S447

SIMULATION OF CH₄ RECOVERY FROM HYDRATE DEPOSITS BY INJECTION OF CO₂

by

Svetlana V. BELOVA^{a,c*}, Angelina S. CHIGLINTSEVA^{a,b,d}, Marat K. KHASANOV^a, Olga V. DUDAREVA^c, and Vladislav Sh. SHAGAPOV^b

^aSterlitamak Branch of Bashkir State University, Sterlitamak, Russia
^bMavlyutov Institute of Mechanics, Ufa Investigation Center, RAS, Ufa, Russia
^cBirsk Branch of Bashkir State University, Birsk, Russia
^dUfa State Petroleum Technological University, Ufa, Russia

Original scientific paper https://doi.org/10.2298/TSCI19S2447B

The paper presents a mathematical model of CH_4 recovery from gas hydrate deposits via injection of liquid CO_2 . The process of CH_4 recovery is supposed to occur on the moving frontal boundary separating the deposit into two domains. The near domain is saturated with liquid CO_2 and its hydrate while the far one is saturated with CH_4 and its hydrate. Self-similar solutions describing the temperature and pressure fields were obtained. The effect of main parameters on the dynamics of the process under study was explored. It was revealed that at low temperatures of the CO_2 being injected the temperature in the far domain did not exceed that of equilibrium for decomposition of CH_4 gas hydrate. It was also found that with increasing pressure at which CO_2 was injected into the gas hydrate domain, the extension of the region saturated with CO_2 hydrate was increasing. Keywords: hydrate, CH_4 recovery, CO_2 injection

Introduction

Recently, a rather serious alternative to traditional sources of natural gas has become gas hydrates. It is known that quite large volumes of CH₄ gas are concentrated in gas hydrate deposits located in permafrost zones and under the seafloor [1, 2]. Regarding to this, creating various technologies for extracting hydrocarbon gas from gas hydrate deposits is becoming urgent. Conventional methods of extracting CH₄ gas from hydrates are either heating or depressurization which is a rather complex technical problem under negative temperature conditions. Another problem not related to the extraction of natural gas from hydrates is constant emission of large amounts of CO₂ into the Earth's atmosphere [3, 4]. Consequently, the challenge is to seek for a fundamentally possible and promising method of CO₂ utilization. One of such methods is replacing CH₄ in its gas hydrate with liquid CO₂ [5-8]. Such a technology would allow both CH₄ to be recovered and CO₂ to be utilized. It is known that CO₂ hydrate is more stable than that of CH₄. Therefore, the process of replacing CO₂ molecules in its hydrate with CH₄ ones becomes possible [6].

^{*} Corresponding autor, e-mail: svetlanav.86@mail.ru

Experimental studies of the process of replacing CH_4 with CO_2 in its gas hydrate are discussed in [6-8]. In addition, in [8] the process of CO_2 hydrate formation is studied in a range of positive and negative temperatures. According to these, CH_4 replacement in its hydrate with liquid CO_2 will occur at temperatures and pressures that meet the conditions of stable hydrate [6, 7].

Mathematical models for formation and decomposition of gas hydrates when injecting the same gas which saturated the hydrate area in its initial state are considered in [9-13]. The papers [14, 15] present a mathematical model for injection of liquid CO_2 into a porous medium saturated with CH_4 and its gas hydrate.

The purpose of this work is to build a mathematical model of the process of CH_4 recovery from gas hydrate deposits via injection of liquid CO_2 .

Problem statement and governing equations

Let a horizontal area at its initial time be saturated with a hydrate-forming mixture S_{hm0} (that of snow and CH₄) and CH₄ S_{gm0} at a negative temperature of, T_0 , and a pressure of, p_0 , that correspond to the stable state of CH₄ gas hydrate. We assume that liquid CO₂ is injected through the boundary x = 0 at the temperature, T_e , and pressure, p_e , that correspond to the stable state of CO₂ gas hydrate and are maintained constant on this boundary. The phase equilibrium diagram of the system is shown in fig. 1. To determine the dependence of the equilibrium temperature, $T_s(p)$, on the current pressure value, we apply the relation:

$$T_{\rm s}\left(p\right) = T_{\rm (s0)} + T_{\rm s} \ln\left(\frac{p}{p_{\rm (s0)}}\right) \tag{1}$$

where $T_{(s0)}$, $p_{(s0)}$ are the equilibrium temperature and pressure, respectively, and T_* – the empirical parameter.

Figure 1. Phase equilibrium diagram (the H₂O-CH₄-CO₂ system Given the assumptions, we write down a system of governing equations describing the processes of filtration and heat transfer in a gas-hydrate area for a 1-D flow. The process of replacement takes place on the front surface of x(s) which divides the area into two domains. The near domain is saturated with liquid CO₂ and its hydrate. The far domain is saturated with CH₄ and its hydrate. Lower indices i = d and i = m correspond to the near domain, 0 < x < x(s), and the far one, $x(s) < x < \infty$, for CO₂ and CH₄, respectively.

We write the mass conservation equations for each domain:

$$\frac{\partial}{\partial t}(\rho_i S_i) + \frac{\partial}{\partial x}(\rho_i S_i v_i) = 0$$
(2)

where ρ_i is the true density, S_i – the saturation, and v_i – the velocity of the *i*th phase. The energy conservation equations are written:

$$\rho c \frac{\partial T_i}{\partial t} + \rho_i c_i S_i \upsilon_i \frac{\partial T_i}{\partial x} = \lambda \frac{\partial^2 T_i}{\partial x^2}$$
(3)

where c_i is the specific mass heat capacity of the i^{th} phase, ρc – the specific volume heat capacity, and λ – the thermal conductivity of the system.

For the filtration process Darcy's law can be written:

$$S_i \upsilon_i = -\frac{k_i}{\mu_i} \frac{\partial p_i}{\partial x} \tag{4}$$

where μ_i is the gas dynamic viscosity and k_i is the gas permeability coefficient.

For CH₄ the Mendeleev-Clapeyron equation is written:

$$\rho_{\rm m} = \frac{p_{\rm m}}{R_{\rm g}T_{\rm m}}$$

For the liquid phase the equation of state is:

$$\rho_{\rm d} = \rho_{\rm 0(d)} \exp\left[\beta(p_{\rm d} - p_{\rm 0(d)})\right]$$

where β is the volume compression ratio of liquid CO₂.

Taking into account the conditions of mass and heat balance on the boundary between the two domains, the following relations are satisfied:

$$-\frac{k_i}{\mu_i}\frac{\partial p_i}{\partial x} = \left(S_{\rm m} - \frac{\rho_{\rm hm}G_{\rm m}S_{\rm hm}}{\rho_{\rm m}}\right)\dot{x}_{\rm s}$$
(5)

$$S_{\rm hd} \rho_{\rm hd} (1 - G_{\rm d}) \dot{x}_{\rm s} = S_{\rm hm} \rho_{\rm hm} (1 - G_{\rm m}) \dot{x}_{\rm s}$$
(6)

$$\lambda_{\rm d} \frac{\partial T_{\rm d}}{\partial x} - \lambda_{\rm m} \frac{\partial T_{\rm m}}{\partial x} = (\rho_{\rm hd} S_{\rm hd} l_{\rm hd} - \rho_{\rm hm} S_{\rm hm} l_{\rm hm}) \dot{x}$$
(7)

where $l_{\rm hi}$ is the specific heat of hydrate formation for the $i^{\rm th}$ phase and $\dot{x}_{\rm s}$ is the interface velocity.

The value of hydrate saturation in the CO_2 zone can be found from eq. (6) which is a condition of the hydrate-bound CO_2 mass balance:

$$S_{\rm hd} = \frac{S_{\rm hm} \rho_{\rm hm} (1 - G_{\rm m})}{\rho_{\rm hd} (1 - G_{\rm d})}$$
(8)

Let us introduce dimensionless quantities P_d and P_m in the following forms:

$$P_{\rm d} = \frac{\rho_{\rm d}}{\rho_{\rm 0(d)}} = \exp\left[\beta(p_{\rm d} - p_{\rm 0(d)})\right], \quad P_{\rm m} = \frac{p_{\rm d}^2}{p_0^2} \tag{9}$$

Based on eqs. (2)-(4), the equations of piesoconductivity and thermal diffusivity are written:

$$\frac{\partial}{\partial t}(P_i) = \chi_i^p \frac{\partial}{\partial x} \left(\frac{\partial P_i}{\partial x} \right)$$
(10)

$$\frac{\partial T_i}{\partial t} = \chi^T \operatorname{Pe}_{\mathrm{d}} \frac{\partial p_i}{\partial x} \frac{\partial T_i}{\partial x} + \chi^T \frac{\partial^2 T_i}{\partial x^2}$$
(11)

where

$$\operatorname{Pe}_{d} = \frac{\rho_{0d}c_{d}}{\lambda} \frac{k_{d}}{\mu_{d}\beta}, \quad \operatorname{Pe}_{m} = \frac{\rho_{0m}c_{m}}{2\lambda} \frac{k_{m}p_{0}}{\mu_{m}}, \quad \chi_{0}^{p} = \frac{k_{ld}}{S_{ld}\mu_{ld}\beta},$$
$$\chi_{0}^{p} = \frac{k_{gm}p_{m0}}{S_{gm0}\mu_{gm0}}, \quad \varphi = \frac{\chi^{T}}{4\chi_{0}^{p}}, \quad \chi^{T} = \frac{\lambda}{\rho c}$$

This system is augmented with the following initial and boundary conditions:

$$t = 0 \ (x \ge 0) : S_{g} = S_{gm0}, \quad S_{h} = S_{hm0}, \quad T = T_{0}, \quad p = p_{0}$$
$$x = 0 \ (t > 0) : T = T_{e}, \quad p = p_{e}$$
$$x = \infty \ (t > 0) : T = T_{0}, \quad p = p_{0}$$

Since the pressure at the interface between the domains is assumed to be continuous, the values of P_{sd} and P_{sm} are related by the ratio:

$$P_{\rm sd} = \exp\left[\beta p_0 \left(\sqrt{P_{\rm sm}} - 1\right)\right] \tag{12}$$

Self-similar solution

Let us introduce the self-similar variable ξ :

$$\xi = \frac{x_{\rm s}}{2\sqrt{\chi_0^p t}} \tag{13}$$

The equations of piesoconductivity eq. (10) and thermal diffusivity eq. (11) for this variable are written:

$$-\xi \frac{dP_{d}}{d\xi} = \frac{\chi_{d}^{p}}{2\chi_{0}^{p}} \frac{d^{2}P_{d}}{d\xi^{2}}, \quad -\xi \frac{dP_{m}}{d\xi} = \frac{1}{2} \frac{d^{2}P_{m}}{d\xi^{2}}$$
(14)

$$-\xi \frac{\mathrm{d}T_{\mathrm{d}}}{\mathrm{d}\xi} = 2\mathrm{Pe}_{\mathrm{d}}\varphi \frac{\mathrm{d}p_{\mathrm{d}}^2}{\mathrm{d}\xi} \frac{\mathrm{d}T_{\mathrm{d}}}{\mathrm{d}\xi} + 2\varphi \frac{\mathrm{d}^2 T_{\mathrm{d}}}{\mathrm{d}\xi^2}$$
(15)

On integrating eqs. (14) and (15), we can write the solution for the pressure and temperature distributions in each domain:

$$P_{\rm d} = P_{\rm sd} + (P_{\rm e} - P_{\rm sd}) \frac{\xi}{\xi} \exp\left(-\frac{\xi^2}{\eta}\right) d\xi, \qquad T_{\rm d} = T_{\rm s} + (T_{\rm e} - T_{\rm s}) \frac{\xi}{\xi} \exp\left(-\frac{\xi^2}{4\varphi} - \operatorname{Pe}_{\rm d}P_{\rm d}\right) d\xi \qquad (16)$$

$$P_{\rm m} = l_0 + (P_{\rm sm} - 1) \frac{\int\limits_{\infty}^{\infty} \exp(-\xi^2) d\xi}{\int\limits_{\xi_{\rm s}}^{\xi} \exp(-\xi^2) d\xi}, \quad T_{\rm m} = T_0 + (T_{\rm s} - T_0) \frac{\int\limits_{\xi}^{\infty} \exp\left(-\frac{\xi^2}{4\varphi} - {\rm Pe}_{\rm m}P_{\rm m}\right) d\xi}{\int\limits_{\xi_{\rm s}}^{\xi} \exp(-\xi^2) d\xi}$$
(17)

where

$$\eta = \frac{\chi_{\rm d}^p}{\chi_0^p}$$

S450

Based on the conditions eqs. (5)-(7) and taking into account the solutions eqs. (16) and (17), we obtain equations for determining the displacement front co-ordinate, ζ_s , and the values of p_s and T_s on it:

 $\frac{(P_{\rm e} - P_{\rm sd})\exp\left(-\frac{\xi^2}{\eta}\right)}{\int\limits_{0}^{\xi_{\rm s}} \exp\left(-\frac{\xi^2}{\eta}\right) \mathrm{d}\xi} = A_{\rm d}\xi_{\rm s}P_{\rm d}$ (18)

$$\frac{(P_{\rm sm}-1)\exp(-\xi^2)}{\int\limits_{\xi}^{\infty}\exp(-\xi^2)d\xi} = A_{\rm m}\sqrt{P_{\rm m}}\xi_{\rm s}$$
(19)

$$\frac{(T_{\rm s} - T_{\rm e})\exp\left(-\frac{\xi^2}{4\varphi} - \operatorname{Pe}_{\rm d}P_{\rm d}\right)}{\int_{0}^{\xi}\exp\left(-\frac{\xi^2}{4\varphi} - \operatorname{Pe}_{\rm d}P_{\rm d}\right)d\xi} - \frac{(T_{\rm o} - T_{\rm s})\exp\left(-\frac{\xi^2}{4\varphi} - \operatorname{Pe}_{\rm d}P_{\rm d}\right)}{\int_{\xi}^{\infty}\exp\left(-\frac{\xi^2}{4\varphi} - \operatorname{Pe}_{\rm d}P_{\rm d}\right)d\xi} = B\xi_{\rm s}$$
(20)

where

$$\begin{split} A_{\rm d} &= \frac{\chi_0^p \mu_{\rm d} \beta}{k_i} \bigg(1 - S_{\rm hd} + \frac{\rho_{\rm hd} G_{\rm d} S_{\rm hd}}{\rho_{\rm d}} \bigg), \ A_{\rm m} = \frac{2\chi^p \mu_{\rm d}}{p_0 k_{\rm m}} \bigg(1 - S_{\rm hm} + \frac{\rho_{\rm hm} G_{\rm m} S_{\rm hm}}{\rho_{\rm m}} \bigg) \\ B &= \frac{2\chi_0^p}{\lambda} (\rho_{\rm hd} S_{\rm hd} l_{\rm hd} - \rho_{\rm hm} S_{\rm hm} l_{\rm hm}) \end{split}$$

Expressing the quantity of P_{sm} from eq. (18) and substituting it into the ratio eq. (12), we find P_{sd} as a function of ξ_s . Substituting $P_{sd}(\xi_s)$ into eq. (18), we result in a transcendental equation with one unknown ξ_s , which is solved by the bisection method. From eqs. (12), (18), and (20) we obtain the values of pressure, P_s , and temperature, T_s , on the boundary $x_{(s)}$.

Results of numerical analysis

For the thermophysical parameters, gas, CO₂, and hydrate the following values were taken: $G_m = 0.12$, $G_d = 0.28$, $R_g = 520 [Jkg^{-1}K^{-1}]$, $\rho_{0d} = 890 [kgm^{-3}]$, $\rho_{hm} = 900 [kgm^{-3}]$, $\rho_{hd} = 1100 [kgm^{-3}]$, $k_0 = 10^{-16} [m^2]$, $c_{gm} = 1560 [Jkg^{-1}K^{-1}]$, $c_{ld} = 2600 [Jkg^{-1}K^{-1}]$, $c_{hm} = 2500 [Jkg^{-1}K^{-1}]$, $c_{hd} = 2500 [Jkg^{-1}K^{-1}]$, $\mu_d = 10^{-4} [Pa \cdot s]$, $\mu_m = 10^{-5} [Pa \cdot s]$, $\lambda_{hm} = 0.5 [Wm^{-1}K^{-1}]$, $\beta = 10^{-8} [Pa^{-1}]$, $l_{hd} = 1.5 \cdot 10^5 [Jkg^{-1}]$ (at the T < 0 °C).

For the equilibrium temperature and the corresponding pressure, as well as the empirical parameter included in the eq. (1), the following values were taken: the phase equilibrium condition for $CH_4 - T_{(s0)} = 263$ [K], $p_{(s0)} = 1.86$ [MPa], $T_* = 30$ [K], the phase equilibrium condition for $CO_2 - T_{(s0)} = 263$ [K], $p_{(s0)} = 0.67$ [MPa], $T_* = 16$ [K]. In the graphs, the equilibrium hydrate formation curve eq. (1) is indicated by a dash-dotted line.

For the CH₄ hydrate temperature, pressure, and saturation characterizing the initial state of the gas-CH₄ hydrate system, the following values were taken, respectively, $T_0 = 233$ [K], $p_0 = 1.5$ [MPa], and $S_{\rm hm} = 0.3$.

Figure 2(a) illustrates the temperature and fig. 2(c) pressure field distributions in the computation domain at different pressure values of the liquid CO₂ being injected p_e , with scaled-up fragments of the temperature, 2(b), and pressure, 2(d), distributions being located on the right. In the figure, the dash-dotted line shows the values of the moving boundary ξ_s for the corresponding pressure values of the CO₂ being injected. At the pressure values of

 $p_e = 2$ [MPa], $p_e = 3$ [MPa], $p_e = 5$ [MPa], the moving boundary takes the values of $\xi_s = 0.034$, $\xi_s = 0.084$, $\xi_s = 0.166$, respectively. It can be seen from the graphs that with increasing the pressure at which CO₂ is injected into the gas hydrate domain, the extension of the area saturated with CO₂ hydrate is increasing.

Figure 2. Temperature (a), (b) and pressure (c), (d) distributions in the domain at different pressures, p_e , of the liquid CO₂ being injected depending on the dimensionless self-similar variable, ξ ; $1 - at p_e = 2$ [MPa], $2 - at p_e = 3$ [MPa], and $3 - at p_e = 5$ [MPa]

Figure 3(a) shows the temperature and fig. 3(c) pressure field distribution in the computation domain at different temperatures of the liquid CO₂ being injected T_e , with scaled-up fragments of the temperature, 3(b), and pressure, 3(d), distributions being located on the right. At different temperatures of the CO₂ being injected the boundary coordinate ξ_s takes the value of $\xi_s = 0.034$. It can be seen from the graphs that if CO₂ is injected at a temperature that is lower than the initial one in the gas hydrate domain, the temperature rises to its initial value in the domain.

Figure 3. Temperature (a), (b) and pressure (c), (d) distributions in the domain at different temperatures, $T_{\rm e}$, of the liquid CO₂ being injected depending on the dimensionless self-similar variable ξ ; 1 – at $T_{\rm e}$ = 223 [K], 2 – at $T_{\rm e}$ = 233 [K], and 3 – at $T_{\rm e}$ = 253 [K]

Conclusion

A numerical analysis of the process of replacing CH_4 with liquid CO_2 in the gas hydrate domain at negative temperatures was conducted. Self-similar solutions describing the temperature and pressure fields were constructed. The impact of the main and initial parameters on the dynamics of the process under study was investigated. It was shown that at low temperatures of the CO_2 being injected, the temperature in the far domain did not exceed the equilibrium decomposition temperature for CH_4 gas hydrate. It was found that with increasing pressure at which CO_2 was injected into the gas hydrate domain, the extension of the region saturated with CO_2 hydrate was increasing.

Acknowledgment

This work was supported by the Russian Science Foundation (Grant No. 17-79-20001).

Nomenclature

- $c \text{specific mass heat, } [Jkg^{-1}K^{-1}]$
- G mass content of the phase in the hydrate
- k permeability coefficient, [m²]
- l specific heat of hydrate formation, [Jkg⁻¹]
- p pressure, [Pa]
- R reduced gas constant, $[Jkg^{-1}K^{-1}]$
- *S* volume saturation of the phase
- T temperature, [K]
- t time
- x co-ordinate. [m]

Greek symbols

- β coefficient of volume compression of liquid CO₂, [Pa⁻¹]
- λ coefficient of thermal conductivity of the system, [Wm⁻¹k⁻¹]

References

 μ – dynamic viscosity, [Pa·s]

 ξ – dimensionless self-similar variable ρ – true density, [kgm⁻³]

Subscripts

- 0 initial value of the parameter
- d liquid CO₂
- e value at the discharge boundary
- g gas phase
- h hydrate phase
- $i-\ phases$ corresponding to the areas of liquid CO_2 and CH_4
- l- liquid phase
- m methane
- s mobile frontal boundary between the areas of CO_2 and CH_4
- [1] Byk, S. Sh., et. al., Gazovye Gidraty (Hydrates Gases in Russian), Khimiya, Moscow, Russia, 1980
- [2] Istomin, V. A., Yakushev, V. S., *Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in the Natural Environment in Russian)*, Nedra, Moscow, Russia, 1992
- [3] Bosnjakovic, B., Geopolitics of Climate Change: A Review, Thermal Science, 16 (2012), 3, pp. 629-654
- [4] Johnsson, F, et. al., The Importance of CO₂ Capture and Storage: A Geopolitical Discussion, Thermal Science, 16 (2012), 3, pp. 655-668
- [5] Falenty, A., et. al., Fluid Composition and Kinetics of the in Situ Replacement in CH₄-CO₂ Hydrate System, J. Phys. Chem, 120 (2016), 48, pp. 27159-27172
- [6] Espinoza, D. N., Santamarina, J. C., P-Wave Monitoring of Hydrate-Bearing Sand During CH₄–CO₂ Replacement, Int. J. Greenhouse Gas Control, 5 (2011), 4, pp. 1031-1038
- [7] Voronov, V. P., et. al., Eksperimental'noe issledovanie protsessa zameshheniya metana v gazovom gidrate dioksidom ugleroda (Experimental Study of Process of Replacement of CH₄ in Gas Hydrate CO₂ in Russian), Vesti gazovoj nauki. Nauchno-tekhnicheskij sbornik, 4 (2015), 24, pp. 235-248
- [8] Chuvilin, E. M., Gur'eva, O. M., Eksperimental'noe izuchenie obrazovaniya gidratov SO₂ v porovom prostranstve promerzayushchih i merzlyh porod (Experimental Investigation of the Formation of CO₂ Hydrates in the Pore Space of Chilled and Frozen Rocks – in Russian), *Kriosfera Zemli*, 13 (2009), 3, pp. 70-79
- [9] Shagapov, V. Sh., *et. al.*, On the Theory of Formation of a Gas Hydrate in a Heat-Insulated Space Compacted with CH₄, *Journal of Engineering Physics and Thermophysics*, 90 (2017), 5, pp. 1147-1161
- [10] Shagapov, V. Sh., et. al., Theoretical Modeling of gas Extraction from a Partially Gas-Saturated Porous Gas-Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks, *Theoretical Foundations of Chemical Engineering*, 50 (2016), 4, pp. 449-458
- [11] Tsypkin, G. G., Formation of Hydrate in Injection of Liquid CO₂ into a Reservoir Saturated with CH₄ and Water, *Fluid Dynamics*, 51 (2016), 5, pp. 672-679
- [12] Shagapov, V. Sh., et. al., Injection of Liquid CO₂ into a Reservoir Partially Saturated with CH₄ Hydrate, Journal of Applied Mechanics and Technical Physics, 57 (2016), 6, pp. 1083-1092
- [13] Gimaltdinov, I. K., Khasanov, M. K., Mathematical Model of the Formation of a Gas Hydrate on the Injection of into a Stratum Partially Saturated with Ice, *Journal of Applied Mathematics and Mechanics*, 80 (2016), 1, pp. 57-64
- [14] Shagapov, V. Sh., et. al., Numerical Modeling of Formation of a Gas Hydrate in a Finite-Length Porous Bed Purged by a Gas, Journal of Applied Mechanics and Technical Physics, 52 (2011), 4, pp. 599-607
- [15] Shagapov, V. Sh., et. al., On the Theory of Formation of Gas Hydrate in Partially Water-Saturated Porous Medium when Injecting CH₄, High Temperature, 54 (2016), 6, pp. 852-860

Paper submitted: August 22, 2018© 2019 Society of Thermal Engineers of Serbia.Paper revised: November 22, 2018Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.Paper accepted: December 2, 2018This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.