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Abstract

We quantify the effects of learning and decision making on each other in three parts.
In the first part, we look at how knowledge about decision making can influence
learning. Let the decision cost be the amount spent by the practitioner in executing
a policy. If we have prior knowledge about this cost, for instance that it should be
low, then this knowledge can help restrict the hypothesis space for learning, which can
help with its generalization. We derive a suite of theoretical generalization bounds
and an algorithm for this setting.

In the second part, we look at how knowledge about learning can influence decision
making. We study this in the context of robust optimization. Taking the uncertainty
of learning the right model into account, we derive multiple probabilistic guarantees
on the robustness of the resulting policy.

In the last part, we explore the interactions between learning and decision making
in depth for two applications. The first application is in the area of power grid
maintenance and the second is in the area of professional racing. We provide tailored
solutions for modeling, predicting and making decisions in each context.

Thesis Supervisor: Cynthia Rudin
Title: Associate Professor
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Chapter 1

Introduction

The topic of this thesis is the study of the effects of machine learning on decision

making and vice versa. In a traditional workflow one performs machine learning

using historical data and then uses the constructed prediction model to forecast for a

current set of features. These forecasted values are fed into a one shot decision making

problem to come up with a policy. The policy performs well if it is comparable to

the policy which can be obtained in hindsight (i.e., when the true values realize).

We move away from this traditional workflow and propose several interesting ways to

look at learning and decision making at the same time.

The first three chapters investigate learning in the setting where we have some

sort of prior knowledge. In particular, we can have knowledge about some aspects of a

decision making problem which is parameterized by the outputs of the learning step.

In this setting, we want to say something about generalization of learning if we know

that the decision optimal value lies in a known interval. We also consider a related

case where such knowledge can come from unlabeled examples directly. The fourth

chapter investigates decision making in the setting where we know something about

the learning that parameterizes the decision making formulation. In particular, we

are able to come up with guarantees on decision feasibility to unknown future labels

when we know that there is going to be estimation and approximation error in the

learning step. In the following paragraphs, we highlight each of the chapters in some

more detail.

23



In Chapter 2, we propose a way to align statistical modeling with decision making,

which we call the "Machine Learning with Operational Costs (MLOC)" framework.

We provide a method that propagates the uncertainty in predictive modeling to the

uncertainty in operational cost, where operational cost is the amount spent by the

practitioner in solving the problem. The method allows us to explore the range of

operational costs associated with the set of reasonable statistical models, so as to

provide a useful way for practitioners to understand uncertainty. To do this, the

operational cost is cast as a regularization term in a learning algorithm's objective

function, allowing either an optimistic or pessimistic view of possible costs, depending

on the regularization parameter. From another perspective, if we have prior knowl-

edge about the operational cost, for instance that it should be low, this knowledge can

help to restrict the hypothesis space, and can help with generalization. We provide

a theoretical generalization bound for this scenario. We also show that learning with

operational costs is related to robust optimization.

In Chapter 3, we present a new application and covering number bound for the

framework presented in Chapter 2, which is an exploratory form of decision theory. In

this work, we use the MLOC framework to study a problem that has implications for

power grid reliability and maintenance, called the Machine Learning and Traveling

Repairman Problem (ML&TRP). The goal of the ML&TRP is to determine a route

for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize

the cost of failures at the nodes, but as in many real situations, the failure probabilities

are not known and must be estimated. The MLOC framework allows us to understand

how this uncertainty influences the repair route. We also present new covering number

generalization bounds for the MLOC framework.

In Chapter 4, we consider a supervised learning setting where side knowledge is

provided about the labels of unlabeled examples. One of the ways such a side knowl-

edge can arise is through knowledge about an associated decision making problem.

This was dealt with in Chapters 2 and 3. So, here we consider other sources of

side knowledge. This side knowledge has the effect of reducing the hypothesis space,

leading to tighter generalization bounds, and thus possibly better generalization. We

24



consider several types of side knowledge, the first leading to linear and polygonal con-

straints on the hypothesis space, the second leading to quadratic constraints, and the

last leading to conic constraints. We show how different types of domain knowledge

can lead directly to these kinds of side knowledge. We prove bounds on complexity

measures of the hypothesis space for quadratic and conic side knowledge, and show

that these bounds are tight in a specific sense for the quadratic case.

Our goal in Chapter 5 is to build robust optimization problems for making deci-

sions based on complex data from the past. In robust optimization (RO) generally,

the goal is to create a policy for decision-making that is robust to our uncertainty

about the future. In particular, we want our policy to best handle the the worst

possible situation that could arise, out of an uncertainty set of possible situations.

Classically, the uncertainty set is simply chosen by the user, or it might be estimated

in overly simplistic ways with strong assumptions; whereas in this work, we learn the

uncertainty set from data collected in the past. The past data are drawn randomly

from an (unknown) possibly complicated high-dimensional distribution. We propose

a new uncertainty set design and show how tools from statistical learning theory can

be employed to provide probabilistic guarantees on the robustness of the policy.

Our goal in Chapter 6 is to design a prediction and decision system for real-time

use during a professional car race. In designing a knowledge discovery process for

racing, we faced several challenges that were overcome only when domain knowledge

of racing was carefully infused within statistical modeling techniques. In this paper,

we describe how we leveraged expert knowledge of the domain to produce a real-time

decision system for tire changes within a race. Our forecasts have the potential to

impact how racing teams can optimize strategy, by making tire-change decisions to

benefit their rank position. Our work significantly expands previous research on sports

analytics, as it is the only work on analytical methods for within-race prediction and

decision making for professional car racing.

Each of the above chapters is written such that it introduces the problem and its

background, formalizes it, proposes algorithms if applicable and shows the related

proofs and experiments.
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Chapter 2

Machine Learning with Operational

Costs

2.1 Introduction

Machine learning algorithms are used to produce predictions, and these predictions

are often used to make a policy or plan of action afterwards, where there is a cost to

implement the policy. In this work, we would like to understand how the uncertainty

in predictive modeling can translate into the uncertainty in the cost for implementing

the policy. This would help us answer questions like:

Q1. "What is a reasonable amount to allocate for this task so we can react best to

whatever nature brings?"

Q2. "Can we produce a reasonable probabilistic model, supported by data, where

we might expect to pay a specific amount?"

Q3. "Can our intuition about how much it will cost to solve a problem help us

produce a better probabilistic model?"

The three questions above cannot be answered by standard decision theory, where

the goal is to produce a single policy that minimizes expected cost. These questions

also cannot be answered by robust optimization, where the goal is to produce a single
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policy that is robust to the uncertainty in nature. Those paradigms produce a single

policy decision that takes uncertainty into account, and the chosen policy might not be

a best response policy to any realistic situation. In contrast, our goal is to understand

the uncertainty and how to react to it, using policies that would be best responses to

individual situations.

There are many applications in which this method can be used. For example,

in scheduling staff for a medical clinic, predictions based on a statistical model of

the number of patients might be used to understand the possible policies and costs

for staffing. In traffic flow problems, predictions based on a model of the forecasted

traffic might be useful for determining load balancing policies on the network and

their associated costs. In online advertising, predictions based on models for the

payoff and ad-click rate might be used to understand policies for when the ad should

be displayed and the associated revenue.

In order to propagate the uncertainty in modeling to the uncertainty in costs,

we introduce what we call the simultaneous process, where we explore the range of

predictive models and corresponding policy decisions at the same time. The simulta-

neous process was named to contrast with a more traditional sequential process, where

first, data are input into a statistical algorithm to produce a predictive model, which

makes recommendations for the future, and second, the user develops a plan of action

and projected cost for implementing the policy. The sequential process is commonly

used in practice, even though there may actually be a whole class of models that

could be relevant for the policy decision problem. The sequential process essentially

assumes that the probabilistic model is "correct enough" to make a decision that is

"close enough."

In the simultaneous process, the machine learning algorithm contains a regular-

ization term encoding the policy and its associated cost, with an adjustable regular-

ization parameter. If there is some uncertainty about how much it will cost to solve

the problem, the regularization parameter can be swept through an interval to find a

range of possible costs, from optimistic to pessimistic. The method then produces the

most likely scenario for each value of the cost. This way, by looking at the full range
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of the regularization parameter, we sweep out costs for all of the reasonable proba-

bilistic models. This range can be used to determine how much might be reasonably

allocated to solve the problem.

Having the full range of costs for reasonable models can directly answer the ques-

tion in the first paragraph regarding allocation, "What is a reasonable amount to

allocate for this task so we can react best to whatever nature brings?" One might

choose to allocate the maximum cost for the set of reasonable predictive models for

instance. The second question above is "Can we produce a reasonable probabilistic

model, supported by data, where we might expect to pay a specific amount?" This

is an important question, since business managers often like to know if there is some

scenario/decision pair that is supported by the data, but for which the operational

cost is low (or high); the simultaneous process would be able to find such scenarios

directly. To do this, we would look at the setting of the regularization parameter

that resulted in the desired value of the cost, and then look at the solution of the si-

multaneous formulation, which gives the model and its corresponding policy decision.

Let us consider the third question above, which is "Can our intuition about how

much it will cost to solve a problem help us produce a better probabilistic model?"

The regularization parameter can be interpreted to regulate the strength of our belief

in the operational cost. If we have a strong belief in the cost to solve the problem, and

if that belief is correct, this will guide the choice of regularization parameter, and will

help with prediction. In many real scenarios, a practitioner or domain expert might

truly have a prior belief on the cost to complete a task. Arguably, a manager having

this more grounded type of prior belief is much more natural than, for instance, the

manager having a prior belief on the e2 norm of the coefficients of a linear model, or the

number of nonzero coefficients in the model. Being able to encode this type of prior

belief on cost could potentially be helpful for prediction: as with other types of prior

beliefs, it can help to restrict the hypothesis space and can assist with generalization.

In this work, we show that the restricted hypothesis spaces resulting from our method

can often be bounded by an intersection of an an f, ball with a halfspace - and this is
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true for many different types of decision problems. We analyze the complexity of this

type of hypothesis space with a technique based on Maurey's Lemma [Barron, 1993,

Zhang, 20021 that leads eventually to a counting problem, where we calculate the

number of integer points within a polyhedron in order to obtain a covering number

bound.

The operational cost regularization term can be the optimal value of a complicated

optimization problem, like a scheduling problem. This means we will need to solve

an optimization problem each time we evaluate the learning algorithm's objective.

However, the practitioner must be able to solve that problem anyway in order to

develop a plan of action; it is the same problem they need to solve in the traditional

sequential process, or using standard decision theory. Since the decision problem is

solved only on data from the present, whose labels are not yet known, solving the

decision problem may not be difficult, especially if the number of unlabeled examples

is small. In that case, the method can still scale up to huge historical data sets, since

the historical data factors into the training error term but not the new regularization

term, and both terms can be computed. An example is to compute a schedule for a

day, based on factors of the various meetings on the schedule that day. We can use a

very large amount of past meeting-length data for the training error term, but then

we use only the small set of possible meetings coming up that day to pass into the

scheduling problem. In that case, both the training error term and the regularization

term are able to be computed, and the objective can be minimized.

The simultaneous process is a type of decision theory. To give some background,

there are two types of relevant decision theories: normative (which assumes full in-

formation, rationality and infinite computational power) and descriptive (models re-

alistic human behavior). Normative decision theories that address decision making

under uncertainty can be classified into those based on ignorance (using no proba-

bilistic information) and those based on risk (using probabilistic information). The

former include maximax, maximin (Wald), minimax regret (Savage), criterion of re-

alism (Hurwicz), equally likely (Laplace) approaches. The latter include utility based

expected value and bayesian approaches (Savage). Info-gap, Dempster-Shafer, fuzzy
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logic, and possibility theories offer non-probabilistic alternatives to probability in

Bayesian/expected value theories [French, 1986, Hansson, 19941.

The simultaneous process does not fit into any of the decision theories listed above.

For instance, a core idea in the Bayesian approach is to choose a single policy that

maximizes expected utility, or minimizes expected cost. Our goal is not to find a

single policy that is useful on average. In contrast, our goal is to trace out a path of

models, their specific (not average) optimal-response policies, and their costs. The

policy from the Bayesian approach may not correspond to the best decision for any

particular single model, whereas that is something we want in our case. We trace out

this path by changing our prior belief on the operational cost (that is, by changing

the strength of our regularization term). In Bayesian decision theory, the prior is

over possible probabilistic models, rather than on possible costs as in this paper.

Constructing this prior over possible probabilistic models can be challenging, and

the prior often ends up being chosen arbitrarily, or as a matter of convenience. In

contrast, we assume only an unknown probability measure over the data, and the

data itself defines the possible probabilistic models for which we compute policies.

Maximax (optimistic) and maximin (pessimistic) decision approaches contrast

with the Bayesian framework and do not assume a distribution on the possible prob-

abilistic models. In Section 2.4 we will discuss how these approaches are related

to the simultaneous process. They overlap with the simultaneous process but not

completely. Robust optimization is a maximin approach to decision making, and the

simultaneous process also differs in principle from robust optimization. In robust

optimization, one would generally need to allocate much more than is necessary for

any single realistic situation, in order to produce a policy that is robust to almost

all situations. However, this is not always true; in fact, we show in this work that

in some circumstances, while sweeping through the regularization parameter, one of

the results produced by the simultaneous process is the same as the one coming from

robust optimization.

We introduce the sequential and simultaneous processes in Section 2.2. In Section

2.3, we give several examples of algorithms that incorporate these operational costs.
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In doing so, we provide answers for the first two questions Qi and Q2 above, with

respect to specific problems. Our first example application is a staffing problem at a

medical clinic, where the decision problem is to staff a set of stations that patients

must complete in a certain order. The time required for patients to complete each

station is random and estimated from past data. The second example is a real-estate

purchasing problem, where the policy decision is to purchase a subset of available

properties. The values of the properties need to be estimated from comparable sales.

The third example is a call center staffing problem, where we need to create a staffing

policy based on historical call arrival and service time information. A fourth example

is the "Machine Learning and Traveling Repairman Problem" (ML&TRP) where the

policy decision is a route for a repair crew. As mentioned above, there is a large

subset of problems that can be formulated using the simultaneous process that have

a special property: they are equivalent to robust optimization (RO) problems. Section

2.4 discusses this relationship and provides, under specific conditions, the equivalence

of the simultaneous process with RO. Robust optimization, when used for decision-

making, does not usually include machine learning, nor any other type of statistical

model, so we discuss how a statistical model can be incorporated within an uncertainty

set for an RO. Specifically, we discuss how different loss functions from machine

learning correspond to different uncertainty sets. We also discuss the overlap between

RO and the optimistic and pessimistic versions of the simultaneous process.

We consider the implications of the simultaneous process on statistical learning

theory in Section 2.5. In particular, we aim to understand how operational costs affect

prediction (generalization) ability. This helps answer the third question Q3, about

how intuition about operational cost can help produce a better probabilistic model.

We show first that the hypothesis spaces for most of the applications in Section 2.3

can be bounded in a specific way - by an intersection of a ball and a halfspace - and

this is true regardless of how complicated the constraints of the optimization problem

are, and how different the operational costs are from each other in the different

applications. Second, we bound the complexity of this type of hypothesis space

using a technique based on Maurey's Lemma [Barron, 1993, Zhang, 2002] that leads
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eventually to a counting problem, where we calculate the number of integer points

within a polyhedron in order to obtain a generalization bound. Our results show that

it is possible to make use of much more general structure in estimation problems,

compared to the standard (norm-constrained) structures like sparsity and smoothness;

further, this additional structure can benefit generalization ability. A shorter version

of this work has been previously published [see Tulabandhula and Rudin, 20121.

2.2 The Sequential and Simultaneous Processes

We have a training set of (random) labeled instances, {(Xi, yi)}, 1, where xi E X,

yi E Y that we will use to learn a function f* : X -+ Y. Commonly in machine

learning this is done by choosing f to be the solution of a minimization problem:

f* E argminfEJ.1nc l(f(xt ), yj) + C2R(f)), (2.1)

for some loss function I : Y x Y -+ R+, regularizer R : "n -+ R, constant C2 and

function class 7". Here, Y c R. Typical loss functions used in machine learning

are the 0-1 loss, ramp loss, hinge loss, logistic loss and the exponential loss. Function

class Y c is commonly the class of all linear functionals, where an element f E .F

is of the form #Tx, where X C RP, 8 E RP. We have used 'unc' in the superscript

for I'c to refer to the word "unconstrained," since it contains all linear functionals.

Typical regularizers R are the 4 and e 2 norms of P. Note that nonlinearities can be

incorporated into P"1 by allowing nonlinear features, so that we now would have

f(x) = E 1,hj(x), where {h,}, is the set of features, which can be arbitrary

nonlinear functions of x; for simplicity in notation, we will equate h,(x) = x2 and

have X c RP.

Consider an organization making policy decisions. Given a new collection of unla-

beled instances {i}1, the organization wants to create a policy 7r* that minimizes

a certain operational cost OpCost(7r, f*, {},). Of course, if the organization knew

the true labels for the {i},'s beforehand, it would choose a policy to optimize the
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operational cost based directly on these labels, and would not need f*. Since the

labels are not known, the operational costs are calculated using the model's predic-

tions, the f*(zi)'s. The difference between the traditional sequential process and the

new simultaneous process is whether f* is chosen with or without knowledge of the

operational cost.

As an example, consider {ii}, as representing machines in a factory waiting to

be repaired, where the first feature Ri, 1 is the age of the machine, the second feature

iR,2 is the condition at its last inspection, etc. The value f*(ji) is the predicted

probability of failure for Ri. Policy r* is the order in which the machines {i}, are

repaired, which is chosen based on how likely they are to fail, that is, {f*(ki)},, and

on the costs of the various types of repairs needed. The traditional sequential process

picks a model f*, based on past failure data without the knowledge of operational

cost, and afterwards computes lr* based on an optimization problem involving the

{f*(ii)}'s and the operational cost. The new simultaneous process picks f* and w*

at the same time, based on optimism or pessimism on the operational cost of r*.

Formally, the sequential process computes the policy according to two steps, as

follows.

Step 1: Create function f* based on {(x, y) j)}i according to (2.1). That is

f* E argminfEXJ. (f(xi), yi) C 2R(f)

Step 2: Choose policy 7r* to minimize the operational cost,

7* E argminvEIIfOpCost( , f* {} ).

The operational cost OpCost(T, f*, {,},) is the amount the organization will spend

if policy r is chosen in response to the values of {f*(zi)},.

To define the simultaneous process, we combine Steps 1 and 2 of the sequential

process. We can choose an optimistic bias, where we prefer (all else being equal) a

model providing lower costs, or we can choose a pessimistic bias that prefers higher
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costs, where the degree of optimism or pessimism is controlled by a parameter Ci. in

other words, the optimistic bias lowers costs when there is uncertainty, whereas the

pessimistic bias raises them. The new steps are as follows.

Step 1: Choose a model f* obeying one of the following:

Optimistic Bias: f* E argmin I (f(xi), yi)
f E.Fu- I

+C2R(f) + C1 min OpCost (7r, f, {zc}j) (2.2)

Pessimistic Bias: f* E argmin I (f(x), yi)
fEY-

+C2 R(f) - C1 minOpCost (7r, f, {i}i) (2.3)
wEr

Step 2: Compute the policy:

r0* E argminOpCost (7r, f*, {f},).
wEll

When C1 = 0, the simultaneous process becomes the sequential process; the se-

quential process is a special case of the simultaneous process.

The optimization problem in the simultaneous process can be computationally

difficult, particularly if the subproblem to minimize OpCost involves discrete opti-

mization. However, if the number of unlabeled instances is small, or if the policy

decision can be broken into several smaller subproblems, then even if the training

set is large, one can solve Step 1 using different types of mathematical programming

solvers, including MINLP solvers [Bonami et al., 2008], Nelder-Mead [Nelder and

Mead, 19651 and Alternating Minimization schemes [Tulabandhula et al., 2011]. One

needs to be able to solve instances of that optimization problem in any case for Step

2 of the sequential process. The simultaneous process is more intensive than the se-

quential process in that it requires repeated solutions of that optimization problem,

rather than a single solution.

The regularization term R(f) can be for example, an fi or f 2 regularization term

to encourage a sparse or smooth solution.
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As the C1 coefficient swings between large values for optimistic and pessimistic

cases, the algorithm finds the best solution (having the lowest loss with respect to

the data) for each possible cost. Once the regularization coefficient is too large, the

algorithm will sacrifice empirical error in favor of lower costs, and will thus obtain

solutions that are not reasonable. When that happens, we know we have already

mapped out the full range of costs for reasonable solutions. This range can be used

for pre-allocation decisions.

By sweeping over a range of C1, we obtain a range of costs that we might incur.

Based on this range, we can choose to allocate a reasonable amount of resources so

that we can react best to whatever nature brings. This helps answer question Q1 in

Section 2.1. In addition, we can pick a value of C1 such that the resulting operational

cost is a specific amount. In this case, we checking whether a probabilistic model

exists, corresponding to that cost, that is reasonably supported by data. This can

answer question Q2 in Section 2.1.

It is possible for the set of feasible policies H to depend on recommendations

{M1), ... , fm)}, so that H = H(f, {i},) in general. We will revisit this possibility

in Section 2.4. It is also possible for the optimization over ir E H to be trivial,

or the optimization problem could have a closed form solution. Our notation does

accommodate this, and is more general.

One should not view the operational cost as a utility function that needs to be es-

timated, as in reinforcement learning, where we do not know the cost. Here one knows

precisely what the cost will be under each possible outcome. Unlike in reinforcement

learning, we have a complicated one shot decision problem at hand and have train-

ing data as well as future/unlabeled examples on which the predictive model makes

prediction on.

The use of unlabeled data {iz} has been explored widely in the machine learning

literature under semi-supervised, transductive, and unsupervised learning. In partic-

ular, we point out that the simultaneous process is not a semi-supervised learning

method [see Chapelle et al., 2006], since it does not use the unlabeled data to pro-

vide information about the underlying distribution. A small unlabeled sample is not
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very useful for semi-supervised learning, but could be very useful for constructing

a low-cost policy. The simultaneous process also has a resemblance to transductive

learning [see Zhu, 20071, whose goal is to produce the output labels on the set of un-

labeled examples; in this case, we produce a function (namely the operational cost)

applied to those output labels. The simultaneous process, for a fixed choice of C1,

can also be considered as a multi-objective machine learning method, since it involves

an optimization problem having two terms with competing goals [see Jin, 2006].

2.2.1 The Simultaneous Process in the Context of Structural

Risk Minimization

In the framework of statistical learning theory [e.g., Vapnik, 1998, Pollard, 1984,

Anthony and Bartlett, 1999, Zhang, 2002], prediction ability of a class of models

is guaranteed when the class has low "complexity," where complexity is defined via

covering numbers, VC (Vapnik-Chervonenkis) dimension, Rademacher complexity,

gaussian complexity, etc. Limiting the complexity of the hypothesis space imposes

a bias, and the classical image associated with the bias-variance tradeoff is provided

in Figure 2-1(a). The set of good models is indicated on the axis of the figure.

Models that are not good are either overfitted (explaining too much of the variance

of the data, having a high complexity), or underfitted (having too strong of a bias

and a high empirical error). By understanding complexity, we can find a model

class where both the training error and the complexity are kept low. An example of

increasingly complex model classes is the set of nested classes of polynomials, starting

with constants, then linear functions, second order polynomials and so on.

In predictive modeling problems, there is often no one right statistical model when

dealing with finite datasets, in fact there may be a whole class of good models. In

addition, it is possible that a small change in the choice of predictive model could lead

to a large change in the cost required to implement the policy recommended by the

model. This occurs, for instance, when costs are based on objects (e.g., products) that

come in discrete amounts. Figure 2-1(b) illustrates this possibility, by showing that
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Figure 2-1: In all three plots, the x-axis represents model classes with increasing
complexity. a) Relationship between training error and test error as a function of
model complexity. b) A possible operational cost as a function of model complexity.
c) Another possible operational cost.
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there may be a variety of costs amongst the class of good models. The simultaneous

process can find the range of costs for the set of good models, which can be used for

allocation of costs, as discussed in the first question Q1 in the introduction.

Recall that question Q3 asked if our intuition about how much it will cost to solve

a problem can help us produce a better probabilistic model. Figure 2-1 can be used

to illustrate how this question can be answered. Assume we have a strong prior belief

that the operational cost will not be above a certain fixed amount. Accordingly, we

will choose only amongst the class of low cost models. This can significantly limit the

complexity of the hypothesis space, because the set of low-cost good models might

be much smaller than the full space of good models. Consider, for example, the cost

displayed in Figure 2-1(c), where only models on the left part of the plot would be

considered, since they are low cost models. Because the hypothesis space is smaller,

we may be able to produce a tighter bound on the complexity of the hypothesis space,

thereby obtaining a better prediction guarantee for the simultaneous process than for

the sequential process. In Section 2.5 we develop results of this type. These results

indicate that in some cases, the operational cost can be an important quantity for

generalization.

2.3 Conceptual Demonstrations

We provide four examples. In the first, we estimate manpower requirements for

a scheduling task. In the second, we estimate real estate prices for a purchasing

decision. In the third, we estimate call arrival rates for a call center staffing problem.

In the fourth, we estimate failure probabilities for manholes (access points to an

underground electrical grid). The first two are small scale reproducible examples,

designed to demonstrate new types of constraints due to operational costs. In the

first example, the operational cost subproblem involves scheduling. In the second, it is

a knapsack problem, and in the third, it is another multidimensional knapsack variant.

In the fourth, it is a routing problem. In the first, second and fourth examples, the

operational cost leads to a linear constraint, while in the third example, the cost leads
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to a quadratic constraint.

Throughout this section, we will assume that we are working with linear functions

f of the form /5Tx so that 11(f, {ij) can be denoted by II(l, {i} ). We will set R(f)

to be equal to 1112. We will also use the notation YR to denote the set of linear

functions that satisfy an additional property:

-FR {f E P": R(f) 5 C}*,

where C2 is a known constant greater than zero. We will use constant C2 from (2.1),

and also C2 from the definition of YR, to control the extent of regularization. C2 is

inversely related to C2. We use both versions interchangeably throughout the chapter.

2.3.1 Manpower Data and Scheduling with Precedence Con-

straints

We aim to schedule the starting times of medical staff, who work at 6 stations, for

instance, ultrasound, X-ray, MRI, CT scan, nuclear imaging, and blood lab. Current

and incoming patients need to go through some of these stations in a particular order.

The six stations and the possible orders are shown in Figure 2-2. Each station is

denoted by a line. Work starts at the check-in (at time in) and ends at the check-out

(at time r.5 ). The stations are numbered 6-11, in order to avoid confusion with the

times 1rl-ir5 . The clinic has precedence constraints, where a station cannot be staffed

(or work with patients) until the preceding stations are likely to finish with their

patients. For instance, the check-out should not start until all the previous stations

finish. Also, as shown in Figure 2-2, station 11 should not start until stations 8 and

9 are complete at time ir4 , and station 9 should not start until station 7 is complete

at time r 3 . Stations 8 and 10 should not start until station 6 is complete. (This is

related to a similar problem called planning with preference posed by F. Malucelli,

Politecnico di Milano).

The operational goal is to minimize the total time of the clinic's operation, from

when the check-in happens at time in1 until the check-out happens at time i 5 . We
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Figure 2-2: Staffing estimation with bias on scheduling with precedence constraints.

estimate the time it takes for each station to finish its job with the patients based on

two variables: the new load of patients for the day at the station, and the number

of current patients already present. The data are available as manpower in the R-

package bestglm, using "Hour," "Load" and "Stay" columns. The training error is

chosen to be the least squares loss between the estimated time for stations to finish

their jobs (3T'x) and the actual times it took to finish (yi). The unlabeled data are

the new load and current patients present at each station for a given period, given as

.. , il. Let 7r denote the 5-dimensional real vector with coordinates ri,..., 7r5.

The operational cost is the total time 7r - 7ri. Step 1, with an optimistic bias,

can be written as:

n

min (y - #T'x)2 + C, mim (Ir5 - 71), (2.4)

where the feasible set H(#, { };) is defined by the following constraints:

Wa + OTzi lrb; (a, i, b) E {(1,6, 2), (1, 7, 3), (2, 8,4), (3,9, 4), (2,10, 5), (4, 11, 5)}

7ra > 0 for a = 1, ... , 5.

To solve (2.4) given values of C1 and C2 , we used a function-evaluation-based scheme

called Nelder-Mead [Nelder and Mead, 1965] where at every iterate of 6, the sub-
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Figure 2-3: Left: Operational cost vs C1. Center: Penalized training loss vs C1 .
Right: R-squared statistic. C1 = 0 corresponds to the baseline, which is the sequential
formulation.

problem for wr was solved to optimality (using Gurobi1 ). C2 was chosen heuristically

based on (2.1) and kept fixed for the experiment beforehand.

Figure 2-3 shows the operational cost, training loss, and r2 statistic2 for various

values of C1 . For C1 values between 0 and 0.2, the operational cost varies substantially,

by ~-.16%. The r2 values for both training and test vary much less, by ~-3.5%, where

the best value happened to have the largest value of C1. For small datasets, there is

generally a variation between training and test: for this data split, there is a 3.16%

difference in r2 between training and test for plain least squares, and this is similar

across various splits of the training and test data. This means that for the scheduling

problem, there is a range of reasonable predictive models within about ~'.3.5% of each

other.

What we learn from this, in terms of the three questions in the introduction,

is that: 1) There is a wide range of possible costs within the range of reasonable

optimistic models. 2) We have found a reasonable scenario, supported by data, where

the cost is 16% lower than in the sequential case. 3) If we have a prior belief that the

cost will be lower, the models that are more accurate are the ones with lower costs,

and therefore we may not want to designate the full cost suggested by the sequential

process. We can perhaps designate up to 16% less.

Connection to learning theory: In the experiment, we used tradeoff parameter C1

'Gurobi Optimizer v3.0, Gurobi Optimization, Inc. 2010.
21f gi are the predicted labels and gj is the mean of {y1,..., yi,}, then the value of the r2 statistic

is defined as 1-Tiy -- 94)2/ _I( - 32. Thus r2 is an affine transformation of the sum of squares
error. r2 allows training and test accuracy to be measured on a comparable scale.
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to provide a soft constraint. Considering instead the corresponding hard constraint

min.(O 5 - 1i) < a, the total time must be at least the time for any of the three paths

in Figure 2-2, and thus at least the average of them:

a > min 7 5 - 7 1
irElfl,{i}i}

> max{( + ilO)Tfl, (-4 + + 11 #,)T (i7 + + i )T1 3 }

>ZT# (2.5)

where

z= ( + io) (4s + 4 + i) - (i7 + 49 + ill)].
3

The main result in Section 2.5, Theorem 2.5.1, is a learning theoretic guarantee in

the presence of this kind of arbitrary linear constraint, zT <a.

2.3.2 Housing Prices and the Knapsack Problem

A developer will purchase 3 properties amongst the 6 that are currently for sale and

in addition, will remodel them. She wants to maximize the total value of the houses

she picks (the value of a property is its purchase cost plus the fixed remodeling cost).

The fixed remodeling costs for the 6 properties are denoted {c.}l6 . She estimates the

purchase cost of each property from data regarding historical sales, in this case, from

the Boston Housing data set [Bache and Lichman, 2013], which has 13 features. Let

policy 7 E {0, 1}6 be the 6-dimensional binary vector that indicates the properties she

purchases. Also, xi represents the features of property i in the training data and ii

represents the features of a different property that is currently on sale. The training

loss is chosen to be the sum of squares error between the estimated prices #T x and the

true house prices yt for historical sales. The cost (in this case, total value) is the sum

of the three property values plus the costs for repair work. A pessimistic bias on total

value is chosen to motivate a min-max formulation. The resulting (mixed-integer)
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program for Step 1 of the simultaneous process is:

n

min 2 (y - #1 TX)2
PE{#6:.ERI',J||lJ|2C2*}

r 6 6 1
+ max Z(3Ti, + ci)Vr subject to E < 3. (2.6)+C[wEI0,1}1

2=1 3= ]

Notice that the second term above is a 1-dimensional {0, 1} knapsack instance.

Since the set of policies II does not depend on we can rewrite (2.6) in a cleaner

way that was not possible directly with (2.4):

n 6

minmax I~(Y, TX) 2 CJ(flTI~Cjl.C
P WIi=1 i=1

subject to

# E 3: P E RE I||| C2 }
6

r E j: rE {0, 1}6 , Zi 3 (2.7)

To solve (2.7) with user-defined parameters C1 and C2 , we use fminimax, available

through Matlab's Optimization toolbox.3

For the training and unlabeled set we chose, there is a change in policy above

and below C1 = 0.05, where different properties are purchased. Figure 2-4 shows the

operational cost which is the predicted total value of the houses after remodeling, the

training loss, and r2 values for a range of C1 . The training loss and r2 values change

by less than -3.5%, whereas the total value changes about 6.5%. We can again draw

conclusions in terms of the questions in the introduction as follows. The pessimistic

bias shows that even if the developer chose the best response policy to the prices, she

might end up with the expected total value of the purchased properties on the order

of 6.5% less if she is unlucky. Also, we can now produce a realistic model where the

total value is 6.5% less. We can use this model to help her understand the uncertainty

involved in her investment.

3 Version 5.1, Matlab R2010b, Mathworks, Inc.
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Figure 2-4: Left: Operational cost (total value) vs C1 . Center: Penalized training
loss vs C1 . Right: R-squared statistic. C1 = 0 corresponds to the baseline, which is
the sequential formulation.

Before moving to the next application of the proposed framework, we provide a

bound analogous to that of (2.5). Let us replace the soft constraint represented by

the second term of (2.6) with a hard constraint and then obtain a lower bound:

a >
6 6

max (#Tzi)wX > (#Ti),
i-iE0,1}6, i73

(2.8)

where w' is some feasible solution of the linear programming relaxation of this problem

that also gives a lower objective value. For instance picking 7rl = 0.5 for i = 1, ... , 6

is a valid lower bound giving us a looser constraint. The constraint can be rewritten:

,6T( I ii <a.

This is again a linear constraint on the function class parametrized by 3, which we

can use for the analysis in Section 2.5.

Note that if all six properties were being purchased by the developer instead of

three, the knapsack problem would have a trivial solution and the regularization term

would be explicit (rather than implicit).
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Figure 2-5: The three shifts for the call center. The cells represent half-hour periods,
and there are 24 periods per work day. Work starts at 10am and ends at 10pm.

2.3.3 A Call Center's Workload Estimation and Staff Schedul-

ing

A call center management wants to come up with the per-half-hour schedule for the

staff for a given day between 10am to 10pm. The staff on duty should be enough to

meet the demand based on call arrival estimates N(i), i = 1, ... , 24. The staff required

will depend linearly on the demand per half-hour. The demand per half-hour in turn

will be computed based on the Erlang C model [Aldor-Noiman et al., 20091 which is

also known as the square-root staffing rule. This particular model relates the demand

D(i) to the call arrival rate N(i) in the following manner: D(i) oc N(i) + c/N(i)

where c determines where on the QED (Quality Efficiency Driven) curve the center

wants to operate on. We make the simplifying assumptions that the service time for

each customer is constant, and that the coefficient c is 0.

If we know the call arrival rate N(i), we can calculate the staffing requirements

during each half hour. If we do not know the call arrival rate, we can estimate it from

past data, and make optimistic or pessimistic staffing allocations.

There are additional staffing constraints as shown in Figure 2-5, namely, there are

three sets of employees who work at the center such that: the first set can work only
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from 10am-3pm, the second can work from 1:30pm-6:30pm, and the third set works

from 5pm-10pm. The operational cost is the total number of employees hired to work

that day (times a constant, which is the amount each person is paid). The objective

of the management is to reduce the number of staff on duty but at the same time

maintain a certain quality and efficiency.

The call arrivals are modeled as a poisson process [Aldor-Noiman et al., 2009J.

What previous studies [Brown et al., 20011 have discovered about this estimation

problem is that the square root of the call arrival rate tends to behave as a linear

function of several features, including: day of the week, time of the day, whether it is

a holiday/irregular day, and whether it is close to the end of the billing cycle.

Data for call arrivals and features were collected over a period of 10 months from

Mid-February 2004 to the end of December 2004 [this is the same dataset as in Aldor-

Noiman et al., 2009J. After converting categorical variables into binary encodings

(e.g., each of the 7 weekdays into 6 binary features) the number of features is 36,

and we randomly split the data into a training set and test set (2764 instances for

training; another 3308 for test).

We now formalize the optimization problem for the simultaneous process. Let

policy 7 E Z3+ be a size three vector indicating the number of employees for each of

the three shifts. The training loss is the sum of squares error between the estimated

square root of the arrival rate #Tx and the actual square root of the arrival rate

yi := N(i). The cost is proportional to the total number of employees signed up

to work, E i r. An optimistic bias on cost is chosen, so that the (mixed-integer)

program for Step 1 is:

n

min (y; - #TX;)2

Ci [mi E 7r subject to ai1 ;> (#iT3)2 for i = 1, ... , 24, r e Z3+ (2.9)

where Figure 2-5 illustrates the matrix A with the shaded cells containing entry 1
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Figure 2-6: Left: Operational cost vs C1 . Center: Penalized training loss vs C1 .
Right: R-squared statistic. C1 = 0 corresponds to the baseline, which is the sequential
formulation.

and 0 elsewhere. The notation a1 indicates the ith row of A:

ai(j) if staff j can work in half-hour period i

0 otherwise.

To solve (2.9) we first relax the e2-norm constraint on # by adding another term to

the function evaluation, namely C211/8112. This, way we can use a function-evaluation

based scheme that works for unconstrained optimization problems. As in the man-

power scheduling example, we used an implementation of the Nelder-Mead algorithm,

where at each step, Gurobi was used to solve the mixed-integer subproblem for finding

the policy.

Figure 2-6 shows the operational cost, the training loss, and r2 values for a range

of C1. The training loss and r2 values change only -1.6% and -3.9% respectively,

whereas the operational cost changes about 9.2%. Similar to the previous two ex-

amples, we can again draw conclusions in terms of the questions in Section 2.1 as

follows. The optimistic bias shows that the management might incur operational

costs on the order of 9% less if they are lucky. Further, the simultaneous process

produces a reasonable model where costs are about 9% less. If the management team

believes they will be reasonably lucky, they can justify designating substantially less

than the amount suggested by the traditional sequential process.

Let us now investigate the structure of the operational cost regularization term

we have in (2.9). For convenience, let us stack the quantities (#aTzi)2 as a vector
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b E R24 . Also let boldface symbol 1 represent a vector of all ones. If we replace

the soft constraint represented by the second term with a hard constraint having an

upper bound a, we get:

3 3 24

a > n T r mm ZlT max ws#Ti,) 2

irEZi;Awlb wER ;Aw>b WER2 ;ATti=1

() 2 4 1

=10

Here a is related to the choice of C1 and is fixed. (t) represents an LP relaxation

of the integer program with 7r now belonging to the positive orthant rather than the

cartesian product of set of positive integers. (t) is due to LP strong duality and (*)

10is by choosing an appropriate feasible dual variable. Specifically, we pick w1 =-
for i = 1,... , 24, which is feasible because staff cannot work more than 10 half hour

shifts (or 5 hours). With the three inequalities, we now have a constraint on P of the

form:
24

'3(#Tfi)2 < 10a.
2=1

This is a quadratic form in # and gives an ellipsoidal feasible set. We already had

a simple ellipsoidal feasibility constraint while defining the minimization problem of

(2.9) of the form 11/811 < Ci. Thus, we can see that our effective hypothesis set (the

set of linear functionals satisfying these constraints) has become smaller. This in

turn affects generalization. We are investigating generalization bounds for this type

of hypothesis set in separate ongoing work.

2.3.4 The Machine Learning and Traveling Repairman Prob-

lem (ML&TRP) [Tulabandhula et al., 20111

Recently, power companies have been investing in intelligent "proactive" maintenance

for the power grid, in order to enhance public safety and reliability of electrical service.

For instance, New York City has implemented new inspection and repair programs for

manholes, where a manhole is an access point to the underground electrical system.

49



Electrical grids can he extremely large (there are on the order of 23,000-53,000 man-

holes in each borough of NYC), and parts of the underground distribution network

in many cities can be as old as 130 years, dating from the time of Thomas Edison.

Because of the difficulties in collecting and analyzing historical electrical grid data,

electrical grid repair and maintenance has been performed reactively (fix it only when

it breaks), until recently [Urbina, 20041. These new proactive maintenance programs

open the door for machine learning to assist with smart grid maintenance.

Machine learning models have started to be used for proactive maintenance in

NYC, where supervised ranking algorithms are used to rank the manholes in order of

predicted susceptibility to failure (fires, explosions, smoke) so that the most vulnerable

manholes can be prioritized [Rudin et al., 2010, 2012a, 2011J. The machine learning

algorithms make reasonably accurate predictions of manhole vulnerability; however,

they do not (nor would they, using any other prediction-only technique) take the cost

of repairs into account when making the ranked lists. They do not know that it is

unreasonable, for example, if a repair crew has to travel across the city and back

again for each manhole inspection, losing important time in the process. The power

company must solve an optimization problem to determine the best repair route,

based on the machine learning model's output. We might wish to find a policy that

is not only supported by the historical power grid data (that ranks more vulnerable

manholes above less vulnerable ones), but also would give a better route for the

repair crew. An algorithm that could find such a route would lead to an improvement

in repair operations on NYC's power grid, other power grids across the world, and

improvements in many different kinds of routing operations (delivery trucks, trains,

airplanes).

The simultaneous process could be used to solve this problem, where the opera-

tional cost is the price to route the repair crew along a graph, and the probabilities

of failure at each node in the graph must be estimated. We call this the "the machine

learning and traveling repairman problem" (ML&TRP) and in our ongoing work [Tu-

labandhula et al., 20111 , we have developed several formulations for the ML&TRP.

We demonstrated, using manholes from the Bronx region of NYC, that it is possible
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to obtain a much more practical route using the ML&TRP, by taking the cost of the

route optimistically into account in the machine learning model. We showed also that

from the routing problem, we can obtain a linear constraint on the hypothesis space,

in order to apply the generalization analysis of Section 2.5 (and in order to address

question Q3 of Section 2.1).

2.4 Connections to Robust Optimization

The goal of robust optimization (RO) is to provide the best possible policy that is

acceptable under a wide range of situations.4 This is different from the simultaneous

process, which aims to find the best policies and costs for specific situations. Note that

it is not always desirable to have a policy that is robust to a wide range of situations;

this is a question of whether to respond to every situation simultaneously or whether

to understand the single worst situation that could reasonably occur (which is what

the pessimistic simultaneous formulation handles). In general, robust optimization

can be overly pessimistic, requiring us to allocate enough to handle all reasonable

situations; it can be substantially more pessimistic than the pessimistic simultaneous

process.

In robust optimization, if there are several real-valued parameters involved in the

optimization problem, we might declare a reasonable range, called the "uncertainty

set," for each parameter (e.g. al E [9,10], a2 E [1,2]). Using techniques of RO, we

would minimize the largest possible operational cost that could arise from parameter

settings in these ranges. Estimation is not usually involved in the study of robust

optimization [with some exceptions, see Xu et al., 2009, who consider support vector

machines]. On the other hand, one could choose the uncertainty set according to a

statistical model, which is how we will build a connection to RO. Here, we choose the

uncertainty set to be the class of models that fit the data to within f, according to

some fitting criteria.

The major goals of the field of RO include algorithms, geometry, and tractability in

4http://en.wildpedia.org/wiki/Robustoptimization
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finding the best policy, whereas our work is not concerned with finding a robust policy,

but we are concerned with estimation, taking the policy into account. Tractability

for us is not always a main concern as we need to be able to solve the optimization

problem, even to use the sequential process. Using even a small optimization problem

as the operational cost might have a large impact on the model and decision. If the

unlabeled set is not too large, or if the policy optimization problem can be broken

into smaller subproblems, there is no problem with tractability. An example where

the policy optimization might be broken into smaller subproblems is when the policy

involves routing several different vehicles, where each vehicle must visit part of the

unlabeled set; in that case there is a small subproblem for each vehicle. On the other

hand, even though the goals of the simultaneous process and RO are entirely different,

there is a strong connection with respect to the formulations for the simultaneous

process and RO, and a class of problems for which they are equivalent. We will

explore this connection in this section.

There are other methods that consider uncertainty in optimization, though not

via the lens of estimation and learning. In the simplest case, one can perform both

local and global sensitivity analysis for linear programs to ascertain uncertainty in

the optimal solution and objective, but these techniques generally only handle simple

forms of uncertainty [Vanderbei, 2008J. Our work is also related to stochastic pro-

gramming, where the goal is to find a policy that is robust to almost all of the possible

circumstances (rather than all of them), where there are random variables governing

the parameters of the problem, with known distributions [Birge and Louveaux, 19971.

Again, our goal is not to find a policy that is necessarily robust to (almost all of) the

worst cases, and estimation is again not the primary concern for stochastic program-

ming, rather it is how to take known randomness into account when determining the

policy.
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2.4.1 Equivalence Between RO and the Simultaneous Process

in Some Cases

In this subsection we will formally introduce RO. In order to connect RO to esti-

mation, we will define the uncertainty set for RO, denoted Fg,4,, to be models for

which the average loss on the sample is within E of the lowest possible. Then we will

present the equivalence relationship between RO and the simultaneous process, using

a minimax theorem.

In Section 2.2, we had introduced the notation {(Xi, yi)}t and {14} for labeled

and unlabeled data respectively. We had also introduced the class F""1 in which we

were searching for a function f* by minimizing an objective of the form (2.1). The

uncertainty set Fg,,1 will turn out to be a subset of F"' that depends on {(xi, yi)},

and f* but not on {zi}

We start with plain (non-robust) optimization, using a general version of the

vanilla sequential process. Let f denote an element of the set ,g, where f is pre-

determined, known and fixed. Let the optimization problem for the policy decision ir

be defined by:

min OpCost(r, f;f{i}), (Base problem) (2.10)
wEf(f;i{)

where H(f; {i}) is the feasible set for the optimization problem. Note that this is

a more general version of the sequential process than in Section 2.2, since we have

allowed the constraint set H to be a function of both f and {;i}, whereas in (2.2)

and (2.3), only the objective and not the constraint set can depend on f and {!Q}.

Allowing this more general version of H will allow us to relate (2.10) to RO more

clearly, and will help us to specify the additional assumptions we need in order to

show the equivalence relationship. Specifically, in Section 2.2, OpCost depends on

(f,{i},) but not H; whereas in RO, generally H depends on (f, {zi}) but not OpCost.

The fact that OpCost does not need to depend on f and {i} is not a serious issue,

since we can generally remove their dependence through auxiliary variables. For

instance, if the problem is a minimization of the form (2.10), we can use an auxiliary
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variable, say t, to obtain an equivalent problem:

mint (Base problem reformulated)
2r't

such that 7r E rI(f; {fi})

OpCost(r, f;{i}) < t

where the dependence on (f,{i},) is present only in the (new) feasible set. Since

we had assumed f to be fixed, this is a deterministic optimization problem (convex,

mixed-integer, nonlinear, etc.).

Now, consider the case when f is not known exactly but only known to lie in the

uncertainty set F,,,. The robust counterpart to (2.10) can then be written as:

min max OpCost(7r, f; {i}) (Robust counterpart) (2.11)
wE n fl(g;{}&) fEry-d

gEF9*z

where we obtain a "robustly feasible solution" that is guaranteed to remain feasible for

all values of f E F,,,. In general, (2.11) is much harder to solve than (2.10) and is a

topic of much interest in the robust optimization community. As we discussed earlier,

there is no focus in (2.11) on estimation, but it is possible to embed an estimation

problem within the description of the set Fj, which we now define formally.

In Section 2.3, YR (a subset of YPAnc) was defined as the set of linear functionals

with the property that R(f) < Ci. That is,

yR = {f : f E P7Y, R(f) C2}.

We define Foog as a subset of YR by adding an additional property:

(212
Fgood= f : f E 7 y ( (xi), * O + ZE (2.12

for some fixed positive real E. In (2.12), again f* is a solution that minimizes the

objective in (2.1) over F". The right hand side of the inequality in (2.12) is thus
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constant, and we will henceforth denote it with a single quantity Cf. Substituting this

definition of g, in (2.11), and further making an important assumption (denoted

Al) that H is not a function of (f, { };), we get the following optimization problem:

in max [OpCost (ir, f,{if}i) (Robust counterpart with assumptions)
KEH {fEF1:1 I(f(Xi),yi):5C'}L

(2.13)

where C* now controls the amount of the uncertainty via the set Fg,.

Before we state the equivalence relationship, we restate the formulations for op-

timistic and pessimistic biases on operational cost in the simultaneous process from

(2.2) and (2.3):

min 1 (f(xi), y ) + C2R(f) + C1 min OpCost (r, f,{z};) (Simultaneous optimistic)fEyunc L wEll I ~ ~ piitc

mi (f(xi), yi) + C2R(f) - C1 min OpCost (7r, f, (Simultaneous pessimistic)
fEF""n W]s

(2.14)

Apart from the assumption Al on the decision set H that we made in (2.13),

we will also assume that Fg,,, defined in (2.12) is convex; this will be assumption

A2. If we also assume that the objective OpCost satisfies some nice properties (A3),

and that uncertainty is characterized via the set Fg4o, then we can show that the

two problems, namely (2.14) and (2.13), are equivalent. Let * denote equivalence

between two problems, meaning that a solution to one side translates into the solution

of the other side for some parameter values (C1, C , C2, C2*)

Proposition 2.4.1. Let H(f; {ij) = H be compact, convex, and independent of

parameters f and {i} (assumption Al). Let {f E FR : i=l(f(xi), yi) < C[}

be convex (assumption A2). Let the cost (to be minimized) OpCost(7r, f,{i}) be

concave continuous in f and convex continuous in 7r (assumption A3). Then, the

robust optimization problem (2.13) is equivalent to the pessimistic bias optimization
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problem (2 14). That is,

min max [opcost(7r, f,{ } ) a
,rEII {fEFR:,! If %iV9}5I

min L(f(Xi), yi) + C2R(f) - C1 min OpCost (7r, f, {i}i)
fEyuc [ iEfI

Remark 2.4.2. That the equivalence applies to linear programs (LPs) is clear be-

cause the objective is linear and the feasible set is generally a polyhedron, and is

thus convex. For integer programs, the objective OpCost satisfies continuity, but the

feasible set is typically not convex, and hence, the result does not generally apply

to integer programs. In other words, the requirement that the constraint set II be

convex excludes integer programs.

To prove Proposition 2.4.1, we restate a well-known generalization of von Neu-

mann's minimax theorem and some related definitions.

Definition 1. A linear topological space (also called a topological vector space) is a

vector space over a topological field (typically, the real numbers with their standard

topology) with a topology such that vector addition and scalar multiplication are

continuous functions. For example, any normed vector space is a linear topological

space. A function h is upper semicontinuous at a point po if for every E > 0 there

exists a neighborhood U of po such that h(p) < h(po) + E for all p E U. A function

h defined over a convex set is quasi-concave if for all p, q and A E [0,1] we have

h(Ap+ (1 - A)q) ;> min(h(p), h(q)). Similar definitions follow for lower semicontinuity

and quasi-convexity.

Theorem 2.4.3. [Sion's minimax theorem Sion, 19581 Let IT be a compact convex

subset of a linear topological space and S be a convex subset of a linear topological

space. Let G(ir, ) be a real function on 11 x E such that

(i) G(r, -) is upper semicontinuous and quasi-concave on for each ir E H;

(ii) G(-, ) is lower semicontinuous and quasi-convex on 11 for each ( E

56



Then

min sup G(r,() = sup min G(r,()

We can now proceed to the proof of Proposition (2.4.1).

Proof. (Of Proposition 2.4.1) We start from the left hand side of the equivalence we

want to prove:

min max [OpCost(ir, I,{zi})J
wEnI Jf.FR:E!'S- I (f (X ),Vi)s5C-}

max min OpCost(Or, f,{I}i)]
{f E.FR:!"1 L(f(xi),Vy) Ct*} irEfl

ax-F) y ) - C2(R(f) - +min OpCost(ir, f,max 1 (f (Xi), YO) - c)) m- { (R~)CfEJr- C1 C1 wEn1

min i (f(xi), yi) + C2R(f) - Cmin OpCost (7, f,{f:};)
fEF '" EI I

which is the right hand side of the logical equivalence in the statement of the theorem.

In step (a) we applied Sion's minimax theorem (Theorem 2.4.3) which is satisfied

because of the assumptions we made. In step (b), we picked Lagrange coefficients,

namely 1 and 2, both of which are positive. In particular, C* and C1 as well as

C2 and C2 are related by the Lagrange relaxation equivalence (strong duality). In

(c), we multiplied the objective with C1 throughout, pulled the negative sign in front,

and removed the constant terms C[ and C2C2 and used the following observation:

max, -g(a) = - mina g(a); and finally, removed the negative sign in front as this does

not affect equivalence. [

The equivalence relationship of Proposition 2.4.1 shows that there is a problem

class in which each instance can be viewed either as a RO problem or an estimation

problem with an operational cost bias. We can use ideas from RO to make the
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simultaneous process more general. Before doing so, we will characterize FTo for

several specific loss functions.

2.4.2 Creating Uncertainty Sets for RO Using Loss Functions

from Machine Learning

Let us for simplicity specialize our loss function to the least squares loss. Let X be

an n x p matrix with each training instance xi forming the i' row. Also let Y be the

n-dimensional vector of all the labels y . Then the loss term of (2.1) can be written

as:
a n

(y, - f(X,)) 2 = _ Z(' )2 = IIy _ X8112.
i=1 i=1

Let 8* be a parameter corresponding to f* in (2.1). Then the definition of Xgo in

terms of the least squares loss is:

Tgm= If : f E _FR, IIY-XflhI2 < lIY-X#*1j2 4 = If : .f E 17R, jjY-X61l2 < Cr1.

Since each f E F,0j corresponds to at least one 6, the optimization of (2.1) can

be performed with respect to P. In particular, the constraint IIY - X#11 5 Ci is an

ellipsoid constraint on 8. For the purposes of the robust counterpart in (2.11), we can

thus say that the uncertainty is of the ellipsoidal form. In fact, ellipsoidal constraints

on uncertain parameters are widely used in robust optimization, especially because

the resulting optimization problems often remain tractable.

Box constraints are also a popular way of incorporating uncertainty into robust

optimization. For box constraints, the uncertainty over the p-dimensional parameter

vector P = [ PI ... ,#,]T is written for i = 1, ... ,p as LB 5 3 UB, where {LBi}

and {UB,}, are real-valued upper and lower bounds that together define the box

intervals.

Our main point in this subsection is that one can potentially derive a very wide

range of uncertainty sets for robust optimization using different loss functions from

machine learning. Box constraints and ellipsoidal constraints are two simple types of
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Loss function Uncertainty set description
least squares jjY - X8112 < ,Y - X8*j + (ellipsoid)

0-1 loss n <WX06; : 1f*(X0)$j + E
logistic loss i=1 log(1 + e-i/if(x)) log(1 + e~f*(zi) +

exponential loss ' e 7 -Wf(xi) < n e-vif*(zi) + c

ramp loss n min(1, max(O, 1 - yif(Xi))) E min(1, max(0, 1 - yif*(Xi))) + 6
hinge loss E max(0, 1 - yf(xi)) ! Zn max(0, 1 - yif*(Ti)) + E

Table 2.1: Table showing a summary of different possible uncertainty set descriptions
that are based on ML loss functions.

constraints that could potentially be the set Fgd, which arise from two different loss

functions, as we have shown. The least squares loss leads to ellipsoidal constraints

on the uncertainty set, but it is unclear what the structure would be for uncertainty

sets arising from the 0-1 loss, ramp loss, hinge loss, logistic loss and exponential loss

among others. Further, it is possible to create a loss function for fitting data to a

probabilistic model using the method of maximum likelihood; uncertainty sets for

maximum likelihood could thus be established. Table 2.4.2 shows several different

popular loss functions and the uncertainty sets they might lead to. Many of these

new uncertainty sets do not always give tractable mathematical programs, which

could explain why they are not commonly considered in the optimization literature.

The sequential process for RO. If we design the uncertainty sets as described

above, with respect to a machine learning loss function, the sequential process de-

scribed in Section 2.2 can be used with robust optimization. This proceeds in three

steps:

1. use a learning algorithm on the training data to get f*,

2. establish an uncertainty set based on the loss function and f*, for example,

ellipsoidal constraints arising from the least squares loss (or one could use any

of the new uncertainty sets discussed in the previous paragraph),

3. use specialized optimization techniques to solve for the best policy, with respect

to the uncertainty set.
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We note that the uncertainty sets created by the 0-1 loss and ramp loss for in-

stance, are non-convex, consequently assumption (A2) and Proposition 2.4.1 do not

hold for robust optimization problems that use these sets.

2.4.3 The Overlap Between The Simultaneous Process and RO

On the other end of the spectrum from robust optimization, one can think of "opti-

mistic" optimization where we are seeking the best value of the objective in the best

possible situation (as oppose to the worst possible situation in RO). For optimistic

optimization, more uncertainty is favorable, and we find the best policy for the best

possible situation. This could be useful in many real applications where one not only

wants to know the worst-case conservative policy but also the best case risk-taking

policy. A typical formulation, following (2.11) can be written as:

min min OpCost(r,f;{1,}). (Optimistic optimization)
wE U ll(g;i}5 ) fEFgod

In optimistic optimization, we view operational cost optimistically (minfEyr9 , OpCost)

whereas in the robust optimization counterpart (2.11), we view operational cost con-

servatively (maxfEr,, OpCost). The policy ir* is feasible in more situations in RO

(min',En=Fldn) since it must be feasible with respect to each g E -Fgm, whereas

the OpCost is lower in optimistic optimization (min,,Eu, 7 . n) since it need only be

feasible with respect to at least one of the g's. Optimistic optimization has not been

heavily studied, possibly because a (min-min) formulation is relatively easier to solve

than its (min-max) robust counterpart, and so is less computationally interesting.

Also, one generally plans for the worst case more often than for the best case, partic-

ularly when no estimation is involved. In the case where estimation is involved, both

optimistic and robust optimization could potentially be useful to a practitioner.

Both optimistic optimization and robust optimization, considered with respect

to uncertainty sets FTgw, have non-trivial overlap with the simultaneous process.

In particular, we showed in Proposition 2.4.1 that pessimistic bias on operational
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Simultaneo
Process

Optimistic Robust
Optimiation Optimization

Figure 2-7: Set based description of the proposed framework (top circle) and its
relation to robust (right circle) and optimistic (left circle) optimizations. The regions
of intersection are where the conditions on the objective OpCost and the feasible set
H are satisfied.

cost is equivalent to robust optimization under specific conditions on OpCost and H.

Using an analogous proof, one can show that optimistic bias on operational cost is

equivalent to optimistic optimization under the same set of conditions. Both robust

and optimistic optimization and the simultaneous process encompass large classes

of problems, some of which overlap. Figure 2-7 represents the overlap between the

three classes of problems. There is a class of problems that fall into the simultaneous

process, but are not equivalent to robust or optimistic optimization problems. These

are problems where we use operational cost to assist with estimation, as in the call

center example and ML&TRP discussed in Section 2.3. Typically problems in this

class have H = H(f; {i}). This class includes problems where the bias can be either

optimistic or pessimistic, and for which Fg has a complicated structure, beyond

ellipsoidal or box constraints. There are also problems contained in either robust

optimization or optimistic optimization alone and do not belong to the simultaneous

process. Typically, again, this is when H depends on f. Note that the housing problem

presented in Section 2.3 lies within the intersection of optimistic optimization and the

simultaneous process; this can be deduced from (2.7).

In Section 2.5, we will provide statistical guarantees for the simultaneous process.

These are very different from the style of probabilistic guarantees in the robust opti-

mization literature. There are some "sample complexity" bounds in the RO literature

of the following form: how many observations of uncertain data are required (and
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applied as simultaneous constraints) to maintain robustness of the solution with high

probability? There is an unfortunate overlap in terminology; these are totally differ-

ent problems to the sample complexity bounds in statistical learning theory. From

the learning theory perspective, we ask: how many training instances does it take to

come up with a model 8 that we reasonably know to be good? We will answer that

question for a very general class of estimation problems.

2.5 Generalization Bound with New Linear Constraints

In this section, we give statistical learning theoretic results for the simultaneous pro-

cess that involve counting integer points in convex bodies. Generalization bounds are

probabilistic guarantees, that often depend on some measure of the complexity of the

hypothesis space. Limiting the complexity of the hypothesis space equates to a better

bound. In this section, we consider the complexity of hypothesis spaces that results

from an operational cost bias. This enables us to answer in a quantitative manner,

question Q3 in the introduction: "Can our intuition about how much it will cost to

solve a problem help us produce a better probabilistic model?"

Generalization bounds have been well established for norm-based constraints on

the hypothesis space, but the emphasis has been more on qualitative dependence (e.g.,

using big-O notation) and the constants are not emphasized. On the other hand, for

a practitioner, every prior belief should reduce the number of examples they need to

collect, as these examples may each be expensive to obtain; thus constants within

the bounds, and even their approximate values, become important [Bousquet, 2003}.

We thus provide bounds on the covering number for new types of hypothesis spaces,

emphasizing the role of constants.

To establish the bound, it is sufficient to provide an upper bound on the covering

number. There are many existing generic generalization bounds in the literature [e.g.,

Bartlett and Mendelson, 2002], which combined with our bound, will yield a specific

generalization bound for machine learning with operational costs, as we will construct

in Theorem 2.5.4.
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Good, Use this set for
ow-cost model the bound

Figure 2-8: Left: hypothesis space for intersection of good models (circular, to rep-
resent eq ball) with low cost models (models below cost threshold, one side of wiggly
curve). Right: relaxation to intersection of a half space with an eq ball.

In Section 2.3, we showed that a bias on the operational cost can sometimes be

transformed into linear constraints on model parameter # (see equations (2.5) and

(2.8)). There is a broad class of other problems for which this is true, for example, for

applications related to those presented in Section 2.3. Because we are able to obtain

linear constraints for such a broad class of problems, we will analyze the case of linear

constraints here. The hypothesis we consider is thus the intersection of an eq ball and

a halfspace. This is illustrated in Figure 2-8.

The plan for the rest of the section is as follows. We will introduce the quantities

on which our main result in this section depends. Then, we will state the main result

(Theorem 2.5.1). Following that, we will build up to a generalization bound (Theorem

2.5.4) that incorporates Theorem 2.5.1. After that will be the proof of Theorem 2.5.1.

Definition 2. [Covering Number, Kolmogorov and Tikhomirov, 19591 Let A C r be

an arbitrary set and (1, p) a (pseudo-)metric space. Let I -| denote set size.

* For any E > 0, an E-cover for A is a finite set U c r (not necessarily C A) s.t.

Va E A, 3u E U with d,(a,u) < E.

a The covering number of A is N(E, A, p) := infu IUI where U is an c-cover for

A.

We are given the set of n instances S := {x}&1 with each xi E X C RP where

X = {X : IXIIr < Xb}, 2 < r < oo and Xb is a known constant. Let pix be a
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probability measure on X. Let X- be arranged as rows of a matrix X. We can

represent the columns of X = [xi ... X,]T with hj E R",j = 1,...,p, so X can also

be written as [h, ... h,]. Define function class F as the set of linear functionals whose

coefficients lie in an Iq ball and with a set of linear constraints:

F:= {f : f(X) ='#TXP E B} where

B:= { ERP: 1,/3 5qB,Ecj,, +6, 1, , > , = ,...,v
( i1

where 1/r + 1/q = 1 and {c,,},,,, {6,}, and Bb are known constants. The linear

constraints given by the cj,'s force the hypothesis space F to be smaller, which will

help with generalization - this will be shown formally by our main result in this

section. Let Fis be defined as the restriction of F with respect to S.

Let {i5,}p, be proportional to {cl,},:

ccvn:rXbBb Vj = 1,..., p andv= 1,..., V.

Let K be a positive number. Further, let the sets pK parameterized by K and P!/

parameterized by K and {5,'}', be defined as

P
PK:= (k:,...,Ak)EZP: ku K}.

j=1

p := (ki, ... , k,) E PK : E 'jk K v = 1,... V. (2.15)

Let jPKI and IPKI be the sizes of the sets pK and Pr respectively. The subscript

c in Pj" denotes that this polyhedron is a constrained version of pK. As the linear

constraints given by the cj,'s force the hypothesis space to be smaller, they force

JPIfI to be smaller. Define XL to be equal to X times a diagonal matrix whose jih

diagonal element is r Define A,(XSLTXsL) to be the smallest eigenvalue of

the matrix XLT XL, which will thus be non-negative. Using these definitions, we
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state our main result of this section.

Theorem 2.5.1. (Main result, covering number bound)

N(iE,jfs, 12) < MinP I (2.16)
11 otherwise

where

Ko= [ 2

and

2X B
K = max KO, nX Bb

{ Lmin (XsLTXL) [min,,.v 1 }
The theorem gives a bound on the f 2 covering number for the specially constrained

class XIs. The bound improves as the constraints given by cj, on the operational cost

become tighter. In other words, as the c, impose more restrictions on the hypothesis

space, IPjI decreases, and the covering number bound becomes smaller. This bound

can be plugged directly into an established generalization bound that incorporates

covering numbers, and this is done in what follows to obtain Theorem 2.5.4.

Note that min{IPKI, 1 1 PI} can be tighter than IPI when E is large. When E

is larger than XbBb, we only need one closed ball of radius f to cover FIS, so

N(V/ E, Fis,1| - 112) = 1. In that case, the covering number in Theorem 2.5.1 is

appropriately bounded by 1. If E is large, but not larger than XBb, then IPKIf can

be smaller than PKo . pKo is the size of the polytope without the operational cost

constraints. IP1/j is the size of a potentially bigger polytope, but with additional

constraints.

For this problem we generally assume that n > p; that is the number of examples

is greater than the dimensionality p. In such a case, Amin(X.L T XL) can be shown to

be bounded away from zero for a wide variety of distributions Px (e.g., sub-gaussian

zero-mean). When AmIU(XBL TXL) = 0, the covering number bound becomes vacuous.

Let us introduce some notation in order to state the generalization bound results.
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Given any function f E F, we would like to minimize the expected future loss (also

known as the expected risk), defined as:

R"l(l o f) := E(,,)~,pxy [l(f(x), y)] =f l(f(x), Y)0 9 Xxy(X, y),

where I : Y x Y -+ R is the (fixed) loss function we had previously defined in Section

2.2. The loss on the training sample (also known as the empirical risk) is:

n
R Y~ 0 L,{(X , y41}7) := n V f(Xi), y).

=1

We would like to know that Rtr"(t o f) is not too much more than RP(L o

f, {(X, y,)}), no matter which f we choose from F. A typical form of generalization

bound that holds with high probability for every function in F is

Rt",(1o f) <; RP(lo f, {(X,, y,)}) + Bound(complexity(F) ,n), (2.17)

where the complexity term takes into account the constraints on F, both the linear

constraints, and the 4-ball constraint. Theorem 2.5.1 gives an upper bound on the

term Bound(complexity(F),n) in (2.17) above. In order to show this explicitly, we will

give the definition of Rademacher complexity, restate how it appears in the relation

between expected future loss and loss on training examples, and state an upper-bound

for it in terms of the covering number.

Definition 3. (Rademacher Complexity) The empirical Rademacher complexity of

F1 S is5

(Fs) = E, sup - if! (Xi) (2.18)
fEu-F i 1  I

where {O} are Rademacher random variables (ori = 1 with prob. 1/2 and -1 with

prob. 1/2). The Rademacher complexity is its expectation: R1?(F) = Es~(A,)n[Z(Fis).

The empirical Rademacher complexity R(Fis) can be computed given S and F,

5The factor 2 in the defining equation (2.18) is not very important. Some authors omit this factor
and include it explicitly as a pre-factor in, for example, Theorem 2.5.2.

66



and by concentration, will be close to the Rademacher complexity. The following

result relates the true risk to the empirical risk and empirical Rademacher complexity

for any function class W [see Bartlett and Mendelson, 2002, and references therein].

Let the quantities WIs, R1"'(l o h) and R IP(I o h, {xi, y;}n) be analogous to those we

had defined for our specific class F.

Theorem 2.5.2. (Rademacher Generalization Bound) For all 6 > 0, with probability

at least 1 - 6,Vh E ,

R"*(l o h) RPmP( o h, {xy}) +C - R^(WIS) + 3 og, (2.19)
1~ 72

where C is the Lipschitz constant of the loss function.

Note that (2.19) is an explicit form of (2.17). We will now relate R^(Fis) to

covering numbers thus justifying the importance of statement (2.16) in Theorem

2.5.1. In particular the following infinite chaining argument also known as Dudley's

integral [see Talagrand, 20051 relates k(}1s) to the covering number of the set Fis.

Theorem 2.5.3. (Relating Rademacher Complexity to Covering Numbers) We are

given that Vx E X, we have f(x) E [-XbBb, XbBb]. Then,

Xb F' 12f 12log N(aF7 , L2(A.))d = 12 f ,/2log N(Va, is, I| 11-2) da.
X&Bb ~ n 0n

Our main result in Theorem 2.5.1 can be used in conjunction with Theorems 2.5.2

and 2.5.3, to directly see how the true error relates to the empirical error and the

constraints on the restricted function class F (the eq-norm bound on 8 and linear

constraint on # from the operational cost bias). Explicitly, that bound is here.

Theorem 2.5.4. (Generalization Bound for ML with Operational Costs) For all 5 >

0, with probability at least 1 - 6, Vf E F,

I,), {, I})+ XBb 0/2 log N(tF/E, Fis, | -112) 3 log ,
Rt(lof) R P(lof, { +12Xb 10 dE -

n 2/ n
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where

N (i , _Fis,7 11 -112) {min{PKoIPf|} if E < XbBb

otherwise

and

2XB2
K = max KO, [X) m 2

1 AngnX(17 X, Is)[minj,=1,...,v

are functions of e.

This bound implies that prior knowledge about the operational cost can be im-

portant for generalization. As our prior knowledge on the cost becomes stronger,

the size of the hypothesis space becomes more restrictive, as seen through the con-

straints given by the cj,. When this happens, the IPKI terms become smaller, and

the whole bound becomes smaller. Note that the integral over E is taken from e = 0

to c = oo. When f is larger than XbBb, as noted earlier, N(V4isisj,|| - 112) = 1 and

thus log N(Ve,jIS, | - 112) = 0.

Before we move onto building the necessary tools to prove Theorem 2.5.1, we

compare our result with the bound in our work on the ML&TRP [Tulabandhula

et al., 2011]. In that work, we considered a linear function class with a constraint

on the e2-norm and one additional linear inequality constraint on fl. We then used

a sample independent volumetric cap argument to get a covering number bound.

Theorem 2.5.1 is in some ways an improvement of the other result: (1) we can now

have multiple linear constraints on #; (2) our new result involves a sample-specific

bounding technique for covering numbers, which is generally tighter; (3) our result

applies to 4, balls for q E [1, 21 whereas the previous analysis holds only for q = 2. The

volumetric argument in [Tulabandhula et al., 20111 provided a scaling of the covering

number. Specifically, the operational cost term for the ML&TRP allowed us to reduce

the covering number term in the bound from /log N(-, -, -) to Vlog(aN(-,., , | 112)),
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or equivalently V/1og N(-,-, 1 --112) + log a, where a is a function of the operational cost

constraint. If a obeys a < 1, then there is a noticeable effect on the generalization

bound, compared to almost no effect when a ~ 1. In the present work, the bound

does not scale the covering number like this, instead it is a very different approach

giving a more direct bound.

2.5.1 Proof of Theorem 2.5.1

We make use of Maurey's Lemma [Barron, 19931 in our proof [in the same spirit

as Zhang, 2002]. The main ideas of Maurey's Lemma are used in many machine

learning papers in various contexts [e.g., Koltchinskii and Panchenko, 2005, Schapire

et al., 1998, Rudin and Schapire, 20091. Our proof of Theorem 2.5.1 adapts Maurey's

Lemma to handle polyhedrons, and allows us to apply counting techniques to bound

the covering number.

Recall that X = [X 1 ... xJT was also defined column-wise as [hi ... h,]. We

introduce two scaled sets {Ihj} and {14j} corresponding to {h,}, and {#8}l as follows:

hi := /rhjjb h, for = 1,..., p; and
1hj||,.

1y:= |hg||j # for A 
,..,p

nl/rXbBb

These scaled sets will be convenient in places where we do not want to carry the

scaling terms separately.

Any vector y that is equal to X# can thus be written in three different ways:

p

y = E hj , or
j=1

P

y =Z/,h,, or

p

y= Z jfijsign(4j)h.
j=1

Our first lemma is a restatement of Maurey's lemma [revised version of Lemma

69



1 in Zhang, 2002]. We provide a proof based on the law of large numbers [Barron,

1993] though other proof techniques also exist [see Jones, 1992, for a proof based on

iterative approximation].

The lemma states that every point y in the convex hull of {h,}, is close to one of

the points yK in a particular finite set.

Lemma 2.5.5. Let maxj 1,...,,Il hl be less than or equal to some constant b. If y

belongs to the convex hull of set {h},, then for every positive integer K > 1, there

exists yK in the convex hull of K points of set {h}, such that 1y - yK 112 < 2

Proof. Let y be written in the form:

p

i=1

where for each j= 1, ... , p, 0 and E 7j <;51. Let jp+j := 1 - =1--

Consider a discrete distribution V formed by the coefficient vector (i ,.., 1,) !+1)

Associate a random variable h with support set {I1, ... , It,, 0}. That is, Pr(; = I,) =

jj, j = 1,...., p and Pr(9 = 0) = lp+1-

Draw K observations {I', ... , hK} uniformly and independently from V and form

the sample average YK := >K Wt. Here, we are using the superscript index to

denote the observation number. The mean of this random variable YK is:

1 K

EV[YKI = T E Ev[h'] where
8=1

,+ 1 p

Ev[hJ* = E Pr( = hj)hj =E I=y
j=1 j=1

hence EV[yKI -

The expected distance between YK and y is:

ED[IIYK - F2  = ED[IIYK - ELyK1 2] = E (yK -- EV[yKI]

M n n

Var((yK)i) Var((h)j)
1=1 1=1
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i Z(Ep[(R)?1 - ED[Fl) D (iIfII-IE[;]112)

< -EV[ 121 < (2.20)
K K

where we have used i to be the index for the ith coordinate of the n dimensional

vectors. (t) follows from the definition of variance coordinate-wise. (*) follows because

each component of YK is a sample average. (t) also follows from the definition of

variance. At step (o), we rewrite the previous summations involving squares into

ones that use the Hilbert norm. Our assumption on max=1 ,...', lhyj tells us that

Ev[11 11 21 b2 leading to (2.20). Since the squared Hilbert norm of the sample mean

is bounded in this way, there exists a YK that satisfies the inequality, so that

IIYK _ Y112 < 19
K'J

The following corollary states explicitly that an approximation to y exists that is

a linear combination with coefficients chosen from a particular discrete set.

Corollary 2.5.6. For any y and K as considered above, we can find non-negative

integers mi,..., mp such that E;_1 mj < K and I|y - Z 1 ljhj.j2 <

This follows immediately from the proof of Lemma 2.5.5, choosing mj to be the

coefficients of the hi's such that yK Kj

The above corollary means that counting the number of p-tuple non-negative

integers m1 , ... , m, gives us a covering of the set that y belongs to. In the case of

Lemma 2.5.5, this set is the convex hull of {h},.

Before we can go further, we need to generalize the argument from the positive

orthant of the f, ball to handle any coefficients that are in the whole unit-length

el-ball. This is what the following lemma accomplishes.

Lemma 2.5.7. Let maxj=1,...,, 11h4 be less than or equal to some constant b. For any

y= EZ 1 =%h1 such that 11/|1, 1, given a positive integer K, we can find a yK such

71



that

IIY - yK <

where yK = h is a combination of {h} with integers k1 ,..., k, such that

E;1- kI < K.

Proof. Lemma 2.5.5 cannot be applied directly since the {fi}, can be negative. We

rewrite y or equivalently EII j as

P
y E Z /%sign(4j)h,.

j=1

Thus y lies in the convex combination of {sign(4j)h,},. Note that this step makes

the convex hull depend on the y or {4j}5 we start with. Nonetheless, we know by

substituting {sign(#i)h,}, for {h,}, in the statement of Lemma 2.5.5 and Corollary

2.5.6 that

1. we can find yK, or equivalently

2. we can find non-negative integers mi, ... , m, with E _ mj : K,

such that ||y - y1K II2 < A where yK = M-sign(j)hj holds. This implies there

exist integers k1 , ... , k, such that yK - =Lhi where 1 1k11 < K. We simply

let k, = mjsign(46). Thus, we absorbed the signs of the 46's, and the coefficients no

longer need to be nonnegative.

In other words, we have shown that if a particular yK is in the convex hull of

points {sign(4j)h,},, then the same yK is a linear combination of {h,}, where the

coefficients of the combination k1 /K, ... , k,/K obey E3 I kI 5 K. This concludes

the proof. 0

We now want to answer the question of whether the k 1/K, ... , k,/K can obey

(related) linear constraints if the original {4j,} did so. These constraints on the

{#jjj's are the ones coming from constraints on the operational cost. In other words,
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we want to know that our (discretized) approximation of y also obeys a constraint

coming from the operational cost.

Let {3,8}, satisfy the linear constraints within the definition of B, in addition to

satisfying 11)3111 < 1:

P
E j[3 +6, 5 1, for fixed , > 0, v = 1, ... , V.

We now want that for large enough K, the P-tuple k1/K, ... , k,/K also meets certain

related linear constraints.

We will make use of the matrix XL, defined before Theorem 2.5.1. It has the

elements of the scaled set {h}, as its columns: XL := [hI ... h,.

Lemma 2.5.8. Take any y= 4j hj, and any YK ,ZLh with:

Ej,4j + 6,:5 1, for fixed 6, > 0, v = 1, .. , V where |f| < 1
j=1

and Iy - yKI' < b2/K. Whenever

Kk
min&=,...v Almin(XSLTXsL)

then the following linear constraints on k1/K,..., k,/K hold:

P
v K 5 1, y =1, ... , V.

This lemma states that as long as the discretization is fine enough, our approxi-

mation YK obeys similar operational cost constraints to y.

Proof. Let n := [k,/K ... k,/KT. Using the definition of XL,

> IJy - YKII2 = |XsLI3 - XLK|I= 2 IXsL( - r)112
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x)TXs TXOL(I3 - n) (*) (gTsL j - K12. (2.21)

In (*), we used the fact that for a positive (semi-)definite matrix M and for every

non-zero vector z, zTMz > A .(M)zTIz. (If = , we are done since r. will obey the

constraints f obeys.) Also, for any z, in each coordinate j, 1z31 max=1 ,...,, JzI =

jjz11oo jjz112. Combining this with (2.21), we have:

14i - -j 114- K112
K KX (XSL T X.L)

This implies that r. itself component-wise satisfies

ki- b
-A< - I +AwhereA:= X)

K- VK a(XLTrXs)

So far we know that for ally = 1, ... ,V, Ej , + 1, with 6p > 0, and

each coordinate k,/K within n varies from Bj by at most an amount A. We would

like to establish that the linear constraints E-, zip < 1, 1/ = 1, ... , V; always hold

for such a r. For each constraint v, substituting the extremal values of k, according

to the sign of ig, we get the following upper bound:

P% k P P
E'Ej ".7< 1:Zjp(4j + A) + E Ep, ( j - A) = E zipNi + A E | Eiv .

j=1 K Zj>0 EjV<O j=1 j=1

This sum E;-,5% + A E _ j,, is less than or equal to 1 iff A E=_, I54V 6!,.

Thus we would like A < for all v = 1,..., V. That is,

b= A < min
KAYD (XsL T XsL) =.

8min =..v ]min (X9L T XBL)

0
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We now proceed with the proof of our main result of this section. The result

involves covering numbers, where the cover for the set will be the vectors with dis-

cretized coefficients that we have been working with in the lemmas above.

Proof. (of Theorem 2.5.1)

Recall that

e the matrix X is defined as [h, ... h,];

* the scaled versions of vector {hj}1 are h = n"rXbBbh f

& the scaled versions of coefficients {#,8}, are #5 = #M forj =1,...,p; and

* any vector y = X6 = P 3h, can be rewritten as #jj- 5hj.

We will prove three technical facts leading up to the result.

Fact 1. If ||#|1q Bb, then 11#11, < 1.

Because 1/r + 1/q = 1, by H6lder's inequality we have:

/ Z = 1hg|ll#g| (2.22)
j=1 nlF jbb=,

1 P 1/r (p 1/q

1l/rbXb |(hg|| #=

To bound the above notice that in our notation, (hj)i = (xi)j. That is, the ith

component of feature vector hj, i.e., (hj)i is also the jtI component of example xi.

Thus,

( p 1 / r P n 1 / r n P1 / r

IIh3IIr) = ( ((hj)i) = ((h,))r
j=1 (=1 i=i=1 j=1

= X i ~ x ~ ) 1 / r < ( n X ) /r n = / r X . r
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Plugging this into (2.22), and using the fact that 11j 1q < Bb, we have

<_: n'/rXbB = 1,A !5nl/rBbXb
j=1

Fact 2. Corresponding to the set of linear constraints on P

P

Ecj"6j + 6, < 1, 5, > 0, V = 1,..., V
=1

there is a set of linear constraints on 46, namely E ,= zf,,# + 6,, 1,z' = 1, ..., V.

Recall that E B also means that E;, cj,,# + 6, < 1 for some 6, > 0 for all

=1, ... , V. Thus, for all = 1, ... , V:

P

E c:j,,aj + 6t, 1
j=1

Ehj|| nweXB
P

which is the set of corresponding linear constraints on {} we want.

Fact 3. Vj = 1,..., p, ||53|2 ! n'/2XbBb.

Jensen's inequality implies that for any vector z in Rn, and for any r ;>2, it is

true ~ ir 11a f/|Z||12 !5 ;;-||1Z 1,.. Using this for our particular vectorN n u ie

r, we get
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But we know

| 1 nl/rXbBb ==hil|r = nh/rXbBb.
|1 lhjjjr , jh,|r

Thus, we have tIjh,12 n/ 2 XbBb for each j, and thus, maxj=,,...,, 11h111 2 5 ni/2XbBb.

With those three facts established, we can proceed with the proof of Theorem

2.5.1. Facts 1 and 2 show that the requirements on f for Lemma 2.5.7 and Lemma

2.5.8 are satisfied. Fact 3 shows that the requirement on {h,} for Lemma 2.5.7 is

satisfied with constant b being set to n1 /2XBb. Since the requirements on {Ih,} and

{#5}j are satisfied, we want to choose the right value of positive integer K such that

Lemma 2.5.8 is satisfied and also we would like the squared distance between y and

yK to be less than nE2 . To do this, we pick K to be the bigger of the two quantities:

X B /f 2 and that given in Lemma 2.5.8. That is,

K= max { nXB l. (2.23)
C2 12T

v1. min D(XL XsL)

This will force our discretization for the cover to be sufficiently fine that things will

work out: we will be able to count the number of cover points in our finite set, and

that will be our covering number.

To summarize, with this choice, for any y E FIs, we can find integers ki, ...,

such that the following hold simultaneously:

a. (It gives a valid discretization of y.) EZ=1 jkil K,

b. (It gives a good approximation to y.) The approximation YK ' 1  thj is

c/i close to y = 1j /jh. That is,

11Y _ yK 112 < < lE 2 andy - yK -
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c. (It obeys operational cost constraints.) Z"__ < 1, i = 1,..., V.

In the above, the existence of ki, ... , k, satisfying (a) and (b) comes from Lemma 2.5.7

where we have also used K satisfying K > X Bb/E2 > 1. Lemma 2.5.8 along with the

choice of K from (2.23) guarantees that (c) holds as well for this choice of k1, ... , k,.

Thus, by (b), any y E Fis is within EiFn in 12 distance of at least one of the vectors

with coefficients k1/K,..., k,/K. Therefore counting the number of p-tuple integers

k,..., k , such that (a) and (c) hold, or equivalently the number of solutions to (2.15),

gives a bound on the covering number, which is IP!'t. That is,

N(Vdn-,Yjs,j| -j2):5 IPfl-

If we did not have any linear constraints, we would have the following bound,

N (VeE s|| - ||2) P pKo

where Ko := ]by using Lemma 2.5.7 and very similar arguments as above.

In addition, when E > XbBb, the covering number is exactly equal to 1 since we

can cover the set FS by a closed ball of radius .,/iXbBb.

Thus we modify our upper bound by taking the minimum of the two quantities

PKoI and IPcKI appropriately to get the result:

min{pKo|, |pj} if f < XbBb
N(VrE, .FjS,j j-|2) {

1 otherwise.

0

Since Theorem 2.5.1 suggests that IPKI may be an important quantity for the

learning process, we discuss how to compute it. We assume that -g, are rationals

for all j = 1,..,p, v = 1,..., V, so that we can multiply each of the V constraints

describing P!" by the corresponding gcd of the p denominators. This is without loss

of generality because the rationals are dense in the reals. This ensures that all the
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constraints describing polyhedron P11 have integer coefficients. Once this is achieved,

we can run Barvinok's algorithm [using for example, Lattice Point Enumeration, see

De Loera, 2005, and references therein] that counts integer points inside polyhedra

and runs in polynomial time for fixed dimension (which is p here). Using the output of

this algorithm within our generalization bound will yield a much tighter bound than in

previous works [for example, the bound in Zhang, 2002, Theorem 31, especially when

(r, q) = (oo, 1); this is true simply because we are counting more carefully. Note that

counting integer points in polyhedrons is a fundamental question in a variety of fields

including number theory, discrete optimization, combinatorics to name a few, and

making an explicit connection to bounds on the covering number for linear function

classes can potentially open doors for better sample complexity bounds.

2.6 Discussion and Conclusion

The perspective taken in this work contrasts with traditional decision analysis and

predictive modeling; in these fields, a single decision is often the only end goal. Our

goal involves exploring how predictive modeling influences decisions and their costs.

Unlike traditional predictive modeling, our regularization terms involve optimization

problems, and are not the usual vector norms.

The simultaneous process serves as a way to understand uncertainty in decision-

making, and can be directly applied to real problems. We centered our discussion

and demonstrations around three questions, namely: "What is a reasonable amount

to allocate for this task so we can react best to whatever nature brings?" (answered in

Section 2.3), "Can we produce a reasonable probabilistic model, supported by data,

where we might expect to pay a specific amount?" (answered in Section 2.3), and

"Can our intuition about how much it will cost to solve a problem help us produce a

better probabilistic model?" (answered in Section 2.5). The first two were answered

by exploring how optimistic and pessimistic views can influence the probabilistic

models and the operational cost range. Given the range of reasonable costs, we could

allocate resources effectively for whatever nature brings. Also given a specific cost
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value, we could pick a coriesponding probabilistic model and verify that it can be

supported by data. The third question was comprehensively answered in Section 2.5

by evaluating how intuition about the operational cost can restrict the probabilistic

model space and in turn lead to better sample complexity if the intuition is correct.

These are questions that are not handled in a natural way by current paradigms.

Answering these three questions are not the only uses for the simultaneous process.

For instance, domain experts could use the simultaneous process to explore the space

of probabilistic models and policies, and then simply pick the policy among these

that most agrees with their intuition. Or, they could use the method to refine the

probabilistic model, in order to exclude solutions that the simultaneous process found

that did not agree with their intuition.

The simultaneous process is useful in cases where there are many potentially good

probabilistic models, yielding a large number of (optimal-response) policies. This

happens when the training data are scarce, or the dimensionality of the problem is

large compared to the sample size, and the operational cost is not smooth. These

conditions are not difficult to satisfy, and do occur commonly. For instance, data can

be scarce (relative to the number of features) when they are expensive to collect, or

when each each instance represents a real-world entity where few exist; for instance,

each example might be a product, customer, purchase record, or historic event. Oper-

ational cost calculations commonly involve discrete optimization; there can be many

scheduling, knapsack, routing, constraint-satisfaction, facility location, and matching

problems, well beyond what we considered in our simple examples. The simultaneous

process can be used in cases where the optimization problem is difficult enough that

sampling the posterior of Bayesian models, with computing the policy at each round,

is not feasible.

We end the chapter by discussing the applicability of our policy-oriented esti-

mation strategy in the real world. Prediction is the end goal for machine learning

problems in vision, image processing and biology, and in other scientific domains, but

there are many domains where the learning algorithm is used to make recommenda-

tions for a subsequent task. We showed applications in Section 2.3 but it is not hard
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to find applications in other domains, where using either the traditional sequential

process, decision theory, or robust optimization may not suffice. Here are some other

potential domains:

* Internet advertising, where the goal of the advertising platform is to choose

which ad to show a customer. For each customer and advertiser, there is an

uncertain estimate of the probability that the customer will click the ad from

that advertiser. These estimates determine which ad will be shown next, which

is a discrete decision [Muthukrishnan et al., 2007].

a Portfolio management, where we allocate our budget among n risky assets with

uncertain returns, and each asset has a different cost associated with the invest-

ment [Konno and Yamazaki, 1991].

* Maintenance applications [in addition to the ML&TRP Tulabandhula et al.,

2011], where we estimate probabilities of failure for each piece of equipment, and

create a policy for repairing, inspecting, or replacing the equipment. Certain

repairs are more expensive than others, so the costs of various policy decisions

could potentially change steeply as the probability model changes.

a Traffic flows on transportation networks, where the problem can be that of load

balancing based on resource constraints and forecasted demands [Koulakezian

et al., 2012].

* Policy decisions based on dynamical system simulations, for instance, climate

policy, where a politician wants to understand the uncertainty in policy decisions

based on the results of a large-scale simulation. If the simulation cannot be

computed for all initial values, its result can be estimated using a machine

learning algorithm [Barton et al., 2010].

* Pharmaceutical companies choosing a subset of possible drug targets to test,

where the drugs are predicted to be effective, and cannot be overly expensive to

produce [Yu et al., 2012]. This might be similar in many ways to the real-estate

purchasing problem discussed in Section 2.3.
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* Machine task scheduling on multi-core processors, where we need to allocate

processors to various jobs during a large computation. This could be very similar

to the problem of scheduling with constraints addressed in Section 2.3. If we

optimistically estimate the amount of time each job takes, we will hopefully free

up processors on time so they can be ready for the next part of the computation.

We believe the simultaneous process will open the door for other methods dealing

with the interaction of machine learning and decision-making that fall outside the

realm of the usual paradigms.
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Chapter 3

On Combining Machine Learning

with Decision Making

3.1 Introduction

In many domains, it is essential to understand how uncertainty in predictions influ-

ences decision-making. In that sense, one would like to explore the space of possible

reasonable predictions and understand the range of reasonable policies and their costs.

The new framework of Machine Leaming with Operational Costs (MLOC) [Tulaband-

hula and Rudin, 20131 provides a mechanism to do this, and is a type of exploratory

decision theory. Where usual decision theories provide a single policy that minimizes

expected costs, the MLOC framework is able to produce a range of reasonable policies

that span the full set of reasonable costs. To do this, the operational cost becomes

a regularization term within the machine learning model, and adjusting the regular-

ization constant allows us to explore solutions for all reasonable costs. This gives

decision makers a way to understand the uncertainty in their predictive model in

terms of something they can grasp - uncertainty in the cost to solve the problem.

The MLOC framework can also be used in another way, namely to incorporate

prior knowledge about the cost to produce a better predictive model. In that sense,

knowledge about the cost translates into a more restricted hypothesis space, which

potentially translates into better generalization. In particular, if the hypothesis space
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is restricted then upper bounds on the complexity of the hypothesis space are smaller,

leading to better generalization bounds.

In this work, we provide an application of the MLOC framework to power grid

engineering and reliability. This problem, called the Machine Learning and Traveling

Repairman Problem (ML&TRP), has a machine learning component and a decision-

making component. The machine learning component is to predict future power grid

failures before they occur, where these failures occur at equipment that is distributed

throughout the city. The decision-making component is to determine in what order

the equipment should be inspected. We could use the MLOC framework in either of

the two ways outlined above: either to understand the range of reasonable costs for

the power company, or to use prior knowledge that the costs are high or low in order

to choose a more predictive and cost-effective route.

To be more precise, the ML&TRP prediction problem is to determine the failure

probability for each node on a graph, using features of each node and past failure

data. The decision problem is to determine a route for a "repair crew" on the graph,

where there is some travel time between each pair of nodes. There are many possible

applications of the ML&TRP, including the scheduling of safety inspections or repair

work for the electrical grid, oil rigs, underground mining, machines in a factory, or

airlines. In our experiments, we use data from an ongoing project with Con Edison,

which is NYC's power utility company.

We also provide a generalization bound for the MLOC framework based on cov-

ering numbers. These bounds are different than those of Tulabandhula and Rudin

[2013] which use concentration of Rademacher complexity and Dudley's entropy inte-

gral, and are not directly comparable. The bounds here have a much more geometric

flavor looking at the hypothesis space as a volumetric object. Neither of the two

bounds are tighter in all situations. We find the bounds here to be more intuitive, as

the geometry is more transparent.

The ML&TRP relates to literature on both machine learning and optimization

(time-dependent traveling salesman problems). In machine learning, our work bears

a slight resemblance to work on graph-based regularization [Agarwal, 2006, Belkin
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et al., 2006, Zhou et al., 2004J, but their goal is to obtain probability estimates that

are smoothed on a graph with suitably designed edge weights. On the other hand, our

goal is to obtain, in addition to probability estimates, a low-cost route for traversing a

very different graph with edge weights that are physical distances. Our regularization

is vastly different from popular ones (f, or 12 norm) because our regularization comes

from beliefs on decision-making costs. We use unlabeled data as does semi-supervised

learning [Chapelle et al., 2006j but differ in the motivation as well as the way we use

these additional data. For example, we do not extract distributional information from

the unlabeled data. Our work contributes to the literature on the TRP (Traveling

Repairman Problem) and related problems by adding the new dimension of proba-

bilistic estimation at the nodes. We create new adaptations of modem techniques

[Fischetti et al., 1993, Eijl van, 1995, Lechmann, 20091 within our work for solving

the TRP part of the ML&TRP.

There is a body of literature regarding cost models for maintenance in the reli-

ability modeling literature, though the emphasis in those works is usually to design

a model that accurately represents the stochastic process for the failures. In that

literature, for instance, a maintenance schedule would be created from the predicted

condition of the equipment (but not on the cost of performing the repairs in a certain

order or routing a vehicle between the equipment). Barbera et al. [19961 develop a

model that assumes that equipment have exponential rates of failure and fail only

once in an inspection interval, and they use this model to determine a maintenance

schedule. Marseguerra et al. [2002] introduces a model for degradation leading to

failure for a continuous complex system, and use Monte Carlo simulations to deter-

mine the optimal degradation level to perform an inspection. Their work uses a very

different cost model from ours; the cost is the long run average maintenance cost and

cost of failures. A neural-network based maintenance model was developed by Heng

et al. [2009J. A related work on routing for emergency maintenance on the electrical

grid is the heuristic algorithm of Weintraub et al. [19991 that dispatches vehicles to

areas where there are currently breakdowns and where there are likely to be break-

downs in the future. Ertekin et al. [20131 propose a model for failures of power grid
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equipment and use this model to simulate the cost of various inspection policies.

One can view the MLOC framework to be analogous to a Bayesian approach, in

the sense that prior knowledge is being used when not enough data are available.

In Section 3.2 we review the MLOC framework. In Section 3.3 we will motivate

and outline the new application of the MLOC framework to the ML&TRP, providing

two ways of modeling failure cost. In Section 3.4 we provide mixed-integer nonlinear

(MINLP) formulations and discuss algorithms an illustrative example. Section 3.5

gives experimental results on data from the NYC power grid, showing the benefit

of the ML&TRP over traditional methods. Section 3.6 contains the theoretical gen-

eralization result for the MLOC framework with proofs. Section 3.8 concludes the

chapter. The conference paper of [Tulabandhula et al., 2011] contains a summary

of work on the ML&TRP, and the paper Tulabandhula and Rudin [2013] provides

a more complete explanation of the MLOC framework, with other illustrations and

connections to robust optimization.

3.2 Review of Framework for Machine Learning with

Operational Costs

In the MLOC framework we have the standard supervised training set of labeled

instances, {(Ti, yi)}"n, where xi E X, yi E Y. For simplicity, X C Rd. To have

nonlinear functions, we could simply have the jth component of x replaced by a

nonlinear function h,(x). Also Y C R. We wish to learn a function f* : X -+ Y. This

is ordinarily done by solving a minimization problem:

f* E argminfjE.. l(f(xi), yi) + C2R(f (3.1)

for some loss function I : Y x Y -+ R+, regularizer R : III -+ R, constant C2 and

function class F . F""W is the set of all linear functionals, where f E TF" is of the

form A - x, A E Rd. The superscript 'unc' refers to the word "unconstrained."

Consider an organization making a policy decision regarding a new collection of
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unlabeled instances {i}M E XM. The cost to enact a policy is not exactly known,

because the labels for the {i}j are not known. Instead the model's predictions

are used, which are the f*(; )'s. The goal of the organization is then to create a

policy 7r* that minimizes operational cost OpCost(7r, f*, {ii}). The operational cost

OpCost(7r, f*, {z,},) is how much will be spent if policy 7r is chosen in response to the

{f*(1i)}i's. When there is uncertainty in f*, there is uncertainty in the cost to enact

the optimal policy 7r*. This uncertainty is what we would like to explore. A typical

way that companies make decisions is using what we call the sequential process,

which computes the policy according to two steps:

Step 1: Create function f* based on {(xi, y,)}i according to (3.1). That is:

f* E argminfgE.Jnc l(f(x,), yj) + C2R(f)).
\ i=1

Step 2: Choose policy 7r* to minimize the operational cost,

7* E argminEII OpCost(r, f* ,{I}i )

On the other hand, the MLOC framework is based around a simultaneous pro-

cess, which combines Steps 1 and 2 of the sequential process. To do this, the op-

erational cost becomes a regularization term, and its regularization parameter C1

controls the amount of optimism or pessimism for the operational cost.

Step 1: Choose a model f* obeying the following:

f* e argmin 1 (f (xi), y1) + C2R(f) + C1 minOpCost (7r, f, {c})l.
fE.F"n 7rE11

Step 2: Compute the policy:

7* E argminOpCost (r, f*,{5,}).
wEll
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The case C1 =0 for the simnultaneous process is precisely the sequential process; thus,

the sequential process is a special case of the simultaneous process. Our ability to

solve the MLOC simultaneous process depends on the tractability of the optimization

problem argminOpCost (ir, f*, {i,},). However, if this problem is intractable, then
wEll

the sequential process is also intractable, and the organization will not be able to

choose an optimized policy at all. The simultaneous process requires this subproblem

to be solved several times, whereas the sequential process only requires the subproblem

to be solved once. If the number of unlabeled instances is small, then Step 1 can be

solved without a problem, even if the training set is large. As C1 varies over its full

range, it maps out the full range of costs for all reasonable solutions. If C1 is set to a

number that is too large (either positive or negative), the solution of the simultaneous

process will have empirical error that is too high to be reasonable. In that case, we

know that by varying C1 within a smaller range will lead to the full range of costs for

reasonable predictive models.

As with any regularization term, the new operational cost term can be interpreted

as a prior belief about the model - in this case, a belief that the operating costs should

be lower or higher on the current set of unlabeled instances {ii}i. In that sense,

MLOC regularization may have a closer connection to reality than typical (e.g., f1

or e2 norm) regularizers. If one asks a manager at a company what prior belief they

have about the estimation model, it is not likely they would give a answer in terms

of coefficients for a linear model. Even managers who are not mathematicians or

computer scientists might have some belief - they could perhaps believe that they are

expecting to spend a certain amount to enact the policy. It is possible that this type of

belief, which relies on direct experience, might be more practical, and more accurate,

than the more abstract prior information that we are typically used to dealing with.

In the ML&TRP, the training error term is derived from data from the past, and the

OpCost term is calculated on data from the present. The OpCost term is the only

term that deals with routing.
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3.3 The Machine Learning and Traveling Repairman

Problem

The US Department of Energy's Grid 2030 document states that "America's elec-

tric system, 'the supreme engineering achievement of the 20th century,' is aging,

inefficient, and congested, and incapable of meeting the future energy needs of the

Information Economy without operational changes and substantial capital investment

over the next several decades" [United States Department of Energy and Distribution,

2003]. Since 2004, many power utility companies are implementing new inspection

and repair programs for preemptive maintenance, whereas in the past, all repair work

was done reactively [Urbina, 2004]. New York City has the oldest power system in

the world, and the largest underground electric system, with enough electrical cable

to go three and a half times around the world. In New York City, there are several

separate new preemptive maintenance programs, including the targeted inspection

program for electrical service structures (manholes), programs that perform exten-

sive repairs that were placed on a waiting list after the manhole was inspected, and

the vented cover replacement program, where each manhole is replaced with a vented

cover that allows gases to escape, mitigating the possibility and effects of serious

events including fires and explosions. Con Edison, the power company in NYC, has

the ability to use machine learning models in Manhattan, Brooklyn and the Bronx

for scheduling of manhole inspection and repair work [Rudin et al., 2010, 2012b, 2011,

2014]. This project was the motivation for the development of the ML&TRP and we

use data from the NYC power grid for our experiments. Features for the NYC model

are derived from physical characteristics of the manhole (e.g., number of electrical

cables entering the manhole), and features derived from its history of involvement in

past events. Repeat failures (serious and non-serious events) can occur on the same

manhole. We take the possibility of repeat failures into account in the ML&TRP (in

Cost 1 given below). That said, failures are rare events, and it is not easy to accu-

rately estimate the probability that a given manhole will fail within a given period

of time. Because of this uncertainty, we can use the MLOC framework to assist in
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decision-making. The result w* E H1 from the algorithm would be a route that could

be used for the repair crew to fix a pre-specified set of manholes corresponding to

{ii}%j, which are assumed to need a particular repair.

3.3.1 Learning

In what follows, we will use descriptions and terminology that match the power grid

application. In the ML&TRP, data from the past will be used to train the model,

denoted {(X,, y,)} _1 , whereas the ii are calculated from the present, whose labels are

from the future and thus not known. Let xa indicate the j-th coordinate of the feature

vector for manhole i calculated at a time period from the past. The xi vector encodes

the number and types of electrical cables, number and types of previous events, etc.

The label for manhole i from the past is denoted y,, where yi E {-1, 1} indicating

whether the manhole had a failure (fire, explosion, smoking manhole) within a specific

period of time in the past. More details about the features and labels can be found

in Section 3.5. The other instances {.}M (with M unrelated to m), are unlabeled

data that are each associated with a node on a graph G. The nodes of the graph G

indexed by i = 1, ... , M represent manholes on which we want to design a route. Note

that M can be substantially smaller than m, e.g., M < 10 and m > 20, 000; e.g., for

a repair truck that carries supplies for at most M repairs. We are also given physical

distances dij E R+ between each pair of nodes i and j. A route on G is represented

by a permutation ir of the node indices 1, ... , M. Let H be the set of all permutations

of {1,..., M}. Failure probabilities will be estimated at each of the nodes and these

estimates will be based on a function of the form fx(x) = A -x. The class of possible

functions F is chosen to be: F := {fA : A E Rd, |A1l 2 <; Bb}, where Bb is a fixed

positive real number. We choose the logistic loss: l(fx(x), y) := In (1 + e-sAY)) so

that the probability of failure P(y = lx), is estimated as in logistic regression by:

1
P(y= 1X) or p(X) := . (3.2)

1 + e-f(d,)

Note that the routing problem is done in batch: once the route is determined, the
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repair truck is sent out and changes to the route are no longer possible.

3.3.2 Two Options for the OpCost

The operational cost can be defined to match the application. In the first option

(denoted as Cost 1), for each node there is a cost for (possibly repeated) failures

prior to a visit by the repair crew. In this case, temporary repairs are made to fix

each node before the repair crew comes to make permanent repairs. In the second

option (denoted as Cost 2), for each node, there is a cost for the first failure prior

to visiting it. In this case, permanent repairs are made when there is an event, or

when the repair crew arrives, whichever is sooner. There is a natural interpretation of

the failures as being generated by a continuous random process at each of the nodes.

When discretized in time, this is approximated by a Bernoulli process with parameter

p(Mf). Both Cost 1 and Cost 2 are appropriate for power grid applications. Cost 2 is

also appropriate for delivery truck routing applications, where perishable items can

fail (once an item has spoiled, it cannot spoil again).

For convenience, we assume that after the repair crew visits all the nodes, it

returns to the starting node (node 1) which is fixed beforehand. Scenarios where

one is not interested in beginning from or returning to the starting node would be

modeled slightly differently (the computational complexity remains the same). Let a

route be represented by r : {1, ..., M} F-+ {1, ... , M}, this means that ir(i) is the ijh

node to be visited. For example, let M = 4, 7r = [2,3, 4,11. This means, ir(1) = 2,

node 2 is the first node to be visited, ir(2) = 3, node 3 is the second node on the route,

and so on. Since the final node visited is the first node, we append the following to

the definition of 7r: ir(M + 1) = 7r(1). Let the distances be scaled appropriately so

that a unit of distance is traversed in a unit of time. Given a route, the latency of a

node ir(i) is the time (or equivalently distance) from the start at which node ir(i) is

visited. It is the sum of distances traversed before position i on the route:

{ ~ d()w(k+1)1[k<jj i = 2, ... , M
L,(7r(i)) := (3.3)

k=1 (k)w(k+1) i=1

91



The starting node w(1) thus has a latency L,,(w(1)) which is the total length of the

route starting at node 7r(1) and ending at node w(1) after visiting all other nodes.

Cost 1: Cost is Proportional to Expected Number of Failures Before the

Visit

Up to the time that node 7r(i) is visited by the repair crew, there is a probability

p(!,(i)) that a failure will occur within each unit time interval. Equivalently, within

each unit time interval, failures are determined by a Bernoulli random variable with

parameter p(Icri)). Thus, in a time interval of length L,(7r(i)) units, the number of

node failures follows the binomial distribution Bin (L(7r(i)), p(r(j))). For each node,

we will associate a cost proportional to the expected number of failures before the

repair crew's visit, as follows:

Cost of node ir(i) oc E(number failures in L,(ir(i)) time units)

= mean of Bin(Lr(ir(i)), p(ir(,))) = P(iv(i))Lw(7r(i)). (3.4)

Using this cost, if the failure probability for node 7r(i) is small, we can afford to visit

it later on, trading off its latency Lr(7r(i)). If p(i,(j)) is large, we should visit node

r(i) earlier to keep our overall failure cost low. The failure cost of route r is then

OpCost(7r, f, {ij}7i, {'dh}g 1 ) = E', p(iz,(j))L ((i)).

Substituting the definition of L,,(r(i)) from (3.3):

OpCost(ir, fx, i, {d7 }= ) =.
M M M

E p( o)) E dw(k)v(k+1)lk<iJ i- P(j(1)) E dw(k)w(k+1), (3.5)
i=2 k=1 k=1

where p(iw(;)) is given in (3.2). This will be Cost 1. There are ways to make Cost

1 more general. The individual node cost in (3.4) assumes that the node's failure

probability p(,(j)) becomes zero after the repair crew's visit, so that for the remainder

of the route, the cost incurred at this node is oc 0 x (L,(7r(1)) - Lw(r(i))). We could

relax this by assuming p(lcwi)) does not vanish after the repair crew's visit and adding
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an additional cost for the expected failures in this period. That is, if 8 is a constant

of proportionality for the cost after visiting node r(i), then the cost would become:

Cost of node ir(i) = #[L,(,r(1)) - L,(ir(i))] p(iwj)) + L,(W (i))p(zi,(j)).

If 6 = 1, then the repair crew does not have any effect and cost of each node is

independent of its expected number of failures before the repair crew's visit. Typically,

we expect that the repair crew will repair the node so that it will not fail, and the

second term above is much larger than the first. Taking the constant of proportionality

as # = 0, we return to the individual costs given by (3.4).

Note that since the cost is a sum of M terms, it is invariant to ordering or indexing

(caused by r). Thus we can rewrite the cost as

M

OpCost(7r, ,{ } ,{ds}- ) = p(z )L,(i). (3.6)

Cost 2: Cost is Proportional to Probability that the First Failure is Before

the Visit

This cost reflects the penalty for not visiting a node before the first failure occurs

there. This model is governed by the geometric distribution. Let the parameter of

the distribution be p. Then the probability that the first failure for node ir(i) occurs

at time index t > 0 is p(1 - p)t-1. The probability that the first failure for node

n(i) occurs before time L,(ir(i)) is then the sum of the failure probabilities from

t = 1, ... , Lr(ir(i)) : Z" " i))p(1 - p)t = 1 - (1 - p)L.w(r)). Thus, substituting the

expression (3.2) for p, we have:

P(first failure occurs before time L,(ir(i))) = 1 - (1 - p(i,))L,(ii)

= 1 - (1 - 1 e = 1 -(1+ eA:-0)
1 + e-AIA C"#0
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The cost of visiting node ir(i) will be proportional to this quantity:

Cost of node r(i) (x (1 - (1+ e^0-W)) (3.7)

Similarly to Cost 1, L,(ir(i)) influences the cost at each node. If we visit a node early

in the route, then the cost incurred is small because the node is less likely to fail

before we reach it. Similarly, if we schedule a visit later on in the tour, the cost is

higher because the node has a higher chance of failing prior to the repair crew's visit.

The total failure cost is thus:

M
OpCost(7r, f., {i}?1, {d }A. 1) = (1 - (1 + ef\(.<Wi)-)f((). (3.8)

This cost is not directly related to a weighted TRP cost in its present form. That

is, when the failure probabilities of the nodes are all the same, the total cost is not

linear in the latencies, as is the case for Cost 1. Building on this cost, we will derive

a cost that is the same as a weighted TRP in Section 3.4.2, of the form:

Cost of node r(i) oc L,(r(i)) log (1 + efA(z.())), (3.9)

as an alternative to (3.7).

There is a slightly more general version of this formulation (as there was for

Cost 1), which is to take the cost for each node to be a function of two quantities:

the probability of failure before the visit, and the probability of failure after the

visit. Let us redefine P to be a constant of proportionality for the cost of visiting

before the failure event. From the geometric distribution, P(failure occurs after time

L,((i))) = (1 - p(i,(i))((), and the cost of visiting node 7r(i) becomes:

Cost of node r(i) oc P(failure before L,(ir(i))) fix P (failure after L,(ir(i))).

If # = 1, then the sum above is 1 for all nodes regardless of node failures or latencies.
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More realistically, the cost of visiting the node after the failure is more than the cost

of visiting proactively, 6 < 1 leading to (3.7). We could again have written the

summation to hide the dependence on 7r:

M
OpCost( r, {i}gi,{dg} 1) = (i -- (1+ efA0)

1=1

Remark 3.3.1. The costs defined above are by no means exhaustive. We chose

to define operational costs this way because they mimic the well known minimum

latency objective in routing problems. For instance, we could have used a Poisson

failure model at each node instead of binomial or geometric as in Costs 1 and 2. Let

us assume that the Poisson rate parameter p(;izr) is the output of the estimation

problem (say proportional to p(iq())). Then

P(k failures occur in time L7,(7(i))) = k.
k!

From this we can get the probability that at least one failure occurs in time interval

[0, LT(-r(i))] at node ir(i). Now we can define the operational cost to be the sum of

these probabilities which depend on the routing and proceed in the same way as Cost

2. That is, we can minimize this cost to get the optimal routing ir*.

Remark 3.3.2. The operational cost must depend on graph properties like latency.

We would not like to minimize an objective of the form E_ 1 (or any other

function of just p(i,(i)), the output of the estimation problem) as this does not lead

to an operational cost in the true sense. This operational cost does not make use

of latency information or other graph properties related to routing unless p(-Wgi)

implicitly depends on them (which is not the case here).

Now that the major steps for both formulations have been defined, we will discuss

methods for optimizing the objectives.
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3.4 Optimizatioi

We start by formulating mixed-integer linear programs (MILP's) for the TRP sub-

problem.

3.4.1 Mixed-integer optimization for Cost 1

For either the sequential or simultaneous processes, we need the solution of the sub-

problem: r* E argmin,,cnOpCost(r, f*,{i} 1,{d } 1 ), or equivalently,

M M M

7* E arg min p(i)) E dw(k)_I(k+1)llk<il p(i(I)) E dw(k)w(k+1). (3.10)
i=2 k=1 kI=1

Let us compare this to the standard traveling repairman problem (TRP) problem [see

Blum et al., 1994:

M

i* E argminEIIE dw(k)w(k+1)(M + 1 - k). (3.11)
k=1

The standard TRP objective (3.11) is a special case of the weighted TRP (3.10) when

Vi =1, .. ,M, pXii) = P:

M M M

E Www)) L()w(A+1)I k<il p&z1(1)) Ed(k)w(k+1)
2 k1 k=1

M M M

PZZ dr(k)ir(k+1)l[k<i] + p dw(k)w(k+1)
i=2 k=1 k=1
M + M

PE dr(k)-r,k+1)I[A<i] +-p dr(k)w(k+1)Ilk<m+,]
i=2 k=1 k=1I
M M+1 M

p ~d3(k)w(A+1) E 1<i = p E dw(k)1w(k+1) (M + 1 - k).
k=1 i=2 I

The TRP is different from the traveling salesman problem (TSP); the goal of the

traveling salesman problem is to minimize the total traversal time (in this case, this

is the same as the distance traveled) needed to visit all nodes once, whereas the goal
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of the traveling repairman problem is to minimize the sum of the waiting times to

visit each node. Both the TSP and the TRP are known to be NP-complete in the

general case [Blum et al., 1994]. Intuitively, a TRP route cost objective captures the

total waiting cost of a service system from the customer's (the node's) point of view.

For example, consider a truck carrying prioritized items to be delivered to customers.

At each customer's stop, that customer's item is removed from the truck. The goal

of the TRP is to minimize the total waiting time of these customers.

We start by extending an integer programming formulation of standard TRP

[Fischetti et al., 1993] to include "unequal flow values" so that we can solve (3.10)

[there are many other integer programming formulations in the literature as well, see

for instance M6ndez-Dfaz et al., 2008]. The weights {p(zi)}, within the formulation

below will be defined later. For interpretation, consider the sum of the probabilities

_ lp(zi) as the total "flow" through a route. At the beginning of the tour, the

repair crew has flow E , p(i). Along the tour, flow of the amount P(i,) is dropped

when the repair crew visits node ir(i) at latency L,(ir(i)). In this way, the amount

of flow during the tour is the sum of the probabilities p(ii) for nodes that the repair

crew has not yet visited. We introduce two sets of variables {zij}j and {y.g};j that

together represent a route (instead of the 7r notation). Let zij represent the flow on

edge (i, j) and let a binary variable yij represent whether there exists a flow on edge

(i, j). (There will only be a flow along the route, and there will not be a flow along

edges that are not in the route.) The mixed-integer program is as follows:

M M

min E E djzij s.t. (3.12)
Z =1 j=1

No flow from node i to itself: zi,i = 0 Vi = 1, ... , M (3.13)

No edge from node i to itself: yi,i = 0 Vi = 1, ... , M (3.14)
M

Exactly one edge into each node: Eyij = 1 Vj = 1, ... , M (3.15)
i=1
M

Exactly one edge out from each node: E yij = 1 Vi = 1, ..., M (3.16)
j=1
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M:

Flow coming back to initial point at the end of loop: 3z ,1 = P(.i) (3.17)
i1

Change of flow after crossing node k:
M M k=1

Zi,k - = (3.18)
1 Wk) k = 2,..., M

Connects flows z to indicators of edge y: zij < rijyjj (3.19)

where rij = i=1

-/- ) otherwise.

Constraints (3.13) and (3.14) restrict self-loops from forming. Constraints (3.15)

and (3.16) ensure that every node should have exactly one edge coming in and one

going out. Constraint (3.17) represents the flow on the last edge coming back to the

starting node. Constraint (3.18) quantifies the flow change after traversing a node k.

Constraint (3.19) represents an upper bound on zij relating it to the corresponding

binary variable yj. We can define the weights f(zi), for example, for Cost 1, to be

equal to the estimated failure probabilities 1/(1 + eA's).

3.4.2 Mixed integer optimization for Cost 2

Here we reason about the choice for changing the cost per node in (3.7) to re-

semble (3.9). Starting *with the sum (3.8) over node costs (3.7), we apply the

log function to the second term of the cost of each node (3.7) to get a new cost

(1 - log (1 + efx(&ws 0 ) -. L(7) ) and the new minimization problem is:

min F1 (1 - log (1 + efA(i)(w-(i))

M
- max log (1+ ef (:(i)))L - const

M
=min EL,(ir(i)) log (1.+ efA(&'.(i)) + const,
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where the first term is the sum over nodes of the expression (3.9). This failure

cost term is now a weighted sum of latencies where the weights are of the form

log (1 + ef\(-Ws)). We can thus reuse the mixed integer program (3.12)-(3.19) where

the weights are redefined as p(lc) := log (1 + eA ).

Our choices for the cost and failure models above allow us to use a weighted version

of the intuitive minimum latency or TRP problem for routing. In particular, the log

transformation of individual terms in the original version of Cost 2, (3.8), precisely

serves this purpose. In general, depending on the way we define the operational

cost and the failure model, they may not necessarily map back to popular routing

problems like the TRP as we have here. Nonetheless, there are many valid approaches

beyond what we pursue this in this work.

Now that the TRP subproblem has been completely defined for both Cost 1 and

Cost 2, we will discuss first how to solve the subproblem alone, which is Step 2 of the

sequential process. Then we will discuss the solvers for the simultaneous process.

3.4.3 Solving the weighted TRP subproblem

A generic MILP solver like CPLEX' or Gurobi2 can produce an exact solution us-

ing branch-and-bound or other related exact methods. We use Gurobi. The weighted

TRP problem is NP-hard (can be shown by a reduction to the Hamiltonian cycle prob-

lem) and hence most likely not solvable by polynomial-time algorithms. The standard

unweighted (all weights equal) TRP can be encoded by different mixed-integer pro-

gramming formulations [see Fischetti et al., 1993, Eijl van, 1995, Mtndez-Diaz et al.,

2008] each with different performance guarantees (e.g., solving 15-60 nodes), which

could be adapted for our purpose. There are also techniques for producing constant

factor approximate solutions to the unweighted TRP [Goemans and Kleinberg, 1998,

Blum et al., 1994, Arora and Karakostas, 2006, Archer et al., 2008, Archer and Blasiak,

2010], which could run faster than the MILP solvers for large problems. If the weights

{wi}i are integers, we can adapt these faster techniques for the standard problem to

1IBM ILOG CPLEX Optimization Studio v12.2.0.2 20102Gurobi Optimizer v3.0, Gurobi Optimization, Inc. 2010
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the weighed TRP problem by replicating each node wi times. If the weights are ra-

tional, as is the case in (3.20) and (3.21), we can use rounding and discretization in

order to apply the faster solution techniques for solving the standard TRP.

3.4.4 Solving Mixed-integer nonlinear programs (MINLPs)

For the simultaneous process, the inputs to the program are training data {xi, y} ,

unlabeled nodes {i},__ the distances between them {dj}ll and constants C1 and

C2 . The full simultaneous process formulation using Cost 1 is:

M M M

min E ln (1+ e~if,(xi)) + C2 |A| + C1  E d,.z (3.20)

subject to constraints (3.13) to (3.19), where p(F ) = 1+ e

The full formulation using the modified version of Cost 2 is:

M M M
min (Z \1 (1++e-iACi)+ C2||1| +C1 min d (3.21)

i=1 i=1 j=1

subject to constraints (3.13) to (3.19) hold, where p(.i) = log (1 + eA)4.

If we have an algorithm for solving (3.20), then the same scheme can be used to

solve (3.21). There are multiple ways of solving (or approximately solving) a mixed

integer nonlinear optimization problem of the form (3.20) or (3.21). We consider

three methods in this work for solving (3.20) and (3.21).

* Generic mixed integer non-linear programming (MINLP) solver (Bonmin).

* Nelder-Mead (NM) which is a iterative scheme over the A parameter space,

solving a weighted TRP subproblem in each iteration.

e Alternating Minimization (AM) which alternatively minimizes over A and ir

optimization variables.
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Method 1: MINLP Solver

For our experiments we directly use a MINLP solver called Bonmin [Bonami et al.,

2008]. These types of solvers typically use general MILP solving techniques like branch

and bound or dynamic programming interleaved with continuous optimization. Since

the general MILP solving techniques, as discussed, can take exponential time when

applied directly to our formulations, the MINLP solvers which use them can in turn,

be inefficient if the graph is moderate to large in size. However, when the graph

is small, for instance when we want to schedule a tour over only a few nodes, the

MINLP solver can generally compute a solution to the problems (3.20) or (3.21) in a

manageable period of time.

Method 2: Nelder-Mead in A-space (NM)

The Nelder-Mead minimization algorithm requires only function evaluations [Nelder

and Mead, 1965]. The ML&TRP can be viewed as a minimization in the space

of all A vectors; since we have solvers for the weighted TRP subproblem, we are

able to evaluate the ML&TRP objective for a given value of A. In our experiments

we use the MILP solver (Gurobi) for the subproblem. Note that the ML&TRP

objective can have non-differentiable kinks arising from discontinuities in the failure

cost term; a method that relies on the gradient or Hessian of the objective function

might get stuck in narrow local minima, whereas methods that use only function

evaluations may not have this problem. The generic Nelder-Mead scheme can have

disadvantages with respect to performance [Rios, 2009], in which case, other schemes

like Multilevel Coordinated Search (MCS) [Huyer and Neumaier, 1999] can be used

in place of Nelder-Mead. Note that since the objective is non-convex, all solutions

obtained by NM are only guaranteed to be locally optimal.
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Algorithm 1 AM: Alternating minimization algorithm

Inputs: {xi, y}", {}m, {dsj} 22 , C1, C2 , T and initial vector A0 .
for t=1:T do

Compute 7rt e argminwan1 Obj(At-1, ).
Compute At E argminAEfd Obj(A, lrt).

end for
Output: rT.

Method 3: Alternating minimization in A-w space (AM)

Our alternating minimization scheme also operates in the A-ir space as follows. Define

the objective Obj as a function of A and 7r:

in

Obj(A, 7r) = In (1 + ) C2II|fl| C1 OpCost (, f\, {j}f1, {dI}= 1) .
i=1

Starting from an initial vector A0 , Obj is minimized alternately with respect to A and

then with respect to r, as shown in Algorithm 1. The second step, solving for 7r, is

the same as solving the TRP subproblem, and we again use the MILP solver for this.

Conditions for convergence and correctness for such iterative schemes are given by

Csiszbr and TusnAdy [19841; again, it is not possible to guarantee globally optimal

solutions using this method.

3.4.5 Illustrative Experiment

We will use the ML&TRP to show the fundamental property motivating the MLOC

framework: that a large change in the probability model does not necessarily lead to

a large change in overall prediction accuracy, but may lead to very different solutions.

The training set was chosen uniformly at random from a distribution that is

uniform over two triangles pointing end to end. We used six unlabeled points as the

nodes. See Figure 3-1(a). In addition a level set, colored black, is also plotted. It

is the estimated level set for P(y = 11:) = 0.5 learned from e2-regularized logistic

regression. A second level set, colored red, also drawn at probability estimate 0.5, is

learned from the simultaneous process, with failure cost modeled according to Cost 1.
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Figure 3-1: Left: x1 and x2 represent the first and second coordinates respectively
of the 2D feature space. The triangles represent the unlabeled data {z.}6_1 Bight:
The numbers in the nodes indicate their probability of failure, and the numbers on
the edges indicate distances. The optimal route 1-2-3-6-4-5-1 as determined by the
sequential formulation is highlighted.

Now, node 6 (triangle with label "z6 ) lies in a low density region of feature space, so

its probability cannot be well estimated. For the sequential formulation, node 6 was

assigned p(x6) = 0.5 and the optimal route obtained by solving the weighted TRP

problem is 1-2-3-6-4-5-1, shown in Figure 3-1(b). The node represented by i1 is chosen

to be the starting point. For the simultaneous process, node 6 has been assigned a new

probability value P(x6) = 0.29. This change is possible because node 6's probability

estimate can vary quite a lot without changing the probability estimates of others.

This changes the route to 1-2-3-4-5-6-1 as shown in Figure 3-2.

In the simultaneous process, we chose C1 large enough so that the tour route visits

4 and 5 before 6. This results in a ~-~ 9% decrease in the failure cost (Cost 1), with

a ~- 3% change in the training error (logistic loss). In particular, for the sequential

process, Cost 1 is 4.'7 units and the training error is 15.'7 units; for the simultaneous

process, Cost 1 is 4.25 units and the learning error is 16.2 units (C1 = 5 x 104). This

is an illustration of the core of MLOC: both predictive models are good, and a range

of operational costs and decisions exist between them.
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Figure 3-2: The optimal route 1-2-3-4-5-6-1 determined by the simultaneous process
is highlighted.

3.5 ML&TRP on the NYC power grid

We now show how the MLOC framework might be used to assist companies like Con

Edison, which is NYC's power utility company. We pursue three sets of experiments.

The first experiment demonstrates the use of the simultaneous process when given a

specific routing problem. This shows how a practitioner would use the simultaneous

process in practice. In the second experiment, we randomize over the training sample

and routing problems. This experiment shows that the simultaneous process can

find models that are equally predictive or better than the sequential method when

operational costs are included. In the third experiment, we look at scaling issues.

In all these experiments, we are predicting the probability of failure over the course

of a year. While using the predicted failure probabilities in the routing problem, we

will assume that these are probabilities of failures in an arbitrary unit interval of

time. In particular, they can be the probability of failures over an hour, a day etc.

We make the approximation that the probabilities at finer time scales (required for

the routing problem) are proportional to the probabilities at coarser time scales for

the purpose of our experiments.

3.5.1 The dataset

The dataset we use is described by Rudin et al. [2010], which was developed in order

to assist Con Edison with its maintenance and repair programs on the secondary
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electrical distribution network in NYC; specifically, it was designed for the purpose

of predicting manhole fires and explosions. We chose to use all manholes from the

Bronx (-23K manholes). Each manhole is represented by (4-dimensional) features

that encode the number and type of electrical cables entering the manhole and the

number and type of past events involving the manhole. The event features encode

how often in the past the manhole was the source of partial outages, full outages

and/or underground burnouts. The training features encode events prior to 2008,

and the training labels are 1 if the manhole was the source of a serious event (fire,

explosion, smoke) during 2008. The prediction task is to predict events in 2009. The

test set (for evaluating the performance of the predictive model) consists of features

derived from the time period before 2009, and labels from 2009. In our experiments,

for both training and test we had a large sample (23,217 instances). There were 211

and 132 failure instances in the test and training data respectively.

3.5.2 Performance of the simultaneous process for a seven

node decision problem

In this experiment, the operational task is to design a route for a repair crew that

is equipped to fix seven relatively more vulnerable manholes in 2009. The distances

between the nodes were obtained from Google Maps, by querying the driving distance

between each pair of nodes. Note that we do not want 'flying' distance between two

coordinates as this can be very different from the actual driving distance, especially

in New York City.

The limited resources for inspection and repair of manholes should generally be

designated to the most vulnerable manholes. With uncertainty in many of the prob-

ability estimates, if we are not careful, it is possible that most of these resources will

be spent in dealing with outliers whose probabilities are overestimated. The simul-

taneous process will generally prevent this from happening if we choose C1 to have a

sufficiently large positive value.

Manhole failures are rare events. This means there are many more negative labels
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than positive labels. Using a logistic model ives probability estimates which are low

overall, so the misclassification error is almost always the size of the whole positive

class. Because of this, we evaluate the quality of the predictions from f.\ using the

area under the ROC curve (AUC), for both training and test. AUC is a measure

of ranking quality; it is sensitive to the rank-ordering of the nodes in terms of their

probability to fail, and it is not as sensitive to changes in the values of these prob-

abilities. This means that as the parameter C1 increases, the estimated probability

values will tend to decrease, and thus the failure cost will decrease.

For the experiment, a specific' decision problem was sampled and fixed a priori,

involving repairs on a handful of relatively more vulnerable manholes in the Bronx.

We solved (3.20) and (3.21) for a range of values for the regularization parameter C1,

for both costs and all three methods, with the goal of seeing whether for the same level

of estimation performance, we can get a range in the cost of failures. In particular,

we wanted to know if we could see a substantial reduction in the cost. We varied C1

so that the variation in the training error term across the methods was small, about

2% away from the solution of the sequential process (C1 = 0), see Figure 3-4(a). For

that range, the test AUC values for the simultaneous process were all within 1% of

each other; this is true for both Cost 1 and Cost 2, for each of the AM, NM, and

MINLP solvers, see Figures 3-3(a) and 3-3(b). So, changing C1 did not dramatically

impact the prediction quality as measured by the AUC. On the other hand, the failure

costs varied widely over the different methods and settings of C1, as a result of the

change in the probability estimates, as shown in Figure 3-4(b). As C1 was increased

from 0.05 to 0.5, Cost 1 went from 27.5 units to 3.2 units, which is over eight times

smaller. This means that with a 1-2% variation in the predictive model's AUC, the

operational cost can decrease a lot, yielding a completely different possible route for

inspection and/or repair work. The reason for an order of magnitude change in the

failure cost is because the probability estimates vary by an order of magnitude due

to uncertainty at the nodes. This uncertainty in costs is what the MLOC allows us

to uncover.

In Figures 3-5(a)-3-5(c) we show the routes according to the different algorithms.
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Figure 3-3: Left: The AUC values corresponding to models (parameterized by C1 )
obtained from the simultaneous process using Cost 1 by NM and AM and MINLP
techniques. The AUC values on the training data decrease slightly and the same values
for test data increase marginally. The two horizontal lines represent the training and
test AUC values obtained by f2 -penalized logistic regression are constant with respect
to C1. Right: Similar AUC values obtained from the simultaneous process, using Cost
2.
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Figure 3-4: Left: The e2 -regularized logistic loss increases as a function of increasing
C1 . The horizontal line represents the loss value from e2-penalized logistic regression

with no regularization (C1 = 0). Right: The failure costs decrease as a function
of the regularization parameter C1. The horizontal lines in the figure represent the

sequential formulation solution; the lower horizontal line is Cost 1 of the solution
obtained by e2 -penalized logistic regression, and the upper line is Cost 2 of that
solution.
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(a) (b)

Figure 3-5: Left: A naive route: 1-5-4-3-2-6-7-1 obtained by sorting the probability es-
timates in decreasing order and visiting the corresponding nodes. Center: Sequential
process route: 1-5-3-4-2-6-7-1. The simultaneous process also chooses this route when
C1 is small. Right: Route chosen by the simultaneous process when C1 is larger: 1-
6-7-5-3-4-2-1. Prediction performance is only slightly influenced by the route change,
but the routing cost (Cost 1) decreases a lot.

We first provide the naive route in Figure 3-5(a), which was obtained by estimating

probabilities using e2-penalized logistic regression, and then simply visiting nodes

according to decreasing values of these probabilities. Figure 3-5(b) shows the route

provided by the sequential process. When the failure term starts influencing the

optimal solution of the objective (3.20) because of an increase in C1 , we get a new

route, depicted in Figure 3-5(c). In most applications relevant to this problem, we

suspect that the solution used in practice is somewhere in between the naive route and

the sequential route, in that a human views the naive solution and adjusts it by hand

to be closer to the sequential route (without solving the TRP). For the application to

electrical grid maintenance, the simultaneous process was able to find a substantially

lower cost route than the naive or sequential process, with little (if any) change in

the AUC prediction quality. This demonstration on data from the Bronx indicates

that it is possible to better understand uncertainty in modeling. If engineers truly

believe the costs will be lower, their belief, combined with the route we found, can be

used to justify a much more cost-effective solution.
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3.5.3 Performance of the simultaneous process across randomly

generated decision problems

In this experiment, we varied the size of the training data and characterized its effect

on learning for both the sequential process and the simultaneous process. We expect

to see that when the sample size is small, the operational cost regularization can

lead to better performance for the simultaneous process for some C1. That is, we

are showing that some type of knowledge on the operational cost can be helpful in

prediction. (When the sample size is large, the regularization term of the simultaneous

process should not have much of an effect, and the sequential and simultaneous process

models should perform similarly, which is unsurprisingly what we observe.)

To conduct the experiment, we considered training samples ranging from 10%

of the original training set size to 100% of the original training set size. For each

training set we generated, we then generated 100 seven node decision problems (TRP

problems) from a separate held out test set. Each decision problem was generated

by randomly picking the nodes (whose labels are not known during training) and

computing the distances between each pair of them. For each new training sample

size and for each random decision problem, we solved the sequential process and the

simultaneous process for both Cost 1 and Cost 2. In particular, this involved the

following.

* For the sequential process we performed a 5-fold cross validation to pick the

coefficient for the 2 regularization term. Once the optimal regularization con-

stant was chosen, we computed the predicted probabilities of failure and solved

the corresponding weighted TRP subproblem.

* We solved the simultaneous process using the AM algorithm for 4 different C1

values, and the one achieving the best test performance (on a separate held

out test set) was reported. This encodes the notion that one of the C1 values,

namely the one which gives the best test performance, encodes the right prior

knowledge. In total, 8,000 mixed integer nonlinear programs were solved (4

C1 value settings per decision problem (100) per training sample size (10) per
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decision cost type (Cost 1 and Cost 2)).

Figure 3-6 shows how the simultaneous process compares with respect to the

sequential process in terms of AUC on a held out test set as the size of the training

sample is varied for Cost 1. The x-axis shows different training sample sizes and

the y-axis shows the difference between the AUC of a simultaneous process model

(one for each training size and decision problem) and the AUC of the corresponding

sequential process model, where 0 means that the AUC's for the two processes were

identical. From the figures, we can infer the following:

& The test performance of the simultaneous process can often be better than

that of the sequential process for smaller training sets. This is because at

lower sample sizes, the simultaneous process gains an advantage from the prior

knowledge about operational costs.

* At larger training set sizes, the logistic models from the simultaneous process

and the sequential process performed similarly. Again this is not surprising, as

the regularization becomes less influential as the training set size increases.

At each training sample size, we tested two hypotheses using the (nonparametric)

sign test, with significance level a = 0.05. In the first test, the null hypothesis was that

the median AUC performance of the two processes was the same versus the alternative

that the median AUC performance of the simultaneous process is greater than the

median AUC performance of the sequential process. For three of the larger training

sample sizes (namely .6, .7 and .9 of the original), we could not reject the null as the

corresponding p-values were greater than the significance level and for the remaining

7 training sample sizes, we could reject the null that the median performance of the

two methods is the same. In the second test, the null hypothesis was that the median

routing cost using the two processes was the same versus the alternative that the

median routing cost of the simultaneous process is smaller than the median routing

cost of the sequential process. Here, we were able to reject the null hypothesis for all

10 training sample sizes.
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Figure 3-6: Performance of the two processes on randomly generated decision prob-
lems at various training sample sizes with Cost 1 as the routing cost. The evaluation
is over a separate held out test set. The green solid line is the zero mark. For each
size of the training sample on the x-axis (varying from 10% to 100% of the original
training sample size), we solved the simultaneous process for 100 random seven node
decision problems and the performances of the corresponding models relative to the
sequential process models are plotted as a box-plot.
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Figure 3-7: Performance of the models output by the two processes on randomly
generated decision problems at various training sample sizes with Cost 2 as the routing
cost. The evaluation is on a separate held out test set. The green solid line is the
zero mark. The box-plots at each training sample size represent the distribution of

performances (relative AUC) of the models obtained by the simultaneous process.

We ran this experiment again with Cost 2 as the routing cost, and solved the same

100 decision problems for 4 different C1 values for each of the 10 different training

samples of different sizes. Figure 3.5.2 summarizes the performance of these models.

The inferences one can draw from this plot are similar to the previous case.

3.5.4 Scalability of MLOC for Routing

In this experiment, we varied the size of the training sample and decision problem and

characterized their effect on time to obtain a solution. All experiments were carried

out in a cluster environment (128-256GB RAM, 16-32 core machines).

In the first case, we analyzed the effect of training sample size when the decision

problem size was fixed to 7 nodes. In particular, we generated 100 seven node decision

problems for each of the 10 training sample sizes (varying from 10% to 100% of

the original) and solved the corresponding MINLPs using the AM method discussed

in Section 3.4.4. As discussed before, a decision problem was created by randomly
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Figure 3-8: Left: Boxplot of times taken to solve randomly generated 7 node decision
problems for various training sample sizes (from 10% to 100% of the original), when
Cost 1 is used. For each training sample size, we solved the simultaneous process
for 100 random decision problems and recorded the times. As shown, the time for
solving the simultaneous process depends mildly on the size of the training sample
size. Right: Boxplot of times taken to solve randomly generated 7 node decision
problems for various training sample sizes when Cost 2 is used.

picking a set of seven nodes and computing the distances between them. Additionally,

the C2 parameter was set using 5-fold cross validation. A fixed value of C, was also

chosen a-priori. Thus a total of 1000 MINLPs were solved for each Cost 1 and Cost

2. Figures 3-8(a) and 3-8(b) show the box plots for the time taken in seconds to

solve each simultaneous process problem for Cost 1 and Cost 2 respectively. From

the figures, we can infer that as the training sample size increases, the time taken to

solve the MINLP increases only mildly for both cost options. This is because the AM

method can efficiently scale with the number of examples.

In the second case, we analyzed the effect of decision problem size. In particular,

we generated 100 decision problems for node sizes M = 7,8,9, 10, 11, 12, 13 and 10

decision problems for node size M = 15. We solved the MINLPs of Equations (3.20)

and (3.21) using the AM method. Similar to the previous experiment, a decision

problem of a given size was created by randomly picking a set of nodes and computing

the distances between them. The C2 parameter was set using 5-fold cross validation.

The MINLPs were then solved for a fixed value of C1 chosen a-priori. Thus a total of

710 MINLPs were solved for each Cost 1 and Cost 2. Figures 3-9(a) and 3-9(b) show
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Figure 3-9: Left: Boxplot of times taken to solve the randomly generated decision
problems for various values of M, the number of decision problem nodes, when Cost
1 is used. For each decision problem size (varying from 7 to 15), we solved the
simultaneous process for 100 random decision problems (10 problems for the 15 node
setting) and recorded the times. As shown, the time for solving the decision problem
grows exponentially in the size of the decision/routing problem (since the trend is
linear in log scale). Right: Boxplot of times taken to solve the randomly generated
decision problems for various values of M when Cost 2 is used.

the box plots for the time taken in seconds (in log scale) to solve each simultaneous

process problem for Cost 1 and Cost 2 respectively. From the figures, we can infer

that as the decision problem size (M nodes) increases, the time taken to solve the

MINLP increases exponentially for both cost models. As mentioned earlier, this is

because TRP - and generally routing - problems are hard. One needs to solve the

TRP anyway, regardless of whether the sequential or simultaneous process is used, to

determine the route.

Remark 3.5.1. A note on the performance of other methods (Method 1 and Method

3): For a given Ci, the computation times to solve a typical problem with - 23K

examples in training and 6, 7, 8, or 10 nodes for the routing problem are about 30,

130, 140, 240 seconds respectively using Method 2 (NM). NM took - 1000 iterations

to reach a solution where each iteration involved solving a weighted TRP subproblem

within - 2 seconds. The computation times for solving the MINLP formulation

given in (3.20) directly (Method 1) for a given C1 were - 100 times slower. Since the

computation times for Method 2 (AM) were the best among the three, we used it to
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benchmark scalability of MLOC for our application.

3.6 Generalization Bound

We initially introduced the failure cost regularization term in order to find scenarios

where the data would support low-cost (more actionable) repair routes. From a

learning theoretic point of view, incorporating regularization reduces the size of the

hypothesis space and may thus promote generalization. In our case, we can think of

decision makers having prior knowledge about how much it should cost for an optimal

routing solution. This information should constrain the size of the hypothesis space

via the parameter C1. Increasing C1 may thus assist in predicting failure probabilities.

In what follows, we will provide a generalization bound for the MLOC framework,

and specifically for the ML&TRP.

We seek to bound the true risk Rtr"(fx) := E(x,v)~,yl(fA(x), y) with empirical

risk Ref'P(fA, {xi, y,}i) = _ jIl l(f\(xi), y) plus a complexity term capturing the

size of the hypothesis space. Here 1 : fA(X) x Y -+ R is logistic loss, instance (x, y)

is drawn from an unknown distribution uxxy and the initial hypothesis space is

-F:= {f, : fA(x)= A -x, A E Rd,A112 5 Bb}.

3.6.1 Hypothesis sets for Cost 1 and Cost 2

Consider the ML&TRP with Cost 1 in (3.20). The hypothesis space for the

ML&TRP is smaller than F, since we have also the constraint on the failure cost.

Replacing the Lagrange multiplier C1 with an explicit constraint on the failure cost

(3.6), we have that for the ML&TRP, f. is subject to the failure cost constraint:

min, Ei pw(i))Lr(7r(i)) :5 CZdget, where CbAdt is inversely related to C1 , con-

trolling a "budget" for the failure cost. This gives us the restricted hypothesis space:

{I MEI 1 + e.1 A(&w(i)) - I
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Even though Y is smaller than F, it is difficult to construct a tight bound on

its covering number. So we enlarge O just enough so that a bound on its covering

number can be calculated. In particular, we will enlarge the set Fr to the set F2. We

define set F2 parametrized by a vector abudrt E Rd as follows:

.F2 := {fX : f, E F, abdg - < }

where vector abudg, is a function of Cbdvt, the graph and the unlabeled data {ii} .

F2 is the intersection of the ball F with the halfspace defined by abudg,; it is a ball

that is missing a spherical cap. The vector abudgt will capture the effect of Cbudgt in

such a way that F C F2, which we will show within the proof of the Theorem 3.6.2.

F2 is the space whose complexity we will bound, again within the proof of Theorem

3.6.2.

We will now define the vector abag in terms of Cbudgt and provide a proof later.

Let d, be the shortest distance from the starting node (node 1) to node i for i = 2,.., M

and di be the length of the shortest tour that visits all the nodes and returns to node

1. This means d, 5 L,(i); i = 1,..., M with equality if the physical graph can be

embedded into 1-dimensional Euclidean space. The vector abudgt is then related to

Cbudget defined elementwise as:

1 f e*,BX 6 \
afbuget = CbudgA - ao (1 + eBbx)2 diz) for j =1,.., d (3.22)

where ao = Bxb eBbxb + e1 " Z d,,.
(1+ eBbXb)2 1 + eBbX

Remark 3.6.1. (Defining Fr,F2 and abudget for Cost 2): The definitions of F

and F2 can be easily adapted to Cost 2 in (3.21) of the ML&TRP. Here too, the

hypothesis space for the ML&TRP is smaller than F because of the constraint on the

failure cost. Again replacing the Lagrange multiplier C1 with an explicit constraint

on the failure cost, we have that for the ML&TRP, f\ is subject to the failure cost

constraint: min, E log(1 eA))L(r(i)) Cbge, where Cbudge is inversely
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related to C1 , controlling a "budget" for the failure cost. This gives us the restricted

hypothesis space:

M

O:={fA : f, E F min Z L,(ir(i)) log(1 + efA(:r() 5 Cbdwtl
wEII

We can again enlarge this class of functions just enough so that a bound on the

covering number of Fo can be calculated. The enlarged set F2 will have the same

form as for Cost 1 except for a different definition of abudget (we will derive this later):

4udget = Cbd -- a eb ) for j =1, .., d (3.23)

where ao Bbxb eBbXb + log(1+ e-Bblo) d .
1+ e-Bb-Xb

Since Cost 2 can be handled in the same way as Cost 1, we will focus on Cost 1 for

the rest of this section.

3.6.2 Main Generalization Result

Recall that we would like to establish that generalization can depend on Cbudget. The

following theorem shows this explicitly. Cbesf enters the bound through the vector

abudget -

Theorem 3.6.2. (Main Result) Let X = {x E Rd: IIXI25 X}, Y = {-1, 1}. Let

FO be defined as above with respect to {ff} =y, i E X (not necessarily random) and

a corresponding physical graph. Let {xi, yj}f.n be a sequence of m instances drawn

independently according to unknown distribution pXxy and M nmd := BbXb + log 2.

For any E > 0,

P(3f E F0 :r " ImP(f,{iy}) - Rtr"e(f)I >c

4a(dabudget(Cbudget+))( exp (12822) >
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where ci(d, ab-gab(Cbd,)) is equal to

+ I|absadt[I2 4i r~i~ + 6 ( 1 1d- 3. (iI'il U+~x \2 (3.24)

1 (d 1 1
or equivalently, 1 - -I 2 21 - (3.25)

2 1-(ja .*I +r;) /(Bb+ r ) 2 2

and where 2F (a, b; c; d) and I.(a, b) are the hypergeometric function and the regular-

ized incomplete beta functions respectively.

The term a(d, abuget(Cbudvt)) comes directly from formulae for the volume of

spherical caps. As Cbudga decreases, the norm IabugetI|2 increases, and thus I|abdgdt 112

decreases, (3.24) and (3.25) decrease, and the whole bound decreases. This is the

mechanism by which decreasing Cbuet may improve generalization ability.

Theorem 3.6.2 is specific to the ML&TRP because X0 was defined based on the

ML&TRP and abuftet was defined in (3.22) for Cost 1 and (3.23) for Cost 2.

The technique of Theorem 3.6.2 applies much more broadly than the ML&TRP.

In fact, we can derive a general bound that applies to any problem with a similar

hypothesis space constraint. Specifically, the hypothesis space should be bounded by

the intersection of a ball with a half-space.

Corollary 3.6.3. (Bound for General MLOC Framework) Consider any op-

erational cost constraint such that the hypothesis space lies within F2 defined by

F2 = {fx E F: abudget - A < 1} for some abudget E Rd. Then, for any E > 0,

P(3f E F2 : IReP (fA, {xi, y,}") - Rtr"(fA)I > 6)

< 4a(d, audvt) + 1 )dep (12M2

where a(d, abudget) equals

1 ||abudge|I1 + - r [1 + (-. aIe
Bb + & fC[d+] 2 l 2,j-2 > 2 Bb+d-

1 2d + 1 1
or equivalently, 1- -I 221 -

2 1-(Italb , +M r)2/(B\+. ) 2 2
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and where 2F (a, b; c; d) and I,(a, b) are the hypergeometric function and the regular-

ized incomplete beta functions respectively.

The a(d, abudget) is influenced by our belief on the operational cost. Thus, by

being able to specify something about the operational cost, we are able to have a

better guarantee on generalization. In the case where we are not able to specify

anything about the operational cost, the quantity a (d, abg.t) is equal to 1 giving us

the standard generalization result for norm constrained linear function classes.

3.6.3 Proof

The proof outline is as follows. We will construct two classes, 1 and -F2 that are

slightly larger than FO, but smaller than F when Cbudwt is small enough. Then we

will use a volumetric argument to bound the covering number of F 2, which uses the

volumes of spherical caps; the idea is to show that the value of Cbudge affects the

volume of the hypothesis space, and thus the covering number. The covering number

bound is then applied to a uniform bound of Pollard [1984] to obtain a generalization

bound. The fact that the covering number of F2 can be below that of F indicates

that using functions from F2 may provide improvements in generalization over using

the full set F.

Let us lead up to the proof of Theorem 3.6.2.

Definition 4. Let A C X be an arbitrary set and (X, p/xxy) a (pseudo) metric space.

Let -I denote set size.

* For any E > 0, an E-cover for A is a finite set U C X (not necessarily C A) s.t.

Vx E A, 3u E U with pxxy(X,U) < E.

* A is totally bounded if A has a finite e-cover for all E > 0. The covering number

of A is N(E, A, pxxy) := infueu IUI where U is the set of all E-covers for A.

e A set R C X is E-separated if Vx, y E R, pIxxy(X, y) > E. The packing number

M(e, A, pxxy) := supREI IR1, where R is the set of all E-separated subsets of

A.
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Consider Cost 1. Since, for any collection of values p(:i) 0, EZ djp(i%) <

E Lr (i)p(zi) 5 Cbdt, the class of functions which obey the constraint E> dzp(zi) 5

Cbuget is larger than the class obeying u L4(i)p(1) ge. That is, F0 G F1

where M
{,: I E + Cbudget.

As long as Cb,,ot < di, the constraint in F1 is not vacuous. The choice of the

vector abudge ensures that F1 is a subset of F2 as we will prove below.

Lemma 3.6.4. (Fo is contained in F2)

N(,F0,| ) N(EF71,1 -j JII()) 5 N(E, F 2, I||(I)

Proof. It is sufficient to show T o 9 F1 9 F2. The first inequality was discussed

earlier; since d = inf,,eu L,(i), this implies:

M M

SdEi) < L,(i)p(i) Cad =e Fo C F1.
t=1 1=1

We now show F1 9 F2 . We first lower bound p(j) by a line with slope mi

ilbXb)2 and intercept mo := BbXb (1lb'b2 such that mfx(zi) + m 5

p() within the function range [-BXb, BbXb].

This leads to the definition of a0buget as we show now:

Zjdsp%) Ej d(mi(A -ii)+ mo) = d. A + ao, (3.26)

where di := m, (Ej dt4V) = )b2 (-E diij) for j = 1, ... , d (3.27)

and ao = mo d = (BXb $$b 2  7b d.

Thus VA E - 1 ,. -A + ao E 1 dip(-i) 5 Cbudget, (3.28)

which implies i A Cbudget - ao or equivalently, _ i - A < 1.
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This allows us to define abudget using (3.27) as

1= 1 e ) d z for j =1,..,d,

which is the same as (3.22). This vector is such that the set F2 is larger than

T1. [1 0

Remark 3.6.5. (Deriving abudget for Cost 2): The above lemma can be adapted

to Cost 2 to give the corresponding abudget that we had defined earlier. In particular,

for any collection of values log(1 + eA'*) > 0 for all i,

di log(1 + eA'I') L,(i) log(+ e\''').

Thus the class of functions that obey the constraint Ej di log(1 + e*'**) Cbudget is

larger than the class obeying E> L,(i) log(1 + eA*ii) Cbudget, which is F0 . F1 will

be the set corresponding to the former constraint:

F 1 := fA E F: Edlog(1 + eA') C gbudet}-

We now define F2 and abdget as follows. We can also see that log(1+eA'V') can be lower

bounded by a line with slope m, := b x and intercept mo := B X C-Bb,

log(1 +e~BbX) in the function range [-BbXb, BXb giving us the definition of abu1get

for Cost 2 as follows:

Cbudget ; Esdilog(1+ e--') > EZdi(m1(A - )+ in) = - A + ao,

where i := Ei (1 di) = '-'bxb (E di.i) for j = 1, ..., d

and ao = mo Edi = (BbXb + bXb log(1+ e-Bbi-)) b, di.

Thus, 1 - -A < 1, and since we wanted to have abudget - A < 1 we define abud.,t
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element-wise as:

_ 1 /-ol
a4udge =- e-Bbxb ) (Edidj for j = 1,.., d.

dugt Cbudga - a0  -Bx

Note that we have produced two abusget vectors for each of the two costs: Cost 1 and

Cost 2 above.

Let B(O, Bb) := {A : A E Rd, A11|2 Bs}. Let the half space corresponding to F2

be H1 1 %1 1 - := {A : abudget - A < 1}. The lemma below relates covering numbers of

F and F2 in function space to covering numbers of B(O, Bb) and B(O, Bs)fnH..t p 2

in Rd.

Lemma 3.6.6. (Relating covering numbers in 11 -|II(&,) to 11 112)

a. sup,, N(E, F, -III2(&y) N(E/X, B(O, B5),| f-||2), and

b. sup,- N(E, F2,| - |IL2(Pm)) < N(E/Xs, B(0, Bb) n Hijatb ijj-,| 1 112).

Proof. Each element f E F corresponds to at least one element of B(0, Bb) by def-

inition of F. Choose any distribution . Consider two elements Af, Ag E B(0, Bb)

corresponding to functions f, g E F C L2 (pg). Then,

f - g112 () = (f(i) - g())2
2=1

((A -

p ,\) _ Xi)2

21

< E Af - Ag,glI Xs1 (Cauchy-Schwarz to each term)

- AV| X,) (since SUP 11X112 5 X)
( M xEX

= A. - Ajj X2.

Consider a minimal E/Xs-cover {A,},. for B(O, Bb) where A, corresponds to a function

r E F. Then by definition, VA E B(0, Bb), 3A, : hA - A,11 2 E/Xs. Thus, picking
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any two such elements Af, Ag in a ball of radius E/Xb around A, we see that, the

corresponding functions f, g belong to a ball of radius E measured using distance in

L2 (Ax) by the inequality above. The centers of these e-balls in L 2(A,) form an E-

cover for F. The size of this set is equal to N(E/Xb, B(0, Bb),| - 112) (which is the

size of f/X-cover for B(O, Bb)). The size of the minimal E-cover of F will be less

than or equal to this size. Hence, N(E, F, - |IL,,pm)) < N(E/Xb, B(0, Bb), | - 112).

Taking a supremum over all it, we obtain the first inequality of the lemma. The

same argument also works for the second inequality. 0 0

Because of rotational symmetry of B(O, Bb), the volume cut off by a hyperplane

abuaget -A = 1 from B(O, Bb) is determined only by its distance from the origin, which

is 1/iabudgetjl2. Such a portion (or its complement, if smaller) of a ball obtained from

slicing the ball with a hyperplane is called a spherical cap. It can be parameterized

by the distance of its (hyper)plane base from the center of the ball as shown below.

For notation, let the volume of a set A c Rd be represented as Vol(A). For example,

Vol(BI) = r"'

Lemma 3.6.7. (Volume of spherical caps) Let the volume of ball B(O, Bb) in

Rd be denoted as Vol(B(Q, Bb)). Given a d-dimensional vector a, let z = ||ai 12 be

a number and Hz = {A : a - A < 1} be a half space parameterized by z. Let the

spherical cap be denoted by B(O, Bb) n H' where the cap is at a distance z (measured

from the base of the cap to the center of the ball), and H' represents the complement

half space (H. U H' = Rd). Then, Vol(B(O, Bb) n H')/Vol(B(O, Bb)) is equal to two

expressions:

(i 141+41~ ( 1 ~.2 (_\)2\\ 1 (lZ/B2d 1 I)\Bb __Kr[d+I]2I2 2 ' 2' Bb) )) = -j1zB

where 2F1 (a, b; c; d) and I,(e, f) are the hypergeometric and regularized incomplete

beta functions respectively.

Proof. See Li [20111 and references therein.

Next, we need the relationship between packing numbers and covering numbers
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to prove Theorem 3.6.9:

Lemma 3.6.8. (Packing and covering numbers) For every (pseudo) metric space

(X, pxxy), A C X, and c > 0,

N(E, A, p~xxy) M(c, A, 'XXY)_

Proof. See Theorem 4 in Kolmogorov and Tikhomirov [1959] or Theorem 12.1 in

Anthony and Bartlett [1999] for a proof of this classical result. 0

We use the above lemma to obtain bounds for the covering numbers of subsets of

Rd which appeared in Lemma 3.6.6.

Theorem 3.6.9. (Bound on Covering Numbers)

N(E/Xb, B(0, B),| - 112) + 2B:Xb and

voi (Bas+. n H 1-- 2s
N (E/Xb, B(0, Bb) n H 11 |-|I | 1 ( 2x

Vol (BBb+

Proof. Both statements involve a volumetric argument. For a proof of the first in-

equality, see Section 3 of Kolmogorov and Tikhomirov [19591 or Lemma 4.10 in Pisier

[19891 or Lorentz [19661 or Lemma 3 in Cucker and Smale [2002.

To show the second part, let the volume of the complement of the spherical cap

be Vol(B(0, Bb) n H,,, 1.); we need to find an upper bound for the minimal E/Xb-

cover of this set. We can do that by scaling a minimal E-cover, which we find now.

By extending the boundary of B(0, Bb) n H 1aII by E/2 we can bound the maximal

packing number M(E, B(0, Bb) n HaII21,| |- 112) as follows:

M( , B(O, Bb) n Ha 1 1, -| 112)

Or, M(E, B(0, Bb) n HJa1,-11 - 112)

x Vol(B1)(E/2)d < VOl(BBa+e/2 nHl 1+E/2)-

Vol (BBb+E/2 n HaH '.L+/2 1

Vol(B1 ) (E/2)d

Vol (Ba5 +,/2 n H ai1+e/2) 1 (Bb+E/2)d

Vol(B1 ) (E/ 2 )d (Bb+ E/2)d
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Vol (BBb+e/2 n H a1 -]+e/2 ) (Bb E/2)d

Vol(BBb4e/ 2 ) (e/2)d

Again, scaling E to E/Xb and using the relationship between N(E, A, dist) and M(E, A, dist)

in Lemma 3.6.8 yields the second result. 0 0

Thus we have so far shown the relationship between covering numbers of Fo, F1,

and .F2 in terms of a certain metric in Lemma 3.6.4, we have shown how those covering

numbers are related to covering numbers in e2 (Rd) in Lemma 3.6.6, we have shown

how the latter covering numbers relate to volumes in 12 (Rd) in Theorem 3.6.9, and

we have shown how to compute one of these volumes in Lemma 3.6.7.

To complete the proof of Theorem 3.6.2, we will use a relation between the covering

number of a class of loss functions of some set g and the covering number of the set

g itself. We will also use a uniform convergence bound of Pollard [19841.

Theorem 3.6.10. (Pollard 1984) Let Ig be a set of functions on X x Y with 0 <

l(f\(x), y) < M,...d, VL E ig and V(x, y) E X x Y. Let {x, y,}' be a sequence of m

instances drawn independently according to pixxy. Then for any E > 0,

P(31 E 1g : |R*"P(fA,{x,,yj}) - kR*(f)I > c)

< 4E [N (E/16, lg, i I-|IL(T y))] exp 12

Proof. See Theorem 24 in Pollard [1984] [also in Zhang, 2002, Theorem 11. 0

We can relate the covering number for Pollard's loss functions set ig to the covering

number for set g as follows.

Lemma 3.6.11. (Relating 1g to 9) If every function from function class 1g repre-

sented as 1 : f(X) x Y '-* R, f E 9, is Lipschitz in its first argument with Lipschitz

constant 4 then the covering number of ig is related to the covering number of g by

sup N (E, ig,| -. tLl(,-,,) N (c/, ,7 -IL 1(p7)).
Jxxy
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Proof. Consider two functions f, g E g. Let the corresponding functions in class lg

be If = l(f(x), y) and 1g = L(g(x), y).

|l. - j, Il(!(xO), y,) - L(g(x1), y,#)I
1

< jPf(Xi) - g(Xi) = Clf - 9jjL|(p).
=1

This implies, given {xi, y } ', if g is a minimal E/L-cover of g in L,(pp), we can

construct an E-cover of ig in L,(pp~yy) as Ig = {l: fi E g}. The size of the minimal

c-cover will be smaller than the size of such an E-cover. Taking the supremum over

all empirical distributions, we get the desired result. 0 0

Theorem 3.6.10 and Lemma 3.6.11 involve L1 covering numbers, but our covering

number bounds start with an L2 metric in Lemma 3.6.6. So we need to switch from

L1 to L2 metric. The following lemma uses the identity 1f - gIL,(,) 5 1f - g|bM(tG)

(true because of Jensen's inequality applied to norms) to relate the two.

Lemma 3.6.12. N(E, A,j| IIL 1-(y)) 5 N(e, A, 11 - IIL|()).

Proof. See for a version, Lemma 10.5 in Anthony and Bartlett [19991. 0

Finally, we can prove the main result.

Proof. (Of Theorem 3.6.2)

In our setting, the loss function is logistic with Lipschitz constant C = 1 (when

viewed as a function of f(x)). The class of loss functions is thus defined by ly:= {l:

f\ E -Fo}. Each I E yb, is also non-negative and bounded as needed in the statement

of Theorem 3.6.10.

Starting from the expectation term on the right hand side of Theorem 3.6.10 using
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F0 as g we get,

E[N(e/16, l.Fo, - (

sup N(e/16, l.,, - ) bounding expectation by supremum
MXxy

supN ( E, F 2, -| L2(AM) from Lemma 3.6.11, 3.6.12 and 3.6.4 respectively

N 6  7 B(0, Bb) n H abd,,,II| -1||12 from Lemma 3.6.6, substituting L = 1

Vol (BB,~ n H a,*1+ j2BLb
(B 32b+ I~b 2~) 3 b + 1) from Theorem 3.6.9

Vol(BB+ E)

a(d, abudget(Cbudget)) (3fb+ i) from Lemma 3.6.7.

The above step uses the relation between spherical cap and its complement along with

Lemma 3.6.7, Vol (B(o, Bb) n H, 1 1 . 1 ) = Vol(B(0, Bb))-Vol (B(0, Bb) n HIIbdI 21).

Using the derived inequality within Theorem 3.6.10 completes the proof. EJ 0

3.7 Future work

We provide several avenues for future work.

" Other graph applications: The MLOC framework is a general tool that can help

decision makers translate uncertainty in prediction to uncertainty in operational

costs. The ML&TRP itself is a specific application of the MLOC framework

that can be applied to the power grid (as we did), but also to delivery truck

routing and other physical routing problems, and can be used for more abstract

routing problems such as network routing problems, where distances on the

graph do not necessarily correspond to a physical distance. In the future it

would be interesting to explore some of these applications.

" Relaxing the cost constraints in the MLOC: Our generalization bound for the
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ML&TRP applied to a hypothesis space that was an intersection of an l2 ball

with a halfspace. It would be interesting to consider more general operational

cost constraints, such as quadratic constraints and other convex functions. As

it turns out, there are many applications where such constraints naturally arise.

In current work, we are constructing bounds for these types of constraints,

which lead to exotic hypothesis spaces, such as an intersection of an l2 ball with

an ellipsoid (for quadratic constraints) or a general convex body (for convex

constraints).

* Sequential MLOC: Currently the MLOC framework applies to one-shot decision

problems. It would be interesting to extend it to sequential decision problems,

perhaps where multiple decisions are made in a sequence of decision epochs, and

training data arrive incrementally. In this case, the baseline technique analogous

to the "sequential process" would be a Markov decision process (MDP). The

MLOC framework would then assist in understanding the reasonable range of

costs for various sequential decision policies. Note that in the current setting,

there is no opportunity for exploration to improve our failure estimates. On

the other hand, in a sequential MLOC setting, there can be an opportunity to

get better failure estimates by collecting information. In such a case, one can

take into account the "value of new information" in decision making. Since we

do not have a mechanism to collect more information (and update {i}Y1 and

hence, the corresponding failure estimate), we consider only the optimistic and

pessimistic decision making approaches in this work.

3.8 Conclusion

In this work, we evaluated the MLOC framework in the context of a real application

and demonstrated improvements over current standards. In particular, we presented

an application in the domain of transportation routing called the ML&TRP. Our

framework takes advantage of uncertainty in statistical modeling to explore the de-
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cision space and find potentially more practical solutions. We provide experiments

quantifying the improvements and the scalability of the framework with respect to

routing problem size. We provided a generalization bound for the ML&TRP (and for

the general MLOC framework) indicating that a prior belief in the operational cost

can potentially be beneficial to prediction ability in general.
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Chapter 4

Generalization Bounds for Learning

with Linear, Polygonal, Quadratic

and Conic Side Knowledge

4.1 Introduction

Surely, for many applications the amount of domain knowledge we could potentially

use within our learning processes is vastly larger than the amount of domain knowl-

edge we actually use. One reason for this is that domain knowledge may be nontrivial

to incorporate into algorithms or analysis. A few types of domain knowledge that

do permit analysis have been explored quite in depth in the past few years and used

very successfully in a variety of learning tasks; this includes knowledge about the spar-

sity properties of linear models (e1-norm constraints, minimum description length) or

smoothness properties (e2-norm constraints, maximum entropy). A reason that do-

main knowledge is not usually incorporated in theoretical analysis is that it can be

very problem specific; it may be too specific to the domain to have an overarching

theory of interest. For example, researchers in NLP (Natural Language Processing)

have long figured out various exotic domain specific knowledge that one can use while

performing a learning task Chang et al. [2008a,b}. The present work aims to provide
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theoretical guarantees for a large class of problems with a general type of domain

knowledge that goes beyond sparsity and smoothness.

To define this large class of problems, we will keep the usual supervised learning

assumption that the training examples are drawn i.i.d. Additionally in our setting, we

have a different set of examples without labels, not necessarily chosen randomly. For

this set of unlabeled examples, we have some prior knowledge about the relationships

between their labels, which affects the space of hypotheses we are searching over

within our learning algorithms. We motivate this knowledge as being obtained from

domain experts. These assumptions can, for example, take into account our partial

knowledge about how any learned model should predict on the unlabeled examples if

they were encountered. We consider many types of side knowledge, namely constraints

on the unlabeled examples leading to (i) linear constraints on a linear function class,

(ii) quadratic constraints on a linear function class, and (iii) conic constraints on a

linear function class. Our main contributions are:

* To show that linear, polygonal, quadratic and conic constraints on a linear hy-

pothesis space can arise naturally in many circumstances, from constraints on a

set of unlabeled examples. This is in Section 4.2. We connect these with relevant

semi-supervised learning settings.

* To provide upper bounds on covering number and empirical Rademacher complex-

ity for linearly constrained linear function classes. Bounds for the case of linear and

polygonal constraints are found in Sections 4.3.3 and 4.3.4 respectively. Two of the

three bounds in these sections are not original to this chapter, but their application

to general side knowledge with linear constraints is novel.

* To provide two upper bounds on the complexity of the hypothesis space for the

quadratic constraint case This can be used directly in generalization bounds. The

use of a certain family of circumscribing ellipsoids and the quadratic bounds of

Section 4.3.5 are novel to this work.

& To show that one of the upper bounds on the quadratically constrained hypothesis

space we provided has a matching lower bound, also in Section 4.3.5. This is novel

to this work.
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(a) (b) (c) (d)

Figure 4-1: This figure illustrates constraints on our hypothesis space. These con-
straints arise from side knowledge available about a set of unlabeled examples. The
e balls in (a), (b), (c) and (d) represent coefficients of linear functions in two di-
mensions. (a) and (b) represent intersection of a ball and one or several half spaces.
Theorems 4.3.1, 4.3.3 and Proposition 4.3.2 analyze these situations. (c) shows the
intersection of a ball and an ellipsoid. Theorems 4.3.5, 4.3.7 and 4.3.8 correspond to
this setting. (d) shows the intersection of a ball with a second order cone. Theorem
4.3.10 corresponds to this setting.

" To provide a bound on the complexity of the hypothesis space for the conic con-

straint case. These bounds are in Section 4.3.7 and are novel to this work.

" We develop a novel proof technique for upper bounding linear, quadratic and conic

constraint cases based on convex duality.

Figure 4-1 illustrates the various types of side knowledge.

Side knowledge can be particularly helpful in cases where data are scarce; these

are precisely circumstances when data themselves cannot fully define the predictive

model, and thus domain knowledge can make an impact in predictive accuracy. That

said, for any type of side knowledge (sparsity, smoothness, and the side knowledge

considered here), the examples and hypothesis space may not conform in reality to the

side knowledge. (Similarly, the training data may not be truly random in practice.)

However, if they do, we can claim lower sample complexities, and potentially improve

our model selection efforts. Thus, we cannot claim that our side knowledge is always

true knowledge, but we can claim that if it is true, we are able to gain some benefit

in learning.
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Motivating examples

Fung et al. [20021 added multiple linear constraints (polygonal constraints) to a spe-

cific ERM algorithm, the linear SVM, as a way to incorporate prior knowledge. They

investigated the effect of using this type of prior knowledge for classification on a

DNA promoter recognition dataset Towell et al. [19901. In this classification task, the

linear constraints result from precomputed rules that are separate from the training

data (this is similar to our polygonal setting where constraints are generated from

knowledge about the unlabeled examples). The "leave-one-out" error from the 1-norm

SVM with the additional constraints was less than that of the plain 1-norm SVM and

other training-data-based classifiers such as decision trees and neural networks. This

and other types of knowledge incorporation in SVMs are reviewed by Lauer and Bloch

[2008] and also Le et al. [2006].

James et al. [2014] motivated the use of linear constraints with LASSO, which is

also an ERM procedure. In their experiment, they estimated a demand probability

function using an on-line auto lending dataset. They ensured monotonicity of the de-

mand function by applying a set of linear constraints (similar to the poset constraints

in 4.2.1) and compared the output to two other methods: logistic regression and

the unconstrained LASSO, both of which output non-monotonic demand probability

curves.

Nguyen and Caruana [2008a] considered additional unlabeled examples whose

labels are partially known. In particular, they worked on a type of multi-class clas-

sification task where they know that the label of each unlabeled example belongs to

a known subset of the set of all class labels. This knowledge about the unlabeled

examples translates into multiple linear constraints (polygonal constraints). They

provided experimental results on five datasets showing improvements over multi-class

SVMs.

G6mez-Chova et al. [2008] implemented a technique (known as LapSVMs) that

uses Laplacian regularization augmented with standard SVMs for two image clas-

sification tasks related to urban monitoring and cloud screening (which are both

134



remote sensing tasks). Laplacian regularization means that the regularization term

is a quadratic function of the model, derived from a set of unlabeled examples, like

our quadratic setting (see Section 4.2.2). In both tasks, the Laplacian-regularized

linear SVMs outperformed the standard SVMs in terms of overall accuracy (these

improvements are of the order of 2-3% in both cases).

Shivaswamy et al. [2006J formulated robust classification and regression problems

as described in Section 4.2.3 leading to conic constraints on the model class. For clas-

sification, they used the OCR, Heart, Ionosphere and Sonar datasets from the UCI

repository to illustrate the effect of missing values and how robust SVM classification

(which introduces second order conic constraints) provides better classification accu-

racy than the standard SVM classifier after imputation. For regression, they showed

improvements in prediction accuracy of a robust version of SVR (again introducing

conic constraints on the hypothesis space) as compared to a standard SVR trained

after imputation on the Boston housing dataset (also from the UCI repository).

4.2 Linear, Polygonal, Quadratic and Conic Con-

straints

We are given training sample S of n examples {(xi, y)} 1 with each observation xi

belong to a set X in RP. Let the label yt belong to a set Y in R. In addition, we

are given a set of m unlabeled examples {kj}%n. We are not given the true labels

{#7;}3 for these observations. Let F be the function class (set of hypotheses) of

interest, from which we want to choose a function f to predict the label of future

unseen observations. Let it be linear, parameterized by coefficient vector P and its

description will change based on the constraints we place on 8.

Consider the empirical risk minimization problem: minfET 1 E, I l(f(xi), yi).

Here the loss function is a Lipschitz continuous function such as the squared, ex-

ponential or hinge loss among others. This supervised learning setup encompasses

both supervised classification (Y is a discrete set) and regression (Y is equal to R).
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Regularization on f acts to enforce assumptions that the true model comes from a

restricted class, so that F is now defined as

{fIf :X Y, f(x) = #T , Ri(f) cz for l= 1,..., L}

where ()T represents the transpose operation. Here we have appended L additional

constraints for regularization to the description of the hypothesis set F. Especially if

the training set is small, side knowledge can be very powerful in reducing the size of

F. Particularly if constants {c}[ are small, the size of F be reduced substantially.

4.2.1 Assumptions leading to linear and polygonal constraints

We will provide three settings to demonstrate that linear constraints arise in a variety

of natural settings: poset, must-link, and sparsity on {jj}. In all three, we will

include standard regularization of the form I||ih| c1 by default.

Poset: Partial order information about the labels {i}!1 can be captured via the

following constraints: f(kj) ! f(i)+cij for any collection of pairs (i, j) E [1, ... , m] x

[1, ... , ml. This gives us up to m2 constraints of the form 6T(Rj - i,) < Cj. F can be

described as: F := {fif(x) = #TX, 11I1Iq ci,#T(i - R,) ci,7V(i, j) E E}, where

E is the set of pairs of indices of unlabeled data that are constrained.

Must-link: Here we bound the absolute difference of labels between pairs of unla-

beled examples: |f(kj) - f(R,) I cij. This captures knowledge about the nearness

of the labels. This leads to two linear constraints: -cij < _T(Ri - R,) cj. These

constraints have been used extensively within the semi-supervised Zhu [20051 and con-

strained clustering settings Lu and Leen [2004], Basu et al. [20061 as must-link or 'in

equivalence' constraints. For must-link constraints, F is defined as: F := {fIf() =

Tx, :5 C16 _C c, -C O _ (R - i,) cai,.V(i, j) E E}, where E is again the set of

pairs of indices of unlabeled data that are constrained.
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Sparsity and its variants on a subset of {#JT_: Similar to sparsity assump-

tions on 8, here we want that only a small set of labels is nonzero among a set of

unlabeled examples. In particular, we want to bound the cardinality of the sup-

port of the vector [ ... 97 for some index set I c {1, ..., m}. Such a constraint

is nonlinear. Nonetheless, a convex constraint of the form 1|[g, ... gM]||1 !5 cT (21I

linear constraints) can be used as a proxy to encourage sparsity. The function class

is defined as: F := {fif(x) = T,X, Ij/jIq C1,I|[#Tkl1.. .TR 1 11]111 5 cz}. A similar

constraint can be obtained if we instead had partial information with respect to the

dual norm: 1|[9j ... Ynl0 io < cl.

4.2.2 Assumptions leading to quadratic constraints

We will provide several settings to show that quadratic constraints arise naturally.

Must-link: A constraint of the form (f(ij) - f(i.))2 < cij can be written as

0 < fTA3 5 cij with A = (j.- )(j -. )T. Here A is rank-deficient as it is an outer

product, which leads to an unbounded ellipse; however, its intersection with a full el-

lipsoid (for instance, an e2-norm ball) is not unbounded and indeed can be a restricted

hypothesis set. Set F is defined by: F = {/3 : #T# k c1, #(ii -- k)(*4 - ,)T#

csj; (i, j) E E}, where E is again the set of pairs of indices of unlabeled data that are

constrained.

Constraining label values for a pair of examples: We can define the fol-

lowing relationship between the labels of two unlabeled examples using quadratic

constraints: if one of them is large in magnitude, the other is necessarily small. This

can be encoded using the inequality: f(ii) - f(i) < cij. If f(x) E Y C R+, then

f(ij) - f (i) cij gives the following quadratic constraint on / with the associated

rank 1 matrix being A = ikjiT: #TAP < cij. This is not quite an ellipsoidal constraint

yet because matrices associated with ellipsoids are symmetric positive semidefinite.

Matrix A on the other hand is not symmetric. Nonetheless, the quadratic constraint
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remains intact when we replace 'Matrix A with the synnetric matrix }(A + AT).

If in addition, the symmetric matrix is also positive-definite (which can be verified

easily), then this leads to an ellipsoidal constraint. The hypothesis space F becomes:

.F = { : ## 5 ci, 3Ti iiTI cij; (i, j) E E}.

Energy of estimated labels: We can place an upper bound constraint on the

sum of squares (the "energy") of the predictions, which is: IIX I = F. (#Tic) 2

#lT(EZ ikjiiT)f where XU is a p x m dimensional matrix with zi's as its columns.1 The

set F is F = I#: #T# 5 cI, Xip|I8 < C}. Extensions like the use of Mahalanobis

distance or having the norm act on only a subset of the estimates of {$}1 follow

accordingly.

Smoothness and other constraints on {#i}E1: Consider the general ellipsoid

constraint ||PXUT#11I < c where we have added an additional transformation matrix

r in front of X p3. If r is set to the identity matrix, we get the energy constraint

previously discussed. If r is a banded matrix with Pi, = 1 and r,i+1 = -1 for all

i = 1, ... , m and remaining entries zero, then we are encoding the side knowledge that

the variation in the labels of the unlabeled examples is smoothly varying: we are en-

couraging the unlabeled examples with neighboring indices to have similar predicted

values. This matrix r is an instance of a difference operator in the numerical analysis

literature. In this context, banded matrices like 1 model discrete derivatives. By

,including this type of constraint, problems with identifiability and ill-posedness of

an optimal solution 0 are alleviated. That is, as with the Tikhonov regularization

on 8 in least squares regression, constraints derived from matrices like r reduce the

condition number. The set F is defined as: F = {/3: 1T 2 c, I<X#[II c}.

Graph based methods: Some graph regularization methods such as manifold reg-

ularization Belkin and Niyogi 120041 also encode information about the labels of the

unlabeled data. They also lead to convex quadratic constraints on /. Here, along with

'Note that this notation is not the usual notation where observations ii's are stacked as rows.
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the unlabeled examples {xi} , our side knowledge consists of an m-node weighted

graph G = (V, E) with the Laplacian matrix LG = D - A. Here, D is am x m-

dimensional diagonal matrix with the diagonal entry for each node equal to the sum

of weights of the edges connecting it. Further, A is the adjacency matrix containing

the edge weights aij, where aij = 0 if (i, j) 0 E and a1, = e-cli -*q if (i, j) E E (other

choices for the weights are also possible). The quadratic function (XUIp)TLG(XU/#) is

then twice the sum over all edges, of the weighted squared difference between the two

node labels corresponding to the edge: 2 E(j)EE ai ((u - f(R*)) 2 . Intuitively, if

we have the side knowledge that this quantity is small, it means that a node should

have similar labels to its neighbors. For classification, this typically encourages the

decision boundary to avoid dense regions of the graph. The set F is defined as:

F = { : #T# 5 c1,/3TXTLGXUTO < c}.

4.2.3 Assumptions leading to conic constraints

We provide two scenarios that naturally lead to conic constraints on the model class:

robustness against uncertainty and stochastic constraints.

Robustness against uncertainty in linear constraints: Consider any of the lin-

ear constraints considered in Section 4.2.1. All of these can be generically represented

as: {aT# < 1 Vk = 1, .. , K} where for each k, ak is a function of the unlabeled sample

{i}'I (for instance, ak = ii - xc for Poset constraints). Further assume that each

ak is only known to belong to an ellipsoid Ek = {-d + Aku : uTu < 1} with both

parameters -d4 and Ak known. This can happen due to measurement limitations,

noise and other factors. We want to guarantee that, irrespective of the true value of

ak E E, we still have ak # 1.

Borrowing a trick used in the robust linear programming literature, we can encode

Lanckriet et al. [2003 the above requirement succinctly as:

#~O+ I|Af#||12 < 1, Vk= 1, ...,7 K
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which is a setof second-order cone constraints. The feasible set becomes smaller when

the linear constraints {a Tf8 5 1 Vk = 1, ... , K} are replaced with the conic constraints

above.

Stochastic Programming: Consider a probabilistic constraint of the form P, (a #l <
1) va, where ak is now considered a random vector. The motivation for ak is the

same as before (see Section 4.2.1). If we know that ak is normally distributed (for

instance, due to additive noise) with mean Uk and covariance matrix Bk, then the

probabilistic constraint is the same as: k # + 4~1(1 - p)1|Bk/2 I 2 :5 1, where 4D-()

is the inverse error function. To see this, let Uk = aTfi be a scalar random variable

with mean ui- and variance ok (this is equal to 5TBk,5). Then, our original constraint

can be written as P (Uk-Uk 1~-, 7. Since " - .. ' ~K(0, 1), we can rewrite our
( ak - 01k /Uk

constraint as: 4 ('-'6h) 77k where (z) is the cumulative distribution function for

the standard normal. Further 4 > i k implies > 4>-1 '() Rearranging
1-ik )

terms, we get Ui + D- 1((1k)Uk 1. Finally, substituting the values for Uk and ak gives

us the following constraint:

k # + 4b 1~k)I11B/ 2 # 112 < 17

which is a second order conic constraint Lobo et al. [1998].

Remark 4.2.1. A question of practical interest would be about ways to impose con-

straints seen in Sections 4.2.1, 4.2.2 and 4.2.3 in a computationally efficient manner.

Fortunately, for all the cases we have considered thus far, the side knowledge can be

encoded as a set of convex constraints leading to efficient algorithms (if the original

empirical risk minimization problem is convex). Further, note that unlike must-link

and similarity side knowledge that lead to convex constraints, cannot-link and dis-

similarity knowledge is relatively harder to impose and is typically non-convex.
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4.3 Generalization Bounds

In each of the scenarios considered in Section 4.2, essentially we are given m unlabeled

examples i whose subsets satisfy various properties or side knowledge (for instance,

linear ordering, quadratic neighborhood similarity, etc). This side knowledge is also

shown to constrain the hypothesis space in various ways. In this section, we will

attempt to answer the following statistical question: what effect do these constraints

have on the generalization ability of the learned model? We will compute bounds on

the complexity of the hypothesis space when the types of constraints seen in Section

4.2 are included.

4.3.1 Definition of Complexity Measures

We will look at two complexity measures: the covering number of a hypothesis set

and the Rademacher complexity of a hypothesis set. Their definitions are as follows:

Definition 5. Covering Number Kolmogorov and Tikhomirov [1959J: Let A C 12 be

an arbitrary set and (Q, p) a (pseudo-)metric space. Let I -I denote set size. For any

E > 0, an c-cover for A is a finite set U C Q (not necessarily 9 A) s.t. Vw E A, 3u E U

with d,(w, u) <; e. The covering number of A is N(E, A, p) := infu IUI where U is

an c-cover for A.

Definition 6. Rademacher Complexity Bartlett and Mendelson [2002J: Given a train-

ing sample S = {x,..., x,}, with each xi drawn i.i.d. from px, and hypothesis

space F, FIS is the defined as the restriction of F with respect to S. The empirical

Rademacher complexity of FIS is

(FIS) = E, sup - c-if(Xi)

where {o-} are Rademacher random variables (c- = 1 with probability 1/2 and o-i =

-1 with probability 1/2). The Rademacher complexity of F is its expectation:

R(F) = Es~(ax)-[R(-Fs)-
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If instead we let ai ~ K(0,1) in the definition, this is the Gaussian complexity

of the function class. Generalization bounds often use both these quantities in their

statements Bartlett and Mendelson [20021.

4.3.2 Complexity measures within generalization bounds

Given these definitions, a generalization bound statement can be written as follows

Bartlett and Mendelson [2002J: With probability at least 1 - 6 over the training

sample S,

Vf E 7, E ,,[l(f(x), y)1 ; - l(f(xi), y) + 4,CZ(Fjs)+ ,n 2n

where ) is the Lipschitz constant of the loss function 1. A relation between the

empirical Rademacher complexity and covering number can be used to state the

above uniform convergence statement in terms of the covering number. The relation

(also known as Dudley's entropy integral) is Talagrand [20051:

R(FIS) < 00 **log N(vrnc, Ys,||-||2) A

where Jis = {(f(xj), ... ,f(xn)) : f E F} and c is a constant. Thus, we study upper

bounds for covering numbers and empirical Rad4macher complexities interchangeably

through the rest of the chapter.

4.3.3 Complexity results with a single linear constraint

We state two results: the first is based on volumetric arguments and bounds the

covering number and the second is based on convex duality and bounds the empirical

Rademacher complexity. The first is a result from Tulabandhula and Rudin [20141

while the second is new to this work.

Volumetric upper bound on the covering number: Tulabandhula and Rudin

142



[20141 analyzed the setting where a bounded linear function class is further con-

strained by a half space. The motivation there was to study a specific type of side

knowledge, namely knowledge about the cost to solve a decision problem associated

with the learning problem. The result there extends well beyond operational costs

and is applicable to our setting where we have a e bounded linear function class with

a single half space constraint.

Theorem 4.3.1. [Theorem 2 of Tulabandhula and Rudin, 2014] Let X = {x E RP:

|1x112  Xb} and px be the marginal probability measure on X. Let

T = {fIf : X -+ Y, f(x) =#Tx, 11112 5 Bs, aT 3 1}.

Let -Fs = {(f(x 1 ), ... , f(x)) : f E F}. Then for all E > 0, for any sample S,

N(Vx/e, Jis,|| -112) 5 a(p, a, C) (2BbX + if.

Also, defining r = B + ' and V(r) = / rP, the function a above is:

a(p, a, C) =

- 1 V,_(r sin G)d(r cos 0).

Intuition: The function a(p, a, e) can be considered to be the normalized volume

of the ball (which is 1) minus the portion that is the spherical cap cut off by the linear

constraint. It comes directly from formulae for the volume of spherical caps. We are

integrating over the volume of a p - 1 dimensional sphere of radius r sin 0 and the

height term is d(r cos 0).

This bound shows that the covering number bound can depend on a, which is a

direct function of the unlabeled examples {ki}%j. As the norm 11all 2 increases, |IaII-1

decreases, thus a(p, a, c) decreases, and the whole bound decreases. This is a mech-

anism by which side information on the labels of the unlabeled examples influences
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the complexity measure of the hypothesis set, potentially improving generalization.

Relation to standard results: It is known Kolmogorov and Tikhomirov [19591

that B = {1# : 11112 5 Bb} has a bound on its covering number of the form

N(e, B, | - 112) 5 (2_' + 1)P. Since in Theorem 4.3.1 the same term appears, mul-

tiplied by a factor that is at most one and that can be substantially less than one,

the bound in Theorem 4.3.1 can be tighter.

The above result bounds the covering number complexity for the hypothesis set.

Next, we will bound the empirical Rademacher complexity for the same hypothesis

set as above.

Convex duality based upper bound on empirical Rademacher complexity:

Consider the setting in Theorem 4.3.1. Our attempt to use convex duality to upper

bound empirical Rademacher complexity yields the following bound.

Proposition 4.3.2. Let X = {x E RP: 1|X|12 5 Xb} and

7 = {fIf : X -+ Y, f(X) = OT11,#112 Bb, aTfi 5 1}.

Then,

fZ(}FS) max (E, [min(BbI|XLcO - 71a12 + 7) ,E, rin(Bbj|XL + ia||2 +7)

where XL = [xi ... x.] is a p x n dimensional feature matrix and o- is a n x 1

dimensional vector of Bernoulli random variables taking values in {-1, 1}.

Intuition: We can understand the effect of the linear constraint on the upper

bound through the magnitude of vector a. Without loss of generality, let the ex-

pectation of the optimal value of the first minimization problem be higher (both

minimization problems are structurally similar to each other except for a sign change

within the norm term). For a fixed value of o, this minimization problem involves

the distance of vector XLC to the scaled vector a in the first term and the scaling
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factor 17 itself as the second term. Thus, generally, if ||ai 2 is large, the scaling factor

i can be small, resulting in a lower optimal value. We also know that larger hjaiI2
corresponds to a tighter half space constraint. Thus, as the linear constraint on the

hypothesis space becomes tighter, it makes the optimal solution q and the optimal

value smaller for each - vector. As a result, it tightens the upper bound on the

empirical Rademacher complexity.

Relation to standard results: An upper bound on each term of the max operation

above can be found by setting 77 = 0 that recovers the standard upper bound of

or Bb without capturing the effect of the linear constraint aTli 1.

4.3.4 Complexity results with polygonal/multiple linear con-

straints and general norm constraints

The following result is from Thlabandhula and Rudin [2013J, where the authors ana-

lyze the effect of decision making bias on generalization of learning. Again, as in the

single linear constraint case, the result extends beyond the setting considered in that

paper. In particular, it covers all the motivating scenarios described in Section 4.2.1.

Let us define the matrix [xi ... Xn] as matrix XL where Xi E X = {x : |IxI,. <

Xb}. Then, XE can be written as [h, ... h,] with h, E Rn, j = 1, ... , p. Define function

class Y as

F ={flf(x) = #T X, P E RP, iI11q, 5 Bb,
P
E y# 6 1,6' > 0, V = 1, ...,7 V1,

j=1

where 1/r+ 1/q = 1 and {c,,},,, {6}, and Bb are known constants. In other words,

we have V linear constraints in addition to a eq norm constraint. As before, let Fis

be the restriction of F with respect to S.
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Let {-,},. be proportional to {c1,},, in the following manner:

Cj, := 1hjj Vj = 1, ... , p and v = ,.,V.I|hI|,

Let K be a positive number. Further, let the sets pK parameterized by K and

P1 parameterized by K and {45,},, be: PK := {(ki, ..., kp) E ZP : ; 1 |k ! KI ,

and P { := J(ki,..., k)EPK : kjK v= 1,...,V}. Let I aK

be the sizes of the sets PK and Pj? respectively. The subscript c in PjK denotes

that this polyhedron is a constrained version of pK. Define XL to be equal to the

product of a diagonal matrix (whose j't diagonal element is 0 ) and XL. Define

A min (XSLXgL T ) to be the smallest eigenvalue of the matrix XSLXL T .

Theorem 4.3.3. [Theorem 6 of Tulabandhula and Rudin, 2013]

min{PKo,\ I} if C < XbBb
NN/nv ,Is, 1 -|112):

otherwise

where KO = and K is the maximum of KO and

22 -

Amin(X LX sLT) n inB, 1,...,y & 2 ]

Intuition: The linear assumptions on the labels of the unlabeled examples {ki};I

determine the parameters {5j,,, that in turn influence the complexity measure

bound. In particular, as the linear constraints given by the c,,'s force the hypothesis

space to be smaller, they force IP1i to be smaller. This leads to a tighter upper

bound on the covering number.

Relation to standard results: We recover the covering number bound for linear

function classes given in Zhang [2002] when there are no linear constraints. In this
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case, the polytope pK is well structured and the number of integer points in it can

be upper bounded in an explicit way combinatorially.

It is possible to convex duality to upper bound the empirical Rademacher com-

plexity as we did in Proposition 4.3.2. However, the intuition is less clear, and thus,

we omit the bound here.

4.3.5 Complexity results with quadratic constraints

Consider the set F = {f : f = #TX, flTA,# 5 1, #TA 2,5 1}. Assume that at least

one of the matrices is positive definite and both are positive-semidefinite, symmetric.

Let E, = {! 5TA1# 1} and .2 = {8: #TA 2 0 5 1} be the corresponding ellipsoid

sets.

Upper bound on empirical Rademacher complexity: We first find an ellipsoid

=i,-t7 (with matrix Ainty) circumscribing the intersection of the two ellipsoids E1 and

22 and then find a bound on the Rademacher complexity of a corresponding function

class leading to our result for the quadratic constraint case. We will pick matrix

Any to have a particularly desirable property, namely that it is tight. We will call

a circumscribing ellipsoid tight when no other ellipsoidal boundary comes between

its boundary and the intersection (-= n =2). If we thus choose this property as our

criterion for picking the ellipsoid, then according to the following result, we can do

so by a convex combination of the original ellipsoids:

Theorem 4.3.4. [Circumscribing ellipsoids, Kahan, 1968] There is a family of cir-

cumscribing ellipsoids that contains every tight ellipsoid. Every ellipsoid Eint- in this

family has Sint7 ; (1 n 2) and is generated by matrix Ant = -yA 1 + (1 - 7)A2,

7 E [0, 1].

Using the above theorem, we can find a tight ellipsoid {, : /3TAmt, 5 1} that

contains the set {18 : #TA 1  < 1,BTA 2# 5 1} easily. Note that the right hand sides

of the quadratic constraints defining these ellipsoids can be equal to one without loss

of generality.
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Theorem 4.3.5. (Rademacher complexity of linear fundtion class with two quadratic

constraints) Let

F={f :f(x)=Tx:#PTI#< Bb, #TA2#fi 1}

with A 2 symmetric positive-semidefinite. Then,

(Ris) trace(XFA AXL), (4.1)

where Amty is the matrix of a circumscribing ellipsoid {# : #TAmtf < 1} of the set

I# :#TI# ! B2, fTA 2#3 ! 1} and XL is the matrix [xl ... xnJ with examples xi's as

its columns.

Intuition: If the quadratic constraints are such they correspond to small ellipsoids,

then the circumscribing ellipsoid will also be small. Correspondingly, the eigenvalues

of Amt-., will be large. Since, the upper bound depends inversely on the magnitude of

these eigenvalues (since it depends on A- ), it becomes tighter. Also, in the setting

where the original ellipsoids are large and elongated but their intersection region is

small and can be bounded by a small circumscribing ellipsoid, the upper bound is

again tighter.

Relation to standard results: If Ai,, is diagonal (or axis-aligned), then we can

write the empirical complexity l(Fs) in terms of the eigenvalues {Aj} as (Fis) 5

1 ZV _ IL and this can be bounded by x Kakade et al.[20081 when A 2 = 0.

In that case, all of the Ai are

Remark 4.3.6. Since we can choose any circumscribing matrix Aint in this theo-

rem, we can perform the following optimization to get a circumscribing ellipsoid that

minimizes the bound:

min trace(XT(7A1 + (1 - 7)A2)-1 XL). (4.2)
7E[O,11

This optimization problem is a univariate non-linear program.
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Lower bound on empirical Rademacher complexity: We will now show that

the dependence of the complexity on A.-, is near optimal.

Since Ait is a real symmetric matrix, let us decompose Ait into a product

PTDP where D is a diagonal matrix with the eigenvalues of Amt as its entries and

P is an orthogonal matrix (i.e., PTP = I). Our result, which is similar in form to

the upper bound of Theorem 4.3.5, is as follows.

Theorem 4.3.7.

'Z(Fjs) ;> nlogtrace(XTA;7 X!)
nlogn nYL

where

1

C 1"V (ming.,..,, fl(PXL,112) 2

C is the constant in Lemma 4.5.5, P is the orthogonal matrix from the decomposition

of Aiy, p, X are problem constants and n is the number of training examples.

Intuition: The lower bound is showing that the dependence on trace(XTAQXL)

is tight modulo a log n factor and a factor (r.). The log n factor is essentially due to the

use of the relation between Gaussian and Rademacher complexities in our proof tech-

nique. On the other hand, r. depends on the interaction between the side knowledge

about the unlabeled examples (captured through matrix P) and the feature matrix

XL. If there is no interaction, that is, PXL has zero valued rows for all j = 1, ... , p,

then the lower bound on empirical Rademacher complexity becomes equal to 0. On

the other hand, when there is higher interaction between At, (or equivalently, P)

and XL, then the factor . grows larger, tightening the lower bound on the empirical

Rademacher complexity.

The dependence of the lower bound on the strength of the additional convex

quadratic constraint is captured via Ait and behaves in a similar way to the upper

bound. That is, when the constraint leads to a small circumscribing ellipsoid, the

eigenvalues of A;, are small and the lower bound is small (just like the upper bound).
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On the other hand, if the constraint leads to a larger circumscribing ellipsoid, the

eigenvalues of Aj, are large, leading to a higher values of the lower bound (the

upper bound also increases similarly).

Relation to standard results: As with the upper bound, when there is no second

quadratic constraint, Amt, = 11. The lower bound depends on the training data

through the term Vtrace(XTXL) in this case.

Comparison to the upper bound: For comparison, we see that the upper bound in

Theorem 4.3.5 is of the form . trace(XTAi XL) while the lower bound of Theorem

4.3.7 is of the form

nlogn trace(XA;XL),

where r. depends on Aity and XL.

The proof for the lower bound is similar to what one would do for estimating

the complexity of a ellipsoid itself (without regard to a corresponding linear function

class). See also the work of Wainwright [2011] for handling single ellipsoids.

Comparison of empirical Rademacher complexity upper bound with a cov-

ering number based bound: When matrix Anty describing a circumscribing ellip-

soid has eigenvalues {A.}' 1, then the covering number can be bounded as:

N(VSIE, -FIS, |1 -112) < ~1 (X +1

To get a tight bound, among all circumscribing ellipsoids, we should pick one that

minimizes the right hand side of the bound. To do this, we solve an optimization

problem involving volume minimization that is different than in (4.2). For instance,

this volume minimization can be done using the following steps if at least one of the

matrices among A1 and A2 is positive-definite:

First, A, and A2 are simultaneously diagonalized by congruence (say with a non-

singular matrix called C) to obtain diagonal matrices Diag(a1 ,) and Diag(a2j). We

can guarantee that the set of ratios {i} obtained will be unique.

150



* The desired ellipsoid Aia,. can then be obtained by computing

7* E arg max fl 1(7ai + (1 - 7)a 2j)
tEl0,11

and then multiplying the optimal diagonal matrix Diag(-y*aii + (1 - -y*)a2.) with

the congruence matrix C appropriately. Optimal -y* can be found in polynomial

time (for example, using Newton-Raphson).

Comparison with the duality approach to upper bounding empirical Rademacher

complexity: A convex duality based upper bound can be derived as shown below.

Theorem 4.3.8. Consider the setting of Theorem 4.3.5. Then,

1 1 (2 -B) 431({is) < inf -trace(XLA},XL) + -(Bi + 7(1 - b(4.3)
17Elo,l] I4n n

where Ait, = I+ 7(A 2 - I).

This upper bound looks similar to the result in Equation (4.1). Note that Aint

is different from Amty in Theorem 4.3.5. Aiat comes from a circumscribing ellipsoid,

whereas Ait does not. Instead, the matrix Aim,, is picked such that 77 minimizes

the right hand side of the bound in Equation 4.3. Qualitatively, we can see that if

the matrix A 2 corresponding to the second ellipsoid constraint has large eigenvalues

(for instance, when the second ellipsoid is a smaller sphere, or is an elongated thin

ellipsoid), then Aj, is 'small' (the eigenvalues are small) leading to a tighter upper

bound on the empirical Rademacher complexity.

Extension to multiple convex quadratic constraints: Although Section 4.3.5

deals with only two convex quadratic constraints, the same strategy can be used

to upper bound the complexity of hypothesis class constrained by multiple convex

quadratic constraints. In particular, let F = {f : f = fTiX, TAk/ < 1 Vk =

1, ... , K}. Again, assume one of the matrices Ak is positive definite. We can approach

this problem in two stages. In the first step, we find an ellipsoid Einty (with matrix

Ant,7) circumscribing the intersections of the K original ellipsoids and in the second
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step, we reuse Theorem 4.3.5 to obtain an upper bound in 'Z(Fjs).

We will generalize Equation (4.2) to look for a circumscribing ellipsoid from the

family of ellipsoids parameterized by a K dimensional vector y constrained to the

K - 1 simplex. In other words, the family of circumscribing ellipsoids is given by

{JTA,#13 1 : At, = ki kAkZi7k = 1,7k ; 0 Vk = 1,..., K}. We can

pick one circumscribing ellipsoid from this family by minimizing the right hand side

of Equation 4.1 over the K - 1 simplex similar to Equation (4.2):

K -

min trace XLT E -y Ak X L.
e~y: T=1,7e0 Vk=,...,

The above optimization problem is a K - 1 dimensional polynomial optimization

problem.

4.3.6 Complexity results with linear and quadratic constraints

Consider now the setting where we have both linear and quadratic constraints. In

particular, we can have the assumptions leading to linear constraints and those leading

to quadratic constraints hold simultaneously. In such a setting, based on Theorems

4.3.3 and 4.3.4, we can get a potentially tighter covering number result as follows.

Let xi E X = {X : 11X11 2  Xb}. Let the function class F be

= {flf(X) =I9TX, 6 E Rp,#TAlp 1,8T A2,6 5 1,

Ecj,,#5 + 6,5 1, J, > 0, v = 1, ...,7 V1
j=1

where { {6,},, A1 and A2 are known beforehand.

Let matrix Ait be such that {3 :fTA1 # 1,fTA 23 1} is circumscribed by

{ : #TAjnfl 5 1}. Defining {45,} and X.L in the same way as in Section 4.3.3, we

get the following corollary.
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Corollary 4.3.9. (of Theorem 4.3.3)

min{IPKo 1,1pfKI} if E < Xb Am(Aji 7 )
N(V'n,f7Ts,| -||2) <

1 otherwise

Here, Ko = [Xm- nti) and K is the maximum of Ko and

nX2Am(A )

Amin(XLXsL T ) min,=1,...v

The corollary holds for any Aint that satisfies the circumscribing requirement. In

particular, we can construct the ellipsoid { : BTAtY,6 5 1} such that it 'tightly'

circumscribes the set {3 : #TA 1# 5 1,8T/A2 #3 5 1} using Theorem 4.3.4 in the same

way as we did in Section 4.3.5. The intuition for how the parameters of our side

knowledge, namely, the linear inequality coefficients and the matrices corresponding

to the ellipsoids, is the same as in Sections 4.3.4 and 4.3.5. Relation to standard

results have also been discussed in these sections.

Extension to arbitrary convex constraints: There are at least three ways

to reuse the results we have with linear, polygonal, quadratic and conic constraints

to give upper bounds on covering number or empirical Rademacher complexity of

function classes with arbitrary convex constraints. Such arbitrary convex constraints

can arise in many settings. For instance, when the convex quadratic constraints in

Section 4.2.2 are not symmetric around the origin, we cannot use the results of Section

4.3.5 directly, but the following techniques apply. Other typical convex constraints

include those arising from likelihood models, entropy biases and so on.

The first approach involves constructing an outer polyhedral approximation of the

convex constraint set. For instance, if we are given a separation oracle for the convex

constraint, constructing an outer polyhedral approximation is relatively straightfor-
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ward. We can also optimize for properties like the number of facets or vertices of the

polyhedron during such a construction. Given such an outer approximation, we can

apply Theorem 4.3.3 to get an upper bound on the covering number of the hypothesis

space with the given convex constraint.

The second approach involves constructing a circumscribing ellipsoid for the con-

straint set. This is possible for any convex set in general John [19481. In addition if

the convex set is symmetric around the origin, the 'tightness' of the circumscribing

ellipsoid improves by a factor ,,Fp, where p is the dimension of the linear coefficient

vector 10. Given such a circumscribing ellipsoid, we can apply Theorem 4.3.5 to get an

upper bound on the empirical Rademacher complexity of the original function class

with the convex constraint. The quality of both of these outer relaxation approaches

depends on the structure and form of the convex constraint we are given.

The third approach is to analyze the empirical Rademacher complexity directly

using convex duality as we have done for the linear and quadratic cases, and as we

will do for the conic case next.

4.3.7 Complexity results with multiple conic constraints

Consider the function class

F = {f : f = #Tx,TO < BbIAPI 2  alf+d Vk=1,..., K}

where we have one convex quadratic constraint and K conic constraints. We can find

an upper bound on the Rademacher complexity as shown below.

Theorem 4.3.10. (Rademacher complexity of bounded linear function class with

conic constraints) Let

=f : f = Tx, #T# BIIAL-PI1 2  akfl + d Vk = 1,..., K}

where B2, {Ak, ak, dk k- are the parameters. Assume Ak >- 0 and let Amin(A&) denote
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Figure 4-2: Here we illustrate the effect of a single conic constraint {,6 :

/4pg#12 /.122 5 6(2#1 + 382 + 4)} on our hypothesis space {, E R2 : 3 TJ3  9}
for different scaling values of parameters y and 6. In our notation, matrix A =
[2V/7I 0; 0 V/j-], vector a = 6[2 3]T and scalar d = 46. Left: Parameter set (p, 6) is
equal to (1, 1). The region covered by the conic constraint is the convex set in the
upper part of the circle. Center: Changing the parameters (p, 6) to (10, 1) makes the
eigenvalue Amn(A) larger thus reducing the intersection region further. Right: Chang-
ing the parameters (IL, 6) to (1, 10) increases the magnitude of |al| 2 and d relative to
the value of An(A) increases the intersection region between the conic constraint
and the ball. This leads to a larger empirical Rademacher complexity bound value.

its minimum eigenvalue for k = 1, ..., K. Also let supXE 114||2 < Xb. Then,

lZY s)Xb. { Bb,'IZ(Fs) <5 -- -mm Bf

KB

K: Bb||akj2 + dk

k=1 K -Am(Ak) I

Intuition: When Ilakl2 and dk are o(Ani(Ak)), the effect of conic constraints can

influence the upper bound on the empirical Rademacher complexity and make the

corresponding generalization bounds tighter. From a geometric point of view, we can

infer the following: if the cones are sharp, then Amfi(Ak) are high, implying a smaller

empirical Rademacher complexity. Figure 4-2 illustrates this in two dimensions.

Relation to standard results: The looser unconstrained version of the upper bound
is recovered when there are no conic constraints or when the conic constraints

are ineffective (for instance, when Ijak112 is high, d4 is a large offset or Am(Ak) is

small).
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Remark 4.3.11. There have been some recent attempts to obtain bounds on a related

measure, similar to the empirical Gaussian complexity defined here, in the compressed

sensing literature that also involves conic constraints Stojnic [2009]. Their objective

(minimum number of measurements for signal recovery assuming sparsity) is very

different from our objective (function class complexity and generalization). In the

former context, there are a few results Chandrasekaran et al. [2012] dealing with the

intersection of a single generic cone with a sphere (S ') whereas in this context, we

look at the intersection of multiple second order cones (explicitly parameterized by

{AA, ak, dk}k1 ) with balls ({#5Ti <; Bb}).

4.4 Related Work

It is well-known that having additional unlabeled examples can aid in learning Shental

et al. [2004], Nguyen and Caruana [2008b], G6mez-Chova et al. [2008], and this has

been the subject of research in semi-supervised learning Zhu [2005]. The present work

is fundamentally different than semi-supervised learning, because semi-supervised

learning exploits the distributional properties of the set of unlabeled examples. In

this work, we do not necessarily have enough unlabeled examples to study these dis-

tributional properties, but these unlabeled examples do provide us information about

the hypothesis space. Distributional properties used in semi-supervised learning in-

clude cluster assumptions Singh et al. [20081, Rigollet [2007] and manifold assumptions

Belkin and Niyogi [2004], Belkin et al. [2004]. In our work, the information we get

from the unlabeled examples allows us to restrict the hypothesis space, which lets us

be in the framework of empirical risk minimization and give theoretical generaliza-

tion bounds via complexity measures of the restricted hypothesis spaces Bartlett and

Mendelson [2002], Vapnik [1998]. While the focus of many works [e.g., Zhang, 2002,

Maurer, 2006] is on complexity measures for ball-like function classes, our hypothesis

spaces are more complicated, and arise here from constraints on the data.

Researchers have also attempted to incorporate domain knowledge directly into

learning algorithms, where this domain knowledge does not necessarily arise from
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unlabeled examples. For instance, the framework of knowledge based SVMs Fung

et al. [20021, Le et al. [2006 motivates the use of various constraints or modifications

in the learning procedure to incorporate specific kinds of knowledge (without using

unlabeled examples). The focus of Fung et al. [20021 is algorithmic and they consider

linear constraints. Le et al. [2006] incorporate knowledge by modifying the function

class itself, for instance, from linear function to non-linear functions.

In a different framework, that of Valiant's PAC learning, there are concentration

statements about the risks in the presence of unlabeled examples Balcan and Blum

[2005], Kariainen [2005], though in these results, the unlabeled points are used in a

very different way than in our work. Specifically, in the work of Balcan and Blum

[2005], the authors introduce the notion of incompatibility E,D[1 - X(h, x)] between

a function h and the input distribution D. The unlabeled examples are used to

estimate the distribution dependent quantity ED,[1 - X(h, x)]. By imposing the

constraint that models have their incompatibility with the distribution of the data

source D below a desired level, we restrict the hypothesis space. Their result for a

finite hypothesis space is as follows:

Theorem 4.4.1. [Theorem 1 of Balcan and Blum, 2005] If we see m unlabeled ex-

amples and n labeled examples, where

1 22 1 F 2 2
[n InIC+ In 2 and n > - ICD,X(E) - In 2I,

then with probability 1-6, all h E C with zero training error and zero incompatibility

', Z(1 - x(h, zi)) = 0, we have E[l(h(x), y)] E.

Here C is the finite hypothesis space of which h is an element and CDX (E) =

{h E C : E,D[1 - X(h, x)] 5 E}. In the work of KgArisiinen [20051, the author

obtains a generalization bound by approximating the disagreement probability of

pairs of classifiers using unlabeled data. Again, here the unlabeled data is used to

estimate a distribution dependent quantity, namely, the true disagreement probability

between consistent models. In particular, the disagreement between two models h

and g is defined to be d(h, g) = I F,' -(3),()]. The following theorem about
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generalization is proposed.

Theorem 4.4.2. Let F be the class of consistent models, that is, the set of models

with zero training error. Assume the true model belongs to this class. Let f E F be

the function whose distance to the farthest function in F is minimal (via metric d).

Then, for all S, with probability 1 - 6 over the choice of unlabeled sample S u"ded,

Esnaa..[l(f(x), y)] 5 inf sup d(f, g)
fEF gEF

+R({1y L g, g' E F}Is-.w) + (

Note that the randomization in both Theorems 4.4.1 and 4.4.2 is also over un-

labeled data. In our theorems, we do not randomize with respect to the unlabeled

data. For us, they serve a different purpose and do not need to be chosen randomly.

While their results focus on exploiting unlabeled data to estimate distribution depen-

dent quantities, our technology focuses on exploiting unlabeled data to restrict the

hypothesis space directly.

4.5 Proofs

4.5.1 Proof of Proposition 4.3.2

Proof. Instead of working with the maximization problem in the definition of em-

pirical Rademacher complexity, we will work with a couple of related maximization

problems, due to the following lemma.

Lemma 4.5.1.

[ s
R(FiS) 5E max sup - jo-if (i), sup -- E0i f(Xi) .(4.4)

(fET = fEFn =)I
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Proof. Since the empirical Rademacher complexity is defined as E,[supfcE *n I _=, of(i) 1],

we will show that for any fixed o vector,

sup - Zof(xi) < max sup- O3f(xi), sup-- ]Oif(Xi)J. (4.5)
fEF n i=1 fE.fn i=1 I.F n /

The inequality above is straightforward to prove. Let f* be the optimal solution to

the maximization problem on the left. Then, f* is a feasible point for each of the

maximization problems on the right. We will look at two cases: In the first case,

let _ En 1o0f* (X,) > 0. Then, clearly the first maximization problem on the right,

namely, supfET 1 En 1 o-1f(Xi) will have an optimal value greater than or equal to

the left side of Equation (4.5). In the second case, let ni riuf*(xi) < 0. Then,

the second maximization problem on the right, namely, supfEr - _ 1 Ouf(Xi) will

have an optimal value greater than or equal to the left side of Equation (4.5). That

is, in this case:

0 5 cif*(Xi) = - oif*(Xi) - sup -1 f(Xi).
-1 n fE Z n i=1

Combining the two cases, we get the Equation (4.5). Taking expectations over -gives

us the desired inequality. E

Continuing with the proof of Proposition 4.3.2: Let g = 1o x = XC- so

that '(Fs) = AE[suppgF t#OI]. We will attempt to dualize the two maximization

problems in the upper bound provided by Lemma 4.5.1 to get a bound on the empirical

Rademacher complexity. Both maximization problems are very similar except for the

objective. Let w(g, F) be the optimal value of the following optimization problem:

maxg T/ s.t.

#T# <_ Bb2

aT# < 1.

Thus w(g, F) represents the optimal value of the maximization problem inside the
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expectation operation in the first term of Equation (4.4). We will now write a dual

program to the above and use weak duality to upper bound w(g, F). The Lagrangian

is:

LA(-, 77) = gT/) -(Bb' + 775 ) (1 - a,)

where 6 E RP, 7 E R+,vj E R+. Maximizing the Lagrangian with respect to 8 gives

us:

max48 -Yf, 77i)=

=max [(g - a)# -- ##+ B1 + ]

max Y [#T,6 2(g -jaTl+ jig - 77ll + lg - 77a1I2 B
27 472 4-

=max [7k--+ + B +q]
2747

11II - 77aI2B2

The dual problem is thus

min ||g -7a2+ -B +
-y2o,'i2 47

Minimizing with respect to one of the decision variables, 7, gives the following dual

problem

minBbI|g - W1|2 + 77.

Thus, w(g,F) < minqto(Bb|Ig -,qa|I 2 +n). Similarly we can prove an upper bound on

the maximization problem appearing in the second term in the max operation in Equa-

tion (4.4), which will be minj>o(Bbjjg + 77a112 + 77). Thus, the empirical Rademacher
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complexity is upper bounded as:

N(js)

<-max E min(Bbj|g - iaI 2 + i) ,Emin(Bj|g + 7aj 2 +77)

-max E, (BbIIXLO - na11 2 + 77) , Ef (BbIIXLT + a|| 2 + 77) .

n 0

4.5.2 Proof of Theorem 4.3.5

Proof. Consider the set Fs = {(#TXI, ..., #TX) E R" : /3TIp B2,#TA 2 # 5 1} c
RT. Let o- = . Also, let a = A1 2

(a)~E r6 1
f(_FiS) <E, sup (-7# X;

)l{:ITAin., 1} j=1
F n

(b) Eo, sup o-i(Am 2 a)TI

- 1[{a:aT<} I

1 E r UD IT(Ai112)TXLuOl
E, sup a (A 2rz

L{a:jja|21} J

(C) 1E, [|1 (A; 2)Tx O||
(d 1 t r12]
(d E1 L1 m4) T XLcrII2J< E, |({A- 2] Xa

1 E, trace(XTAQ.XLoUT)

- trace(X LT A;,XL)

where (a) follows because we are taking the supremum over the circumscribing ellip-

soid; (b) follows because As, is positive definite, hence invertible; (c) is by Cauchy-

Schwarz (equality case); (d) uses Jensen's inequality and (e) uses the linearity of trace

and expectation to commute them along with the fact that E[--Tj = I. 0 I
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4.5.3 Proof of Theorem 4.3.7

Proof. Recall that we can decompose As, into a product PTDP where D is a diag-

onal matrix with the eigenvalues of Ainty as its entries and P is an orthogonal matrix

(i.e., PTP = I). Let us define a new variable: a := P/I, which is a linear transfor-

mation of linear model parameter f. Then, the empirical Gaussian complexity of our

function class can be written as:

n
( =Fs)=E, sup -Z aiaTPxj]

aTDa<1 _1

where {a}! 1 are i.i.d. standard normal random variables. We now define a new

vector w to be a transformed version of the random vector a= ai:i. That is, let

w(o) := P E aixi. We will drop the dependence of w on a from the notation when

it is clear from the context. The expression now becomes

n - (Jis) > E, suP aT], (4.6)

where the inequality is because we removed the absolute sign in the right hand side

expression before substituting for w.

The following are the major steps in our proof:

* We will analyze the Gaussian function F(w(a)) := supaTDa<1 aTw(o') and show

it is Lipschitz in o. This is proved in Lemma 4.5.2.

* Then we apply Lemma 4.5.3, which is about Gaussian function concentration,

to the above function. In particular, we will upper bound the variance of the

Gaussian function F(w(a)) in terms of its parameters (Lipschitz constant, ma-

trix D, etc).

* We then generate a candidate lower bound for the empirical Gaussian complex-

ity.

* The upper bound on the variance of F(w(a)) we found earlier is used to make
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this bound proportional to trace(XLAjXL).

Finally, we use a relation between empirical Rademacher complexity and em-

pirical Gaussian complexity to obtain the desired result.

Computing a Lipschitz constant for F(w(o)): The following lemma gives an

upper bound on the Lipschitz constant of F(w(o)).

Lemma 4.5.2. The function F(w(o)) := SUPaTDaG<I aTw(a) is Lipschitz in o with a

Lipschitz constant L bounded by Xb 3
4 2D)-

Proof. We have

F(w)= sup aTw= sup a w.
aTDa<l (DI/2a)T(DI/2a)<j

Using a new dummy variable p = D1/2a we have:

F(w) = sup (D- 1/ 2 P)Tw = sup pT(D-1/2)TW = ID-11 2WI|2-
PTP<l 9p 1-<

Thus,

IF(wi) - F(w 2)I = D-1/21 11 2 -D-1/2 ID 121 < 1D-112(W1 - W2)112

(a) 1 1
I(W 1 -W 2 ) = 1 ||1 -W21|2-

V'/AMin(D) 2 VAmin(D)

At (a), we used the fact that D-1 - ( 1

Now, we will upper bound jjw1 - W211 2 using o 1 and o 2 as follows. Using the definition

of w = PXLo we get,

11W1 - W211 2 = IIPXLI1 - PXLOr2||2 = IIPXL(o1 - 0 2 )112
(b)

< IIXL(Ul - O2)112

= V(0i - u2)TXTXL(l - U2)

163



WS(c) - cr2 )%A (X2 'XL)I(7l - 72)

- A,,(XXL)1ol - 072112

(d)
<Xb/P - ni1(61 - 0'2)112.

Here, (b) follows because P is an orthonormal matrix, (c) because XTXL -< ),(X XL)I

and (d) because A,. (X XL) trace(XTXL) = En (XTXL)ii. Since, each diag-

onal element of XTXL is a sum of p terms each upper bounded by X2, we have

A,=(XTXL)5 n -p -X . [ 0

Upper bounding the variance of F(w(o)) using Gaussian concentration: The

following lemma describes concentration for Lipschitz functions of gaussian random

variables.

Lemma 4.5.3. [Concentration, Tsirelson et al., 1976] If 7 is a vector with i.i.d. stan-

dard normal entries and G is any function with Lipschitz constant I (with respect to

the Euclidean norm), then

P[il (G( 7) - E[G(7)II t] 5 2e-2,2

The proof of Lemma 4.5.3 is omitted here. Using Lemmas 4.5.2 and 4.5.3 with

G(a) = F(w), we have

t2
P[I(F(w) - E,[F(w)]I > tJ < 2e-i, (4.7)

where C = Xb Am D)'

Let Y = j(F(w)-E,[F(w)]j. Then from the above tail bound, P(Y2  s) 2e-2

is true. Now we can bound the variance of F(w) using the above inequality and the

following lemma.

Lemma 4.5.4. For a random variable Y2, E[Y 2 p(y2 > S)ds.
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Proof. This is an alternate expression for the expectation of a non-negative univariate

random variable in terms of its distribution function. To show this, let us assume

that the density function of Y2 is py2. We then have P(Y 2 > s) = 1 _ p(y2 < S)

1 - , y2(s')ds' and thus: py2(s) = - d(y
2  S

0 (S)Ld

E[Y2 = +00 Sly2(s)ds = - dP(y ds
fo = o ds

+00

= -[sP(Y 2 > s)] oo + p(y 2 > s)ds.

The first term is zero and we obtain our expression. [ [

The variance of F(w), which is the same as the expectation of Y 2 , can thus be

upper bounded as follows:

Var(F(w)) = E,(Y 2 ) L p(y2 > s)ds
0/o

(b) +0
8 2 ,4

<21 e-=Ods = 4Xb .2 (4.8)
Amin(D)'

where we used Lemma 4.5.4 for step (a) and Equation (4.7) for step (b) and finally

substituting Xb Am(D) for L.

Lower bounding the empirical Gaussian complexity: Now we will lower bound

the empirical Gaussian complexity by constructing a feasible candidate a' to substi-

tute for the sup operation in Equation (4.6). Later, we will use the variance upper

bound on F(w) we found in the earlier section to make the bound more specific.

Let j* E {1, ... , p} be the index at which the diagonal element D(j* j*) = Amin(D).

For each realization of o (or equivalently w) let a' = 0 ... *... ] with the
10 Wj* VIA-in(D) _O

non-zero entry at coordinate j*. Clearly a' is a feasible vector in the ellipsoidal

constraint {a : aTDa < 1} seen in the complexity expression, Equation (4.6). Sub-

stituting it and using the definition of F(w), we get a lower bound on the empirical
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Gaussian complexity-

n - ;(s) E.,[F(w)] = E, sup aTw
[aTDC,<l;&1

(a) (b) 1
>E,[(a')Tj >}2R[o.}

A/XZ(D)

Step (a) comes from the fact that a' is feasible in {a : aTDa < 1} but not necessarily

the maximum, and step (b) comes from the definition of a'.

Making the lower bound more specific using variance of F(w(o)): Note that

compared to the upper bound on the related Rademacher complexity obtained in

Theorem 4.3.5, the dependence of empirical Gaussian complexity on Anty is weak

(only via Ami,,(D)). We will use the variance of F(w) to obtain a lower bound very

similar to the upper bound in Equation (4.1). Rearranging the terms in the previous

inequality, we get:

(E,[F(W))2 1(4-

(EoIwj_.) 2 -Amin(D)(

By rewriting the variance in terms of the second and first moments, using expres-

sion (4.8) and then using (4.9) we get

Var(F(w)) =E,[F2 (w)J - (E,[F(w)1)2

< pX Pn <4PnX2 (E,[F(W)])2
--4X Am(D) - (EIw1.I)2 

-

Using expression (4.6) again, and then rearranging the terms in the previous ex-

pression, we obtain another lower bound on the scaled Gaussian complexity, which

is:

(n - (IS))2 >(E,[F(w)])2 >E,[(F W)2]
(E4pnx2
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EA,[(SUpaTD<1 T c) 21
4pnx2  (4.10)

1+

We can now try to bound two easier quantities E,[(sUPCTD.<1 wTC)2} and E, w3.I

to get an expression for scaled Gaussian complexity and consequently for the empirical

Rademacher complexity.

Let us start first with Elw*.1. By definition w equals PXLoC. Thus, the j*th

coordinate of w will be Jj, cr(Pxi). where (-). represents the j*th coordinate of the

vector. Since the oa are independent standard normal, their weighted sum W is also

standard normal with variance Z1 (P ) .. Since for any normal random variable z

with mean zero and variance d it is true that E[zl = V, we have

E,[Iw. I] = 1  ( Pj2) 

>V-min ll(PXL) il2 (4.11)

where (PXL)j represents the jth row of the matrix PXL. For the second moment

term of (4.10) that we need to bound, E,[(supTD,,< wTa) 21, we can see that

sup wTa = sup (PXLO)TD-11/ 2

aTDa<l &T&<l

=IID-1 2PXXLcY||2-

Thus,

E, sup WTI)2 =E.,[||D -1/2pXL(7| |
KaToay1

= E,[(D-1/ 2 PXiy)T D-1/2PXiu}

= Eo,[TXTA;;'XLo1

= E,[trace(oJXLTAfXL)

= E,[trace(XLTA'X-Y T )]I
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= trace(XjAj XL).

Substituting the two bounds we just derived, (4.11) and (4.12), into (4.10) gives

us a lower bound on the scaled Gaussian complexity:

(n - (Fis)) 2 >

n- (Yjs)

trace(XA}XL)
1 4pnX2

(7Mi=1,...,7IJ(PXL)H2)2

trace(X A-'XL)

( m~ ~in..,(t)y |)

Using the relation between Rademacher and Gaussian complexities: The

empirical Gaussian complexity is related to the empirical Rademacher complexity as

follows.

Lemma 4.5.5. [Lemma 4 of Bartlett and Mendelson, 2002] There are absolute con-

stants C and C' such that for every Fis with ISI= n,

C'Z(Ts) !5 (F.s) 5 Clog(n)Z(Fis).

Using the above result gives:

log(n)lZ(J~s) > +trace(XIAA XL)

+ 2px.nC(VTMinI=,. II(PXL) 12)

Thus, we get our desired result:

(ZGFis) on trace(X TA X),

where
1

r =

C Ii + LipX
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0 0

4.5.4 Proof of Corollary 4.3.9

Proof. Since the ellipsoid defined using Amty circumscribes the region of intersection

of ellipsoids determined by A 1 and A 2 , we have

f = {ff(x) =#Tx,# E RpflT A13 1, OT A 2# < 1,

{ fcx)Txf + RP,3A 1,/3 > , 1,..,

F={flf(x) =# /, E RP,/# Aint,3 1,

P

Zciv# + J, 1,j' > OV =1, ...,V =

j=1

C

' fIf(x) =ffTXfJ E RP,# A tit# 1,

P

E ci#3 + 6, 1,6, > 0,' = 1, ... ,V1 Ff.

j=1

#TmNongtat fT < 1 4 isbigrta the aelasoi defined us Amij),wtc s The-

IfIf (X) =OTX, P E R,'TntO<1

P
EcjV#j + 6V !5 1, 6, > 0,7 1,..V=7"

=1

orem 4.3.3 on F" with r = 2, q = 2 and B 6 : Am(A;;;[) to get a bound on

N(i/H, F",|| -I 1|2) ; N( ,/,F, I -12) giving us the stated result. 0 0
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4.5.5 Proof of Theorem 4.3.8

Proof. Let g = aixi = XLU so that R(is) = IE[sUPpEr 19T# 11 . Instead of

directly working with the empirical Rademacher complexity, we will dualize the two

maximization problems in the upper bound given by Equation (4.4) of Lemma 4.5.1.

Both maximization problems are very similar except for the objective. Let w(g,F)

be the optimal value of the following optimization problem:

maxgT,3 s.t.
p2

# TP < Bb

fiT A 2 5 < 1.

Thus w(g, F) is proportional to the first term inside the max operation in Equation

(4.4), which gives an upper bound in the empirical Rademacher complexity. We will

now write a dual program to the above and use weak duality to upper bound w(g,F).

The Lagrangian is:

C(fl,-y, 7) = g'T/ + -y(B2 - #T#) + 77(1 - #TA 2,8),

where / E RP,7 E R+777E R+. Maximizing the Lagrangian with respect to # gives

us:

max C(#,l, -Y) =
0

= max [gT/# - 7 /T/# - 2g#TA/ A +yBi i9

= max [- (gT# + T(I + i7A2 )/3) + YB2 + 77]

= max [- (-( 7 1 + 77A 2)- 1/ 2 (7 1+ 7A 2 )1/2#

+ +T(y77A2 ) 1 / 2 (-yI + 77A 2 )1/ 2 ) 7 B + 7]

= max [- (I +A 2)1/ 2 8 _(-1 + 7A2) 1/ 2 g
0 [ 112 12
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(71 + 9A -1/2g + 7B11(71 A2)
+17 ~A)/I + yB b 77

4

where in the last step we set = (y+A2)-g. The dual problem is thus:2

11 (71+ 77A2)~12 2
min + + 7Bb + 7, or equivalently,

-f !:,9>0 4

min -gT(7 I+lA2)yg+7 B +7.

If we let Y = 1 - 7, we are further constraining the minimization problem, yielding

another upper bound of the form:

1
w(g, F) min 9g(I (A 2 - I))~g + Bb + 77(1 - B ).

"EO,1]

If we consider the second maximization problem suppy -g T that appears in Equa-

tion (4.4), we can similarly upper bound its optimal value with the same minimization

problem as w(g, F). One intuitive reason why the same minimization problem serves

as an upper bound is because the hypothesis class F is closed under negation. Thus,

we get an upper bound on the empirical Rademacher complexity as:

N(TiS) < E 1-W(g, F)[In I
[1. 1 T -19+B2 + 7( B2< E mM g(I + (A 2 - I))1g + B + (1 - Bj,

where recall that g = Ej , a. Fix any feasible 17. Let Amt,, := (I + 71(A2 - I)) (it

corresponds to an ellipsoid as well since 77 E [0, 11). Then,

T(FIS) E [4nXo AjXUo + n(Bb + 77(1 - Bb

1 1 2 +( +(
= trace(XTA tXL) + -(Bb + 77(l - Bb))
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We can nainimize the right hand side over q E [0,11 to get the desired result. 0 0

4.5.6 Proof of Theorem 4.3.10

Proof. The core idea of the proof is to come up with an intuitive upper bound on

the empirical Rademacher complexity of F using convex duality. We have already

seen the use of convex duality in Proposition 4.3.2 and Theorem 4.3.8. Recall the

definition of the empirical Rademacher complexity of a function class F:

R(Tis) = aE, [; U(#T'X)],

where {a}i!, are i.i.d. Bernoulli random variables taking values in { 1} with equal

probability. Now define a new vector g to be the random vector , oi=xi. As

in the previous proofs, instead of directly working with the empirical Rademacher

complexity, we will dualize the two maximization problems in the upper bound given

by Equation (4.4) of Lemma 4.5.1. Let w(g, F) = suppEY gTfl. That is, w(g, F) is the

optimal value of the first maximization problem (ignoring factor 1/n) appearing on

the right hand side of Equation (4.4):

max g2'f s.t.

#T# B2

||IA0#|2:5 alk# + dk Vk = 1, ...,7 K. (4.13)

The Lagrangian of the problem can be written as Boyd and Vandenberghe [2004]:

K

(p, 7, {zk, 6(}l.1) = gT/3 + _Y(B2 - fT) + E [ Akfi + O - (alp + dk),
k=-1

where ft E RP, y E R. and for k = 1,..., K we have 11zk112 !5 O. For any set of feasible

values of (#6, , {Zk, ), the objective of the SOCP in Equation (4.13) is upper

bounded by (#, , {Zk, 6m},k). Thus, w(g, F) supp (j,7, {z,4,k}1). We will
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analyze this maximization problem as the first step towards a tractable bound on

w(g,Y).

In the second step, we will minimize supp (,, 7,{Zk, 6k},k1) over variable (one

of the dual variables) to get an upper bound on w(g, F) in terms of {z, 9k}'. These

two steps are shown below:

First step: After rearranging terms and completing squares, we get the following

dual objective to be minimized over dual variables y and {zk, 8k=.

sup (8, 7, {Zk, 6k}I1)
PERP

K T K

= sup g +( (A zk Okak))# + YB6 + adk -- Y# #
pERP k=1 k=1

2

=suP[ -7 ~ ~(AT'Zk O9kak)= SUP -- f #k-
pERP 27 2

jg Z i(A TZk + Okak)112 + ( 7 B + 9 )d ]

jg ZEk1 (A'zk + Okak)112 + 7 B2 K kd.

k=1

The second to last equality above is obtained by completing the squares (in terms of

,6) and the last equality is due to the fact that the optimal value is obtained when

p-= g+ 1 (Azk+a). The resulting term is now a function of the remaining variables2-y

(-y and {Zk, 6O}kK1) and serves as an upper bound to w(g, F) for any feasible values

of 7 and {zk, 6kg1.

Second step: Since min., , f(x, y) = min,(min, f(x, y)) when f(x, y) is convex and

the feasible set is convex, we now minimize with respect to y to get the following

upper bound:

inf supC(,8,{,6mk".1)
'tER+ PERP

K K

=B g+ (Azk+Okak) + Okdk,
k-1 2 k=1
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where th;e above statement follows because for a problem of the form minR (+b-y+c

with a > 0, b > 0, the optimal solution is 7* =+

Continuing, we now optimize over the remaining variables {zk, O}K= as follows:

w(g,F) = sup g'#
AEF

K K

inf Bb g+E(Az+ Okak) +Ed . (4.14)
{(zk, 6 k):flzkl2<A;,k=1,..,K} k=1 2 k=1

An upper bound on w(g,F) can be obtained by finding a set of optimal or feasible

values for {zk, . Note that since Ak >- 0, AT = A and A-' exists. Obtaining the

optimal value of the minimization in Equation (4.14) is difficult analytically. Instead,

we will pick a suitable feasible value for {Zk, 0k 1. Plugging this feasible value will

give us an upper bound on w(g, F). In particular, let zk = - A, 1 g. Then, setting

Ok= |jIA-'g||2 gives us a feasible value for each {zk, Ok}. Thus,

K 1 K K 1
w(g,F) Bb g+ E AT A-'g + |IA-gI2ak 2

=B6 g-g+ K ak + | K ;d
k=1 2k=1

Kb Bs|K K 2-|-d~

< K
k--1 K

+ ||JAkgjg|2dk

Dualizing the second maximization problem in Equation (4.4) also gives us the

same upper bound as obtained above for w(g, F). That is, if w'(g, F) := suppEy -g T,
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then the same analysis as above (replacing g with -g) gives:

12K Bb||ak||2 -|-dk
W'(g'y 11g1 K -Amin( Ak)

We can now come up with the desired upper bound for the empirical Rademacher

complexity using Equation (4.4):

R(1js) E [max (!w(9, F), -w'(g, F)

1E r||g112  BilIakI2+ dk (since upper bounds are the same)n K - Andn( Ak I

= Ea [11 n B,]jakH2 dk

E niXiII]KBbiakIt2 (by Jensen's inequality)
nl 1 1 2 K -Amin (Ak)

XbK B5||ak| 2 + dk
-- E/ K - Anlin(Ak)

In the case when there are no active conic constraints, we cannot use this bound.

Instead, we can recover the well known standard bound by removing the terms related

to conic constraints in Equation (4.14) and obtain only A0. Combining both bounds

we get,

1Zjs) -min Bb,

4.6 Conclusion

In this chapter, we have outlined how various side information about a learning prob-

lem can effectively help in generalization. We focused our attention on several types of
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side information, leading to linear, polygonal, quadratic and conic constraints, giving

motivating examples and deriving complexity measure bounds. This work goes be-

yond the traditional paradigm of ball-like hypothesis spaces to study more exotic, yet

realistic, hypothesis spaces, and is a starting point for more work on other interesting

hypothesis spaces.
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Chapter 5

Robust Optimization using Machine

Learning for Uncertainty Sets

5.1 Introduction

In this work, we consider a situation often faced by decision makers: a policy needs to

be created for the future that would be a best possible reaction to the worst possible

uncertain situation; this is a question of robust optimization. In our case, the decision

maker does not know what the worst situation might be, and uses complex data to

estimate the uncertainty set, which is the set of uncertain future situations. Here we

are interested in answering questions such as: How might we construct a principled

uncertainty set from these complex data? Can we ensure that with high probability

our policy will be robust to whatever the future brings? Can we construct uncertainty

sets that are useful for the situation at hand and are not too conservative?

In this chapter we address the important setting where detailed data (features)

are available to predict each possible future situation. We turn to predictive modeling

techniques from machine learning to make predictions, and to define uncertainty sets.

Models created from finite data are uncertain: given a collection of historical data,

there many be many predictive models that appear to be equally good, according to

any measure of predictive quality. This was called the Rashomon effect by statistician

Breiman [Breiman, 2001b], and it is this source of uncertainty in learning that we
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capture while designing uncertainty sets.

Our concept is possibly best explained through an illustrative example. Consider

the minimum variance portfolio allocation problem where our goal is to construct a

portfolio of assets. Let us temporarily say that we know exactly what the return for

each of the assets in the market will be, and denote y E Y ; R' as the vector of

these known returns. Let the covariance of the returns be E, which is also known in

advance. We denote 7r as our choice of portfolio weights. We thus solve the basic

decision-making problem:

min =TEw s.t. ir T1= 1, yT > c,

where ()T is the transpose operator, c is a constant and 1 is the vector of all ones.

The objective represents the 'risk' of the portfolio that we wish to minimize and the

two constraints represent that: (a) the sum of portfolio weights should be equal to

one, and (b) the return on the portfolio should be lower bounded by an acceptable

baseline rate of return denoted by c. Now let us consider the more realistic case

where the returns y are not known in advance, and we need to make a decision about

portfolio weights w under uncertainty (for simplicity of exposition, let us assume that

E is known even though in reality we may need to estimate it along with the returns

y). If we are able to encode our uncertainty about these forecasted returns using an

uncertainty set U, then we can take a robust optimization (RO) approach and solve

the following:

min TEr s.t. rT = 1, yT 7> cVy E U,

which gives us a best response to the worst possible outcome y in uncertainty set

U. The uncertainty set U can be defined in many ways, and the central goal of

this work is how to model U from complex data from the past. These data take

the form of features and labels; for instance in the portfolio allocation problem, the

data are {(x', y')}i where an observation xI' E X C Rd represents information we

could use to predict the returns y' E Y on past day i. These data might include

178



macroeconomic indicators such as interest rates, employment statistics, retail sales

and so on, as well as features of the assets themselves. Having complex data like this

is very common, but often is not considered carefully within the decision problem.

Some of the different ways uncertainty sets can be constructed are:

e Using a priori assumptions: We may have a priori knowledge about the range of

possible future situations. In the portfolio allocation problem, we can assume that we

know all possible values of the returns. This knowledge can guide us in constructing

the returns uncertainty set U using interval constraints. That is, U := {y : Vj. yj E

[y , -g}1, where we manually select y. and -g for each j. Here we ignore the complex

past data altogether.

& Using empirical statistics: We could create an uncertainty set using empirical statis-

tics of the data. In the portfolio allocation problem, we might define U to be the set

of all return vectors that are close to return vectors yi that have been realized in the

past. Or, U could be the convex hull of past returns vectors. Here we ignore the x"s

altogether.

* Using linear regression to model complex data: Here, we use the complex past

data {(xs, yi)}f_ 1 , but we make strong (potentially incorrect) assumptions on the

probability distribution these data are drawn from. We use these assumptions to

define a class of "good" predictive models B from X -+ Y. Then, given a new feature

vector R (also in X), we use B to define an "intermediate" uncertainty set UB of all

possible outcomes for each situation i, and another "intermediate" uncertainty set

U-f to capture model residuals. Together, these two sets can be used to define U.

This is illustrated for the portfolio allocation problem as follows.

We define B as all linear models 8 : X -+ Y that fall in the confidence interval

determined using a linear regression fit under the usual normality assumption. We

then define U8 as predicted returns from these "good" models given a new feature

vector R. Additionally, using past data and normality assumptions, we can define the

set of model residuals U-B. Finally, U8 and U-f are used to define the set U in the

robust portfolio allocation formulation above. One should think of U1 as including

all predictions from all models that fit the data reasonably well with respect to the
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squared loss. And think of U-B s the union of prediction intervals around these

models. Then, U is the union of the predictions and prediction intervals from all of

the good models. This allows our decision to be robust to future realizations within

any prediction interval from any reasonably good model. This approach uses all of

the data, but makes strong, possibly untrue assumptions of normality.

* Using machine learning to model complex data, which is the topic of this work:

This setting is more general than linear regression and with much weaker assump-

tions. Methods that make strong assumptions have limited applicability for modem

datasets with thousands of features, and such assumptions may hinder prediction

performance. In this work, we provide two principled ways to construct set U us-

ing historical data. We will present two methods for each approach. Both of these

approaches use tools from statistical learning theory and make minimal assumptions

about the data source. In particular:

(a) In the first approach, we optimize prediction models over the data {(x', yi)} ,

and use them to construct uncertainty set U. U is used within the robust opti-

mization problem to construct 7r*, and Theorem 5.4.1 provides a guarantee on its

robustness; this guarantee is derived using statistical learning theory. Theorem 5.4.1

describes the guarantee for a generic class of prediction models and Theorem 5.5.1

specializes the guarantee for a specific set of prediction models, namely, the condi-

tional quantile models. Note that in this approach, we do not explicitly construct

a set of "good" prediction models B as in the regression approaches discussed in the

bullet point above; here U is defined only from the optimized prediction models and

the new feature vector R. The only assumption made in this approach is that the

data are drawn i.i.d from an unknown source distribution. In particular, there is no

normality assumption. Let us give examples of how the two methods we propose for

this approach would work when U is constructed from a regression problem (like the

portfolio setting discussed earlier):

* For the first method, for every R the uncertainty set U corresponds to the

domain of a indicator function on part of the set Y. It is 1 on most of the
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training examples and is 0 farther away from them. Figure 5-1 (a) shows an

illustration of this.

* For the second method, we estimate the 9 5th and 5 th percentiles of y given i

and set U to be all values of y E Y between the two estimates. Figure 5-1(b)

illustrates this.

(b) In the second approach, we consider the most extreme models within a class of

"good" models B. The set B contains all models within a parametric class that have

low enough training error. We make only a single assumption: with high probability,

the error due to the 'best-in-class' model /* is bounded with a known constant. Our

policies need to be robust to 8* that we would choose if we knew the distribution

of data. Thus, we make efforts to ensure that the set of good models B that we

will construct contains 8*. Here, B and U8 are chosen in a distribution-independent

manner, based on learning theory results. U-B is chosen based on our assumption on

.* Theorems 5.6.1 and 5.7.1 give high probability guarantees on the robust optimal

solution obtained using uncertainty set U constructed in this way. Theorem 5.6.1

corresponds to the case where a single prediction model is considered and Theorem

5.7.1 corresponds to the situation where two prediction models (for different quantiles)

are considered. These guarantees are qualitatively different from the ones obtained

in the first approach. To provide intuition for the two methods proposed for this

approach in a regression setting (for instance, as in the portfolio problem):

* The third method would set B to be all elements of the hypothesis space (func-

tions on X i-* Y) that have a low least squares loss on the dataset {(xi, yi)}1 .

These functions estimate the mean of y given R. Then we would take an interval

above and below each element of B. The union of those intervals would be the

uncertainty set U. Figure 5-1(c) illustrates this.

* The fourth method would set BO-9 to be all models of the 95th percentile of y

given : that have low loss. It would set B ~ to be all models estimating the 5th

percentile of y given i that have low loss. We take an interval above and below
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(c) Uses an intermediate set of "good" models

X
(d) Uses two intermediate sets of "good"
models

Figure 5-1: The empirical data {xi, yl}l .1 is shown along with the boundaries created
by the proposed methods in each of the above figures. Evaluation of these boundaries
at a given R produces an uncertainty set. In (a), a set function is optimized over the
sample and its evaluation at every x is plotted. In (b), we use optimized conditional
quantile models to get the boundaries. In (c), we use an intermediate set of good
prediction models and assumptions about model residuals to get the boundaries. In
(d), we use two intermediate sets of good conditional quantile models. The lower and
upper limits are used to define the boundaries.

each estimate provided by B0 -95 and B0 -05 , and take the union of all of these

intervals to form Ui. Note that the fourth method is strictly more conservative

than the second method the way we described it. Figure 5-1(d) illustrates this.

Being able to define uncertainty sets from predictive models is important: the

uncertainty sets can now be specialized to a given new situation R E X, and this is

true even if we have never seen R before. For instance, when ordering daily supplies

y' for an ice cream parlor in Boston, an uncertainty set that depends on the weather

might be much smaller than one that does not; planning for too much uncertainty in

the weather can be too conservative and very costly: it would not be wise to budget
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for the largest possible summer sales in the middle of the winter. Though there have

been attempts to define uncertainty sets in the linear regression setting [Goldfarb

and Iyengar, 2003], ours is the first attempt to tackle the more general setting in a

principled way.

Our goals are twofold: (i) We would like to create uncertainty sets for the more

general machine learning setting using our proposed approaches (a) and (b) listed

above. (ii) We would like to compute sample complezity values. That is, we want

to determine how much data the practitioner needs for a guarantee that their chosen

policy will be robust to future realizations. We provide finite sample guarantees on

the quality of robustness using learning theory for both proposed approaches.

Our approaches for constructing uncertainty sets are flexible, intuitive, easy to

understand from a practitioner's point of view, and at the same time can bring all

the rich theoretical results of learning theory to justify the data-driven methodology.

Our uncertainty set designs can handle prediction models for classification, regression,

ranking and other supervised learning problems. A main theme of this work is that

RO is a new context in which many learning theory results naturally apply and can

be directly used.

In Section 5.3, we formulate our problem and discuss the two approaches (a) and

(b) for making decisions under learning uncertainty. In Sections 5.4, 5.5, 5.6 and

5.7, we use learning theory techniques to justify the proposed uncertainty sets and

state our probabilistic guarantees. Section 5.8 provides proofs for these guarantees.

Finally, we conclude in Section 5.9.

5.2 Background Literature

There are many approaches to decision making under uncertainty when the uncer-

tainty is due to finite data. Robustness is achieved either by taking into the uncer-

tainty in the decision making formulation (as in RO discussed below), or by building

robust statistical estimators [see Frost and Savarino, 1986, Jorion, 1986, for applica-

tions to portfolio problems].
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In the optimization literature, there has been a continued interest in modeling un-

certainty sets for robust optimization (RO) using empirical statistics of data [Delage

and Ye, 20101, along with (strong) a priori assumptions about the probability distri-

bution generating the parameters of a particular model for the data. Bertsimas et al.

[2013] explore a way to specify data-driven uncertainty sets with probabilistic guar-

antees, where statistical hypothesis testing is used to construct sets. This approach

is different from our approach in three important ways: (i) the method is designed

for non-complex featureless data, (ii) the goal is totally different: For Bertsimas et al.

[2013], the goal is to minimize the difference between the cost from a policy created

using the true distribution and the cost from a policy from the estimated distribution,

and (iii) our analysis based on learning theory [Vapnik, 19981 whereas their analysis

is based on the theory of hypothesis testing. For us, the objective is to evaluate the

feasibility of our policy with respect to a realization of the randomness in the future.

The definition of "robustness" between our work and theirs is thus entirely different.

The closest work to ours is possibly that of Goldfarb and Iyengar [2003], who

provide a linear-regression-based robust decision making paradigm for portfolio al-

location problems, where they assume a multivariate linear regression model for the

learning step. A big departure from this approach is that in our work, we are able to

design uncertainty sets for a general class of decision making problems while making

weak assumptions about the distributional aspects of the historical data. We base

our uncertainty set design on regularized empirical risk minimization, which is quite

a bit more general than regression. We contrast the sets constructed by Goldfarb and

Iyengar [2003] with our proposed sets in Section 5.6.3.

Our work has the same flavor as chance constrained programming [Charnes and

Cooper, 1959] and various other stochastic programming techniques. Both stochastic

programming and robust optimization have extensions, for instance, for multi-stage

decision making. We focus on single stage optimization. In our previous work [Tu-

labandhula and Rudin, 2013, 2014] we considered statistical learning theory bounds

also for cases when unlabeled points were available. In that work, we considered

prior knowledge about the outcome of an optimization problem that uses the gis. We
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showed that this kind of prior knowledge can create better generalization guarantees.

Here, instead we study feasibility of the 9is.

5.3 Formulation

In Sections 5.3.1 and 5.3.2 we will describe four ways to construct uncertainty set U

using historical data and solve the corresponding robust optimization problems. The

first two methods correspond to approach (a) in the introduction (Section 5.1), and

the last two methods correspond to approach (b).

Let all the uncertain parameters of the decision problem be denoted by a vector

u E R". Given a realization of u, let the (basic non-robust) decision making problem

be written as:

min p(ir, u) s.t. F(r, u) E K. (5.1)

Here w E U C RC is the decision vector and f : H x Rm -+ R is the objective function.

Function F : I x U -+ K and convex cone K C Rd2 describe the constraints of the

problem.

The robust version of the decision problem in Equation (5.1) is thus:

min max f(r, u) s.t. F(7r, u) E K for all u E U, (5.2)
w uEU

where U c R' represents the uncertainty set. In Section 5.1, the minimum variance

portfolio allocation problem is a specific instance of the decision problem in Equa-

tion (5.1). The robust portfolio allocation problem is an instantiation of the robust

formulation in Equation (5.2).

To solve Equation (5.2), we prescribe the following steps:

Step 1: Construct U using any of the four methods listed in this section.

Step 2: Obtain a robust solution, using either of the two options below:

Option 1: If U is a "nice" set, then there are natural ways [Ben-Tal et al., 2009] to

transform it into a relaxed set U' so that the robust optimization problem
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can. be solved to obtain a robust solution ir*. For instance, if U can be

bounded using a box or an ellipsoid, that box or ellipsoid can be U'. If

Equation 5.2 is a semi-infinite formulation that can be transformed into a

finite formulation, then the finite formulation can be solved.

Option 2: If U is not a "nice" set, then do the following: sample L elements from U

uniformly. For instance, this can be done using geometric random walks [e.g.,

Vempala, 20051 if U is convex. Then solve the sampled version of Equation

(5.2) to obtain a robust solution ir* [see Calafiore and Campi, 2005] - this

method assumes we have an efficient procedure to sample from U.

We focus on Step 1. The goal is to ensure that the true realization of parameter

u E Rm belongs to set U with a high likelihood. Let u be equal to an m-dimensional

vector of unknown labels [g1 ... mi], where each label 9i E Y can be predicted

given a corresponding feature vector kR E X. Thus m labels {#'}jT, which can be

forecasted from {i'}"11, feed into the decision problem of Equation (5.2).

In both approaches we propose, we will define U to be a product of m sets, each

one constructed such that it contains the corresponding unknown true realization 9'

with high probability. Set U will be a function of training data sample S = {xi, yS}1&

and the current feature vectors {%3"l.

5.3.1 Direct use of empirically optimal prediction models

In this approach, we use empirically optimal prediction models directly. We start by

discussing a very general form of prediction model, then discuss quantile regression.

General prediction models:

Let x E X C Rd represent a feature vector and y E Y ; R represent a label.

Consider a class of set functions I E I, where I : X -+ 9AR, where 9RR is the set of all

measurable sets of R. Let us say that we have a procedure that picks a function IA

so that most of the labels of the training examples obey y' E IA(x), i = 1, ... ,n. As

long as Ig belongs to a set of "simple" functions, we have a guarantee on how well

If will generalize to new observations. Specifically, consider the following empirical
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risk minimization procedure:

in 1 [y ~'] (5.3)

where 1 [-1 is the indicator function. Let an optimal solution to the above problem be

IAl. Then, define the uncertainty set U as:

U = I,GIg(:V), (5.4)

where U is a product of m measurable sets. Figure 5-2(a) illustrates this construction

in one dimension. Given this construction, Step 1 of the workflow we described can

be summarized as:

(a) Solve Equation (5.3) to obtain a set function IA1g that depends on sample S.

(b) Define U according to Equation (5.4) using new observations {iV}. 1 .

The above setting is quite general. In particular, since the range of function IAg is

"t, we can capture sets that are arbitrarily more complicated than simple intervals.

For instance, if Py gi is bimodal, then for certain values of :0, Ift(:i) can be the

union of two disjoint intervals.

We remark that one can also approximate the source distribution P.,, using an

empirical distribution P.,y (there are many parametric and non-parametric ways to do

this) and then construct set U using marginal distributions {P1lk*}" 1 . This would be

slightly different than the approach described above in that it would require density

estimation, which may itself be a hard problem. In the above method and the other

methods below that we propose, we focus on estimating functionals of the conditional

distributions {PijgIj} directly.

Conditional quantile models:

In this method, we specialize the generic function class I to the class of set func-

tions defined using conditional quantile models. We will estimate an upper quantile

of for each i, and a lower quantile of for each R. The uncertainty set will be
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the interval between the two quantile estimates. This method is applicable when our

prediction task is a regression problem.

When y ~ P,, the rh quantile of y, denoted by p', is defined as pr := inf{p:

P,(y 5 ) = r}. Here -r can vary between 0 and 1. In the special case when r is set

to 0.5, this defines the median. Similarly, when (x, y) ~P.,,, the conditional quantile

AT can be defined as a function from X to Y, AI(x) := inf{A : P1,x(y p)= I }.

In our setting, gi conditioned on i is distributed according to Pyle. Thus, given

a value of r E [0,1], Pjixw (j4:5 (iji)) = r where IA'(x) is the conditional quantile

defined earlier. Our method picks two values of r, 6, 5 6, such that:

PjO ( 5 W (i)) = 6,, and Pf, 1 (97 pAe(:V)) = 6.

For example, a typical value for the pair (6,, 6 ,) can be (0.05, 0.95) which makes

A4 (x') correspond to the 5% conditional quantile and 1E (Ri) correspond to the 95%

conditional quantile. Given these two conditional quantiles, we have:

Pio iii (IA 86kW) <i~ lb 00()) = 1q- 6P,

Thus, the unknown future realization of g' belongs to the interval [Wp(*'), IA 4 (ii)]
with high probability if 6, and 6, are chosen appropriately. If we knew the true

conditional quantiles (which we do not), we could define the uncertainty set U as U =

I,"m 1[P(i), A4 (i)]. We will circumvent this issue by using sample S = {(xi, y)} .I

and quantile regression to obtain empirical quantile functions.

Quantile regression can be seen as an empirical risk minimization algorithm where

the loss function is defined appropriately to obtain a conditional quantile function.

That is, we aim to obtain an estimator function 6(x) of the true conditional quantile

function IA(x) given a predefined quantile parameter -r. In particular, the pinball loss
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(or newsvendor loss) function defined below is used.

(#(x), y) = r- (y-#(x)) if y - (x) > 0,

(i- 1) - (y -$(x)) otherwise.

Let lp(#l) = Ex,,[lr(#(x), y)]. It can be shown [Koenker, 2005, Takeuchi et al., 2006]

under some regularity conditions that the true conditional quantile function pttr(x)

is the minimizer of l(#8) when minimized over all measurable functions. There are

several works that consider linear and nonparametric quantile estimates using this

loss function [Takeuchi et al., 2006, Rudin and Vahn, 2014]. In our setting, we will let

BO be our hypothesis class that we want to pick conditional quantile functions from.

Let the empirical risk minimization procedure using the pinball loss output a

conditional quantile model #3 A19,' when given the historical sample S = {(x', yi)},"1

of size n and a parameter -r. That is, let 1'(#) = 1_I En r(#8(x'), y') and j3 A4g'i E

arg minlEM 1i (#B). The following definition of U uses two empirical conditional quan-

tile functions with r = 6, and r = 6q respectively:

U = nl;-- [min (flA1,8P (ki) PAA94(ki)) ,max (#Al94(ki) /3 A1,6q(kj))] (5.5)

Here U is again a product of m intervals, each one constructed so that it contains the

unknown j' with high probability (which we prove later). Figure 5-2(b) illustrates

this construction in one dimension. Thus, for Step 1, we do the following:

1. Compute 1 6 Ag44 and #fMbq using quantile regression.

2. Set U according to Equation (5.5).

5.3.2 Uncertainty set using an intermediate set of "good" pre-

diction models

In this approach, we use optimized prediction models to define an intermediate set

of "good" prediction models, which is then used to define U. This approach aims
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(a) Using an optimized set function

'PyjX
(c) Using a single intermediate set of
"good" models

zl
(b) Using
functions

/
1'

'Pyjx
optimized conditional quantile

P Iylx
(d) Using two intermediate sets of "good"
models

Figure 5-2: The conditional distribution of y given x is shown along with the proposed
uncertainty sets in each of the above figures. In (a), we use an optimized set function
to directly define the subset of R that contains y with high probability. In (b), we use
optimized conditional quantile models (the ones achieving the lowest training error)
to directly define the set which contains the random variable y with high probability.
In (c), we use an intermediate set of good prediction models to create UB and then
enlarge the interval using set U-1. In (d), we use two intermediate sets of good
conditional quantile models and enlarge the corresponding intervals. The lower and
upper limits of the two sets are then used to define U.

190



to capture uncertainty in the modeling procedure explicitly: rather than using one

predictive model, we use predictions from all models that we consider to be "good"

with respect to our training data.

Using a single set of "good" prediction models:

Let #6 : X Y be a prediction model in the hypothesis class B0 . For instance,

BO can be the set of linear predictors Bo = {X B #Tx: 11|#11 < B}. Let 1(#9(x), y)

denote the loss function. For example, (O(x) - y) 2 is the least squares loss and

[1 - 1(x)y}+ is the hinge loss used in Support Vector Machines. For any given model,

let lp(#) = Ex,,[l(#l(x), y)] where the expectation is with respect to the unknown

distribution P.,,. Let #* E arg minPEM lp(/3 ) be defined as the 'best-in-class' model

with respect to our class BO. Note that we cannot calculate 3* as we do not have the

distribution.

Our set construction method takes into account two things: (i) how the solution

#-g of empirical risk minimization compares with #* (coming from statistical learning

theory), and (ii) how much of the mass of P.,, concentrates around 8* (x) (coming

from Assumption A described below).

It is always true that there exists a set E and a scalar 6, > 0 such that:

Px,y (x, y : Iy - #*(x)I E E) > 1 - 6, (5.6)

where E C Y. This is trivially satisfied if E = Y. In this case, 6 can be set to 0.

Ideally, we know of a pair (E, 6) where J, is still small and where E is not too large;

if E were very large, the uncertainty set would be too conservative. We formalize the

assumption that we will use to define U as follows:

Assumption A: We know a pair (E, 6e) such that Equation (5.6) holds.

We can intuitively think of decomposing u in Equation (5.2) to capture model

uncertainty and residual uncertainty as follows. Let up be the part of u that is

derived from a statistical model ,. Thus, given {is},, up := [#(jl) . _ -_,(kn)T.

Let the remaining part of u, denoted by u-p, be equal to a vector of corresponding

model residuals. Thus, u = up + u-f.
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Let B represent a set of "good" prediction models. Let U be equal to UB + U-S

such that up E U 3 and u-p E U-B. Here, UB corresponds to B in the following way:

U6 := {up : 8 E B}. On the other hand, U-B corresponds to a set that captures the

support of most model residuals. Formally,

U = HL1 [inf{(i) : #j E B} - E, sup{1(ji) : 8 E B} + E} . (5.7)

An illustration in one dimension, when the set of "good" models has two members,

is shown in Figure 5-2(c). If we know the 'best-in-class' model 8*, then UB can be a

singleton set just containing 8*. Since we do not know #*, we adapt Step 1 of the

general recipe to construct U using Us and U.. as follows:

(a) Define B using S = {(x', yi)}" 1 . Our sets will be of the form (discussed further

in Section 5.6) B = {# : g(#i) 5 g(BMg) + c}, where g is some function, P'9

is a specific model and c is a parameter. These quantities will depend on the

learning algorithm and {(x, y'?)}"lS:.

(b) Define UB andU..: Recall thatU8 := {up : # E B) where up = [#8(R1) . . .(km)]T.

U..6 is defined using assumption Assumption A such that it'captures the sup-

port of the model error residuals (more details are in Section 5.6). U is then

U8 + U-.B

The quality of the robust solution of Equation (5.2) depends on the set E. For a

less conservative solution, we want set E to be as small as possible. The probabilistic

guarantee on the robust solution that we derive in Section 5.6 depends on 6e. For a

better guarantee, we need 5, to be as close as possible to 0. If our model class Bo is

very complex and able to closely capture most y values, this could reduce the size of

set E.

Note that if B does not contain good models, U-1; will necessarily be large, our

bound on robustness will be loose, and the robust solution thus obtained will be too

conservative.

Using two sets of "good" prediction models:
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When our prediction problem is a regression task, we can make a different (and

often weaker) assumption than Assumption A using quantile regression. We will

construct uncertainty set U in a different way.

Recall the definition for the conditional quantile function ,ip(x) and the empirical

procedure to estimate it, outlined in Section 5.3.1. Let p&"* E arg minpEI Ip(#B) be

the 'best-in-class' conditional quantile function for any given r. It is always true that

there exists a set Er C Y and a scalar 6, > 0 such that:

Px(x : Iir(x) - 8W*(x)I E ET ) ;> 1 - . (5.8)

The way we will construct U below will be such that the quality of the robust solution

7r* of Equation (5.2) depends on the set ET. For a less conservative solution, we want

Er to be as small as possible. The probabilistic guarantee that we derive in Section

5.7 on r* will depend on JT. For a better guarantee, 6, needs to be as close as possible

to 0. If BO is sufficiently rich, E' can be small or even empty (which is the case when

it E Bo). Thus, similar to Assumption A in Section 5.3.2, we make the following

assumption:

Assumption B: Given a value of r, we know a pair (Er, 6) such that Equation

(5.8) holds.

Let B be the set of "good" conditional quantile functions when r = 6, and let B'6q

be the set of "good" conditional quantile functions when r = 6J. By "good" we mean

that all these quantile functions have their quantile estimation performance close to

the best we can obtain from BO using quantile regression. A precise definition for BT

will be given in Equation (5.15) below. We can then construct U as:

u = I," inf{/3(i') :,# E B6P U B'e} - sup E U Ee,

sup{#(i') : 8 E 3' U Be5} + sup E5' U Eeq . (5.9)

The definition of the jth interval involves two sets. The first set, {8(:V) : 8 E B4' U

B4 } contains all the predictions by models in both B6 and e on the feature vector
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i. Thesecond set, E U E4, contains all deviations between the true conditional

quantiles and the 'best-in-class' conditional quantiles at both values of r. Thus, the

smallest value of the predicted 6, conditional quantiles and 6q conditional quantiles

in the first set, in conjunction with the largest deviation captured by the second set,

is used to define the lower limit of the interval. The upper limit of the interval is

defined in a similar way by taking the largest predicted quantile from the first set

and adding the largest deviation captured by the second set. An illustration in one

dimension, when each of the two sets of "good" models has two members, is shown in

Figure 5-2(d).

Given U, we can solve Equation (5.2) for 7r* using Step 2. The following is a

summary of the way to construct U in Step 1:

(a) Define BP and Be using {(xi, y')}t. We will propose procedures for designing

B4' and B using learning theory results in Section 5.7. Our sets will be of

the form Br = {# : g(f) 5 g(fltl-) + c} for r = 6,,b,, where g is some

function, 6A'9g' is a specific conditional quantile model depending on r and c

is a parameter. These quantities will depend on the pinball loss function and

(b) Define U: Using the above sets and the property of quantile error residuals as

in Equation (5.8), and by Assumption B, we can construct U as shown in

Equation (5.9).

In the next few sections, we provide probabilistic guarantees on the feasibility of

the robust optimal solutions obtained by using uncertainty sets from each of the four

methods we proposed.

5.4 Robustness guarantee using general prediction

functions

Consider the setting described in Section 5.3, where we have a class of general set

functions I. Let S := {(xi, y)} 1 be the training data which are independent and
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identically distributed. Let algorithm A represent a generic learning procedure. That

is, it takes S as an input and outputs jMg. Since IA is a function of sample S, we

will show that the unknown j belong to the interval IA1(ki) with high probability

over S as long as the set of functions I from which IMg is picked is "simple". Note

that we do not assume anything about the source distribution.

In order to state our result, we will define the following quantity known as

the empirical Rademacher average [Bartlett et al., 2002]. For a set F of func-

tions, the empirical Rademacher average is defined with respect to a given random

sample S' = {zi} 1 as Rs,(F) = .. , [ SUPJE Z= cr-f(zi)I] where for each

i = 1,..,n, a = 1 with equal probability. The Rademacher average is defined to

be the expectation of the empirical Rademacher average over the random sample S:

9(-H) = Ezi,... , [Rs(W). The interpretation of the Rademacher average is that it

measures the ability of function class F to fit noise, coming from the random ois. If

the function class can fit noise well, it is a highly complex class. The Rademacher

average is one of many ways to measure the richness of a function class, including

covering numbers, fat-shattering dimensions [Bartlett et al., 1996] and the Vapnik-

Chervonenkis dimension [Vapnik, 19981.

Theorem 5.4.1. If U is defined as in Equation (5.4), then with probability at least

1 - 6 over training sample S, we have robustness guarantee

Pwv l (F(Lr*, [1... 7n]) E K) ;> 1- - 1[yi ( IA(xi)] - 2R(l o1) 2

where c > 0 is a pre-determined constant, and is shorthand for max(0, -).

The result is a lower bound on the probability of infeasibility. This bound depends

on the performance of the data dependent set function IM. If If is such that its

performance, measured in terms of E i1[y' ( IA(xi)1 is good (i.e., lower in

value), then the right hand side of the inequality increases, resulting in a higher

chance of feasibility. This probability of feasibility also depends on the number of

estimates m that enter the decision problem of Equation (5.2). When n -+ oo, the
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Rademacher term and the square root terms become zero and the probability of

feasibility depends on the asymptotic performance of Ift (which converges to I*, the

'best-in-class' set function), as desired. The proof is provided in Section 5.8.3.

5.5 Robustness guarantee using conditional quantile

functions

Theorem 5.5.1. If U is defined as in Equation (5.5), then with probability at least

1 - 6 over training sample S, we have

Pty F(lr*, [E .."C) >

(r(y' - f4(xi)) - rf(y' - # P(xi))) - Y8Z(BO) - 2n ne (iagq 2n

(5.10)

where E > 0 is a pre-determined constant, - is shorthand for max(0, -), r;(z)

min (1, max (0, - )and r: (z) :=min I, max (0, 1 - ).

The robustness guarantee is established by replacing P.,,(y <; /(x)) with the

expectation of a related indicator random variable. By majorizing this random vari-

able by random variables defined using functions r. and r:, we were able to use the

machinery of Rademacher concentration results. The proof is provided in Section

5.8.2.

5.6 Robustness guarantee using a single set of good

models

Here we consider the third method prescribed in Section 5.3.2. Let 8-A41 E BO be the

model output by the empirical risk minimization procedure. Let empirical risk Is(,8) =

i En 1l(/3(x'), y/) be a function of our sample S. Let A produce #349 according
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to #A19 E arg minIgEB Ls(18). That is, the algorithm A is minimizing the empirical

loss. We define B using the empirical Rademacher average, defined in Section 5.4, as

follows:

B:= E Bo: ls(3 ) <5s(49) + 21Zs(l o Bo) + 4M g , (5.11)
1 2n!

where M is a bound on the range of the loss function I, and 6 is pre-specified and

parameterizes the probabilistic guarantee on the robust optimal solution. Rs(IoBo) is

the empirical Rademacher average of the function class L o BO := {l(f(-), -) : 8 E Bo}.

We define Ue := Em (m copies of E) where E satisfies Equation (5.6) for a

given 6 and m is the number of predictions (equal to the length of the vector up).

Intuitively, U-s is capturing the support of prediction errors if we knew the 'best-

in-class' model /*. Recall that these definitions of UB and U-1B lead to the set U in

Equation (5.7).

Theorem 5.6.1. If U is defined as in Equation (5.7), then the following hold:

1. With probability at least 1 - 6, #* E B.

2. Robust optimal solution 7r* of Equation (5.2) is feasible for {(*0, ')} Lt with

probability at least (1 - 6)(1 - 6e)m over I(R1 ty)}I 1 and S. That is,

PS,{(:j,gi)} 1, (F(7r*,[1 ... jmjT) E K) > (1 - 6)(1 - 6e)m.

The above theorem holds for any bounded loss function L. It guarantees that 7r*

will be robust to parameter u with components u6 = [,*(jI)...*(i1 ) ... *

and u-p = [#1 ... 9j ... r_ [* (j).. .l* (j) .. p*(m)IT because the sum of these

components is equal to [N ... Dm]T.

We insure against most possible realizations of in a particular way: by

first ensuring #* belongs to B with high probability (see Theorem 5.6.1 part (1)) and

then ensuring that the random errors ki -B*(R') are in U-jB also with high probability.

Thus the {!'}j_1 belong to the set UB + U-B with high probability.
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This theorem also tells us how the choice of Bo affects the size of our uncertainty

set precursor B. Interestingly enough, if we work with a (possibly infinite) set of

predictive models Bo such that its empirical Rademacher average lS(l o Bo) scales

as O(n-1), then we have similar quantitative dependence on n compared to that of

confidence-interval based approaches (that make explicit distributional assumptions

- see Section 5.6.3 - whereas we do not need to make such assumptions). In fact, for

many well studied model classes the scaling of the empirical Rademacher average is

indeed O(n-2) which we will review shortly.

One of the advantages of defining uncertainty set precursor B in the way we

proposed is that it directly links the uncertainty in decision making to the loss function

1(#8(x), y) and sample S of the machine learning step. One advantage of using the

empirical Rademacher average in defining B is that it makes use of the data sample S

in its definition, and can reflect the properties of the particular unknown distribution

P.,, of the data source.

5.6.1 Robustness guarantees when the hypothesis set Bo is fi-

nite:

When 30 consists of a finite number of models, we can define B without using the

notion of Rademacher averages. Let IBo represent the size of the set BO. Then we

can define the set of good models as:

B:= # EBo : S(#)!5S I(#iA') +M S + M ,g (5.12)logjo loga +Lof2n 2n

where n, 6, M, ls(-) and #eA have the same definitions as before.

Theorem 5.6.2. For finite B0, the conclusion of Theorem 5.6.1 holds if U in Equation

(5.7) is defined using B described in Equation (5.12).
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5.6.2 Constructing U using PAC-Bayes theory:

If the learning step is a classification task, we can also define B using the PAC-Bayes

framework of McAllester [19991, where PAC means "probably approximately correct".

This framework does not seek a single empirically good classifier j3 M and instead

finds a good "posterior" distribution Q over the hypothesis set BO. The corresponding

theory provides a probabilistic guarantee on the performance of the classifiers that

holds uniformly over all posterior distributions within a class of distributions. The

framework then picks a Q using data sample S so that a Q-weighted deterministic

classifier (or a Q-based randomized classifier) has the optimal probabilistic guarantee.

Consider the Q-based (randomized) Gibbs classifier Gq, which makes each predic-

tion by choosing a classifier from BO according to Q. Let the Q-based Gibbs classifier

have the following definitions of risks: (a) expected risk R(Gq) := EOEQ[tP(1)], and

(b) empirical risk RS(GQ) := Epeq[ls(#)] where lp(#l) and ls(#) are the same as in

Section 5.6. The PAC-Bayes framework guarantees that for all Q, R(GQ) is bounded

by RS(GQ) and a term which captures the deviation of Q from a pre-specified 'prior'

distribution P over BO as follows:

Theorem 5.6.3. Germain et al. [2009, Theorem 2.11: Let L(#8(x),y) := 1[f6(x) j y].

For any P.,,, any B0 , any prior P on BO, any 6 E (0, 1] and any convex function

V : [0,1]2 -+ R, we have

Ps VQ on BO: D(Rs(GQ), R(GQ)) < [KL(QIIP) + log EsEpemnDis(#),1,(f))

> 1-6,

(5.13)

where KL(QIIP) := Ep,,q[log QC.

As shown by Germain et al. [20091, for a certain choice of the metric V the above

theorem gives a bound on R(GQ) that is proportional to CnRs(GQ) + KL(QIIP)

where C is a pre-specified constant. We can minimize this quantity to get an optimal

distribution Qfg with a closed form expression: QA(#6) = P(8)e-C"'s(P) where Z
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is a normalizing constant.

The set of good models B, for the model uncertainty set UB, can be defined by

setting QAg to be bigger than a threshold, leading to:

B=/eo~sd log P(#) - a}
B =#E B. ls(#O) : o ()nC

where a > 0 is a fixed constant, P(8) is the prior probability density of model 6,

and C is a constant that appears in the objective when we solve for QAt. Intuitively,

the set B includes all models such that their empirical error is bounded in a way

that considers their scaled log prior density values. By our construction, if 6 E B,

then Q4(6) is greater than the threshold ". There is no notion of a 'best-in-class'z.
model 6* in the PAC-Bayes setting and thus we do not have a guarantee similar to

Theorem 5.6.1. Nonetheless, B is data driven and captures those models that have a

high posterior density in BO. UB and UlL are defined using B and Equation (5.6) in

the same way as before and used to obtain ir*.

5.6.3 Contrasting this method with that of Goldfarb and Iyen-

gar [20031:

Goldfarb and Iyengar [2003] assume distributional properties on {(xi, yi)}! 1 (Assumptions

GIl) in addition to assuming a functional form for f(x) (Assumption G12) while

working with robust portfolio selection problems. In particular, let y = #(x)+e, where

/8(x) = #Tx is the functional form of the model. Let us assume that x' E X C Rd

are chosen by the experimenter and are not random. The only source of randomness

is through e which is independent from example to example and is assumed to be dis-

tributed according to .A(0, T2 ) with variance O.2 known. Then an estimator of 0* (the

'best-in-class' model) is given by: 3 I#g = (XTX)-IXTY, where X is a matrix with

n rows, one for each xe and Y is an n x 1 vector with the i'h element being y'. Here

assume that XTX is invertible. Substituting Y = Xf* + e in the expression for 3 Als

gives us: SA* -,* = (XTX)lXTE, which is then distributed as K(O, Or(XTX)-).

Thus, the real-valued function g(,*, S) := j(fAt - p*)T(XTX)(AJ - /3*) is a
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distributed random variable. Because of this, we can find a range such that with

high probability the X2 distributed random variable g(#3*, S) belongs to it. We can

adapt this approach to our notation by choosing B based on this interval, giving us

an ellipsoid centered at SA1: B = {p: -(I3 A#g - [)(XTX)(#3ft - ,) < c}, where c

is a constant that determines how much of the probability mass of X2 is within the

set B.

Set Ulf; can be defined using our assumption about the model residuals: E =

(y - Tx) ~ K(O, U 2). In particular, using Equation (5.6), we can obtain interval

E = [-e, e] for any desired value of 4, by solving the equation: fe - e=2'ds =

1-5r.

Using B (equivalently, UB) and U-B as defined above in the robust problem of

Equation (5.2) gives us a guarantee on the robustness of ir* to future realizations

of y if Assumptions GIl and Assumption G12 hold. If noise variance o2 is

unknown, regression theory provides the following fix: we obtain an unbiased es-

timator of 2 given by s2 
=- . The resulting scaled random variable

(03A - f)(X T X)(Ot - 3) is F-distributed with d degrees of freedom in the

numerator and n - d degrees of freedom in the denominator [Anderson, 1958. A set

of good models B can be defined in the same way as before. The constant c now de-

termines how much of the probability mass of an Fd,-d-distributed random variable

is within B.

Note that both Assumptions GIl and Assumption G12 (or their variations

for similar models) are heavily needed to justify these constructions. Contrast this

with the setting of Section 5.6 where much weaker assumptions were made and the

setting of Section 5.4, where the only assumption made is that the data are drawn

i.i.d from some distribution. Because our assumptions are much weaker, our result

applies to many different loss functions and lends itself naturally to many different

machine learning approaches.

Evaluating the empirical Rademacher average: In the expression for B in Equa-

tion (5.11), it may sometimes be difficult to compute the value of 1Rs(IoBO) efficiently.

In these cases, we have two options. The first one involves finding upper bounds on
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) g(i o B0). This can be tricky as RIs depends on the data. The second one involves

defining B directly in terms of the Rademacher average RJ(t o Bo):

B:= 8EBo: Is(#) ls(#e9)+2'R(l oBo)+3M g (5.14)
2n-

It can be shown that the optimal robust solution obtained using the set in (5.14)

enjoys a guarantee similar to the solution obtained using the set in (5.11) with different

constants. We can make use of the various relationships in Theorem 12 of Bartlett and

Mendelson [2002] to upper bound R(l o Bo) or Rs(l o B0) analytically. The following

are some examples:

a For linear function classes with squared loss as the loss function, we have:

Z(Bo) ig, and : (LoB 0) 8XbBbk. where the latter inequality uses

Corollary 3.17 in Ledoux and Talagrand [1991] that relates JZ(loBo) and )Z(Bo).

That is, when the loss function l(#(x), y) is C-Lipschitz we have: JZ(l o Bo) 5

2C-IZ(Bo). For the squared loss function, C = 4XB, if Vx E X,| |x1 2 5 X and

VP E BO, I||$hI2 ! Bb. Note that this bound does not depend on data sample S.

* For kernel based function classes with Lipschitz loss functions, BO can be written

as:

BO = {x a'k(x, x) : n E N, x E X,Z aia K(x', x') B ,
{i=1 i~j

where k: X x X -+ R is a bounded kernel (k is called a kernel if an n x n

Gram matrix K with entries (K)ij = k(x',xj) is positive semi-definite). This

function class is used in Support Vector Machines (SVMs) [e.g., see Cristianini

and Shawe-Taylor, 2000] where the loss function is the hinge-loss. The following

bound [see Bartlett and Mendelson, 2002, Lemma 22] applies when the loss

function is C-Lipschitz (as is the hinge loss):

Rs(Bo) k(xixi), and Rs(l oBo) <2IC Zk(xi, xi).
i=1 n 1=1
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This upper bound reduces to the previous case (linear function class and squared

loss) when we choose the appropriate kernel and loss function. In particular,

using the dot product kernel k(xi, xI) = (X )TX we get:

B, n Bb 2_____
-&s(I o BO) 5 2Bb k(ix) = 2,Cb (i)TX i <2f- nXb = 8XbBb

5.7 Robustness guarantee using sets of good condi-

tional quantile models

Consider the fourth method prescribed in Section 5.3.2. Let us define B'5 and B'e

using {(x', yi)}? in a very similar way to defining B in Equation (5.11). Let the

empirical risk minimization procedure using the pinball loss output a conditional

quantile model #A9,r given sample S = {(x', yi)}' 1 of size n and parameter r.

That is, let 17(#) = . 1  jT(f(xi), yi) and #'9,T E arg minpE I's(/f). The following

definition of B gives us the two sets when r = 6, and r = J,:

B' := # E BO : l (3) <lj(# 
4 '') + 21ZS(l o Bo) + 4M og' (5.15)

where M is a bound on the range of the loss function l', 6 is a pre-specified constant

and RsZ(lT o Bo) is the empirical Rademacher average of the function class 17 o BO :=

{/3 -+ L(/(), -) : # E Bo}. The guarantee on the robust optimal solution of Equation

(5.2) is given by the following theorem.

Theorem 5.7.1. If U is defined as described in Equation (5.9), using sets BO, B

defined in Equation (5.15) and set E in Equation (5.8) along with Assumption B,

then the following hold:

1. With probability at least 1 -6, /3T* E B' for -r = 6, and r = 6q individually.

2. Robust optimal solution ir* of Equation (5.2) is feasible for {(k', 9')} with

probability at least (1-6) +(1 - (6)m (1 - 66p)m +(6,-6,)m-2 over {(kj, #j)},
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and S. Thai is,

PS,(*i,jO)}, 1 (F(7r*, [g1... "J) E )) > (1 - 6) [(1 - J )' + (1 - 6ey)m] + (Jq - 6,)m - 2.

In the theorem, the guarantee follows from designing U such that the predictions

made by the 'best-in-class' conditional quantile functions ,6p,*, j#* and their residuals

are captured in each interval defining U. This ensures that the realization [# 1 ... y"JT E

U with high probability.

The guarantees in Sections 5.6 and this section do not assume anything about the

form of the source distribution. These bounds do what learning theory is designed to

do [Bousquet, 20031, which is provide insight into the important quantities for learning

and how they scale. More importantly, here they provide insight beyond prediction,

specifically into robustness for decision making. We generally do not use learning

theoretic bounds directly in practice (e.g., SVMs do not minimize the generalization

bounds that motivated their derivation). To translate our results in practice, we

suggest using our workflow to construct the uncertainty sets as in Equations (5.11),

(5.12) or (5.14), replacing the Rademacher average term with an appropriate choice

of parameters. A practitioner can also perform a type of sensitivity analysis for our

approach by varying the size of the uncertainty sets and assessing the corresponding

results.

5.7.1 Insights and Comparison of Main Results

Before we move onto the proofs, we recap the main results. Theorem 5.4.1 provides a

very general results that pertains to any algorithm. Intuitively, it states that as long

as the algorithm's result is robust to most of the training examples, and as long as the

algorithm can only produce simple functions, it will likely be robust to all points in

the test set. This is true for any unknown distribution of data, with no assumptions

on the distribution.

Theorem 5.4.1 does not provide any insights on how to construct an algorithm for

data-driven robust optimization, since it holds for any algorithm. Theorem 5.5.1, on
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the other hand, provides a result that holds for quantile regression methods. Here

we use an algorithm that produces an estimate for a lower quantile and an estimate

for a higher quantile, and chooses the policy to be robust to all points between these

quantile estimates. The result applies to any method for producing such estimates.

It states that, for this choice of policy, the solution will be robust to all points on the

test set with high probability. The bound will be tighter when the class of quantile

estimation functions produced by the algorithm is simpler. Theorem 5.5.1 is close

to being a special case of Theorem 5.4.1. Theorem 5.5.1's loss function is similar

to a special case of Theorem 5.4.1's, and the complexity term differs only through

a Lipschitz constant of the loss function which is explicitly taken into account in

Theorem 5.5.1 but not in Theorem 5.4.1.

Theorems 5.6.1 and 5.7.1 rely on mild probabilistic assumptions that can make the

bounds tighter. These theorems consider the full set of "good" models, that is, models

with small loss on the training set, and expand outwards to include more points into

the uncertainty set; thus these theorems take into account both the behavior on the

training set and the assumed behavior on the full distribution of data.

For the assumption underlying Theorems 5.6.1 and 5.7.1, recall that &5 is the

probability that the tails of the distribution are within E of the true mean or quantile

estimates. There is a tradeoff in assumptions between E and 6e, in the sense that the

policy needs to be robust to a larger uncertainty set if E is large; larger E leads to

conservative policy choices. At the same time, if E is larger, our assumption that E

includes the tails of the distribution should be stronger, leading to smaller e. When

6, is smaller, the probabilistic guarantee on robustness is also stronger.

Theorem 5.6.1's result holds for any algorithm that produces estimates of cen-

trality for y given x (e.g., mean or median). Theorem 5.7.1's result holds for any

algorithm that produces quantile estimates. We believe that the uncertainty set con-

struction used for Theorem 5.7.1 is the most natural ones to use, regardless of whether

the assumptions relating 6 and E hold precisely. To recap, this is where we compute

the highest estimate of the upper quantile from all good models, compute the lowest

estimate of the lower quantile from all good models, and expand outwards, to produce
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the uncertainty set.

5.8 Proofs

Before we proceed with the proofs of guarantees for the four methods in Sections

5.4-5.7, we state an intermediate result we will make use of in all four proofs. This

result gives a uniform probabilistic guarantee on the deviation between empirical loss

and expected loss of prediction models in terms of the Rademacher average. It holds

for any set of models F and a bounded loss function 1.

Lemma 5.8.1. With probability at least 1 - 6 over sample S,

max l(f )-Is(f ) ; 2'R(loF)M l .
fE- 2n

Proof. Here, maxfJF Il(f) - ls(f)I is a random variable that depends on the

sample S through Is(). We can use the (one-sided) McDiarmid's inequality to claim

that this random variable is close to its mean as n increases.

Lemma 5.8.2. McDiarmid's inequality [McDiarmid, 1989]: Let z1, ... , z" be n i.i.d.

random variables in a set A and h(z', ... , z n) be a function such that for all i = 1, ... , n

SUP lh(zl, ... , z', ... , zn) - h(z, .. ,1,.. z)| < C.
(zl,...,z',f)EAn+1

Then for all c > 0, Pzi,...,z h(zl,..., z)-E[h(z',..., z")J >E <; exp ( f2)

In our case, the function h is maxfEy 4!(f) - ls(f)I. We can show that if the ith

instance in the sample S is perturbed, the maximum change in the function value is

M: We first consider the case when maxfET Ir(f) - Is(f)I maxfET Ile(!) - Isif)I.
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Here isi(f) is the same as Is(f) except for the ith example, which is changed from

(xt,y') to a new example xijy.. Also let f* E argmaxfET Il(f) - ls(f)I. Then,

nmaxilp(ffl - IS( f ) -mnax fp( f ) - Isi( fl

Ilp(f*) - Is(f*) - Ilp(f*) - lsi(f*) (because f* may not maximize the second term)

H-ls(f) + ls(fO)I (by triangle inequality)
1 M

=- 1 (f*(x), y') - l(f*(xi),y1)I - (canceling all except the ith term).n n

We can do an identical calculation to get the same upper bound A if maxfEy I r(f) - ls(f)I <

maxfEF lp(f) - is' (f) 1. Thus, with probability at least 1 - 5,

max llp(f) - ls(f)j < E[maxIlp(f) - ls(f)I + M og (5.16)
fE.Y f EY 2n

The quantity E[maxfEY jll(f) - Is(f)I captures the complexity or size of F (ac-

tually, its composition with the loss function 1, the set 1 o.F). We can upper bound

this quantity in terms of a Rademacher average using a symmetrization trick.

Lemma 5.8.3. (Upper bound)

E[max Ilp(f) - ls(f)11 5 21Z(l o F). (5.17)
f ET

Proof. See Theorem 8 in Bartlett and Mendelson [20021 for essentially a similar

claim.

Substituting for E[maxpES, lP(#) - Is(#)I1 from (5.17) into (5.16) gives us the

desired result. l
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5.8. Proof of Theorem 5.4.1

According to Lemma 5.8.1, the following holds with probability at least 1 - 3 over

sample S,

maxll(f) - ls(f)I 2R(l oF) + M g
fE-F L2 n

where F is a set of models, I is a bounded loss function (bounded by M), lp(f) =

E,,[l(f(x), y)J, ls(f) = n i-l (f(xi), y') and R(loF) = Es,,[supfpE n = or'l(f(x), yi9].

We can apply this lemma to the case when F = I (that is, f(x) = I(x)) and

(I(x), y) = 1[y V I(x)]. The range of the loss function is [0, 11, which is a bounded

set. Thus, with probability at least 1 - 5 over sample S,

maxll(I) - Is(I) 5 2R(l o I)+

or equivalently,

VI E I: ls(I) - 2R(lo I) - g l(I) !5 LS(I) + 2R(l oI) + gog-n 2n-

The above is a uniform convergence statement. Since it holds for IA* as well, we can

state the following: with probability at least 1 - 6 over S,

Is(IAl) - c(3) Px,,(y 0 IA1g(x)) < ls(IA') + c(3), or equivalently,

1 - (Ls(IAE) - c(6)) > Px,,(y E IM (x)) > 1 - (ls(IMd) + c(3)), (5.18)

where c(3) = 2R(L o I) + and we use the relation lp(I) = Ex,y[1[y I(x)]I=

PX,,(y V I(x)).

The second inequality in Equation (5.18) gives a lower bound on the probability

that an unseen label belongs to the interval specified by the function Ius(x). We

can extend this lower bound to m unseen new realizations {I}, as follows. With
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probability at least 1 - 6 over S,

P ~ig (Qi E IA*g(j3)) A 1g- (l(IM) + c(6)) 1, ... , m.

Then, with probability > 1 - 6 over S,

([p jm]TE flj 1 1 Ajg(kj)) ! (1 - (1S(IMI) +()))

where we used the fact that these m events {9j E IAs(ki)}, j = 1, ... , m are mutually

independent given sample S.

Note that if [91,.,m]T E IlT 
1IA1(ii), then the robust optimal solution lr* is

feasible for the future label realizations {93}1 because it is feasible for each of the

m elements in U = Il 1IAIs(ki) by definition. This gives us the desired feasibility

result on lr*.

5.8.2 Proof of Theorem 5.5.1

As in the previous proof, according to Lemma 5.8.1 the following holds with proba-

bility at least 1 - 6 over sample S:

max 11(f) - ls(f)I < 2R(l o F) + M og
f EF I2nW

where F is a set of models, 1 is a bounded loss function (bounded by M), lp(f) =

F, ,[l(f(x), y)], ls(f) = En 1l(f(x), y) and

IZ(O ) =Es,, sup; EOrl(f(x'), y)1JZ~ oF =Es, EfEY
We will apply the lemma in two cases. For both cases, let the model set BO be the

set of conditional quantile models. For the first case, let the loss function be r-(y -

/8(x)) and for the second case, let the loss function be r+(y - 8(x)) (both functions

are defined in the statement of Theorem 5.5.1). The range of both functions is [0, 11,
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and thus bounded. Further,, since Lemma 5.8.1 is a uniform deviation statement,

the inequality also holds for model f6A,T derived from sample S (say, by minimizing

the pinball loss), with probability at least 1 - 6. Thus, we have the following two

probabilistic statements:

" With prob. > 1 - 6 over S,

Exr y- #iEl,.(x)J- Z (y- ,51TxS)) 2Z(r~ 0 B0  lo -
1 2n

(5.19)

" With prob. > 1 - 6 over S,

n ~log
Ex, - #lEI,.r(x))] - r (yf i5A- # (x)) 2R(rf o Bo) + .

1 2n

(5.20)

From these inequalities, we get the following lemma [similar to Takeuchi et al., 2006,

Theorem 7]:

Lemma 5.8.4. With probability.at least 1-6 over sample S, the following inequalities

hold separately:

n r (y' - #A'9'(x )) - c Px,,(y < #/l,.(x)), and (5.21)

1p,y(y A1lgT(X)) r(y-,A1.()) ,

(5.22)

where c := 1(Bo) +

Proof (of Lemma 5.8.4) From the Ledoux-Talagrand contraction inequality, we

know R(l o Bo) 2tR(Bo). In our case, both r;- and r have Lipschitz constant

equal to 1/E. Let c be defined as in the statement of the lemma. From the inequalities
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(5.19) and (5.20) we get the one sided inequalities:

"I n
E.,,[r-(y - 0'A1T(x))] - E r (yi - #/AlT, (Xi)) - c, and

n. t1

E,,r(y- # (X))] < n r+(yi - #fA1r (XS)) + c.
i=1

Further, for any P, we can bound Px,,(y /(x)) = Ex,,[1[y /3(x)]] from both

sides because of the following inequalities:

EX,,[1[y #(x)]] Ex,,[r+(y - #(x))], and

E1 ,,[1[y #(x)]] > E,,,[r-(y - #(x))].

(5.23)

(5.24)

Thus we get:

Swith prob. > 1 _6, Px,y(y < #/Agr(X)) > r(yi - #3A1(xi)) - c, and

& with prob. > 1 - 6, P,,(y #AgM,7(x)) < _ En r+ (y' - 83A1 *r(xi)) + c.

0

Continuing with the proof of Theorem 5.5.1, we apply Lemma 5.8.4 with r = 6,

within inequality (5.22) and with r = 6 q within inequality (5.21), where 1 < 6, <

<q < 1 to obtain:

& with prob. > 1 - 6, Px,,(y #A3Mde(x)) -1 E=, r-(yi - #/MA1 (x')) - c, and

* with prob. > 1 -6, P.,,1(y (X)) 1 EnE 1 r (yi - #M6 (xi)) + c.

The bounds hold with probabilities 1 - 6 each implying that they together hold with
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probability 1 - 26. Now,

PX,,((#Ilp(x) < y PAIq(X))

Px,,({#3E' 6 P(x) < y} n {y #Iad(x)})

1 - Px,,({y !5 #AI6 (x)} U {#'," (X) < y})

> 1 - (pV (Y !5 a6"p (X)) + pX' K'Agq()<y))

= 1 - (pV (Y pflAI&&(X)) + 1 -x, P,(Y flg,"6(X)))

= pV (Y :5/3A*I'I (X)) _-x (Y #Al/3,''(X))

> - Er;(y' - flf,6
e(x')) - - r(y' -# fA (xi)) - 2c,

1 i=1

where in step (*), we substituted upper and lower bounds of the two random variables

of S, Px,,(y #Alg,(x)) and P,,,(y < #Al*,P(x)). Thus, with probability 1 - 26

over S,

in
Px,,(y E [D6'P &(x), f# *e"9 (x)]) - (r-(y' - #AIgq(x')) - (y' - flg,# (3e))) - 2c.

In the above statement, we have a lower bound on the probability that a new unseen

realization y belongs to the random interval [p^AJg,1 p (x), #1g/ (x).

We can extend this lower bound to the setting of m simultaneous lower bounds

corresponding to m unseen new realizations { in our decision problem as follows.

We know that with probability > 1 - 26 over S,

PRg(#g E [# Alg4'(Rj)78Ag,.'q(j)]) A(S); j = 1,.,M,

where A(S) : (r;(y - #A^l,4a (x')) - -"1y - # (x'))) - 2c. Then, with

probability > 1 - 26 with respect to sample S,

peew ,eu d t ([he ,..., th ]T E m ev Aen s (0) E P () 1

where we used the fact that these m events {gi E [Pm,6 4(:j), #jAA(IE j~ 17-7.,
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are mutually independent given sample S.

Note that if [1, .. , ~']T jj [,8AIg,6p (ki) 7 A#gq (ki)], then it also belongs to U

defined by Equation (5.5). Further, the robust optimal solution 7r* will be feasible for

{#i},"L_ because it is feasible for every element in U by definition. Thus, changing 6

to 6/2 (with an appropriate change in the constant c in Equations (5.21) and (5.22))

gives us the desired feasibility result on lr*. 0

5.8.3 Proof of Theorem 5.6.1

Consider the term ls(#*) - ls(I(0-4), which depends on the random sample S. We can

upper bound it by:

ls(,8*)-Is(#-,U)

= Is(#*) - 1(#*) + (#*) - ( Alg)

< ls#*) - P(#3*) + (/(#') -Is# )

< ls(#6*) - p(3*) + iax Ilp(B) - is(0)I (5.25)

where we added and subtracted Ip(#*) in the first step, then in the second step

substituted '3 Alg for 6* in the third term to increase the value of the right hand

side, and finally in the last step, replaced the last two terms with an absolute max

operation over BO.

The first term in the expression on the right hand side of (5.25) will go to zero in

probability as n -+ oo due to concentration, and this can be quantified for finite n

via Hoeffding's inequality.

Lemma 5.8.5. (One-sided Hoeffding's inequality.) Let zl,..., z' and z be i.i.d. ran-

dom variables and let h be a bounded function, a < h(z) b. Then for all e > 0 we

have

1 n2nc 2

PZn,.. -Eh(z')- E,[h(z)] >,f)<sexp -- .PZ1..I n (b - a)2
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In our case, the sample S is represented by {(xIy )} _ The function L(#*(x), y)

is bounded in the interval [0, MI. Thus the empirical mean - Enl(8*(xi), y) (

ls( 6 *)) gets close to its mean E[l(6*(x), ,)J (= lp(fi*)) as n increases. In particular,

we see that with probability at least 1 - 61,

ls(*) - lP(1*) M l o . (5.26)
2n

The second term (5.25) can be bounded using Lemma 5.8.1 which states that with

probability at least 1 - 6 over sample S,

maxjl,(f) - ls(f)I 2R(l o F) + M gmax 2n

In our case, we set Y= Bo and f(x) =,6(x) and 6 = 6 2 .

The empirical Rademacher average RS(L o Bo) also concentrates around its mean

R(L o BO) and this can be proved again by McDiarmid's inequality. In this case,

from Lemma 5.8.2, the function h is represented by RZs(L o Bo). We can again show

[Bartlett and Mendelson, 2002, Theorem 11] that if the ijh instance in the sample S is

perturbed, the maximum change in the function value is H. Thus, with probability

at least 1 - 3

R(L o Bo) ! Rsl (1 BO)+ M l (5.27)~S~IJO/ 2n

In summary we have the following statements for the terms on the right hand side

of (5.25):

1. With probability at least 1 -6, over S, ls(*) -lp( 1 *) 5 M from (5.26).

2. With probability at least 1 - 62 over S,

maxjlp(#) - s(#) 2R1(l oB0) M
PEEo 2n
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3. With probability at least 1 -63 over S, R(I oBo) Rs(l o Bo) + M from

(5.27).

Consider the three corresponding events: E1 = S is(#*) -lP(/*)

E2 = IS : maxpEB (l() - ls(O)) 21(l oBo) + M and E3  S2n 1 a-

R(l o Bo) 5 Rs(Lo Bo)M + M >.We know that with probabilities 61, 62,63 over

the random sample S, these events do not happen. Thus using the union bound,

Ps(E1 f E2 n E3) ;> 1 - 61 62+ 63. Substituting 6 for 61, 62 and 63 and using (5.25),

we that with probability at least 1 - 6,

3

Is(#*) - Is (8'3 ) 5 2 s (l o Bo) + 4M lg2n

The implication of this is that the empirical risk for the 'best-in-class' function

fi* is less than the right hand side quantities, all of which are computable. This

implies that even though we do not know #*, we know it belongs to our uncertainty

set precursor B defined in Equation (5.11) with high probability. In particular, we

see that [* E B with probability at least 1 - 6 over sample S. This is part (1) in the

statement of the Theorem.

Part (1) further implies that with probability at least 1 - 6, up. E UB, and this

is true for any {i},T 1. Next we turn our focus toward model residuals. We can

extend the probabilistic statement in Equation (5.6) to the setting where we have

m simultaneous errors using the mutual independence assumption. Thus we have,

with probability at least (1 - 6)m over {(V', f )}IT, max=1,...,m jj - 8*(kj) E E.

Using the definition of set UL 5 , which is equal to Em, we see that u-p* E U- with

probability at least (1 - 6)m over {(*i, fi)}T1.

We know that the robust optimal solution 7r* of Equation (5.2) is robust to any

element of U = U+U-8 by definition. In particular, if [* E B and u-,. E U-B, then

wr* will be robust to the random vector up. + U-p* (which equals [91... "]).

To get a guarantee of robustness of 7r* to {#?}., we can combine the two prob-
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abilistic statements above (one with respect to S and the other with respect to

{(R', g')}-1) using the mutual independence assumption (S and {(*i, 9')}_, are

mutually independent) as follows:

PS{(*i,#j)} (F(7r*, [gl ... r]T) E IC) (1 - 6)(1 - e)m 0

5.8.4 Proof of Theorem 5.6.2

It is sufficient to show that with probability at least 1 - 6, E B where B is defined

in Equation (5.12). To see this, consider the deviation Ls(fi*) - Is(#6M2). This can be

upper bounded in a similar way as in the beginning of the proof of Theorem 5.6.1:

Is(*) - IS(#Alg) ls(fl*) - lp(r*) max(lp() - IS(#)).
PEBo

We will upper bound the two deviation terms appearing on the right hand side of the

above inequality. Both terms are functions of the random sample S.

Lets begin with the term maxOEB. (Lp(fi) - Is(#l)). We can bound the probability

of the event {maxpEBP(p() - ls(O)) > C} as follows:

Ps( max(lp(#) - 's(O)) > E) = PS Uo {l() -- ls(i) > 4)

IBoI IBoI(a) ISO'* I OIB 2n? IeI2~

< Ps (IP(#I) - is(fla) > f) e~-m-= el*g IB"I~-'

Here, (a) follows from taking a union bound, and (b) follows from applying Hoeffding's

inequality to each fixed model 9, i = 1, ... ,| Bo . Setting 62 = -* -*~ and replac-

ing c gives us the following equivalent way to state the same result: with probability

at least 1 -62 over S,

max(lp(p) - ls(8)) < M 2log IBo log(')
FEBO E 2n

From Equation (5.26), we have the following upper bound for the term ls(,B*) -
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lp(3*) : with probability at least 1 - 61 over S, ls(3*) - lp(3*) 5 M V2n

Using a union bound with these two observations gives us the following statement

when we set 51 = 62 = 6/2: with probability at least 1 -6 over S, ls(0*) - 1s( O 1 )

M l *g *go g + M(') . Thus #* E B with probability at least 1 - 6 as desired.

0

5.8.5 Proof of Theorem 5.7.1

Proof of part (1) is the same as that of part (1) in Theorem 5.6.1. That is, using the

definition of BT in Equation (5.15) and Lemma 5.8.1 with the pinball loss function

VT we see that #'* E B' with probability at least 1 - 6 over S. Thus, part (1) holds

when r is set to 6, and 6 q individually.

For part (2), we use mutual independence and union bound arguments, similar to

part (2) in Theorem 5.6.1. In particular,

* With prob. > 1 - 6 over S, simultaneously for all j = 1, ..,m, #3P*(ki) E

[inf{#(i') : 8 E B"}, sup{#3(i) : 8 E B4} for any {IV}T1 (from part (1)).

* With prob. > 1 - 6 over S, simultaneously for all j = 1, .. ,m, 8"q,*(5Q) E

[inf{#(i') : 8 E Bde},sup{/3(i3) : # E B6o}] for any {2'}" (from part (1)).

* With prob. > (1 - 6e"P)m over {(', ')}T,", simultaneously for all j = 1,.., m,

pA (*1) - #/5,* (k3) E [- sup E4', sup E41 (using mutual independence assump-

tion and Equation (5.8)).

* With prob. > (1 - J,6e)" over {(*', ')}, simultaneously for all j = 1,..,m,

Pe (VJ) - #35i* (W) E [- sup Ee, sup E6qI (using mutual independence assump-

tion and Equation (5.8)).

We can again use the mutual independence between S and {(*R, f')},"11 to claim

the following:

* With prob. > (1 - 6)(1 - JeeP)m over S and {(:k,fti)}"11, simultaneously for

all j = 1, ... , m, pA(i) E [inf{#(ii) : / E B6P} - sup EP, sup{/(i) : / E

B8P} + sup E4].
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* With prob. ;> (1 - 6)(1 - be)m over S and {(jV)}T 1 , simultaneously for

all j = 1,..., m, pte(ii) E [inf{(ii) : P E B8e} - supEe, sup{46(ki) : P E

B6e} + sup E6e].

We use the general identity from De Morgan's laws and the union bound that if

P(A1 ) ;> cl and P(A2) c2, then P(A1 f A2 ) > cl + c2 - 1. Applying this to the two

events above, we see that with probability at least (1-6) (1 - o5)m (1 - o5))m] _

over S and {(2R, #)}j:,

[Ap (:0 ),pq (R )] C

[inf{#(*i) :46 E B& U Be} - sup E U E'e,

sup{$(i) :46 E B U Be} + sup E U Ee].

We also know that simultaneously for all j, i belongs to [41 (ii), p(ii)] with

probability at least (6q - 6 ,)m over {(R', i)}T 1 (mutual independence and defi-

nition of conditional quantile function). Thus, again using the identity based on

De Morgan's laws and the union bound, we get that with probability at least (1 -

6) [(1 - 6,') + (1 - 6qf)m+,] over S and {(2,) ... m]T belongs

to the set

nII [inf{#(ii) : E eP U Be} - sup E4 U Ede

sup{#(i) :46 E B U Be} + sup E U E].

Since U is defined precisely using the above product set, we conclude that the robust

optimal solution ir* is feasible for { with the desired guarantee. 0

5.9 Conclusion

In this work, we presented two principled approaches (four methods) of constructing

uncertainty sets for robust optimization based on statistical learning theory. These

methods can be used broadly for data-driven robust optimization, and apply to any
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problem where the data are drawn from an unknown distribution. The first two

methods can be applied without any distributional assumptions, and the other two

methods require very mild distributional assumptions, which is that the user knows

one statistic about the tail of the distribution. The results in this chapter show that

statistical learning theory, derived for guarantees on prediction quality of statistical

models, can be used for guarantees on the robustness of an optimization problem.
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Chapter 6

Tire Changes, Fresh Air, and Yellow

Flags: Challenges in Predictive

Analytics for Professional Racing

6.1 Introduction

Currently in the United States, professional car racing has the second largest viewing

audience among all sports1 . Within a professional stock car race, some of the most

critical decisions by the teams are made during pit-stops, where teams can choose to

change either zero tires, two tires or all four tires of their car. Changing four tires is

more time consuming, and teams can risk losing their advantage over the other players

because of extra time spent changing tires in the pit; on the other hand, changing two

tires or zero tires may be risky, since providing the car with fewer fresh tires could

decrease its maximum potential speed. Predicting in advance which decision would

most benefit a team can depend on many complex variables, a relationship that is

difficult for racing teams to predict. Currently the choice needs to be made by the

team captain instantaneously, without computational tools, yet somehow considering

all possible data about each team in the race. These are key decisions, viewed by

'http://www.shavemagazine.com/cars/090601 Shave Magazine "'All About NASCAR" by Kiley
Alderink
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millions of fans, that are made almost purely from experience and judgment rather

than with the help of analytical tools.

There are many other sports in which key strategic decisions are made without the

help of in-game analytical tools. Even in sports like baseball and basketball, where

there has been a lot of work on analytics, analyses are typically done at the season

level, prior to the start of the game. This is very different than our work. This is

because, in racing, the actual conditions of the race are potentially very useful for

predicting the outcomes, beyond what one can obtain using season level statistics.

This work started with the hypothesis that a data-driven prediction engine op-

erating in real-time may be able to assist team captains in making these critical

tire-change decisions. As no such prediction software or methodology previously ex-

isted to do this, it was unclear how the data could be leveraged to produce an accurate

prediction model; there was no previous knowledge discovery system for working with

data from professional stock car races, or from any similar enough sport. Further,

the predictions need to be made at the finest granularity available for racing data - at

the level of individual laps - which is the most detailed race-level data made available

to teams by NASCAR (at least through 2012). While constructing a knowledge dis-

covery system for these data, we faced considerable challenges in how to process and

define the prediction model. In handling racing data, it is easy for a bad mathematical

definition to lead to a conclusion that a particular feature is not important for pre-

diction, and it is easy for Simpson's paradox to appear, indicating (for instance) that

tire change decisions do not impact race position. In the end, we were able to obtain

high quality results only when domain expert knowledge about racing was carefully

infused into all of the mathematically defined features and evaluation metrics used in

the prediction engine.

We consider the entire cycle of the knowledge discovery process: exploratory analy-

sis, feature generation, building a model, data mining, and decision making for within-

race strategy. Mining the raw data requires many domain specific considerations in

order to construct meaningful statistics. Model building requires careful assumptions

about the observed data, and molding the problem into a tractable learning formula-
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tion. Based on the model outputs, decision making requires an understanding of the

horizon and time scale where is it most meaningful to make a decision and character-

ize its risk-reward tradeoff. In the sports prediction and decision making studies done

in the past, these components have been examined mainly in isolation. Our study can

be abstracted to a framework that is both unified and tractable, allowing the possi-

bility of system-optimal solutions in a practical amount of time (instantaneously) for

professional racing and other sports.

The statistical hypotheses we address will be derived from the following questions:

Q1. Can we predict the change in rank position of a racer over the next portion of

the race, based on the racers' recent history?

Q2. Can we optimize within-race tire change and refueling strategy, based on the

predicted future performance of a racer?

Q3. Can we gain insight from past races that can assist the team for a future race?

Considering question Q1, the design of in-race data-driven strategy critically relies

on our ability to forecast the performance of the racer based on his and his neighbors'

recent race history, the state of the race up to that point, and any decisions he can

potentially make (zero tires, two tires and four tires). The racer's recent history can

include the number of other racers he overtook, the racer's speed, rank position, and

the age of each of his tires. Another valuable outcome of answering Q1 is to be able to

forecast the finishing rank as early as possible within the race. This is conventionally

forecasted using season level data, before the race even starts.

To determine strategy, we need to know beforehand what the impact of a racer's

tire change will be on his rank position and deceleration. It is possible for a racer to

rapidly gain rank position by changing zero or two tires during a pit stop, but this

action can penalize his ability to maintain this rank position throughout the next

portion of the race. This effect can be highly complex, and dependent not just on

the racer, but on the tire-change decisions of other racers, the track itself, the track

temperature and weather, and the type of tire used for the race. Yet, being able to
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forecast the impact of a tire change decision can assist with critical elements of racing

strategy; in other words, answering Q1 can lead to an answer for Q2. For instance,

a reasonable myopic strategy is as follows: if we predict that a two tire change is

likely to lead to a loss in track position compared to a four tire change, the team

captain could make a decision to change four tires. Answering Q2 is important since

strategies may have a large impact on the racer's success when all his peers are almost

equally skilled and the cars have very comparable speeds.

Besides the goals of real-time prediction and decision making, a knowledge dis-

covery framework for racing can help to provide specific insights into racing strategy

(Q3). It can be a valuable tool for reasoning about how different actions in the past

have impacted the subsequent rank positions of the racers. For instance, does the

value of the prediction depend on the forecast horizon? Does the variability of laps

raced between tire changes have an effect on ranks? We would like to know answers

to such questions because they can lead to better predictions and insight for future

races.

Section 6.2 provides related work. In Section 6.3, we describe some of the com-

plexities we encountered in the knowledge discovery process in our setting. We also

describe some experimental shortcomings that restrict the predictions and inferences

we can make. In Section 6.4, we define the prediction problem and describe the

key hypotheses about our data that guide our construction of features for predicting

change in rank position. A straightforward myopic decision making step is proposed

to address Q2. Prediction results are provided in Section 6.5 answering Qi. Some

insights from the knowledge discovery process are mentioned in Section 6.6 in the

attempt to answer Q3.

6.2 Related Works

Work on knowledge discovery systems in different domains have highlighted some of

the important challenges that we also face in this work [see for instance Fayyad et al.,

1996, Frawley et al., 1992, Hand, 1994, Langley and Simon, 1995, Provost and Kohavi,
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1998, Brodley and Smyth, 1997, Saitta and Neri, 1998, Rudin and Wagstaff, 2013].

In particular, these works have highlighted the importance of designing knowledge

discovery systems around the unique aspects of a domain. These works also emphasize

the key choice of proper evaluation metrics, and being able to provide insight that

goes beyond prediction accuracy, and back to the important aspects of the domain.

The choice of machine learning algorithm itself is not always a critical choice within a

knowledge discovery system; in our data mining step, we found that several different

algorithms have essentially similar performance.

There have been few recent attempts to use prediction models for in-game decision

making in sports such as baseball [Gartheeban and Guttag, 2013, Ganeshapillai and

Guttag, 2012], basketball [Bhandari et al., 19971 and cricket [Bailey and Clarke, 2006,

Sankaranarayanan et al., 2014]. This is contrast with season level statistical modeling

which is well researched in the literature, due to applicability in sports betting and

fantasy sports in addition to helping the teams improve their competencies. See

Schumaker et al. [2010] for a brief overview. Note that for professional racing, season

level research has been sparse [see for instance Graves et al., 2003, Pfitzner and Rishel,

2005, Depken and Mackey, 2009, Allender, 2011] and our work is the first to explore

in-race predictive modeling.

For baseball, Gartheeban and Guttag [20131 developed a prediction model to de-

cide when to change the starting pitcher as the game progresses. Similar to our

workflow, they proposed several features from historical data and the current game's

history to predict a pitcher's performance. At a given point in the game, they forecast

the future performance of the pitcher, compare it to a pre-defined threshold and make

a binary myopic decision whether the pitcher should continue or not. A related work

[Ganeshapillai and Guttag, 2012] looks at predicting the type of pitch that will be

thrown by a pitcher given the current state of the game and historical data about the

teams playing.

In basketball, Bhandari et al. [1997 developed a knowledge discovery and data

mining framework for the NBA (National Basketball Association) with the aim to

discover interesting patterns from basketball games. This and related (often pro-
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prietary) systems have been in operation with many basketball teams over the past

decade. Such solutions are tailored for offfine use and do not address in-game predic-

tion and decision making as we do. There has also been some recent work [Skinner,

2012 exploring in-game decision making as a function of time remaining in the game

without building any prediction models.

A key difference between predictive modeling for professional racing compared to

that in basketball (and baseball) is the nature of the evolution of the game. In racing,

the race history cannot be easily segmented into "plays". At each point in time of a

race, the entire history of the race determines the racer's current rank position. On

the other hand, in basketball, the game is restarted at the beginning of each play, and

the team's current state does not heavily depend on their state before the restart.

One can reasonably approximate a basketball game to be a sequence of independent

plays, and even model them as independent observations drawn from a distribution.

These long-standing correlations of decisions within the race makes racing inherently

much more difficult to model.

In cricket, Bailey and Clarke [20061 and Sankaranarayanan et al. [2014 explored

machine learning methods to predict the future states of the game given features

related to the current state of the game and the features of the two teams competing.

They consider both season level data and the data collected within the game to

predict future scores. Although both these works are closer to what we do, there

are a couple of key differences: (a) these works involve a much lower dimensional

prediction problem (about 15 features in Sankaranarayanan et al. [2014}) compared

to ours (> 100, see Section 6.4), and (b) professional racing involves many more

strategic agents (for NASCAR, about 40 racers race) compared to cricket (2 teams,

which is is also the case for basketball and baseball). We believe having a high

number of strategic agents can have significant impact on predictability and makes

the knowledge discovery process more critical compared to two-team games.

Another key feature of our work is that we explore the knowledge discovery

pipeline extensively compared to the previous works. This is partially because for

basketball, baseball and even cricket, there has been significant prior academic re-
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search output compared to professional racing. In this work, we critically examine

many details and characteristics of NASCAR in Section 6.3. For instance, we observe

Simpson's paradox-like phenomena between two explanatory variables (slope of lap

times and number of tires changed). Our exploration of data can help future work on

racing focus more on statistical modeling and prediction as in baseball and basketball.

The need for predictions at the finest granularity of racing is two-fold: 1) Previous

studies on racing, like those using only race-level and season-level statistics may be

too coarse to be beneficial within the middle of a race. For example we believe that

statistics computed during the race, for instance, the state of the race after 100 laps,

often reveals more about the outcomes of the current race than the predictions made

by the previous studies. Season level and multi-year studies are also susceptible

to changes in the rules or other changes to the sporting event. For example, for

NASCAR, rules have changed multiple times, the latest ones being in 2008 and 2011.

This further reduces the effectiveness of race-level statistics for aiding racing strategy.

2) By calculating within-race predictions dynamically as the race evolves, we can

better quantify the contribution of real-time observations towards predicting outcomes

in each portion of the race.

Finally, we note that the approach we take to building a knowledge discovery

framework and decision making system for professional racing can be applied to

other racing sports with similar structural characteristics, including MotoGP [see also

Streja, 2012], Formula 1, IndyCAR, various other types of races within NASCAR, and

also bicycle races and marathons. 2

6.3 Data and observations

We define some of the race-specific terms used in the chapter:

* Lap: One full trip around the race track.
2MotoGP is a motorbike racing competition where races last about 30-45 minutes with 20-30

laps. Formula 1 races are quite different than NASCAR races in that the cars within the same race
can be mechanically very different, the rules are different, and the level of data can be at a much
finer granularity. IndyCAR racing is similar to NASCAR racing but the type of car is different.
NASCAR has several different stock car and truck races beyond the particular series in our dataset.
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. Lap time: The time for a racer to finish one lap.

e Rank position: The position of the racer at the end of a lap. If the position is

1, the racer is leading the race.

* Pit stop: The event in the race when a racer stops racing and enters the pit (area

where cars are serviced) with the intention of changing the tires or refueling.

* Caution lap, or yellow lap: A lap is called a caution lap3 when the racers are not

actively racing, have slowed down and are following a "safety car." Caution flags

(yellow flags) are displayed due to a hazard on the track (crash, tire burst, etc).

In our racing dataset, caution flags are a random influence that substantially

affect race dynamics.

e Green lap: Laps which are not in caution are called green laps.

* Warm-up period: After a racer's pit stop or after the end of a caution, the warm

up period includes green laps in which the lap times are decreasing successively

as the car gains speed.

o Epoch: The green laps after the warm up period until the next pit stop or

caution lap constitute an epoch.

a Outing: The green laps in the warm-up period and epoch together form an

outing for the racer.

In our study, we use race data constituting 119,178 lap times and 119,178 rank

position observations from 2,932 total outings, including each racer's lap times and

rank positions for each one of the 5,352 laps within our dataset. We also have caution

lap and pit stop information (time, number of tires changed) for each racer. (Some

races have unusual race characteristics, for instance some are road courses and some

had insufficient or missing tire change information. Thus these were not used in our

study.) Races comprising this dataset are listed in Table 6.1. The number of laps in

3The rules that define a caution lap are different for different types of professional races. The
definition we provide suffices for our analysis of NASCAR races.
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Table 6.1: Summary of the 17 race dataset used in our experiments.

NASCAR Sprint Cup 2012 Dataset

Bristol First Bristol Second Charlotte First Chicago
Darlington Homestead Kansas First Kansas Second
Kentucky Loudon First Loudon Second Martinsville Second

Michigan First Michigan Second Phoenix Second Pocono First
Vegas III

the 17 races we consider ranges between 160 and 500 laps. The total number of pit

stops per race varies between 170 and 373 and the average number of pit stops per

racer varies from 4 to 8.9. The number of cautions varies between 3 and 14.

6.3.1 Complexities of Racing

To give a sense of the difficulty in modeling with racing data, we next discuss general

characteristics of racing and how nonlinear interactions between measurements and

other issues pose a difficulty in modeling and decision making. Several of these

observations have not (as far as we know) been previously quantified, in particular

the "fresh air" effect and the Simpson's paradox effect from tire change decisions

discussed below.

Tire change decisions: As we discussed, this is a major strategic decision for each

team. In isolation, a car with four fresh tires is generally faster than a car with only

two fresh tires, however, it is not that simple during a race: the speed of racers is

heavily dependent on more than just tire freshness; as we will discuss, rank position

and the ability to overtake other racers plays an important role in determining speed.

A two tire change may or may not be an overall advantage depending on whether the

racer is also able to maintain their rank position.

Choosing a two tire change saves a racing team about 6 seconds on average over

a four tire change, though there is a high variance in pit times. Pit lanes have speed

limits that dictate the minimum pit road time, and the racer has to slow down from

the speed limit while stopping at his designated stop, make turns into and out of

his stop and avoid other racers executing pit stops around him. These elements and
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Figure 6-1: Histogram of pit times taken by various racers in our dataset.

the actual performance of the pit crew in servicing the car determine the pit stop

times. Figure 6-1 shows the histogram of pit times. One can see three peaks (around

4 seconds, 7 seconds and 14 seconds) and a peak at 0 seconds. The 0 second pit

times are due to penalties among other causes (including missing data defaulting to

0). The other three peaks are due to the decision to replace zero, two and four tires

respectively. A zero tire pit stop is for refueling only.

Saw tooth profile of lap times: Examples of the lap-time time series for typical

racers in our dataset is shown in Figure 6-2. Lap times increase (the car gets slower)

as the tires wear down over the course of an outing. Towards the end of an outing,

one can also see that the lap times sometimes flatten out; the lap times deteriorate

at a slower pace later in the outing. We use the slope (estimated rate of change in

seconds per lap) of these lap times over the course of an outing to measure tire wear.

See Figure 6-3 for an example of how slopes are computed.

The "fresh air" effect, which is a nonlinear interaction between lap time

and rank position: In general, lap times are lower (better) for racers near the front

of the pack. This is illustrated in Figure 6-4 for three typical laps in three different

races. Remarkably, a linearly increasing trend is plainly visible between lap time and

rank position in each figure. That is, the lap speeds of racers at the front of the

pack can be substantially faster than those in the middle of the pack, which can be

substantially faster than racers at the back of the pack.
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Figure 6-2: Sawtooth profile of typical racers in a race.
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Figure 6-3: Plot of lap times and linear fits for a 15th ranked racer in a race. Slopes
are computed by fitting a line through the lap times in an outing using simple linear
regression.
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Figure 6-4: Fresh air effect: ordered lap times of the racers at lap 50, sorted by rank
position, for two separate races. Each dot represents a racer's lap time. There are
about 40 racers in each plot.
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Figure 6-5: Slopes of lap times within an outing vs initial rank in the outing, for two
separate races. Each dot represents a racer's outing within a race. In a typical race,
each racer has multiple outings; thus, there are multiple dots for each of the ~ 40
racers in each race.

Because racers near the front of the pack tend to go faster, their tires tend to

wear out more quickly. In fact, we observe that the slope of lap times over an outing

increases more quickly for cars at the front of the pack. This is shown in Figure 6-5.

Actually this effect is highly nonlinear: the cars in the front of the pack and the back

of the pack tend to have higher slopes, and the cars in the middle tend to have lower

slopes. The effect is fit nicely by a degree-2 polynomial, as shown in Figure 6-5.

Simpson's paradox 4 [Simpson, 1951] for the number of tires changed and

the slope: Consider Figure 6-6's leftmost subplot, which shows the distribution of

slopes for two tire changes and the distribution of slopes for four tire changes during

a race. It is clear that in this race, cars that took two tires had much faster wear

(higher slopes) than cars that took four tires. This seems to indicate that older tires

tend to wear faster for this race, and thus if the epochs are sufficiently long, it would

generally be strategic to take four tires. However this is a severely incomplete picture.

4 Simpson's paradox occurs when conclusions drawn from parts of a dataset are the opposite of
conclusions drawn from the union of these parts. For example, let k with i = 0, 1 and j = 0,1 be

q1 ,,

the fractional frequencies of co-occurrence of a factor i and a lurking factor j. Then, a Simpson's
like paradox occurs due to the following:

Poo >PLO and E'I > L'" does not imply PO'O + PiO + 1,1
qo,o q1,o qo,1 ql,i qo,o + qo,1 q1,0 + qi,i
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In fact rank position is a lurking variable, in the sense of Simpson's paradox, and has

the following effects:

(a) Because only cars that have generally better rank positions take two tires, their

slopes are also higher (as we showed in Figure 6-5). In fact, for racers in ranks

26-43, there are no instances of two tire changes compared to 49 instances of

four tire changes. This results in a lower median slope for four tire changes, as

shown in the leftmost subplot in Figure 6-6.

(b) If we break down our data according to rank positions 1-5, 6-15 and 16-25 as

shown in the three subplots to the right in Figure 6-6, we see that the median

slope values across ranks are actually very similar for two tire changes and for

four tire changes, in seeming contradiction with the leftmost boxplot.

Thus, conclusions drawn from simply looking at slopes for two tire changes and slopes

for four tire changes, as in the left of Figure 6-6, would be misleading. Note that the

impact of the two or four tire decision depends on many factors besides rank position.

When the distribution of slopes are similar as in the box plots for rank positions 1-5,

two tire changes would be strategic since the racer could gain rank position without

any predictable change in the rate of tire wear.

Race dynamics around a green lap pit stop are different from those after

a caution lap pit stop: Racers may choose to pit during a green lap to refresh

tires and/or refuel. Not all cars take green lap pit stops around the same time, which

causes a high variance in rank positions around the laps when these pit stops occur.

For instance, a 20th rank position racer, who has been in the same position through

the outing, can become a first rank position racer temporarily if the 19 racers in front

of him pit while he does not. Usually, he will then pit in the succeeding laps. While

the other cars are in the pit and he is not, his first rank position is artificial. Also,

in this case, his pit entry rank position would be recorded as 1. Thus, the green lap

pit stops can be very problematic for our analysis, as rank position is not completely

meaningful when other racers are in the pits. Caution lap pit stops, on the other

hand, are less susceptible to high variability. In the case of outings preceded by green
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Figure 6-6: On the left, we include slopes for all ranks on a single boxplot. The right
three boxplots again show the distribution of slopes, but separated by rank position.
Rank position can be considered the lurking variable for Simpson's paradox, as the
right three boxplots refute the hypothesis from the left boxplot - namely, that the
slopes for two tire changes are substantially larger than the slopes for four tire changes.
In these boxplots, there were 26 two-tire changes and 176 four tire changes. These
data are from a track in the midwest of the U.S.

lap pit stops, the racers are more spread out on the track than in the outings preceded

by caution lap pit stops (which are similar to a race restart).

Game theoretic aspects (neighborhood interaction): Neighboring racers im-

pact each other due to shared track space. This is a key difference from other racing

sports like athletic short distance track events or indoor swimming where there is

minimal neighborhood influence since each player has their own assigned lane.

6.3.2 Data issues

Besides the inherent complexities of racing discussed above, there are some natural

challenges that arise when making decisions based on historical data. In NASCAR,

the decision to replace two tires vs four tires is one such case, particularly due to the

data problems of control, imbalance and noise described below.

No controlled experiments: Recall that our objective was to make informed deci-

sions (two tire or four tire) based on race history. Unfortunately, we cannot perform

randomized controlled trials in order to measure the effect of a decision; we are lim-
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Figure 6-7: Bar plot of two and four tire decisions per race for our dataset is plotted
in (a). Left (blue) bars are the total number of two tire decisions in the race and right

(red) bars are the total number of four tire decisions. In (b) is a bar plot of median
lap times observed per race for our dataset.

ited by what we can do with the historical data. One way to partially handle this

shortcoming is to pick "similar" racers who differ only in their tire decisions, and

verify whether there is any difference in the causal effect of the decision. Again this

is unsatisfactory, as controlling for all other variables in the system is very difficult.

Imbalance: There are far more four tire pit stops than two tire pit stops. This

makes it difficult to quantify the effect of the number of tires on the performance of

the racer. Figure 6-7(a) shows the number of two and four tire pit stops in each race

of our dataset. In addition, almost all practice before a race is based on four tire

changes with the intention of tuning the settings of the car. Here, the total number

of tires and total laps that can be run are budgeted as well.

Races are different: We would like to be able to generalize knowledge (or borrow

strength) across races. However, races can be fundamentally different, prohibiting a

straightforward merging of observations across races. The number of laps in the race,

the length of the tracks, their physical characteristics (e.g., banking characteristics)

can be very different, which all heavily affect lap times. For instance, Figure 6-7(b)

shows the median lap times of races we analyze, where the median is taken over all

racers and all laps; these heavily vary from race to race. In general, statistics of pit

information and lap time information are not race invariant, and cannot be directly
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compared across races.

Noise: "Irregularities" in racing occur very regularly, such as accidents (hitting the

wall, spinning out of control), running completely out of gas, other mechanical fail-

ures, and incurring race penalties. These irregularities can affect the quality of our

predictions if they are not carefully filtered out. Another aspect that adds to the

noise is out-of-sequence pit stops, where a racer takes a pit stop at a different time

than the majority, altering the rank positions of others temporarily. Race rules such

as "free pass"5 and strategies such as staying out to lead a lap to earn a point also

make our observations noisy.

6.4 Prediction Framework

Keeping in mind the complexities of racing and the data issues discussed above, we

now discuss our framework for real-time prediction and strategy in racing.

6.4.1 The prediction problem

Based on Section 6.3.1, we made the following choices about the time scale of learning

and the dependent variable.

We chose to forecast the decision-to-decision loss in rank position for each racer,

for each decision during the race. This is the change in rank from a car's pit entry

to the end of its next outing when it enters the pit again. If we are able to predict

this quantity, taking into account the racer's current state, his race history and pre-

vious decisions, this will tell us whether the racer's current strategy may give him

an advantage between the current decision time and the next one. Note that since

a majority of outings end due to cautions, the racer's strategy does not generally

determine the end of the outing. The prediction interval includes a pit stop and the

outing following it, for a given racer. Our system makes a prediction before each pre-

diction interval. Because of this choice of model formulation, our prediction problem

sThe first of the racers who are one lap down gets to join the racers in the lead lap if a caution
occurs.
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becomes a supervised learning problem, for which we can use a range of supervised

learning techniques.

We chose to model change in rank position and not other functions of the outing

(for instance, slope of lap times) because improvement in rank is really the goal of the

team, rather than improvements in, for instance, lap time. One might be tempted

instead to model the direct results of a tire change decision such as lap times, or

equivalently, the slopes. However, slopes of lap times, though indicative of a racer's

performance, are not a direct metric of success at the finish of the race. Also, as we

discussed earlier, lap time measurements are heavily tied to rank position (see Section

6.3.1). Predicting rank position can still be complicated since, as we discussed earlier,

it can depend on the timing of other racers' pit stops.

To build the prediction model, we use all race information from the current racer

and his peers up to the pit entry lap index where our prediction interval starts. We also

incorporate the team's planned action during the pit while learning from historical

data. This naturally leads to the following myopic strategy: given a learned model,

we can compute predictions for each planned action (0, 2 or 4 tires) and determine

which action(s) might be strategic between now and the next time a decision is made.

6.4.2 Preprocessing

Our model needs to bypass the data issues discussed earlier, for instance the artificial

jumps in lap times caused by pit stops and cautions (the jumps in the sawtooth

shape of the lap times discussed in Section 6.3.1). The key to this is to correctly

create automated definitions of "outings," "warm-up laps," and "epochs." We found

that the prediction quality, interpretation of the prediction model, and potential

value of predictions to the racers and the teams improved dramatically as a result

of improving these model inputs, along with the other preprocessing steps discussed

just below. The definition we developed is fairly complicated and not fully discussed.

For instance, our definitions are robust to events such as pit stops during green

flags which can cause a racer's rank position to be artificially inflated or deflated,

impacting results. In the example we gave earlier, a racer with rank position 20 can
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come into the pit with rank position 1 if the 19 racers in front of him pit before

him. To minimize the number of artificially inflated or deflated rank positions in our

processed observations, we alter the pit entry lap indices appropriately. This way, the

definition of the epoch has a smaller number of laps, and aims to contain only the

laps for which cars in front of the racer had not gone into the pit.

6.4.3 Key hypotheses

Based on exploratory analysis of lap time and rank position measurements, we believe

the following key hypotheses impact our ability to predict change in rank. To our

knowledge, these have not been published before.

"Rank momentum" leads to useful predictive factors: We compute a racer's

"rank momentum" based on whether he is generally gaining or losing ranks. Simply,

a racer that started at the back of the pack and continues to obtain better rank

positions has a different trajectory than a racer that started out at the front of the

pack and gradually moves towards the back. Rank momentum may help alleviate

issues with the "fresh air" effect described in Section 6.3.1. Rank momentum terms

rely on discrete derivatives of rank position time series. They capture information

about racers relative to each other. This is different than the slope of lap times ("lap

time momentum") which considers the racers in absolute terms, rather than relative

to each other.

"Protection" and other neighborhood effects can lead to useful predic-

tive factors: As we discussed, when a racer takes two tires instead of four tires, this

can potentially put the racer in a better rank position initially, but he must maintain

his position in the outing afterwards to gain ranks. Our evidence suggests that it

is sometimes easier for a racer to maintain rank position if several cars behind him

also take two tires. This way he is "protected" by the cars behind him - a faster car

(for instance one that had taken a four tire change) coming from behind would need

to pass several other cars before passing him. Figure 6-8 illustrates this phenomena

using race data. Here, in a certain block of the race, the rank profiles for racers who

took two tires beforehand are plotted. We see that racers with ranks 13-19 took two
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Figure 6-8: An instance of protection: We plot rank position vs. relative lap index
for a race. Cars in ranks 2, 4, 6, 13-19 took two tires and the remaining cars took

four tires. For clarity, we show only the rank positions of the cars that took two tires

during the sixth/seventh lap. The four tire cars overtook some of the two tire cars as

seen by the upward moving rank profiles in the upper half of the graph. There were

also some two tire cars that did not change rank position as seen by horizontal lines

in the lower half of the graph. They were thus protected because many of the cars

behind them also took two tires.

tires before the outing. About half of these racers maintained their rank position

through the outing (see the horizontal lines between ranks 8-11). The remaining half

were overtaken by four tire racers behind them (see the upward drifting curves ending

between ranks 17-27). We hypothesize that the first group of racers were protected

from the four tire cars whereas the latter group of cars were not.

There are other possible neighborhood effects besides protection. For instance, we

hypothesize that the historical performance of a racer's immediate neighbors can help

to predict both change in rank and slope of lap times over the course of an epoch.

We considered two types of neighbors: neighbors who hold similar rank positions

at the beginning of the current outing's pit exit lap6 , and neighbors who have held

similar rank positions and lap times historically within the race (even if they do not

hold similar rank positions in the current outing's pit exit lap). These neighborhood

effects help to capture correlations across racers, whereas rank momentum captures

temporal correlations.

Aggregation across races can be done, and there are two fundamentally

6This information needs to be forecasted as it may not be available before the current outing
begins.
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different types of races. Our evidence suggests that it is possible to generalize

across races. That is, we can borrow strength from data of similar races to make

improved predictions. This type of across-race regularization helps make the predic-

tive modeling more robust to noise, and helps with the imbalance problem. It is also

particularly useful at the start of the race: using another race's data is better than

the alternative, which is no data at all.

Through descriptive statistics, we made the hypothesis that there are fundamen-

tally different types of races, namely those for which cars typically lose position after

a two tire change (Group A), and those for which cars typically maintain their rank

position after a two tire change (Group B). Thus, in Group B, there is more incentive

to take two tires instead of four tires to gain rank positions. In reality, the deter-

mination of which group the race belongs to can be done using data from practice

and qualifying stages that occur on the same track prior to the race. The fact that

our observations are race-specific rather than racer-specific indicate that properties

of the track, tires, and weather matter more than racer-specific details in determining

how tire change decisions should be made within a race. In our experiments, we did

not explicitly use track specific information for this clustering and instead used the

given lap position and lap time information to come up with the two groups: Group

A (with loss in rank pattern) included six races and Group B (without loss in rank

pattern) included the remaining eleven.

6.4.4 Features

Based on the key hypotheses above, we constructed several groups of features for

the prediction problem described in Section 6.4.1. These features heavily rely on the

definitions and pre-processing we established in Section 6.4.2. We developed over a

hundred features, each based on a hypothesis about what might be important for

prediction of change in rank over the course of an epoch. The features fall into these

categories:

e Basic Features: Basic features are constructed from all the historical outings in
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the dataset. These are statistics computed from each outing up to the current

outing within the current race, and the outings within previous races. Basic

features capture: (i) The racer's rank position at the decision time, and whether

his rank position is near the top of the pack or near the bottom. We also include

the racer's starting rank position for the race. (ii) The average of the racer's

rank positions in previous outings (also various percentiles). This indicates how

well the racer is doing generally in the race so far. We also include nonlinear

variations of this type of feature, such as the average of the previous rank

positions squared. (iii) The age of both the left and the right tires at the

decision time. (iv) The average of the slopes of the racer's lap times in previous

outings, based on fits of each "sawtooth" function. This indicates the general

speed of wear of tires for that particular racer. We also use nonlinear functions

combining the racer's past rank positions and the average slope, which helps to

address the nonlinearity due to "fresh air" discussed above.

" Rank Momentum Features: We compute the minimum, maximum and average

of several rank momentum quantities over previous outings within the race.

These features include: change in rank, rate of change in rank, change in rank

times average rank, and rate of change in rank times average rank.

" Protection Features: We compute statistics of the racer's neighborhood. Here,

the neighborhood includes cars within a few ranks of the racer's average rank

over the course of the immediately previous outing. These statistics include rank

momentum features of the neighborhood. These statistics can help to determine

whether the racer might be near cars that he needs to pass, or whether the cars

in his neighborhood are likely to be faster than he is, in which case he might

lose ranks. We further consider the number of neighbors with zero, two or four

tire changes before their outings began.

" Tire Decision Features: The tire decision that happens before the outing is a

critical feature whose impact on the change in rank can help us make decisions

during the race. We can make product features from tire decision features and

241



other features, like whether the racer has taken two tires and is at the front of

the pack, in "fresh air."

* Other Features: These are features that are potentially important, but do not

fall into the earlier categories. These features include:

- An indicator of first outing in the race: The first outing does not have

historical information about past outings of the racer. This makes that

outing different from all subsequent outings of the race.

- An indicator of pit in caution: This feature allows us to address green lap

pit stops differently than pit stops during cautions.

- Time taken in previous pit stops: This feature addresses the variability in

pit times discussed in Section 6.3.1.

- An indicator variable for whether the previous outing was short: If the

previous outing was very short, it may affect the race dynamics in the

current outing. Many racers will not change tires if they have done so

recently.

Using these features to aggregate information across races assists with the data

issues from Section 6.3.2, specifically imbalance and the lack of information at the

start of a race. It is not true, however, that any past race is able to assist with

prediction in any current race: our grouping of tracks alleviates this problem.

6.4.5 Prediction to Decision

We built a real-time prediction system by re-solving the batch learning problem at

each lap. Specifically, to do this for a given racer, at each lap we compute his predicted

change in rank position in the next outing given a zero, two, or four tire decision

that he may choose to take in a pitstop in the near future. Comparing these three

predicted change-in-ranks against one another helps the crew chief of the team make.

a well-informed call.
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6.5 Experiments

We experimented with several state-of-the art experimental machine learning tech-

niques that permit different combinations of the features we created. In particu-

lar, we used ridge regression7 [Hoerl and Kennard, 1970], support vector regression

(SVR)8 [Drucker et al., 19971 with a linear kernel, LASSO 9 (Least Absolute Shrinkage

and Selection Operator) [Tibshirani, 19961 as well as Random Forests for regression

[Breiman, 2001a] and two baselines. Ridge regression and LASSO are very simi-

lar techniques in that both use the same least squares loss function, but LASSO

uses f, regularization to determine the coefficients, whereas ridge regression uses f2

regularization. Support vector regression also uses t 2 regularization, but uses the

c-insensitive loss function. Random Forests is an ensemble method that averages

predictions from many different decision trees. The two baselines are as follows:

e Baseline initial rank: We always predict that the change in rank over the

course of the prediction period is zero.

* Baseline regression to the mean: We always predict that the final rank at

the end of the prediction period will be the racer's average rank from his previous

epochs. This means the predicted change in rank will be the difference between

his historical average rank and his rank at the beginning of the prediction period.

Because we do not have control over data generation as discussed in Section 6.3.2,

the linear model coefficients (e.g., of support vector regression, ridge regression and

LASSO) cannot be reliably interpreted in the ceteris paribus structural form. This

7Given data {xi, Ji}!.I and a constant C, we obtain linear model w* E arg min,. IIWI +
C 1.(wIzX - y,)2_

8Similar to ridge regression, we get w* from solving the following for a fixed parameter r > 0:

1 II I2 + C
|il + C +

subject to yi - wTxi 5;E + i Vi =1,...,n

wTXi - y E + i =1,...,n

i ;> 0,t is > 0 i + , ...- n.

9Similar to ridge regression, we get w* E arg min. |1W||1 + C n E (WT, - i2.

243



means that if we are to quantify the effect of the tire decision feature on the subsequent

change in rank position, we need the other features to be as orthogonal to the tire

decision feature as possible. Nonetheless, our approach is reasonable as prediction

performance is also primarily desired.

6.5.1 Metrics

There are no agreed upon domain specific measures of success to employ for our

prediction step. We decided to use R2 (r-squared)' 0 , RMSE (root mean squared

error) and sign accuracy" as the evaluation metrics for the prediction models on

out-of-sample data. R2 describes the proportion of variance of the dependent vari-

able (change in rank position) explained by the regressors (features in Section 6.4.4)

through the prediction model. For a perfect relationship it is 1 and for no relationship

it is 0. Sign accuracy captures the proportion of time we predict correctly whether

the rank increased, decreased, or stayed the same.

6.5.2 Prediction performance

We performed two sets of experiments, using data from all outings that were suffi-

ciently long. The first involves predictive accuracy of the different models. In the

second experiment, we observe how the weight of the two tire indicator feature changes

with outing length.

* Predictive Accuracy: We built prediction models for each group. This al-

lows us to investigate the change in prediction performance due to grouping.

We adopted the following data splitting strategy for evaluating predictive ac-

curacy: we used the outings at the beginning part of the race in our training

and validation sets and reserved the ending part of the race for testing. In this

way, we avoid data leakage by training only on the earlier parts of the race to

1OR2 is defined to be 1 - , where f is the prediction model. Note that R2 can
be positive or negative.

11We define sign accuracy to be equal to 0 lff(z)<O] + Eyj- l[f(,=OJ+ I,5> 1fftz)>O]).
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evaluate predictions for the later parts. We could have also chosen to use all

outings of some races in the training and all outings of the rest of the races for

final testing. In our experiments, we did not find a noticeable difference using

this type of data splitting.

o Variation of the weight of the two tire decision feature with outing

length: We built prediction models to forecast the change in rank over the

current outing at pre-specified laps, namely, one lap after pit exit, two laps

after pit exit, and so on up to twenty-five laps after pit exit. Through this

experiment, we expect to gain insight on the effect of outing length on feature

weights in a linear model like LASSO.

For both of these experiments, we used 5-fold cross validation to set the appro-

priate regularization coefficient (or parameter values in case of Random Forests). We

repeated splitting the data into 5 folds, 10 times to make the cross validation proce-

dure more stable" and used the same set of folds for all the models used (to control

for split variance).

The results of the first experiment characterizing performance of the methods on

test data using different metrics are plotted in Figure 6-9. Figure 6-10 shows the

values of the regularization parameters chosen for each group. The results for the

second experiment characterizing the effect of outing length on the model weight of

the two tire change feature are plotted in Figure 6-11. We summarize some of the

findings from these experiments below:

Predictive Accuracy:

a From the prediction performance plots in Figure 6-9, we can see that the ridge

regression, SVR, LASSO and Random Forests are significantly better than the

baseline methods. The machine learning methods give very similar held out test

set performance. Further reduction in RMSE, increase in R2 and increase in

1
2 Since the number of observations is comparable to the number of features, a single 5 fold split

may lead to some folds having much less training error than others. For instance, if we split again,
we may end up picking a different regularization parameter. We found 10 repeats to give us a cross
validation matrix with significantly less variation across folds.
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sign accuracy may not be possible because of the highly strategic and dynamic

nature of racing.

* Predictions on the test set are somewhat worse than performance on the training

set. This is not due to over fitting, it is because the training distribution differs

from the test distribution due to the following:

1. Later outings of a race have different dynamics than the beginning part of

the race. For instance, the racers are closer to the finish line in the later

outings, so their risk profiles change, leading to more aggressive driving,

and typically there are a higher number of cautions.

2. Two-tire decisions acquire relatively more significance during later outings

and are typically observed more during that period of the race. If there

are fewer two-tire changes in the earlier part of the race than in the later

part, we may not be able to accurately characterize the later part of the

race from the earlier part.

Variation of the weight of the two tire decision feature with outing length:

In Figure 6-11, we see that in Group A (with loss in rank pattern), there is a positive

weight on the two tire change indicator. In Group B (without loss in rank pattern),

there is a negative weight on the two tire change indicator. This effect becomes more

extreme as the outing length increases. This really shows the difference between the

two groups: the effect of a two-tire change can be quite different.

6.6 Some Insights

In this section we highlight some insights and some cases where predictive modeling

is able to forecast large change in ranks using the historical features.

Predicting outing length is not critical: We find in our experiments that the

length of the outing is not an important predictor of change in rank position as long as

it is sufficiently long. This is actually quite useful to know as it saves us the trouble of

having to forecast outing length, which is very difficult. The reason for outing length
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Figure 6-9: Predictive performance of various models over a held out test set are

shown for races in Group A and Group B. The y axis plots the RMSE (lower is

better) for the top subplot, R2 (higher is better) for the middle subplot and the sign

accuracy (higher is better) for the bottom subplot.
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Figure 6-10: For both groups of races, we plot the mean (over 10 repeated choices of

5 validation sets) of the mean squared error along with error bands corresponding to
1 standard deviation above and below while building a LASSO model. The vertical
line represents the regularization constant for which the mean cross-validation error

is the minimum.
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Figure 6-11: Variation in the weight of the two-tire decision feature in LASSO as a
function of the outing length. For Group A, the weight is positive and increasing,
indicating that making a two tire decision increases the change in rank (loss in rank).
This effect increases as the outing length increases. An opposite effect is observed in
Group B.

not to be necessary could be that after the initial few laps of a long outing, the racers

are typically sufficiently spaced apart on the race track, so that the change in rank

position remains relatively constant irrespective of the length of the outing.

Note that this observation does not conflict with (and can actually be seen using)

Figure 6-11: as the length of outings increases (towards the right of the figure), the

weights stabilize.

It is hard to beat the baseline initial rank with respect to the RMSE: In

many of the outings observed, racers typically change their position by zero, one or

two ranks. Thus the baseline trivial model that predicts zero change in rank all the

time does fairly well with respect to the RMSE. It does not, however, perform well

with respect to the R2 or sign accuracy metrics. In fact, since it always predicts zero,

and cars stay in the same rank position 20% of the time, the sign accuracy is 20%.

Validation through expert commentary: Expert commentaries1 3 that are typi-

cally stated either before or after the race can also be used to qualitatively validate

the inferences of our modeling approach. For example, some commentaries about the

characteristics of tracks that influence racing strategies and outcomes for 2012 were:

* "As your fuel load burns off, you gain a little bit of speed on track... the tires

1 3For instance, based on pre-race commnents by the crew chief of car 48 for 2012, among others.
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aren't falling off much ... "

0 "I don't think tire wear is going to be very high ... "

* "Tires don't really seem to be making a huge difference in lap times ... "

* "... crew chiefs must decide whether to pit or not and whether to take two tires

or four."

4 "... you are going to see two tires, you are going to see four tires ... "

When we looked at the tracks that the experts were commenting on, we found that

the first three comments corresponded to tracks in Group B. Recall that Group B

are tracks for which the number of tires changed tends not to matter, and where

we recommended taking two tires rather than four because there is no loss in rank

pattern. Our grouping agreed with the expert commentary in all three cases. The

last two comments corresponded to tracks in Group A, where we correctly identified

that there was a perceivable effect of a two tire strategy on rank position outcomes.

There are other types of commentaries that are useful in decision making but

are not directly related to our grouping. For instance, some tracks have far spaced

and few caution lap periods. This is because the track is wide, which reduces the

possibility of cautions, and in turn affects the tire strategy of racers. Thus these

commentaries also help to justify our clustering of races before fitting the prediction

models.

Insights for some extreme outings observed in the dataset: It is of particular

interest to the teams to understand outings where a high change in rank occurs. We

now present some representative cases where change in rank was significantly high

and moderately predictable. See Table 6.2 for a numerical summary of these cases.

We qualitatively describe why our prediction model (in particular, LASSO) was able

to predict in these 'high' change in rank cases. LASSO outputs a linear model, that

is, it provides a weight for each feature, and the weighted sum of features is the

predicted change in rank. These weights can be positive or negative.
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Fifth outing for car #5 in a race in the southern U.S. : Our model pinpointed two

main reasons why this particular racer should gain ranks in the next epoch: this racer

was towards the back of the pack, and his tires did not wear out as quickly as the other

racers in the previous epoch (as indicated by the slope of his lap times). To show

how our model does this, we note first that the feature rank(pit entry lap) encodes

that his rank is towards the back. Second, we note that the feature slope(laptimes of

previous outing)x rank(pit exit lap) incorporates the fact that his tires did not wear

out as quickly as usual for someone in his rank through a low slope in lap times.

Further this race is in Group B, which means that two tire changes do not cause as

many losses in rank position. As it turns out, in this epoch, the racer took two tires,

we predicted that with this choice he would gain a large number of rank positions

(10.36), and he gained an even larger number of rank positions (17).

Fifth outing for car #31 in a race in the southern U.S. : This racer was near the

front of the pack, and in the previous outing, his slope was relatively high for his rank,

indicating that his tires were wearing out more quickly than other racers. Because

of this, again our model used the features rank(pit entry lap) and slope(laptimes of

previous outing)x rank(pit exit lap) to predict that he would lose a lot of ranks over

the next outing. He took zero tires, and we predicted that he would lose 6.11 ranks,

and he lost 13 ranks.

Fifth outing for car #2 in a race in the northern U.S. : Similar to the previous case,

this racer was near the front of the pack through most of the race. But in contrast,

his slope was relatively low for his rank in the previous outing indicating that he had

a fast car or his tires were wearing out slower than other racers. In particular, our

model used the most dominating feature slope(laptimes of previous outing)x rank(pit

exit lap) to predict that he would gain ranks over the next outing. He took two tires,

and we predicted a gain of 2.88 ranks whereas in reality, he gained 5 ranks.

Eighth outing for car #29 in a race in the southern U.S. : This racer alternated

between being near the front of pack and being near the back of the pack in his

previous outings. His rank was low at pit entry for the outing of interest here. In

addition, in the immediate previous outing, his lap times had a high slope (indicating
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a slower car or relatively more tire wear). Our model used the features rank(pit entry

lap) and slope(laptimes of previous outing)x average-rank(previous outing) to predict

that he would lose ranks over the next outing. We predicted a loss of 3.77 ranks and

the ground truth was that he lost 10 ranks (and took 2 tires before the outing).

In all the above cases, many other features were also influencing the change (loss)

in rank variable including features related to the past two tire and four tire changes,

slope(laptimes of previous outing)xfinal-rank(previous outing), functions like square

root and square of final-rank(previous outing) among others. Their influence was

relatively smaller for these outings.

Table 6.2: Some extreme cases where the change in rank variable is high and our

prediction models are able to predict moderately well. Negative change in rank values

mean that the racer gained positions by the end of the outing compared to the pit

entry before the outing. All the outings here are towards the end of the race.

Car # Outing number True change in rank Predicted change in rank Tire decision

5 5 -17 -10.36 2
31 5 13 6.11 0

2 5 -5 -2.88 2
29 8 10 3.77 2

6.7 Conclusion

We described challenges in formulating a prediction problem that leads into the design

of decision making tools for strategic use within a professional sporting event. Careful

use of domain knowledge and transformation of time series data into a supervised

learning framework were the key aspects in our ability to do this. We demonstrated

the validity of our prediction models using data from a professional NASCAR racing

season in 2012.
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