TrGeo...6..491S |chapter=The biologicalBiological pumpPump in the past. In:Past |title=Treatise on Geochemistry; vol.|date=2003 6,|last1=Sigman (ed|first1=D.)M. Pergamon|last2=Haug Press, pp|first2=G.H. |volume=6 |pages=491–528 |isbn=978-0-08-043751-4 }}</ref> The biological pump is not so much the result of a single process, but rather the sum of a number of processes each of which can influence biological pumping. The pump transfers about 11 billion tonnes of carbon every year into the ocean's interior. An ocean without the biological pump would result in atmospheric CO<sub>2</sub> levels about 400 [[Parts per million|ppm]] higher than the present day.<ref>{{cite journal |last1=Sanders |first1=Richard |last2=Henson |first2=Stephanie A. |last3=Koski |first3=Marja |last4=De La Rocha |first4=Christina L. |last5=Painter |first5=Stuart C. |last6=Poulton |first6=Alex J. |last7=Riley |first7=Jennifer |last8=Salihoglu |first8=Baris |last9=Visser |first9=Andre |last10=Yool |first10=Andrew |last11=Bellerby |first11=Richard |last12=Martin |first12=Adrian P. |title=The Biological Carbon Pump in the North Atlantic |journal=Progress in Oceanography |date=December 2014 |volume=129 |pages=200–218 |doi=10.1016/j.pocean.2014.05.005 |bibcode=2014PrOce.129..200S }}</ref><ref>{{cite journal |last1=Boyd |first1=Philip W. |title=Toward quantifying the response of the oceans' biological pump to climate change |journal=Frontiers in Marine Science |date=13 October 2015 |volume=2 |doi=10.3389/fmars.2015.00077 |doi-access=free }}</ref><ref name=Basu2018>{{cite journal |last1=Basu |first1=Samarpita |last2=Mackey |first2=Katherine |title=Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate |journal=Sustainability |date=19 March 2018 |volume=10 |issue=3 |pages=869 |doi=10.3390/su10030869 |doi-access=free }}</ref>
 
Most carbon incorporated in organic and inorganic biological matter is formed at the sea surface where it can then start sinking to the ocean floor. The deep ocean gets most of its nutrients from the higher [[water column]] when they sink down in the form of [[marine snow]]. This is made up of dead or dying animals and microbes, fecal matter, sand and other inorganic material.<ref name=Steinberg2002>{{cite journal |last1=Steinberg |first1=Deborah K |last2=Goldthwait |first2=Sarah A |last3=Hansell |first3=Dennis A |title=Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea |journal=Deep Sea Research Part I: Oceanographic Research Papers |date=August 2002 |volume=49 |issue=8 |pages=1445–1461 |doi=10.1016/S0967-0637(02)00037-7 |bibcode=2002DSRI...49.1445S }}</ref>
Line 164 ⟶ 165:
A single phytoplankton cell has a sinking rate around one metre per day. Given that the average depth of the ocean is about four kilometres, it can take over ten years for these cells to reach the ocean floor. However, through processes such as coagulation and expulsion in predator fecal pellets, these cells form aggregates. These aggregates have sinking rates orders of magnitude greater than individual cells and complete their journey to the deep in a matter of days.<ref name=Rocha2006>{{cite book |last1=de la Rocha |first1=C.L. |chapter=The Biological Pump |pages=83–111 |chapter-url={{GBurl|BnZ77tb18UEC|p=83}} |editor1-last=Elderfield |editor1-first=H. |title=The Oceans and Marine Geochemistry |date=2006 |publisher=Elsevier |isbn=978-0-08-045101-5 }}</ref>
 
About 1% of the particles leaving the surface ocean reach the seabed and are consumed, respired, or buried in the sediments. The net effect of these processes is to remove carbon in organic form from the surface and return it to DIC at greater depths, maintaining a surface-to-deep ocean gradient of DIC. [[Thermohaline circulation]] returns deep-ocean DIC to the atmosphere on millennial timescales. The carbon buried in the sediments can be [[subducted]] into the [[earth's mantle]] and stored for millions of years as part of the slow carbon cycle (see next section).<ref name=Ducklow2001>{{cite journal |last1=Ducklow |first1=Hugh |last2=Steinberg |first2=Deborah |last3=Buesseler |first3=Ken |title=Upper Ocean Carbon Export and the Biological Pump |journal=Oceanography |date=2001 |volume=14 |issue=4 |pages=50–58 |doi=10.5670/oceanog.2001.06 |doi-access=free }}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=yes}}</ref>
 
{{clear}}
 
===Viruses as regulators===
== Sub-processes within slow carbon cycle ==
Viruses act as "regulators" of the fast carbon cycle because they impact the material cycles and energy flows of [[food web]]s and the [[microbial loop]]. The average contribution of viruses to the Earth ecosystem carbon cycle is 8.6%, of which its contribution to marine ecosystems (1.4%) is less than its contribution to terrestrial (6.7%) and freshwater (17.8%) ecosystems. Over the past 2,000 years, anthropogenic activities and climate change have gradually altered the regulatory role of viruses in ecosystem carbon cycling processes. This has been particularly conspicuous over the past 200 years due to rapid industrialization and the attendant population growth.<ref name="Gao2022"/>
 
[[File:Viral impacts on ecosystem carbon cycles.jpg|thumb|upright=3|left|Comparison of how virus regulate the carbon cycle in terrestrial ecosystems (left) and in marine ecosystems (right). Arrows show the roles viruses play in the traditional food web, the microbial loop and the carbon cycle. Light green arrows represent the traditional food web, white arrows represent the microbial loop, and white dotted arrows represent the contribution rate of carbon produced by [[Lysis|viral lysing]] of bacteria to the ecosystem [[dissolved organic carbon]] (DOC) pool. Freshwater ecosystems are regulated in a manner similar to marine ecosystems, and are not shown separately. The microbial loop is an important supplement to the classic food chain, wherein dissolved organic matter is ingested by [[heterotrophic]] "[[planktonic]]" bacteria during [[secondary production]]. These bacteria are then consumed by [[protozoa]], [[copepod]]s and other organisms, and eventually returned to the classical food chain.<ref name="Gao2022" />]]
 
{{clear}}
 
== Sub-processesProcesses within slow carbon cycle ==
[[File:Flux_of_crustal_material_in_the_mantle.jpg|thumb|upright=1.8| {{center|Movement of oceanic plates—which carry carbon compounds—through the mantle}}]]
{{Main|Deep carbon cycle}}
 
Slow or [[Deep carbon cycle|deep carbon cycling]] is an important process, though it is not as well-understood as the relatively fast carbon movement through the atmosphere, terrestrial biosphere, ocean, and geosphere.<ref name=Wong2019>{{cite journal |last1=Wong |first1=Kevin |last2=Mason |first2=Emily |last3=Brune |first3=Sascha |last4=East |first4=Madison |last5=Edmonds |first5=Marie |last6=Zahirovic |first6=Sabin |title=Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings |journal=Frontiers in Earth Science |date=11 October 2019 |volume=7 |page=263 |doi=10.3389/feart.2019.00263 |doi-access=free |bibcode=2019FrEaS...7..263W }}</ref> The deep carbon cycle is intimately connected to the movement of carbon in the Earth's surface and atmosphere. If the process did not exist, carbon would remain in the atmosphere, where it would accumulate to extremely high levels over long periods of time.<ref>{{Cite web|url=https://deepcarbon.net/feature/deep-carbon-cycle-and-our-habitable-planet|title=The Deep Carbon Cycle and our Habitable Planet |website=Deep Carbon Observatory |access-date=2019-02-19|archive-date=27 July 2020|archive-url=https://web.archive.org/web/20200727084309/https://deepcarbon.net/feature/deep-carbon-cycle-and-our-habitable-planet|url-status=dead}}{{rs|date=July 2024}}</ref> Therefore, by allowing carbon to return to the Earth, the deep carbon cycle plays a critical role in maintaining the terrestrial conditions necessary for life to exist.
 
Furthermore, the process is also significant simply due to the massive quantities of carbon it transports through the planet. In fact, studying the composition of basaltic [[magma]] and measuring carbon dioxide flux out of volcanoes reveals that the amount of carbon in the [[Mantle (geology)|mantle]] is actually greater than that on the Earth's surface by a factor of one thousand.<ref name=":02">{{cite journal|last1=Wilson|first1=Mark|year=2003|title=Where do Carbon Atoms Reside within Earth's Mantle?|journal=Physics Today|volume=56|issue=10|pages=21–22|bibcode=2003PhT....56j..21W|doi=10.1063/1.1628990}}</ref> Drilling down and physically observing deep-Earth carbon processes is evidently extremely difficult, as the lower mantle and [[Earth's Core|core]] extend from 660 to 2,891&nbsp;km and 2,891 to 6,371 &nbsp;km deep into the Earth respectively. Accordingly, not much is conclusively known regarding the role of carbon in the deep Earth. Nonetheless, several pieces of evidence—many of which come from laboratory simulations of deep Earth conditions—have indicated mechanisms for the element's movement down into the lower mantle, as well as the forms that carbon takes at the extreme temperatures and pressures of said layer. Furthermore, techniques like [[seismology]] have led to a greater understanding of the potential presence of carbon in the Earth's core.
 
=== {{anchor|diamond}}Carbon in the lower mantle ===
[[File:Carbon_Outgassing_(Dasgupta_2011).png|thumb|upright=1.8| {{center|Carbon outgassing through various processes{{hsp}}<ref>{{Cite web|url=http://www.deep-earth.org/postAGU2011/Dasgupta-cider-agu2011.ppt|title=From Magma Ocean to Crustal Recycling: Earth's Deep Carbon Cycle|last=Dasgupta|first=Rajdeep|date=10 December 2011|access-date=9 March 2019|archive-url=https://web.archive.org/web/20160424031155/http://www.deep-earth.org/postAGU2011/Dasgupta-cider-agu2011.ppt|archive-date=24 April 2016|url-status=dead}}</ref>}}]]
 
Line 184 ⟶ 192:
 
[[File:Carbon tetrahedral oxygen.png|thumb|upright=0.8|left|Carbon is tetrahedrally bonded to oxygen]]
[[Polymorphism (materials science)|Polymorphism]] alters carbonate compounds' stability at different depths within the Earth. To illustrate, laboratory simulations and [[density functional theory]] calculations suggest that [[Tetrahedral molecular geometry|tetrahedrally coordinated]] carbonates are most stable at depths approaching the [[core–mantle boundary]].<ref>{{cite book |doi=10.1016/C2016-0-01520-6 |title=Magmas Under Pressure |date=2018 |isbn=978-0-12-811301-1 |editor1-first=Yoshio |editor1-last=Kono |editor2-first=Chrystèle |editor2-last=Sanloup }}{{pn|date=July 2024}}</ref><ref name="Fiquet 5184–5187"/> A 2015 study indicates that the lower mantle's high pressure causes carbon bonds to transition from sp<sub>2</sub> to sp<sub>3</sub> [[Orbital hybridisation|hybridised orbitals]], resulting in carbon tetrahedrally bonding to oxygen.<ref>{{cite journal |last1=Boulard |first1=Eglantine |last2=Pan |first2=Ding |last3=Galli |first3=Giulia |last4=Liu |first4=Zhenxian |last5=Mao |first5=Wendy L. |title=Tetrahedrally coordinated carbonates in Earth's lower mantle |journal=Nature Communications |date=18 February 2015 |volume=6 |issue=1 |page=6311 |doi=10.1038/ncomms7311 |pmid=25692448 |arxiv=1503.03538 |bibcode=2015NatCo...6.6311B }}</ref> CO<sub>3</sub> trigonal groups cannot form polymerisable networks, while tetrahedral CO<sub>4</sub> can, signifying an increase in carbon's [[coordination number]], and therefore drastic changes in carbonate compounds' properties in the lower mantle. As an example, preliminary theoretical studies suggest that high pressure causes carbonate melt viscosity to increase; the melts' lower mobility as a result of its increased viscosity causes large deposits of carbon deep into the mantle.<ref>{{cite journal |last1=Jones |first1=A. P. |last2=Genge |first2=M. |last3=Carmody |first3=L. |title=Carbonate Melts and Carbonatites |journal=Reviews in Mineralogy and Geochemistry |date=January 2013 |volume=75 |issue=1 |pages=289–322 |doi=10.2138/rmg.2013.75.10 |bibcode=2013RvMG...75..289J }}</ref>
 
Accordingly, carbon can remain in the lower mantle for long periods of time, but large concentrations of carbon frequently find their way back to the lithosphere. This process, called carbon outgassing, is the result of carbonated mantle undergoing decompression melting, as well as [[mantle plume]]s carrying carbon compounds up towards the crust.<ref>{{cite journal |last1=Dasgupta |first1=Rajdeep |last2=Hirschmann |first2=Marc M. |title=The deep carbon cycle and melting in Earth's interior |journal=Earth and Planetary Science Letters |date=September 2010 |volume=298 |issue=1–2 |pages=1–13 |doi=10.1016/j.epsl.2010.06.039 |bibcode=2010E&PSL.298....1D }}</ref> Carbon is oxidised upon its ascent towards volcanic hotspots, where it is then released as CO<sub>2</sub>. This occurs so that the carbon atom matches the oxidation state of the basalts erupting in such areas.<ref>{{cite journal |last1=Frost |first1=Daniel J. |last2=McCammon |first2=Catherine A. |title=The Redox State of Earth's Mantle |journal=Annual Review of Earth and Planetary Sciences |date=May 2008 |volume=36 |issue=1 |pages=389–420 |doi=10.1146/annurev.earth.36.031207.124322 |bibcode=2008AREPS..36..389F }}</ref>
Line 191 ⟶ 199:
 
=== Carbon in the core ===
Although the presence of carbon in the Earth's core is well-constrained, recent studies suggest large inventories of carbon could be stored in this region.{{Clarify|reason=confusing sentence for non-scientists|date=November 2020}} [[S-wave|Shear (S) waves]] moving through the inner core travel at about fifty percent of the velocity expected for most iron-rich alloys.<ref>{{Cite web|url=https://deepcarbon.net/feature/does-earths-core-host-deep-carbon-reservoir|title=Does Earth's Core Host a Deep Carbon Reservoir? |website=Deep Carbon Observatory |access-date=2019-03-09|archive-date=27 July 2020|archive-url=https://web.archive.org/web/20200727092747/https://deepcarbon.net/feature/does-earths-core-host-deep-carbon-reservoir|url-status=dead}}{{rs|date=July 2024}}</ref> Because the core's composition is believed to be an alloy of crystalline iron and a small amount of nickel, this seismic anomaly indicates the presence of light elements, including carbon, in the core. In fact, studies using [[diamond anvil cell]]s to replicate the conditions in the Earth's core indicate that [[Cementite|iron carbide]] (Fe<sub>7</sub>C<sub>3</sub>) matches the inner core's wave speed and density. Therefore, the iron carbide model could serve as an evidence that the core holds as much as 67% of the Earth's carbon.<ref>{{cite journal |last1=Chen |first1=Bin |last2=Li |first2=Zeyu |last3=Zhang |first3=Dongzhou |last4=Liu |first4=Jiachao |last5=Hu |first5=Michael Y. |last6=Zhao |first6=Jiyong |last7=Bi |first7=Wenli |last8=Alp |first8=E. Ercan |last9=Xiao |first9=Yuming |last10=Chow |first10=Paul |last11=Li |first11=Jie |title=Hidden carbon in Earth's inner core revealed by shear softening in dense {{chem|Fe|7|C|3}} |journal=Proceedings of the National Academy of Sciences |date=16 December 2014 |volume=111 |issue=50 |pages=17755–17758 |doi=10.1073/pnas.1411154111 |pmid=25453077 |pmc=4273394 |bibcode=2014PNAS..11117755C |doi-access=free }}</ref> Furthermore, another study found that in the pressure and temperature condition of the Earth's inner core, carbon dissolved in iron and formed a stable phase with the same Fe<sub>7</sub>C<sub>3</sub> composition—albeit with a different structure from the one previously mentioned.<ref>{{cite journal |last1=Prescher |first1=C. |last2=Dubrovinsky |first2=L. |last3=Bykova |first3=E. |last4=Kupenko |first4=I. |last5=Glazyrin |first5=K. |last6=Kantor |first6=A. |last7=McCammon |first7=C. |last8=Mookherjee |first8=M. |last9=Nakajima |first9=Y. |last10=Miyajima |first10=N. |last11=Sinmyo |first11=R. |last12=Cerantola |first12=V. |last13=Dubrovinskaia |first13=N. |last14=Prakapenka |first14=V. |last15=Rüffer |first15=R. |last16=Chumakov |first16=A. |last17=Hanfland |first17=M. |title=High Poisson's ratio of Earth's inner core explained by carbon alloying |journal=Nature Geoscience |date=March 2015 |volume=8 |issue=3 |pages=220–223 |doi=10.1038/ngeo2370 |bibcode=2015NatGe...8..220P }}</ref> In summary, although the amount of carbon potentially stored in the Earth's core is not known, recent studies indicate that the presence of iron carbides can explain some of the geophysical observations.<ref>{{cite journal |last1=Ezcurra |first1=Exequiel |title=Precision and bias of carbon storage estimations in wetland and mangrove sediments |journal=Science Advances |date=23 August 2024 |volume=10 |issue=34 |pages=eadl1079 |doi=10.1126/sciadv.adl1079 |pmid=39167659 |pmc=11421683 |doi-access=free |bibcode=2024SciA...10L1079E }}</ref>
 
==Human influence on fast carbon cycle==
Line 212 ⟶ 220:
}}
 
[[File:Anthropogenic changes in the global carbon cycle.png|thumb|upright=1.7|right|Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged from 2010 to 2019.]]

Since the [[industrialIndustrial revolutionRevolution]], and especially since the end of [[WWII]], human activity has substantially disturbed the global carbon cycle by redistributing massive amounts of carbon from the geosphere.<ref name="nasacc" /> Humans have also continued to shift the natural component functions of the terrestrial biosphere with changes to vegetation and other land use.<ref name=GlobalCarbonCycle/> Man-made (synthetic) carbon compounds have been designed and mass-manufactured that will persist for decades to millennia in air, water, and sediments as pollutants.<ref>{{cite web |url=https://www.epa.gov/ghgemissions/overview-greenhouse-gases |title=Overview of greenhouse gases |date=23 December 2015 |publisher=U.S. Environmental Protection Agency |access-date=2020-11-02}}</ref><ref name="plaspol">{{cite news |title=The known unknowns of plastic pollution |url=https://www.economist.com/news/international/21737498-so-far-it-seems-less-bad-other-kinds-pollution-about-which-less-fuss-made |access-date=17 June 2018 |newspaper=The Economist |date=3 March 2018}}</ref> Climate change is amplifying and forcing further indirect human changes to the carbon cycle as a consequence of various positive and negative [[feedback]]s.<ref name="Varney" />
 
=== Climate change ===
{{Main|Climate change feedback|Effects of climate change on oceans}}
 
[[File:Climate–carbon cycle feedbacks and state variables.png|thumb|upright=2|right| {{center|'''Climate–carbon cycle feedbacks and state variables<br />as represented in a stylised model'''}} Carbon stored on land in vegetation and soils is aggregated into a single stock c<sub>t</sub>. Ocean mixed layer carbon, c<sub>m</sub>, is the only explicitly modelled ocean stock of carbon; though to estimate carbon cycle feedbacks the total ocean carbon is also calculated.<ref name="Donges2018">{{cite journal |last1=Lade |first1=Steven J. |last2=Donges |first2=Jonathan F. |last3=Fetzer |first3=Ingo |last4=Anderies |first4=John M. |last5=Beer |first5=Christian |last6=Cornell |first6=Sarah E. |last7=Gasser |first7=Thomas |last8=Norberg |first8=Jon |last9=Richardson |first9=Katherine |last10=Rockström |first10=Johan |last11=Steffen |first11=Will |year=2018 |title=Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing |journal=Earth System Dynamics |volume=9 |issue=2 |pages=507–523 |bibcode=2018ESD.....9..507L |doi=10.5194/esd-9-507-2018 |doi-access=free |hdl=1885/163968 |hdl-access=free }}{{Creative Commons text attribution notice|cc=by4|url=|author(s)=|vrt=|from this source=yes}}</ref>]]
 
Current trends in climate change lead to higher ocean temperatures and [[acidity]], thus modifying marine ecosystems.<ref>{{cite journal |last1=Takahashi |first1=Taro |last2=Sutherland |first2=Stewart C. |last3=Sweeney |first3=Colm |last4=Poisson |first4=Alain |last5=Metzl |first5=Nicolas |last6=Tilbrook |first6=Bronte |last7=Bates |first7=Nicolas |last8=Wanninkhof |first8=Rik |last9=Feely |first9=Richard A. |last10=Sabine |first10=Christopher |last11=Olafsson |first11=Jon |last12=Nojiri |first12=Yukihiro |year=2002 |title=Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects |journal=Deep Sea Research Part II: Topical Studies in Oceanography |volume=49 |issue=9–10 |pages=1601–1622 |bibcode=2002DSRII..49.1601T |doi=10.1016/S0967-0645(02)00003-6}}</ref> Also, acid rain and polluted runoff from agriculture and industry change the ocean's chemical composition. Such changes can have dramatic effects on highly sensitive ecosystems such as [[coral reef]]s,<ref>{{cite journal |last1=Orr |first1=James C. |last2=Fabry |first2=Victoria J. |last3=Aumont |first3=Olivier |last4=Bopp |first4=Laurent |last5=Doney |first5=Scott C. |last6=Feely |first6=Richard A. |last7=Gnanadesikan |first7=Anand |last8=Gruber |first8=Nicolas |last9=Ishida |first9=Akio |last10=Joos |first10=Fortunat |last11=Key |first11=Robert M. |last12=Lindsay |first12=Keith |last13=Maier-Reimer |first13=Ernst |last14=Matear |first14=Richard |last15=Monfray |first15=Patrick |last16=Mouchet |first16=Anne |last17=Najjar |first17=Raymond G. |last18=Plattner |first18=Gian-Kasper |last19=Rodgers |first19=Keith B. |last20=Sabine |first20=Christopher L. |last21=Sarmiento |first21=Jorge L. |last22=Schlitzer |first22=Reiner |last23=Slater |first23=Richard D. |last24=Totterdell |first24=Ian J. |last25=Weirig |first25=Marie-France |last26=Yamanaka |first26=Yasuhiro |last27=Yool |first27=Andrew |title=Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms |journal=Nature |date=September 2005 |volume=437 |issue=7059 |pages=681–686 |doi=10.1038/nature04095 |pmid=16193043 |bibcode=2005Natur.437..681O |s2cid=4306199 |hdl=1912/370 |hdl-access=free }}</ref> thus limiting the ocean's ability to absorb carbon from the atmosphere on a regional scale and reducing oceanic biodiversity globally.
 
The exchanges of carbon between the atmosphere and other components of the Earth system, collectively known as the carbon cycle, currently constitute important negative (dampening) feedbacks on the effect of anthropogenic carbon emissions on climate change. Carbon sinks in the land and the ocean each currently take up about one-quarter of anthropogenic carbon emissions each year.<ref>{{cite journal |last1=Le Quéré |first1=Corinne |last2=Andrew |first2=Robbie M. |last3=Canadell |first3=Josep G. |last4=Sitch |first4=Stephen |last5=Korsbakken |first5=Jan Ivar |last6=Peters |first6=Glen P. |last7=Manning |first7=Andrew C. |last8=Boden |first8=Thomas A. |last9=Tans |first9=Pieter P. |last10=Houghton |first10=Richard A. |last11=Keeling |first11=Ralph F. |last12=Alin |first12=Simone |last13=Andrews |first13=Oliver D. |last14=Anthoni |first14=Peter |last15=Barbero |first15=Leticia |display-authors=29 |year=2016 |title=Global Carbon Budget 2016 |journal=Earth System Science Data |volume=8 |issue=2 |pages=605–649 |bibcode=2016ESSD....8..605L |doi=10.5194/essd-8-605-2016 |doi-access=free |last16=Bopp |first16=Laurent |last17=Chevallier |first17=Frédéric |last18=Chini |first18=Louise P. |last19=Ciais |first19=Philippe |last20=Currie |first20=Kim |last21=Delire |first21=Christine |last22=Doney |first22=Scott C. |last23=Friedlingstein |first23=Pierre |last24=Gkritzalis |first24=Thanos |last25=Harris |first25=Ian |last26=Hauck |first26=Judith |last27=Haverd |first27=Vanessa |last28=Hoppema |first28=Mario |last29=Klein Goldewijk |first29=Kees |last30=Jain |first30=Atul K.|hdl=10871/26418 |hdl-access=free }}</ref><ref name="Donges2018" />
Line 227 ⟶ 237:
==== Fossil carbon extraction and burning ====
{{See also|Coal mining|Extraction of petroleum}}
[[File:Anthropogenic carbon flows 1850-2018.png|thumb|upright=1.2|right| Detail of anthropogenic carbon flows, showing cumulative mass in gigatons during years 1850–2018 (left) and the annual mass average during 2009–2018 (right).<ref name="gcb19">{{cite journal |last1=Friedlingstein |first1=Pierre |last2=Jones |first2=Matthew W. |last3=O'Sullivan |first3=Michael |last4=Andrew |first4=Robbie M. |last5=Hauck |first5=Judith |last6=Peters |first6=Glen P. |last7=Peters |first7=Wouter |last8=Pongratz |first8=Julia |last9=Sitch |first9=Stephen |last10=Le Quéré |first10=Corinne |last11=Bakker |first11=Dorothee C. E. |last12=Canadell |first12=Josep G. |last13=Ciais |first13=Philippe |last14=Jackson |first14=Robert B. |last15=Anthoni |first15=Peter |last16=Barbero |first16=Leticia |last17=Bastos |first17=Ana |last18=Bastrikov |first18=Vladislav |last19=Becker |first19=Meike |last20=Bopp |first20=Laurent |last21=Buitenhuis |first21=Erik |last22=Chandra |first22=Naveen |last23=Chevallier |first23=Frédéric |last24=Chini |first24=Louise P. |last25=Currie |first25=Kim I. |last26=Feely |first26=Richard A. |last27=Gehlen |first27=Marion |last28=Gilfillan |first28=Dennis |last29=Gkritzalis |first29=Thanos |last30=Goll |first30=Daniel S. |last31=Gruber |first31=Nicolas |last32=Gutekunst |first32=Sören |last33=Harris |first33=Ian |last34=Haverd |first34=Vanessa |last35=Houghton |first35=Richard A. |last36=Hurtt |first36=George |last37=Ilyina |first37=Tatiana |last38=Jain |first38=Atul K. |last39=Joetzjer |first39=Emilie |last40=Kaplan |first40=Jed O. |last41=Kato |first41=Etsushi |last42=Klein Goldewijk |first42=Kees |last43=Korsbakken |first43=Jan Ivar |last44=Landschützer |first44=Peter |last45=Lauvset |first45=Siv K. |last46=Lefèvre |first46=Nathalie |last47=Lenton |first47=Andrew |last48=Lienert |first48=Sebastian |last49=Lombardozzi |first49=Danica |last50=Marland |first50=Gregg |last51=McGuire |first51=Patrick C. |last52=Melton |first52=Joe R. |last53=Metzl |first53=Nicolas |last54=Munro |first54=David R. |last55=Nabel |first55=Julia E. M. S. |last56=Nakaoka |first56=Shin-Ichiro |last57=Neill |first57=Craig |last58=Omar |first58=Abdirahman M. |last59=Ono |first59=Tsuneo |last60=Peregon |first60=Anna |last61=Pierrot |first61=Denis |last62=Poulter |first62=Benjamin |last63=Rehder |first63=Gregor |last64=Resplandy |first64=Laure |last65=Robertson |first65=Eddy |last66=Rödenbeck |first66=Christian |last67=Séférian |first67=Roland |last68=Schwinger |first68=Jörg |last69=Smith |first69=Naomi |last70=Tans |first70=Pieter P. |last71=Tian |first71=Hanqin |last72=Tilbrook |first72=Bronte |last73=Tubiello |first73=Francesco N. |last74=van der Werf |first74=Guido R. |last75=Wiltshire |first75=Andrew J. |last76=Zaehle |first76=Sönke |title=Global Carbon Budget 2019 |journal=Earth System Science Data |date=4 December 2019 |volume=11 |issue=4 |pages=1783–1838 |doi=10.5194/essd-11-1783-2019 |doi-access=free |bibcode=2019ESSD...11.1783F |hdl=20.500.11850/385668 |hdl-access=free }}</ref>]]
The largest and one of the fastest growing human impacts on the carbon cycle and biosphere is the extraction and burning of [[fossil fuels]], which directly transfer carbon from the geosphere into the atmosphere. Carbon dioxide is also produced and released during the [[calcination]] of [[limestone]] for [[clinker (cement)|clinker]] production.<ref>IPCC (2007) [https://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch7s7-4-5.html 7.4.5 Minerals] {{Webarchive|url=https://web.archive.org/web/20160525042327/http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch7s7-4-5.html|date=25 May 2016}} in ''Climate Change 2007'': Working Group III: Mitigation of Climate Change,</ref> Clinker is an industrial [[precursor (chemistry)|precursor]] of [[cement]].
 
{{As of|2020|}}, about 450 gigatons of fossil carbon have been extracted in total; an amount approaching the carbon contained in all of Earth's living terrestrial biomass.<ref name="gcb19" /> Recent rates of global emissions directly into the atmosphere have exceeded the uptake by vegetation and the oceans.<ref name="NASA-20151112-ab">{{cite web |last1=Buis |first1=Alan |last2=Ramsayer |first2=Kate |last3=Rasmussen |first3=Carol |date=12 November 2015 |title=A Breathing Planet, Off Balance |url=http://www.jpl.nasa.gov/news/news.php?feature=4769 |url-status=live |archive-url=https://web.archive.org/web/20151114055636/http://www.jpl.nasa.gov/news/news.php?feature=4769 |archive-date=14 November 2015 |access-date=13 November 2015 |website=[[NASA]] |df=dmy-all}}</ref><ref name="NASA-20151112b">{{cite web |date=12 November 2015 |title=Audio (66:01) - NASA News Conference - Carbon & Climate Telecon |url=http://www.ustream.tv/recorded/77531778 |url-status=live |archive-url=https://web.archive.org/web/20151117033437/http://www.ustream.tv/recorded/77531778 |archive-date=17 November 2015 |access-date=12 November 2015 |website=[[NASA]] |df=dmy-all}}</ref><ref name="NYT-20151110">{{cite news |last=St. Fleur |first=Nicholas |date=10 November 2015 |title=Atmospheric Greenhouse Gas Levels Hit Record, Report Says |work=[[The New York Times]] |url=https://www.nytimes.com/2015/11/11/science/atmospheric-greenhouse-gas-levels-hit-record-report-says.html |url-status=live |access-date=11 November 2015 |archive-url=https://web.archive.org/web/20151111074131/http://www.nytimes.com/2015/11/11/science/atmospheric-greenhouse-gas-levels-hit-record-report-says.html |archive-date=11 November 2015 |df=dmy-all}}</ref><ref name="AP-20151109">{{cite news |last=Ritter |first=Karl |date=9 November 2015 |title=UK: In 1st, global temps average could be 1 degree C higher |work=[[AP News]] |url=http://apnews.excite.com/article/20151109/climate_countdown-greenhouse_gases-d8a21f0397.html |url-status=live |access-date=11 November 2015 |archive-url=https://web.archive.org/web/20151117021206/http://apnews.excite.com/article/20151109/climate_countdown-greenhouse_gases-d8a21f0397.html |archive-date=17 November 2015 |df=dmy-all}}</ref> These [[carbon sink|sink]]s have been expected and observed to remove about half of the added atmospheric carbon within about a century.<ref name="gcb19" /><ref name=":0" /><ref>{{cite book |title=Intergovernmental Panel on Climate Change Fifth Assessment Report |page=8SM-16 |chapter=Figure 8.SM.4 |chapter-url=https://www.ipcc.ch/site/assets/uploads/2018/07/WGI_AR5.Chap_.8_SM.pdf |archive-url=https://web.archive.org/web/20190313233759/https://www.ipcc.ch/site/assets/uploads/2018/07/WGI_AR5.Chap_.8_SM.pdf |archive-date=2019-03-13 |url-status=live}}</ref> Nevertheless, sinks like the ocean have evolving [[solubility pump|saturation properties]], and a substantial fraction (20–35%, based on [[Coupled Model Intercomparison Project|coupled models]]) of the added carbon is projected to remain in the atmosphere for centuries to millennia.<ref>{{cite journal |last=Archer |first=David |year=2009 |title=Atmospheric lifetime of fossil fuel carbon dioxide |url=https://orbi.uliege.be/handle/2268/12933 |journal=Annual Review of Earth and Planetary Sciences |volume=37 |issue=1 |pages=117–34 |bibcode=2009AREPS..37..117A |doi=10.1146/annurev.earth.031208.100206 |hdl=2268/12933 |doi-access=free |hdl-access=free }}</ref><ref>{{Cite journal |last1=Joos |first1=F. |last2=Roth |first2=R. |last3=Fuglestvedt |first3=J.D. |display-authors=etal |year=2013 |title=Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis |url=https://www.atmos-chem-phys.net/13/2793/2013/ |journal=Atmospheric Chemistry and Physics |volume=13 |issue=5 |pages=2793–2825 |doi=10.5194/acpd-12-19799-2012 |doi-access=free |hdl=20.500.11850/58316 |hdl-access=free }}</ref>
 
====Halocarbons====
Line 239 ⟶ 249:
=== Land use changes ===
{{Main|Agriculture|Deforestation}}
Since the invention of agriculture, humans have directly and gradually influenced the carbon cycle over century-long timescales by modifying the mixture of vegetation in the terrestrial biosphere.<ref name=":0">{{cite book |doi=10.1016/S0070-4571(08)70338-8 |chapter=The Current Carbon Cycle and Human Impact |title=Geochemistry of Sedimentary Carbonates |volume=48 |pages=447–510 |series=Developments in Sedimentology |yeardate=1990 |isbnvolume=978044487391048 |last1pages=Morse447–510 |first1isbn=John W. |last2=Morse978-0-444-87391-0 |first2editor1-first=John W. Autor |last3editor1-last=Morse |first3editor2-first=John W. |last4=MacKenzie |first4=F.Fred T. |last5editor2-last=MacKenzie |first5=Fred T.Mackenzie }}</ref> Over the past several centuries, direct and indirect human-caused [[land use]] and land cover change (LUCC) has led to the [[Biodiversity loss|loss of biodiversity]], which lowers ecosystems' resilience to environmental stresses and decreases their ability to remove carbon from the atmosphere. More directly, it often leads to the release of carbon from terrestrial ecosystems into the atmosphere.
 
Deforestation for agricultural purposes removes forests, which hold large amounts of carbon, and replaces them, generally with agricultural or urban areas. Both of these replacement land cover types store comparatively small amounts of carbon so that the net result of the transition is that more carbon stays in the atmosphere. However, the effects on the atmosphere and overall carbon cycle can be intentionally and/or naturally reversed with [[reforestation]].{{fact|date=October 2024}}
 
== See also ==
Line 251 ⟶ 261:
* {{annotated link|Carbonate–silicate cycle}}
* {{annotated link|Ocean acidification}}
* {{annotated link|Orbiting Carbon Observatory}}
* {{annotated link|Permafrost carbon cycle}}
{{div col end}}
Line 263 ⟶ 274:
* [http://www.globalcarbonproject.org/ Global Carbon Project – initiative of the Earth System Science Partnership]
* [http://www.grida.no/climate/vital/13.htm UNEP – The present carbon cycle – Climate Change] {{Webarchive|url=https://web.archive.org/web/20080915231431/http://www.grida.no/climate/vital/13.htm |date=15 September 2008 }} carbon levels and flows
* [http://oco.jpl.nasa.gov/ NASA's Orbiting Carbon Observatory] {{Webarchive|url=https://web.archive.org/web/20180909072113/https://oco.jpl.nasa.gov/ |date=9 September 2018 }}
 
{{Biogeochemical cycle}}
Line 275 ⟶ 285:
[[Category:Soil biology]]
[[Category:Soil chemistry]]
[[Category:Carbon cycle| ]]
[[Category:Numerical climate and weather models]]
[[Category:Effects of climate change]]