Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Community genomics in microbial ecology and evolution

Key Points

  • Genomic analyses of microbial communities can reveal the metabolic potential of uncultivated microorganisms.

  • Community genomics emphasizes the analysis of natural coexisting species populations through cultivation-independent environmental genome sequencing. The approach enables post-genomic functional assays to be carried out to understand the ecology and evolution of microbial consortia.

  • It possible to reconstruct near-complete, and possibly complete, genome sequences directly from environmental samples. However, heterogeneity in gene content and sequence identity, and genomic rearrangements in strain populations presents a fundamental challenge in reconstructing species genomes from mixed communities. Resolution of strain-level genomic heterogeneity is a fundamental goal of community genomic analysis. Comparative genome assembly that uses a sequenced strain as an assembly scaffold is a rapid and efficient method for analysis of the corresponding environmental population.

  • Comparative genomics of DNA sequences from members of strain populations can reveal the extent to which individuals are representative of their associated populations, the form of genomic heterogeneity, and the importance of processes such as lateral gene transfer and recombination in genome evolution over relatively short timescales.

  • Genomic data from communities can enable analyses of metabolic activity using gene-expression-array-based and proteomic methods. Analyses that evaluate gene expression have the potential to reveal the extent to which metabolic functions are partitioned among community members and how this changes as communities establish and develop.

  • To understand the processes of adaptation and evolution, it is important to find ways in which genome and environmental change can be placed on the same timescale.

Abstract

It is possible to reconstruct near-complete, and possibly complete, genomes of the dominant members of microbial communities from DNA that is extracted directly from the environment. Genome sequences from environmental samples capture the aggregate characteristics of the strain population from which they were derived. Comparison of the sequence data within and among natural populations can reveal the evolutionary processes that lead to genome diversification and speciation. Community genomic datasets can also enable subsequent gene expression and proteomic studies to determine how resources are invested and functions are distributed among community members. Ultimately, genomics can reveal how individual species and strains contribute to the net activity of the community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resolving strain-level heterogeneity.
Figure 2: Genomic heterogeneity in Ferroplasma species and strains.
Figure 3: Integrating community genomics and functional assays in situ.

Similar content being viewed by others

References

  1. Torsvik, V., Gokoyr, J. & Daae, F. L. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ammann, R. R., Ludwig, W. & Schleifer, K. H. Phlyogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    Google Scholar 

  3. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  Google Scholar 

  4. Cowan, D. A. et al. Metagenomics, gene discovery, and the ideal biocatalyst. Biochem. Soc. Trans. 32, 298–302 (2004).

    Article  CAS  Google Scholar 

  5. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    Article  CAS  Google Scholar 

  6. Streit, W. R. & Schmitz, R. A. Metagenomics — the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498 (2004).

    Article  CAS  Google Scholar 

  7. Eyers, L. et al. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl. Microbiol. Biotechnol. 66, 123–130 (2004).

    Article  CAS  Google Scholar 

  8. Handelsman, J. Sorting out metagenomes. Nature Biotechnol. 23, 38–39 (2005).

    Article  CAS  Google Scholar 

  9. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004). This report describes the first near-complete reconstruction of uncultivated microbial genomes using shotgun sequencing of a natural microbial community.

    Article  CAS  Google Scholar 

  10. Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science (in the press). This paper reports the first 'shotgun' proteomic investigation of a natural microbial community performed in conjunction with community genome sequence data from the same location.

  11. Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genomic fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996).

    Article  CAS  Google Scholar 

  12. Beja, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  CAS  Google Scholar 

  13. Quaiser, A. et al. First insight into the genome of an uncultivated crenarchaeote in soil. Env. Microbiol. 4, 603–611 (2002).

    Article  CAS  Google Scholar 

  14. Liles, M. R., Manske, B. F., Bintrim, S. B., Handelsman, J. & Goodman, R. M. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69, 2684–2691 (2003).

    Article  CAS  Google Scholar 

  15. Treusch, A. H. et al. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ. Microbiol. 6, 970–980 (2004).

    Article  CAS  Google Scholar 

  16. Horner-Devine, M. C., Carney, K. M. & Bohannan, B. J. M. An ecological perspective on bacterial biodiversity. Proc. Biol. Sci. 271, 113–122 (2003).

    Article  Google Scholar 

  17. Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).

    Article  Google Scholar 

  18. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  19. Shock, E. L., McCollom, T. & Schulte, M. D. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Orig. Life Evol. Biosph. 25, 141–159 (1995).

    Article  CAS  Google Scholar 

  20. Lorenz, P. & Schleper, C. Metagenome — a challenging source of enzyme discovery. J. Mol. Catalysis B: Enzymatics 19, 13–19 (2002).

    Article  Google Scholar 

  21. Hoehler, T. M. & Alperin, M. J. in Microbial Growth on C1 Compounds (eds Lindstrom, M. E. & Tabita, F. R.) 326–333 (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  22. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 304, 1457–1462 (2004).

    Article  Google Scholar 

  23. Huws, S. A., McBain, A. J. & Gilbert, P. Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol. 98, 238–244 (2005).

    Article  CAS  Google Scholar 

  24. Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).

    Article  CAS  Google Scholar 

  25. Boenigk, J., Stadler, P., Wiedlroither, A. & Hahn, M. W. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl. Environ. Microbiol. 70, 5787–5793 (2004).

    Article  CAS  Google Scholar 

  26. Thingstad, T. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).

    Article  Google Scholar 

  27. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    Article  CAS  Google Scholar 

  28. Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).

    Article  CAS  Google Scholar 

  29. Jiang, S. C. & Paul, J. H. Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. Appl. Environ. Microbiol. 61, 317–325 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheetham, B. & Katz, M. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18, 201–208 (1995).

    Article  CAS  Google Scholar 

  31. Weinbauer, M. G. & Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6, 1–11 (2004).

    Article  Google Scholar 

  32. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005). This report provides a thorough comparative analysis of 70 microbial genomes that highlight the extent of genomic variability that exists within and between microbial species.

    Article  CAS  Google Scholar 

  33. Konstantinidis, K. T. & Tiedje, J. M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl Acad. Sci. USA 101, 3160–3165 (2004).

    Article  CAS  Google Scholar 

  34. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001). This review describes and evaluates the utility of statistical approaches in assessing microbial diversity in natural communities.

    Article  CAS  Google Scholar 

  35. Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).

    Article  CAS  Google Scholar 

  36. Venter, J. C. et al. Environmental shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  Google Scholar 

  37. Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).

    Article  CAS  Google Scholar 

  38. Nelson, K. E. et al. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32, 2386–2395 (2004).

    Article  CAS  Google Scholar 

  39. Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnol. 22, 1554–1558 (2004).

    Article  CAS  Google Scholar 

  40. Deng, W. et al. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611 (2002).

    Article  CAS  Google Scholar 

  41. Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis mMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69 (2004).

  42. Teeling, H., Waldmann, J., Lombardot, T., Bauer, M. & Glockner, F. O. TETRA: a web-service and stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequence. BMC Bioinformatics 5, 163 (2004).

    Article  Google Scholar 

  43. Tyson, G. W. et al. Genome-directed isolation of the key nitrogen fixer, Leptospirillum ferrodiazotrophum sp. nov., from an acidophilic microbial community. Appl. Environ. Microbiol. (in the press).

  44. de Las Rivas, B., Marcobal, A. & Munoz, R. Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl. Environ. Microbiol. 70, 7210–7219 (2004).

    Article  CAS  Google Scholar 

  45. Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    CAS  PubMed  Google Scholar 

  46. Vulic, M., Lenski, R. E. & Radman, M. Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc. Natl Acad. Sci. USA 96, 7348–7351 (1999).

    Article  CAS  Google Scholar 

  47. Dennis, P., Edwards, E. A., Liss, S. N. & Fulthorpe, R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbiol. 69, 769–778 (2003).

    Article  CAS  Google Scholar 

  48. Wu, L. et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67, 5780–5790 (2001).

    Article  CAS  Google Scholar 

  49. Sebat, J. L., Colwell, F. S. & Crawford, R. L. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol. 69, 4927–4934 (2003).

    Article  CAS  Google Scholar 

  50. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  51. Schulze, W. X. et al. A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142, 335–343 (2005).

    Article  Google Scholar 

  52. Powell, M. J., Sutton, J. N., Del Castillo, C. E. & Timperman, A. T. Marine proteomics: generation of sequence tags for dissolved proteins in seawater using tandem mass spectrometry. Marine Chem. (in the press).

  53. Habermann, B., Oegema, J., Sunyaev, S. & Shevchenko, A. The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol. Cell. Proteomics 3, 238–249 (2004).

    Article  CAS  Google Scholar 

  54. Roberts, R. J., Karp, P., Kasif, S., Linn, S. & Buckley, M. R. An Experimental Approach to Genome Annotation. Critical Issues Colloquia Report, Washington DC, USA: American Academy of Microbiology (Jan 2005).

    Google Scholar 

  55. Curtis, T. P. & Sloan, W. T. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opin. Microbiol. 7, 221–226 (2004).

    Article  Google Scholar 

  56. Schmeisser, C. et al. Metagenome survey of biofilms in drinking-water networks. Appl. Environ. Microbiol. 69, 7298–7309 (2003).

    Article  CAS  Google Scholar 

  57. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  Google Scholar 

  58. Curtis, T. P., Sloan, W. & Scannell, J. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  Google Scholar 

  59. Wallner, G., Fuchs, B., Spring, S., Beisker, W. & Amann, R. Flow sorting of microorganisms for molecular analysis. Appl. Enivron. Microbiol. 63, 4223–4231 (1997).

    CAS  Google Scholar 

  60. Pernthaler, A. & Amann, R. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70, 5426–5433 (2004).

    Article  CAS  Google Scholar 

  61. Zwirglmaier, K., Ludwig, W. & Schleifer, K. H. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization — RING-FISH. Mol. Microbiol. 51, 89–96 (2004).

    Article  CAS  Google Scholar 

  62. Lizardi P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  Google Scholar 

  63. Gadkar, V. & Rillig M. C. Application of Phi29 DNA polymerase mediated whole genome amplification on single spores of arbuscular mycorrhizal (AM) fungi. FEMS Microbiol. Lett. 242, 65–71 (2005).

    Article  CAS  Google Scholar 

  64. Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004).

    Article  CAS  Google Scholar 

  65. Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004).

    Article  CAS  Google Scholar 

  66. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  Google Scholar 

  67. Jeltsch, A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317, 13–16 (2003).

    Article  CAS  Google Scholar 

  68. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–26 (1986).

    CAS  Google Scholar 

  69. Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–502 (2000).

    Article  CAS  Google Scholar 

  70. Liberles, D. A. & Wayne, M. L. Tracking adaptive evolutionary events in genomic sequences. Genome Biol. 3, 1018 (2002).

  71. Wick, L. M., Qi, W., Lacher D. W. & Whittam, T. S. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187, 1783–1791 (2005).

    Article  CAS  Google Scholar 

  72. Ohnishi, M., Kurokawa, K. & Hayashi, T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485 (2001).

    Article  CAS  Google Scholar 

  73. Scheibe, T. D., Chien, Y. J., & Radtke, J. S. Use of quantitative models to design microbial transport experiments in a sandy aquifer. Ground Water 39, 210–222 (2001).

    Article  CAS  Google Scholar 

  74. Orphan, V. J., House, C. H., Hinrichs, K. -U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).

    Article  CAS  Google Scholar 

  75. Radajewski, S. et al. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiol. 148, 2331–2342 (2002).

    Article  CAS  Google Scholar 

  76. Wellington, E. M., Berry, A. & Krsek, M. Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr. Opin. Microbiol. 6, 295–301 (2003).

    Article  CAS  Google Scholar 

  77. Ouverney, C. C. & Fuhrman, J. A. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65, 1746–1752 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Druschel, G. K., Baker, B. J., Gihring, T. H. & Banfield, J. F. Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem. Trans. 5, 13–32 (2004).

    Article  CAS  Google Scholar 

  79. Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).

    Article  CAS  Google Scholar 

  80. Bond, P. L., Dreuschel, G. K. & Banfield, J. F. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol. 66, 4962–4971 (2000).

    Article  CAS  Google Scholar 

  81. Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524 (2002).

    Article  Google Scholar 

  83. Rondon, M. R., et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2514–2547 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. W. Tyson and anonymous reviewers for helpful comments. Support for our work from the Department of Energy Microbial Genome Program, National Science Foundation (NSF) Biocomplexity Program, NASA Astrobiology Institute, and the NSF Postdoctoral Research Fellowship Program in Microbial Biology (E.E.A.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian F. Banfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Ferroplasma acidarmanus strain fer1

Leptospirillum group III

FURTHER INFORMATION

Jillian Banfield's laboratory

Genomes Online Database

Glossary

CLONE LIBRARY

A collection of targeted DNA sequences, such as the 16S rRNA gene, most often derived from PCR amplification and subsequent cloning into a vector. Specifically, 16S rRNA gene clone libraries are often used in surveys of microbial diversity from environmental samples.

CONSORTIUM

Physical association between cells of two or more types of microorganism. Such an association might be advantageous to at least one of the microorganisms.

COVERAGE

The average number of times a nucleotide is represented by a high-quality base in the sequence data; full genome coverage is usually attained at 8–10X coverage.

ABIOTIC

The non-living physical and chemical attributes of a system, which include pH, temperature, pressure, osmotic strength, and chemical composition.

SYNTENY

Refers to the presence of two or more genes on the same chromosome. However, the term is often used to refer to the shared colinearity in orthologous gene content and gene order between genomes.

SCAFFOLD

A genome fragment constructed by the ordering and orienting of sets of unlinked contigs generated from raw shotgun sequence data by using additional information (such as paired-end sequence information or homology data) to determine proper contig linkage and placement along the chromosome. Scaffolds can be comprised of multiple contigs.

PANMICTIC

Characterized by a lack of restriction in genetic exchange within the population; all individuals within the species population are potential recombination partners.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, E., Banfield, J. Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3, 489–498 (2005). https://doi.org/10.1038/nrmicro1157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1157

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing