
Developer Guide

Amazon Simple Notification Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Simple Notification Service Developer Guide

Amazon Simple Notification Service: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Simple Notification Service Developer Guide

Table of Contents

What is Amazon SNS? ... 1
Amazon SNS features and capabilities .. 2
Commonly shared services ... 4
Accessing Amazon SNS ... 5
Pricing for Amazon SNS .. 5
Common Amazon SNS scenarios .. 6

Application integration .. 6
Application alerts .. 7
User notifications .. 7
Mobile push notifications .. 7

Working with AWS SDKs ... 7
Create a topic and publish messages ... 9

Setting up .. 9
Create account and an IAM user .. 9
Next steps ... 11

Step 1: Creating a topic .. 11
AWS Management Console ... 12
AWS SDKs ... 15

Step 2: Creating a subscription to a topic .. 29
To subscribe an endpoint to an Amazon SNS topic .. 29

Step 3: Publishing a message ... 31
AWS Management Console ... 31
AWS SDKs ... 33
Large message payloads ... 55
Message attributes ... 64
Message batching ... 68

Step 4: Deleting a subscription and topic .. 72
AWS Management Console ... 72
AWS SDKs ... 73

Next steps .. 82
Message ordering and deduplication using FIFO topics ... 83

FIFO topic use case .. 83
Message ordering details .. 85
Message grouping .. 88

iii

Amazon Simple Notification Service Developer Guide

Distributing data by message group IDs for improved performance ... 89
Message delivery .. 90
Message filtering .. 91
Message deduplication .. 92
Message security .. 94
Message durability ... 95
Message archiving and replay ... 97

What is message archiving and replay ... 97
For topic owners ... 98
For topic subscribers .. 103

Code examples ... 107
FIFO example (AWS SDKs) .. 107
FIFO example (AWS CloudFormation) .. 120

Message filtering ... 125
Subscription filter policy scope ... 125
Subscription filter policies ... 126

Amazon SNS example filter policies ... 127
Filter policy constraints ... 129
AND/OR logic .. 133
Key matching ... 137
Numeric value matching ... 139
String value matching ... 142

Applying a subscription filter policy .. 149
AWS Management Console .. 150
AWS CLI .. 150
AWS SDKs ... 151
Amazon SNS API ... 156
AWS CloudFormation ... 156

Removing a subscription filter policy .. 157
Using the AWS Management Console ... 157
Using the AWS CLI ... 157
Using the Amazon SNS API .. 158

Message data protection ... 159
What is message data protection .. 159
Why use message data protection ... 160
Data protection policies ... 160

iv

Amazon Simple Notification Service Developer Guide

What are data protection policies? ... 160
Overview of data protection policy structure .. 161
How do I determine the IAM principals ... 164
Data protection policy operations .. 164
Data protection policy examples .. 173
Creating data protection policies .. 180
Deleting data protection policies .. 188

Data identifiers ... 189
Managed data identifiers .. 190
Custom data identifiers ... 229

Message delivery ... 232
Raw message delivery ... 232

Enabling raw message delivery using the AWS Management Console 233
Message format examples .. 233
Message attributes and raw message delivery for Amazon SQS subscriptions 234

Cross-account delivery .. 234
Queue owner creates subscription ... 235
A user who does not own the queue creates a subscription ... 237
How do I force a subscription to require authentication on unsubscribe requests? 240

Cross-region delivery .. 240
Opt-in Regions .. 240

Message delivery status ... 243
Prerequisites for delivery status logging ... 244
Configuring delivery status logging using the AWS Management Console 245
Configuring delivery status logging using the AWS SDKs ... 246
AWS SDK examples to configure topic attributes ... 248
Configuring delivery status logging using AWS CloudFormation ... 256

Message delivery retries ... 258
Delivery protocols and policies ... 258
Delivery policy stages .. 259
Creating an HTTP/S delivery policy ... 260

Dead-letter queues .. 266
Why do message deliveries fail? ... 266
How do dead-letter queues work? ... 267
How are messages moved into a dead-letter queue? ... 268
How can I move messages out of a dead-letter queue? .. 268

v

Amazon Simple Notification Service Developer Guide

How can I monitor and log dead-letter queues? ... 268
Configuring a dead-letter queue ... 269

Message archiving and analytics .. 274
Resource management and optimization .. 275

Tagging ... 275
Tagging for cost allocation .. 275
Tagging for access control .. 276
Tagging for resource searching and filtering .. 277
Configuring tags ... 278

Amazon SNS event sources and destinations .. 285
Event sources .. 285

Analytics ... 286
Application integration .. 287
Billing and cost management .. 288
Business applications ... 288
Compute ... 289
Containers .. 290
Customer engagement .. 291
Database ... 292
Developer tools ... 293
Front-end web & mobile ... 294
Game development .. 295
Internet of Things .. 295
Machine learning .. 296
Management & governance ... 297
Media ... 299
Migration & transfer .. 300
Networking & content delivery ... 301
Security, identity, & compliance .. 302
Serverless ... 303
Storage .. 304
Additional event sources ... 305

Event destinations ... 306
A2A destinations ... 307
A2P destinations ... 308

Application-to-application messaging ... 311

vi

Amazon Simple Notification Service Developer Guide

Fanout to Firehose delivery streams ... 312
Prerequisites .. 313
Subscribing a delivery stream to a topic ... 314
Managing messages across multiple delivery stream destinations .. 315
Message archiving and analytics example use case .. 329

Fanout to Lambda functions ... 341
Prerequisites .. 341
Subscribing a function to a topic ... 342

Fanout to Amazon SQS queues .. 343
Subscribing a queue to a topic ... 343
Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 351

Fanout notifications to HTTPS endpoints .. 358
Subscribing an endpoint to a topic .. 360
Verifying message signatures .. 369
Parsing message formats .. 372

Fanout events to AWS Event Fork Pipelines .. 382
How AWS Event Fork Pipelines works ... 383
Deploying AWS Event Fork Pipelines ... 387
Deploying and testing the event fork pipelines sample application .. 388
Subscribing an event pipeline to a topic ... 397

Using EventBridge Scheduler .. 406
Setting-up the execution role .. 407
Create a schedule ... 407
Related resources .. 412

Application-to-person messaging .. 413
Mobile text messaging .. 413

How does Amazon SNS deliver my SMS messages? ... 415
Getting started .. 416
Origination identities ... 426
Configurations ... 428

Sending mobile push notifications .. 504
How Amazon SNS user notifications work .. 505
Setting up push notifications with Amazon SNS ... 506
Setting up a mobile app ... 506
Using Amazon SNS for mobile push notifications ... 526
Mobile app attributes .. 539

vii

Amazon Simple Notification Service Developer Guide

Mobile app events .. 543
Mobile push API actions ... 546
Common mobile push API errors .. 548
Mobile push TTL ... 560
Supported Regions ... 562
Best practices for mobile push notifications .. 563

Email subscription setup and management ... 564
AWS Management Console .. 565
AWS SDKs ... 566

Best practices ... 596
Best practices .. 596

Preventative best practices .. 596
SMS best practices ... 600

Comply with laws, regulations, and carrier requirements .. 601
Obtain permission .. 602
Don't send to old lists ... 606
Audit your customer lists .. 606
Keep records .. 606
Make your messages clear, honest, and concise .. 607
Respond appropriately .. 610
Adjust your sending based on engagement ... 610
Send at appropriate times .. 611
Avoid cross-channel fatigue ... 611
Use dedicated short codes ... 611
Verify your destination phone numbers .. 612
Design with redundancy in mind .. 612
SMS limits and restrictions ... 613
Managing opt out keywords .. 613
CreatePool .. 613
PutKeyword .. 613
Managing number settings .. 613
SMS character limits .. 613

Code examples ... 618
Basics .. 628

Hello Amazon SNS ... 629
Actions .. 638

viii

Amazon Simple Notification Service Developer Guide

Scenarios .. 804
Build an app to submit data to a DynamoDB table .. 805
Building an Amazon SNS application ... 807
Create a platform endpoint for push notifications ... 808
Create a serverless application to manage photos ... 811
Create an Amazon Textract explorer application ... 815
Create and publish to a FIFO topic .. 816
Detect people and objects in a video .. 829
Publish SMS messages to a topic ... 829
Publish a large message ... 836
Publish an SMS text message .. 839
Publish messages to queues .. 847
Use API Gateway to invoke a Lambda function ... 945
Use scheduled events to invoke a Lambda function ... 946

Serverless examples .. 948
Invoke a Lambda function from an Amazon SNS trigger .. 948

Security .. 958
Data protection .. 958

Data encryption .. 959
Securing traffic with VPC endpoints .. 977
Message Data Protection security ... 993

Identity and access management ... 994
Audience ... 994
Authenticating with identities ... 995
Managing access using policies ... 998
Access control ... 1000
Overview .. 1001
How Amazon SNS works with IAM ... 1023
AWS managed policies .. 1023
Policy actions .. 1029
Policy resources .. 1030
Policy condition keys ... 1031
ACLs ... 1031
ABAC .. 1032
Temporary credentials ... 1032
Principal permissions ... 1033

ix

Amazon Simple Notification Service Developer Guide

Service roles .. 1033
Service-linked roles .. 1033
Identity-based policy examples ... 1034
Identity-based policies .. 1038
Resource-based policies .. 1038
Using identity-based policies ... 1039
Using temporary credentials ... 1046
API permissions reference .. 1047

Logging and monitoring .. 1051
Logging API calls using CloudTrail ... 1052
Monitoring topics using CloudWatch ... 1061

Compliance validation .. 1077
Resilience ... 1078
Infrastructure security .. 1078

Troubleshooting ... 1080
Troubleshooting topics using X-Ray .. 1080
Active tracing .. 1080

Permissions .. 1081
Enabling active tracing ... 1081
Enabling active tracing on an Amazon SNS topic using the AWS SDK 1082
Enabling active tracing on an Amazon SNS topic using the AWS CLI 1083
Enabling active tracing on an Amazon SNS topic using AWS CloudFormation 1083
Verifying active tracing is enabled ... 1083
Testing .. 1084

Amazon SNS documentation history ... 1086

x

Amazon Simple Notification Service Developer Guide

What is Amazon SNS?

Amazon Simple Notification Service (Amazon SNS) is a managed service that provides message
delivery from publishers to subscribers (also known as producers and consumers). Publishers
communicate asynchronously with subscribers by sending messages to a topic, which is a logical
access point and communication channel.

Clients can subscribe to the Amazon SNS topic and receive published messages using a supported
endpoint type, such as Amazon Data Firehose, Amazon SQS, AWS Lambda, HTTP, email, mobile
push notifications, and mobile text messages (SMS).

1

Amazon Simple Notification Service Developer Guide

Amazon SNS features and capabilities

Amazon SNS offers a comprehensive set of features designed to enhance messaging between
applications and users. These features enable seamless communication, secure message delivery,

Amazon SNS features and capabilities 2

Amazon Simple Notification Service Developer Guide

and robust message management, ensuring high availability, durability, and flexibility for a wide
range of messaging use cases.

• Application-to-application messaging

Application-to-application messaging supports subscribers such as Amazon Data Firehose
delivery streams, Lambda functions, Amazon SQS queues, HTTP/S endpoints, and AWS Event
Fork Pipelines. This allows for efficient message delivery in event-driven architectures.

• Application-to-person notifications

Application-to-person notifications provide user notifications to subscribers such as mobile
applications, mobile phone numbers, and email addresses.

• Standard and FIFO topics

FIFO topics ensure strict message ordering, message grouping, and deduplication, allowing
FIFO and standard queues to subscribe for message processing. Standard topics are used when
message ordering and possible duplication are not critical, supporting all delivery protocols for
broader use cases.

• Message durability

Amazon SNS uses a number of strategies that work together to provide message durability:

• Published messages are stored across multiple, geographically separated servers and data
centers.

• If a subscribed endpoint isn't available, Amazon SNS runs a delivery retry policy.

• To preserve any messages that aren't delivered before the delivery retry policy ends, you can
create a dead-letter queue.

• Message archiving, replay, and analytics

You can archive messages with Amazon SNS in multiple ways including subscribing Firehose
delivery streams to SNS topics, which allows you to send notifications to analytics endpoints
such as Amazon Simple Storage Service (Amazon S3) buckets, Amazon Redshift tables, and
more. Additionally, Amazon SNS FIFO topics support message archiving and replay as a no-
code, in-place message archive that lets topic owners store (or archive) messages within their
topic. Topic subscribers can then retrieve (or replay) the archived messages back to a subscribed
endpoint. For more, see Amazon SNS message archiving and replay for FIFO topics.

• Message attributes

Amazon SNS features and capabilities 3

Amazon Simple Notification Service Developer Guide

Amazon SNS message attributes let you provide any arbitrary metadata about the message.

• Message filtering

By default, each subscriber receives every message published to the topic. To receive a subset
of the messages, a subscriber must assign a filter policy to the topic subscription. A subscriber
can also define the filter policy scope to enable payload-based or attribute-based filtering. The
default value for the filter policy scope is MessageAttributes. When the incoming message
attributes match the filter policy attributes, the message is delivered to the subscribed endpoint.
Otherwise, the message is filtered out. When the filter policy scope is MessageBody, filter policy
attributes are matched against the payload. For more information, see Message filtering.

• Message security

Server-side encryption protects the contents of messages that are stored in Amazon SNS topics,
using encryption keys provided by AWS KMS. For more information, see the section called
“Securing data with server-side encryption”.

You can also establish a private connection between Amazon SNS and your virtual private cloud
(VPC). for more information, see the section called “Securing traffic with VPC endpoints”.

AWS services commonly used with Amazon SNS

You can integrate Amazon SNS with several AWS services to enhance functionality and
manageability. These services enable optimized message handling, secure access control, event-
driven applications, and automated resource provisioning.

• Amazon SQS offers a secure, durable, and available hosted queue that lets you integrate and
decouple distributed software systems and components. Amazon SQS is related to Amazon SNS
in the following ways:

• Amazon SNS provides dead-letter queues powered by Amazon SQS for undeliverable
messages.

• You can subscribe an Amazon SQS queue to an Amazon SNS topic.

• You can subscribe an Amazon SQS FIFO queue or a standard queue to an Amazon SNS FIFO
topic. Only Amazon SQS FIFO queues guarantee messages are received in order and with no
duplicates.

• AWS Lambda enables you to build applications that respond quickly to new information. Run
your application code in Lambda functions on highly available compute infrastructure. For more

Commonly shared services 4

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html

Amazon Simple Notification Service Developer Guide

information, see the AWS Lambda Developer Guide. You can subscribe a Lambda function to an
SNS topic.

• AWS Identity and Access Management (IAM) helps you securely control access to AWS resources
for your users. Use IAM to control who can use your Amazon SNS topics (authentication), what
topics they can use, and how they can use them (authorization). For more information, see Using
identity-based policies with Amazon SNS.

• AWS CloudFormation enables you to model and set up your AWS resources. Create a template
that describes the AWS resources that you want, including Amazon SNS topics and subscriptions.
AWS CloudFormation takes care of provisioning and configuring those resources for you. For
more information, see the AWS CloudFormation User Guide.

Accessing Amazon SNS

You can access and manage Amazon SNS through the console, AWS CLI, or AWS SDKs, depending
on your preferred method of interaction. The console offers a graphical interface for basic tasks,
while the AWS CLI and SDKs provide advanced configuration and automation capabilities for more
complex use cases.

• The Amazon SNS console provides a convenient user interface for creating topics and
subscriptions, sending and receiving messages, and monitoring events and logs.

• The AWS Command Line Interface (AWS CLI) gives you direct access to the Amazon SNS API for
advanced configuration and automation use cases. For more information, see Using Amazon SNS
with the AWS CLI.

• AWS provides SDKs in various languages. For more information, see SDKs and Toolkits.

Pricing for Amazon SNS

Amazon SNS has no upfront costs. You pay based on the number of messages that you publish,
the number of notifications that you deliver, and any additional API calls for managing topics
and subscriptions. Delivery pricing varies by endpoint type. You can get started for free with the
Amazon SNS free tier. For information, see Worldwide SMS Pricing.

Accessing Amazon SNS 5

https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://console.aws.amazon.com/sns/v3/home
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-sns.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-sns.html
https://aws.amazon.com/getting-started/tools-sdks/
https://aws.amazon.com/sns/sms-pricing/

Amazon Simple Notification Service Developer Guide

Common Amazon SNS scenarios

Use these common Amazon SNS scenarios to implement scalable, event-driven architectures and
ensure reliable, real-time communication between applications and users.

Application integration

The Fanout scenario is when a message published to an SNS topic is replicated and pushed to
multiple endpoints, such as Firehose delivery streams, Amazon SQS queues, HTTP(S) endpoints,
and Lambda functions. This allows for parallel asynchronous processing.

For example, you can develop an application that publishes a message to an SNS topic whenever
an order is placed for a product. Then, SQS queues that are subscribed to the SNS topic receive
identical notifications for the new order. An Amazon Elastic Compute Cloud (Amazon EC2) server
instance attached to one of the SQS queues can handle the processing or fulfillment of the order.
And you can attach another Amazon EC2 server instance to a data warehouse for analysis of all
orders received.

You can also use fanout to replicate data sent to your production environment with your test
environment. Expanding upon the previous example, you can subscribe another SQS queue to
the same SNS topic for new incoming orders. Then, by attaching this new SQS queue to your test
environment, you can continue to improve and test your application using data received from your
production environment.

Important

Make sure that you consider data privacy and security before you send any production data
to your test environment.

For more information, see the following resources:

Common Amazon SNS scenarios 6

Amazon Simple Notification Service Developer Guide

• Fanout to Firehose delivery streams

• Fanout Amazon SNS notifications to Lambda functions for automated processing

• Fanout Amazon SNS notifications to Amazon SQS queues for asynchronous processing

• Fanout Amazon SNS notifications to HTTPS endpoints

• Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and
Networking Services

Application alerts

Application and system alerts are notifications that are triggered by predefined thresholds.
Amazon SNS can send these notifications to specified users via SMS and email. For example, you
can receive immediate notification when an event occurs, such as a specific change to your Amazon
EC2 Auto Scaling group, a new file uploaded to an Amazon S3 bucket, or a metric threshold
breached in Amazon CloudWatch. For more information, see Setting up Amazon SNS notifications
in the Amazon CloudWatch User Guide.

User notifications

Amazon SNS can send push email messages and text messages (SMS messages) to individuals or
groups. For example, you could send e-commerce order confirmations as user notifications. For
more information about using Amazon SNS to send SMS messages, see Mobile text messaging with
Amazon SNS.

Mobile push notifications

Mobile push notifications enable you to send messages directly to mobile apps. For example, you
can use Amazon SNS to send update notifications to an app. The notification message can include
a link to download and install the update. For more information about using Amazon SNS to send
push notification messages, see Sending mobile push notifications with Amazon SNS.

Using Amazon SNS with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

Application alerts 7

https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/
https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html

Amazon Simple Notification Service Developer Guide

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

For examples specific to Amazon SNS, see Code examples for Amazon SNS using AWS SDKs.

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 8

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Simple Notification Service Developer Guide

Create an Amazon SNS topic and publish messages

This topic provides the foundational steps for managing Amazon SNS resources, specifically
focusing on topics, subscriptions, and message publishing. First, you will set up the necessary
access permissions for Amazon SNS, ensuring that you have the correct permissions to create and
manage Amazon SNS resources. Next, you will create a new Amazon SNS topic, which serves as the
central hub for managing and delivering messages to subscribers. After creating the topic, you will
proceed to create a subscription to this topic, allowing specific endpoints to receive the messages
published to it.

Once the topic and subscription are in place, you will publish a message to the topic, observing
how Amazon SNS efficiently delivers the message to all subscribed endpoints. Finally, you will
learn how to delete both the subscription and the topic, completing the lifecycle of the Amazon
SNS resources you’ve managed. This approach gives you a clear understanding of the fundamental
operations in Amazon SNS, equipping you with the practical skills needed to manage messaging
workflows using the Amazon SNS console.

Setting up access for Amazon SNS

Before you can use Amazon SNS for the first time, you must complete the following steps.

Topics

• Create an AWS account and an IAM user

• Next steps

Create an AWS account and an IAM user

To access any AWS service, you must first create an AWS account. You can use your AWS account to
view your activity and usage reports and to manage authentication and access.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

Setting up 9

https://aws.amazon.com/
https://portal.aws.amazon.com/billing/signup

Amazon Simple Notification Service Developer Guide

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

Create account and an IAM user 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

Amazon Simple Notification Service Developer Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Next steps

Now that you're prepared to work with Amazon SNS, get started by:

1. Creating an Amazon SNS topic

2. Creating a subscription to an Amazon SNS topic

3. Publishing an Amazon SNS message

4. Deleting an Amazon SNS topic and subscription

Creating an Amazon SNS topic

An Amazon SNS topic is a logical access point that acts as a communication channel. A topic lets
you group multiple endpoints (such as AWS Lambda, Amazon SQS, HTTP/S, or an email address).

Next steps 11

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Simple Notification Service Developer Guide

To broadcast the messages of a message-producer system (for example, an e-commerce website)
working with multiple other services that require its messages (for example, checkout and
fulfillment systems), you can create a topic for your producer system.

The first and most common Amazon SNS task is creating a topic. This page shows how you can use
the AWS Management Console, the AWS SDK for Java, and the AWS SDK for .NET to create a topic.

During creation, you choose a topic type (standard or FIFO) and name the topic. After creating a
topic, you can't change the topic type or name. All other configuration choices are optional during
topic creation, and you can edit them later.

Important

Do not add personally identifiable information (PII) or other confidential or sensitive
information in topic names. Topic names are accessible to other Amazon Web Services,
including CloudWatch Logs. Topic names are not intended to be used for private or
sensitive data.

Topics

• To create a topic using the AWS Management Console

• To create a topic using an AWS SDK

To create a topic using the AWS Management Console

Creating a topic in Amazon SNS establishes the foundation for message distribution, enabling
you to publish messages that can be fanned out to multiple subscribers. This step is essential to
configure the topic's type, encryption settings, and access policies, ensuring the topic meets the
organization’s security, compliance, and operational requirements.

1. Sign in to the Amazon SNS console.

2. Do one of the following:

• If no topics have ever been created under your AWS account before, read the description of
Amazon SNS on the home page.

• If topics have been created under your AWS account before, on the navigation panel, choose
Topics.

AWS Management Console 12

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. On the Topics page, choose Create topic.

4. On the Create topic page, in the Details section, do the following:

a. For Type, choose a topic type (Standard or FIFO).

b. Enter a Name for the topic. For a FIFO topic, add .fifo to the end of the name.

c. (Optional) Enter a Display name for the topic.

Important

When subscribing to an email endpoint, the combined character count for the
Amazon SNS topic display name and the sending email address (for example, no-
reply@sns.amazonaws.com) must not exceed 320 UTF-8 characters. You can use
a third party encoding tool to verify the length of the sending address before
configuring a display name for your Amazon SNS topic.

d. (Optional) For a FIFO topic, you can choose content-based message deduplication to
enable default message deduplication. For more information, see Amazon SNS message
deduplication for FIFO topics.

5. (Optional) Expand the Encryption section and do the following. For more information, see
Securing Amazon SNS data with server-side encryption.

a. Choose Enable encryption.

b. Specify the AWS KMS key. For more information, see Key terms.

For each KMS type, the Description, Account, and KMS ARN are displayed.

Important

If you aren't the owner of the KMS, or if you log in with an account that doesn't
have the kms:ListAliases and kms:DescribeKey permissions, you won't be
able to view information about the KMS on the Amazon SNS console.
Ask the owner of the KMS to grant you these permissions. For more information,
see the AWS KMS API Permissions: Actions and Resources Reference in the AWS
Key Management Service Developer Guide.

• The AWS managed KMS for Amazon SNS (Default) alias/aws/sns is selected by default.

AWS Management Console 13

https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html

Amazon Simple Notification Service Developer Guide

Note

Keep the following in mind:

• The first time you use the AWS Management Console to specify the AWS
managed KMS for Amazon SNS for a topic, AWS KMS creates the AWS
managed KMS for Amazon SNS.

• Alternatively, the first time you use the Publish action on a topic with SSE
enabled, AWS KMS creates the AWS managed KMS for Amazon SNS.

• To use a custom KMS from your AWS account, choose the KMS key field and then
choose the custom KMS from the list.

Note

For instructions on creating custom KMSs, see Creating Keys in the AWS Key
Management Service Developer Guide

• To use a custom KMS ARN from your AWS account or from another AWS account, enter
it into the KMS key field.

6. (Optional) By default, only the topic owner can publish or subscribe to the topic. To configure
additional access permissions, expand the Access policy section. For more information, see
Identity and access management in Amazon SNS and Example cases for Amazon SNS access
control.

Note

When you create a topic using the console, the default policy uses the
aws:SourceOwner condition key. This key is similar to aws:SourceAccount.

7. (Optional) To configure how Amazon SNS retries failed message delivery attempts, expand
the Delivery retry policy (HTTP/S) section. For more information, see Amazon SNS message
delivery retries.

8. (Optional) To configure how Amazon SNS logs the delivery of messages to CloudWatch,
expand the Delivery status logging section. For more information, see Amazon SNS message
delivery status.

AWS Management Console 14

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Simple Notification Service Developer Guide

9. (Optional) To add metadata tags to the topic, expand the Tags section, enter a Key and a
Value (optional) and choose Add tag. For more information, see Amazon SNS topic tagging.

10. Choose Create topic.

The topic is created and the MyTopic page is displayed.

The topic's Name, ARN, (optional) Display name, and Topic owner's AWS account ID are
displayed in the Details section.

11. Copy the topic ARN to the clipboard, for example:

arn:aws:sns:us-east-2:123456789012:MyTopic

To create a topic using an AWS SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code examples show how to use CreateTopic.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a topic with a specific name.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example shows how to use Amazon Simple Notification Service
 /// (Amazon SNS) to add a new Amazon SNS topic.

AWS SDKs 15

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// </summary>
 public class CreateSNSTopic
 {
 public static async Task Main()
 {
 string topicName = "ExampleSNSTopic";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 var topicArn = await CreateSNSTopicAsync(client, topicName);
 Console.WriteLine($"New topic ARN: {topicArn}");
 }

 /// <summary>
 /// Creates a new SNS topic using the supplied topic name.
 /// </summary>
 /// <param name="client">The initialized SNS client object used to
 /// create the new topic.</param>
 /// <param name="topicName">A string representing the topic name.</param>
 /// <returns>The Amazon Resource Name (ARN) of the created topic.</
returns>
 public static async Task<string>
 CreateSNSTopicAsync(IAmazonSimpleNotificationService client, string topicName)
 {
 var request = new CreateTopicRequest
 {
 Name = topicName,
 };

 var response = await client.CreateTopicAsync(request);

 return response.TopicArn;
 }
 }

Create a new topic with a name and specific FIFO and de-duplication attributes.

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.

AWS SDKs 16

Amazon Simple Notification Service Developer Guide

 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

• For API details, see CreateTopic in AWS SDK for .NET API Reference.

AWS SDKs 17

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic

Amazon Simple Notification Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param topicName: An Amazon SNS topic name.
 \param topicARNResult: String to return the Amazon Resource Name (ARN) for the
 topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::createTopic(const Aws::String &topicName,
 Aws::String &topicARNResult,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::CreateTopicRequest request;
 request.SetName(topicName);

 const Aws::SNS::Model::CreateTopicOutcome outcome =
 snsClient.CreateTopic(request);

 if (outcome.IsSuccess()) {
 topicARNResult = outcome.GetResult().GetTopicArn();
 std::cout << "Successfully created an Amazon SNS topic " << topicName
 << " with topic ARN '" << topicARNResult
 << "'." << std::endl;

 }
 else {
 std::cerr << "Error creating topic " << topicName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 topicARNResult.clear();
 }

AWS SDKs 18

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 return outcome.IsSuccess();
}

• For API details, see CreateTopic in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create an SNS topic

The following create-topic example creates an SNS topic named my-topic.

aws sns create-topic \
 --name my-topic

Output:

{
 "ResponseMetadata": {
 "RequestId": "1469e8d7-1642-564e-b85d-a19b4b341f83"
 },
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic"
}

For more information, see Using the AWS Command Line Interface with Amazon SQS and
Amazon SNS in the AWS Command Line Interface User Guide.

• For API details, see CreateTopic in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

AWS SDKs 19

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/cli/latest/userguide/cli-sqs-queue-sns-topic.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-sqs-queue-sns-topic.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/create-topic.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// CreateTopic creates an Amazon SNS topic with the specified name. You can
 optionally
// specify that the topic is created as a FIFO topic and whether it uses content-
based
// deduplication instead of ID-based deduplication.
func (actor SnsActions) CreateTopic(ctx context.Context, topicName string,
 isFifoTopic bool, contentBasedDeduplication bool) (string, error) {
 var topicArn string
 topicAttributes := map[string]string{}
 if isFifoTopic {
 topicAttributes["FifoTopic"] = "true"
 }
 if contentBasedDeduplication {
 topicAttributes["ContentBasedDeduplication"] = "true"
 }
 topic, err := actor.SnsClient.CreateTopic(ctx, &sns.CreateTopicInput{
 Name: aws.String(topicName),
 Attributes: topicAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create topic %v. Here's why: %v\n", topicName, err)
 } else {
 topicArn = *topic.TopicArn

AWS SDKs 20

Amazon Simple Notification Service Developer Guide

 }

 return topicArn, err
}

• For API details, see CreateTopic in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicName>

 Where:

AWS SDKs 21

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 topicName - The name of the topic to create (for example,
 mytopic).

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicName = args[0];
 System.out.println("Creating a topic with name: " + topicName);
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnVal = createSNSTopic(snsClient, topicName);
 System.out.println("The topic ARN is" + arnVal);
 snsClient.close();
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateTopic in AWS SDK for Java 2.x API Reference.

AWS SDKs 22

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic

Amazon Simple Notification Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { CreateTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicName - The name of the topic to create.
 */
export const createTopic = async (topicName = "TOPIC_NAME") => {
 const response = await snsClient.send(
 new CreateTopicCommand({ Name: topicName }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '087b8ad2-4593-50c4-a496-d7e90b82cf3e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },

AWS SDKs 23

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME'
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateTopic in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createSNSTopic(topicName: String): String {
 val request =
 CreateTopicRequest {
 name = topicName
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.createTopic(request)
 return result.topicArn.toString()
 }
}

• For API details, see CreateTopic in AWS SDK for Kotlin API reference.

AWS SDKs 24

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-createtopic
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Create a Simple Notification Service topics in your AWS account at the
 requested region.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topicname = 'myTopic';

try {
 $result = $SnSclient->createTopic([
 'Name' => $topicname,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

AWS SDKs 25

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see CreateTopic in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def create_topic(self, name):
 """
 Creates a notification topic.

 :param name: The name of the topic to create.
 :return: The newly created topic.
 """
 try:
 topic = self.sns_resource.create_topic(Name=name)
 logger.info("Created topic %s with ARN %s.", name, topic.arn)
 except ClientError:
 logger.exception("Couldn't create topic %s.", name)
 raise
 else:
 return topic

AWS SDKs 26

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-managing-topics.html#create-a-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see CreateTopic in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This class demonstrates how to create an Amazon Simple Notification Service
 (SNS) topic.
class SNSTopicCreator
 # Initializes an SNS client.
 #
 # Utilizes the default AWS configuration for region and credentials.
 def initialize
 @sns_client = Aws::SNS::Client.new
 end

 # Attempts to create an SNS topic with the specified name.
 #
 # @param topic_name [String] The name of the SNS topic to create.
 # @return [Boolean] true if the topic was successfully created, false
 otherwise.
 def create_topic(topic_name)
 @sns_client.create_topic(name: topic_name)
 puts "The topic '#{topic_name}' was successfully created."
 true
 rescue Aws::SNS::Errors::ServiceError => e
 # Handles SNS service errors gracefully.
 puts "Error while creating the topic named '#{topic_name}': #{e.message}"
 false
 end
end

Example usage:

AWS SDKs 27

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

if $PROGRAM_NAME == __FILE__
 topic_name = 'YourTopicName' # Replace with your topic name
 sns_topic_creator = SNSTopicCreator.new

 puts "Creating the topic '#{topic_name}'..."
 unless sns_topic_creator.create_topic(topic_name)
 puts 'The topic was not created. Stopping program.'
 exit 1
 end
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see CreateTopic in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn make_topic(client: &Client, topic_name: &str) -> Result<(), Error> {
 let resp = client.create_topic().name(topic_name).send().await?;

 println!(
 "Created topic with ARN: {}",
 resp.topic_arn().unwrap_or_default()
);

 Ok(())
}

• For API details, see CreateTopic in AWS SDK for Rust API reference.

AWS SDKs 28

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-create-topic.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples
https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.create_topic

Amazon Simple Notification Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->createtopic(iv_name = iv_topic_name). " oo_result
 is returned for testing purposes. "
 MESSAGE 'SNS topic created' TYPE 'I'.
 CATCH /aws1/cx_snstopiclimitexcdex.
 MESSAGE 'Unable to create more topics. You have reached the maximum
 number of topics allowed.' TYPE 'E'.
 ENDTRY.

• For API details, see CreateTopic in AWS SDK for SAP ABAP API reference.

Creating a subscription to an Amazon SNS topic

To receive messages published to a topic, you must subscribe an endpoint to the topic. When
you subscribe an endpoint to a topic, the endpoint begins to receive messages published to the
associated topic.

Note

HTTP(S) endpoints, email addresses, and AWS resources in other AWS accounts require
confirmation of the subscription before they can receive messages.

To subscribe an endpoint to an Amazon SNS topic

Subscribing an endpoint to an Amazon SNS topic enables message delivery to the specified
endpoint, ensuring the right systems or users receive notifications when a message is published to

Step 2: Creating a subscription to a topic 29

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

the topic. This step is essential for linking the topic to consumers—whether they are applications,
email recipients, or other services—allowing for seamless communication across systems.

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, in the Details section, do the following:

a. For Topic ARN, choose the Amazon Resource Name (ARN) of a topic. This value is the
AWS ARN that was generated when you created the Amazon SNS topic, for example
arn:aws:sns:us-east-2:123456789012:your_topic.

b. For Protocol, choose an endpoint type. The available endpoint types are:

• HTTP/HTTPS

• Email/Email-JSON

• Amazon Data Firehose

• Amazon SQS

Note

To subscribe to an SNS FIFO topic, choose this option.

• AWS Lambda

• Platform application endpoint

• SMS

c. For Endpoint, enter the endpoint value, such as an email address or the ARN of an
Amazon SQS queue.

d. Firehose endpoints only: For Subscription role ARN, specify the ARN of the IAM role
that you created for writing to Firehose delivery streams. For more information, see
Prerequisites for subscribing Firehose delivery streams to Amazon SNS topics.

e. (Optional) For Firehose, Amazon SQS, HTTP/S endpoints, you can also enable raw
message delivery. For more information, see Amazon SNS raw message delivery.

f. (Optional) To configure a filter policy, expand the Subscription filter policy section. For
more information, see Amazon SNS subscription filter policies.

To subscribe an endpoint to an Amazon SNS topic 30

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

g. (Optional) To enable payload-based filtering, configure Filter Policy Scope to
MessageBody. For more information, see Amazon SNS subscription filter policy scope.

h. (Optional) To configure a dead-letter queue for the subscription, expand the Redrive
policy (dead-letter queue) section. For more information, see Amazon SNS dead-letter
queues.

i. Choose Create subscription.

The console creates the subscription and opens the subscription's Details page.

Publishing an Amazon SNS message

After you create an Amazon SNS topic and subscribe an endpoint to it, you can publish messages
to the topic. When a message is published, Amazon SNS attempts to deliver the message to the
subscribed endpoints.

Topics

• To publish messages to Amazon SNS topics using the AWS Management Console

• To publish a message to a topic using an AWS SDK

• Publishing large messages with Amazon SNS and Amazon S3

• Amazon SNS message attributes

• Amazon SNS message batching

To publish messages to Amazon SNS topics using the AWS Management
Console

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Topics.

3. On the Topics page, select a topic, and then choose Publish message.

The console opens the Publish message to topic page.

4. In the Message details section, do the following:

a. (Optional) Enter a message Subject.

Step 3: Publishing a message 31

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

b. For a FIFO topic, enter a Message group ID. Messages in the same message group are
delivered in the order that they are published.

c. For a FIFO topic, enter a Message deduplication ID. This ID is optional if you enabled the
Content-based message deduplication setting for the topic.

d. (Optional) For mobile push notifications, enter a Time to Live (TTL) value in seconds. This
is the amount of time that a push notification service—such as Apple Push Notification
Service (APNs) or Firebase Cloud Messaging (FCM)—has to deliver the message to the
endpoint.

5. In the Message body section, do one of the following:

a. Choose Identical payload for all delivery protocols, and then enter a message.

b. Choose Custom payload for each delivery protocol, and then enter a JSON object to
define the message to send for each delivery protocol.

For more information, see Publishing Amazon SNS notifications with platform-specific
payloads.

6. In the Message attributes section, add any attributes that you want Amazon SNS to match
with the subscription attribute FilterPolicy to decide whether the subscribed endpoint is
interested in the published message.

a. For Type, choose an attribute type, such as String.Array.

Note

For attribute type String.Array, enclose the array in square brackets ([]). Within
the array, enclose string values in double quotation marks. You don't need
quotation marks for numbers or for the keywords true, false, and null.

b. Enter an attribute Name, such as customer_interests.

c. Enter an attribute Value, such as ["soccer", "rugby", "hockey"].

If the attribute type is String, String.Array, or Number, Amazon SNS evaluates the message
attribute against a subscription's filter policy (if present) before sending the message to the
subscription given filter policy scope is not explicitly set to MessageBody.

For more information, see Amazon SNS message attributes.

AWS Management Console 32

Amazon Simple Notification Service Developer Guide

7. Choose Publish message.

The message is published to the topic, and the console opens the topic's Details page.

To publish a message to a topic using an AWS SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code examples show how to use Publish.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Publish a message to a topic.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example publishes a message to an Amazon Simple Notification
 /// Service (Amazon SNS) topic.
 /// </summary>
 public class PublishToSNSTopic
 {
 public static async Task Main()
 {
 string topicArn = "arn:aws:sns:us-
east-2:000000000000:ExampleSNSTopic";
 string messageText = "This is an example message to publish to the
 ExampleSNSTopic.";

AWS SDKs 33

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await PublishToTopicAsync(client, topicArn, messageText);
 }

 /// <summary>
 /// Publishes a message to an Amazon SNS topic.
 /// </summary>
 /// <param name="client">The initialized client object used to publish
 /// to the Amazon SNS topic.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="messageText">The text of the message.</param>
 public static async Task PublishToTopicAsync(
 IAmazonSimpleNotificationService client,
 string topicArn,
 string messageText)
 {
 var request = new PublishRequest
 {
 TopicArn = topicArn,
 Message = messageText,
 };

 var response = await client.PublishAsync(request);

 Console.WriteLine($"Successfully published message ID:
 {response.MessageId}");
 }
 }

Publish a message to a topic with group, duplication, and attribute options.

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

AWS SDKs 34

Amazon Simple Notification Service Developer Guide

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;
 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is
 a sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must
 set a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID
 for this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this
 message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID
 for this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

AWS SDKs 35

Amazon Simple Notification Service Developer Guide

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];
 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?",
 false);
 }
 }

Apply the user's selections to the publish action.

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</
param>
 /// <param name="attributeValue">The optional attribute value for the
 message.</param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {

AWS SDKs 36

Amazon Simple Notification Service Developer Guide

 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await
 _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

• For API details, see Publish in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Send a message to an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param message: The message to publish.
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.

AWS SDKs 37

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::publishToTopic(const Aws::String &message,
 const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::PublishRequest request;
 request.SetMessage(message);
 request.SetTopicArn(topicARN);

 const Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Message published successfully with id '"
 << outcome.GetResult().GetMessageId() << "'." << std::endl;
 }
 else {
 std::cerr << "Error while publishing message "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Publish a message with an attribute.

 static const Aws::String TONE_ATTRIBUTE("tone");
 static const Aws::Vector<Aws::String> TONES = {"cheerful", "funny",
 "serious",
 "sincere"};

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::PublishRequest request;
 request.SetTopicArn(topicARN);

AWS SDKs 38

Amazon Simple Notification Service Developer Guide

 Aws::String message = askQuestion("Enter a message text to publish. ");
 request.SetMessage(message);

 if (filteringMessages && askYesNoQuestion(
 "Add an attribute to this message? (y/n) ")) {
 for (size_t i = 0; i < TONES.size(); ++i) {
 std::cout << " " << (i + 1) << ". " << TONES[i] << std::endl;
 }
 int selection = askQuestionForIntRange(
 "Enter a number for an attribute. ",
 1, static_cast<int>(TONES.size()));
 Aws::SNS::Model::MessageAttributeValue messageAttributeValue;
 messageAttributeValue.SetDataType("String");
 messageAttributeValue.SetStringValue(TONES[selection - 1]);
 request.AddMessageAttributes(TONE_ATTRIBUTE, messageAttributeValue);
 }

 Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Your message was successfully published." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Publish. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

• For API details, see Publish in AWS SDK for C++ API Reference.

AWS SDKs 39

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish

Amazon Simple Notification Service Developer Guide

CLI

AWS CLI

Example 1: To publish a message to a topic

The following publish example publishes the specified message to the specified SNS topic.
The message comes from a text file, which enables you to include line breaks.

aws sns publish \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic" \
 --message file://message.txt

Contents of message.txt:

Hello World
Second Line

Output:

{
 "MessageId": "123a45b6-7890-12c3-45d6-111122223333"
}

Example 2: To publish an SMS message to a phone number

The following publish example publishes the message Hello world! to the phone
number +1-555-555-0100.

aws sns publish \
 --message "Hello world!" \
 --phone-number +1-555-555-0100

Output:

{
 "MessageId": "123a45b6-7890-12c3-45d6-333322221111"
}

• For API details, see Publish in AWS CLI Command Reference.

AWS SDKs 40

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/publish.html

Amazon Simple Notification Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// Publish publishes a message to an Amazon SNS topic. The message is then sent
 to all
// subscribers. When the topic is a FIFO topic, the message must also contain a
 group ID
// and, when ID-based deduplication is used, a deduplication ID. An optional key-
value
// filter attribute can be specified so that the message can be filtered
 according to
// a filter policy.
func (actor SnsActions) Publish(ctx context.Context, topicArn string, message
 string, groupId string, dedupId string, filterKey string, filterValue string)
 error {

AWS SDKs 41

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

 publishInput := sns.PublishInput{TopicArn: aws.String(topicArn), Message:
 aws.String(message)}
 if groupId != "" {
 publishInput.MessageGroupId = aws.String(groupId)
 }
 if dedupId != "" {
 publishInput.MessageDeduplicationId = aws.String(dedupId)
 }
 if filterKey != "" && filterValue != "" {
 publishInput.MessageAttributes = map[string]types.MessageAttributeValue{
 filterKey: {DataType: aws.String("String"), StringValue:
 aws.String(filterValue)},
 }
 }
 _, err := actor.SnsClient.Publish(ctx, &publishInput)
 if err != nil {
 log.Printf("Couldn't publish message to topic %v. Here's why: %v", topicArn,
 err)
 }
 return err
}

• For API details, see Publish in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

AWS SDKs 42

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <topicArn>

 Where:
 message - The message text to send.
 topicArn - The ARN of the topic to publish.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String topicArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTopic(snsClient, message, topicArn);
 snsClient.close();
 }

 public static void pubTopic(SnsClient snsClient, String message, String
 topicArn) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .topicArn(topicArn)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out

AWS SDKs 43

Amazon Simple Notification Service Developer Guide

 .println(result.messageId() + " Message sent. Status is " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see Publish in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { PublishCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string | Record<string, any>} message - The message to send. Can be a
 plain string or an object

AWS SDKs 44

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * if you are using the `json`
 `MessageStructure`.
 * @param {string} topicArn - The ARN of the topic to which you would like to
 publish.
 */
export const publish = async (
 message = "Hello from SNS!",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 new PublishCommand({
 Message: message,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'e7f77526-e295-5325-9ee4-281a43ad1f05',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // MessageId: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

Publish a message to a topic with group, duplication, and attribute options.

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {

AWS SDKs 45

Amazon Simple Notification Service Developer Guide

 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

AWS SDKs 46

Amazon Simple Notification Service Developer Guide

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Publish in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun pubTopic(
 topicArnVal: String,
 messageVal: String,
) {
 val request =
 PublishRequest {
 message = messageVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

AWS SDKs 47

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-messages.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Sends a message to an Amazon SNS topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$message = 'This message is sent from a Amazon SNS code sample.';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->publish([
 'Message' => $message,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {

AWS SDKs 48

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Publish in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This example shows publishing a message with a single MessageAttribute
declared inline.

Publish-SNSMessage -TopicArn "arn:aws:sns:us-west-2:123456789012:my-topic" -
Message "Hello" -MessageAttribute
 @{'City'=[Amazon.SimpleNotificationService.Model.MessageAttributeValue]@{DataType='String';
 StringValue ='AnyCity'}}

Example 2: This example shows publishing a message with multiple MessageAttributes
declared in advance.

$cityAttributeValue = New-Object
 Amazon.SimpleNotificationService.Model.MessageAttributeValue
$cityAttributeValue.DataType = "String"
$cityAttributeValue.StringValue = "AnyCity"

$populationAttributeValue = New-Object
 Amazon.SimpleNotificationService.Model.MessageAttributeValue
$populationAttributeValue.DataType = "Number"
$populationAttributeValue.StringValue = "1250800"

$messageAttributes = New-Object System.Collections.Hashtable
$messageAttributes.Add("City", $cityAttributeValue)
$messageAttributes.Add("Population", $populationAttributeValue)

Publish-SNSMessage -TopicArn "arn:aws:sns:us-west-2:123456789012:my-topic" -
Message "Hello" -MessageAttribute $messageAttributes

AWS SDKs 49

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-subscribing-unsubscribing-topics.html#publish-a-message-to-an-sns-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Publish

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Publish a message with attributes so that a subscription can filter based on attributes.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def publish_message(topic, message, attributes):
 """
 Publishes a message, with attributes, to a topic. Subscriptions can be
 filtered
 based on message attributes so that a subscription receives messages only
 when specified attributes are present.

 :param topic: The topic to publish to.
 :param message: The message to publish.
 :param attributes: The key-value attributes to attach to the message.
 Values
 must be either `str` or `bytes`.
 :return: The ID of the message.
 """
 try:
 att_dict = {}
 for key, value in attributes.items():

AWS SDKs 50

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 if isinstance(value, str):
 att_dict[key] = {"DataType": "String", "StringValue": value}
 elif isinstance(value, bytes):
 att_dict[key] = {"DataType": "Binary", "BinaryValue": value}
 response = topic.publish(Message=message, MessageAttributes=att_dict)
 message_id = response["MessageId"]
 logger.info(
 "Published message with attributes %s to topic %s.",
 attributes,
 topic.arn,
)
 except ClientError:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise
 else:
 return message_id

Publish a message that takes different forms based on the protocol of the subscriber.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def publish_multi_message(
 topic, subject, default_message, sms_message, email_message
):
 """
 Publishes a multi-format message to a topic. A multi-format message takes
 different forms based on the protocol of the subscriber. For example,
 an SMS subscriber might receive a short version of the message
 while an email subscriber could receive a longer version.

 :param topic: The topic to publish to.
 :param subject: The subject of the message.

AWS SDKs 51

Amazon Simple Notification Service Developer Guide

 :param default_message: The default version of the message. This version
 is
 sent to subscribers that have protocols that are
 not
 otherwise specified in the structured message.
 :param sms_message: The version of the message sent to SMS subscribers.
 :param email_message: The version of the message sent to email
 subscribers.
 :return: The ID of the message.
 """
 try:
 message = {
 "default": default_message,
 "sms": sms_message,
 "email": email_message,
 }
 response = topic.publish(
 Message=json.dumps(message), Subject=subject,
 MessageStructure="json"
)
 message_id = response["MessageId"]
 logger.info("Published multi-format message to topic %s.", topic.arn)
 except ClientError:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise
 else:
 return message_id

• For API details, see Publish in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

AWS SDKs 52

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Service class for sending messages using Amazon Simple Notification Service
 (SNS)
class SnsMessageSender
 # Initializes the SnsMessageSender with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Sends a message to a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param message [String] The message to send
 # @return [Boolean] true if message was successfully sent, false otherwise
 def send_message(topic_arn, message)
 @sns_client.publish(topic_arn: topic_arn, message: message)
 @logger.info("Message sent successfully to #{topic_arn}.")
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while sending the message: #{e.message}")
 false
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'SNS_TOPIC_ARN' # Should be replaced with a real topic ARN
 message = 'MESSAGE' # Should be replaced with the actual message
 content

 sns_client = Aws::SNS::Client.new
 message_sender = SnsMessageSender.new(sns_client)

 @logger.info('Sending message.')
 unless message_sender.send_message(topic_arn, message)
 @logger.error('Message sending failed. Stopping program.')
 exit 1
 end
end

AWS SDKs 53

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see Publish in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn subscribe_and_publish(
 client: &Client,
 topic_arn: &str,
 email_address: &str,
) -> Result<(), Error> {
 println!("Receiving on topic with ARN: `{}`", topic_arn);

 let rsp = client
 .subscribe()
 .topic_arn(topic_arn)
 .protocol("email")
 .endpoint(email_address)
 .send()
 .await?;

 println!("Added a subscription: {:?}", rsp);

 let rsp = client
 .publish()
 .topic_arn(topic_arn)
 .message("hello sns!")
 .send()
 .await?;

 println!("Published message: {:?}", rsp);

 Ok(())
}

AWS SDKs 54

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-send-message.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->publish(" oo_result is returned for
 testing purposes. "
 iv_topicarn = iv_topic_arn
 iv_message = iv_message
).
 MESSAGE 'Message published to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see Publish in AWS SDK for SAP ABAP API reference.

Publishing large messages with Amazon SNS and Amazon S3

To publish large Amazon SNS messages, you can use the Amazon SNS Extended Client Library
for Java, or the Amazon SNS Extended Client Library for Python. These libraries are useful for
messages that are larger than the current maximum of 256 KB, with a maximum of 2 GB. Both
libraries save the actual payload to an Amazon S3 bucket, and publish the reference of the stored
Amazon S3 object to the Amazon SNS topic. Subscribed Amazon SQS queues can use the Amazon
SQS Extended Client Library for Java to de-reference and retrieve payloads from Amazon S3. Other
endpoints such as Lambda can use the Payload Offloading Java Common Library for AWS to de-
reference and retrieve the payload.

Large message payloads 55

https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awslabs/amazon-sns-java-extended-client-lib/
https://github.com/awslabs/amazon-sns-java-extended-client-lib/
https://github.com/awslabs/amazon-sns-python-extended-client-lib
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/payload-offloading-java-common-lib-for-aws

Amazon Simple Notification Service Developer Guide

Note

The Amazon SNS Extended Client Libraries are compatible with both standard and FIFO
topics.

Topics

• Amazon SNS Extended Client Library for Java

• Amazon SNS Extended Client Library for Python

Amazon SNS Extended Client Library for Java

Topics

• Prerequisites

• Configuring message storage

• Example: Publishing messages to Amazon SNS with payload stored in Amazon S3

• Other endpoint protocols

Prerequisites

The following are the prerequisites for using the Amazon SNS Extended Client Library for Java:

• An AWS SDK.

The example on this page uses the AWS Java SDK. To install and set up the SDK, see Set up the
AWS SDK for Java in the AWS SDK for Java Developer Guide.

• An AWS account with the proper credentials.

To create an AWS account, navigate to the AWS home page, and then choose Create an AWS
Account. Follow the instructions.

For information about credentials, see Set up AWS Credentials and Region for Development in
the AWS SDK for Java Developer Guide.

• Java 8 or better.

• The Amazon SNS Extended Client Library for Java (also available from Maven).

Large message payloads 56

https://github.com/awslabs/amazon-sns-java-extended-client-lib
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://aws.amazon.com/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-credentials.html
https://maven.apache.org/

Amazon Simple Notification Service Developer Guide

Configuring message storage

The Amazon SNS Extended Client library uses the Payload Offloading Java Common Library for
AWS for message storage and retrieval. You can configure the following Amazon S3 message
storage options:

• Custom message sizes threshold – Messages with payloads and attributes that exceed this size
are automatically stored in Amazon S3.

• alwaysThroughS3 flag – Set this value to true to force all message payloads to be stored in
Amazon S3. For example:

SNSExtendedClientConfiguration snsExtendedClientConfiguration = new
SNSExtendedClientConfiguration() .withPayloadSupportEnabled(s3Client,
 BUCKET_NAME).withAlwaysThroughS3(true);

• Custom KMS key – The key to use for server-side encryption in your Amazon S3 bucket.

• Bucket name – The name of the Amazon S3 bucket for storing message payloads.

Example: Publishing messages to Amazon SNS with payload stored in Amazon S3

The following code example shows how to:

• Create a sample topic and queue.

• Subscribe the queue to receive messages from the topic.

• Publish a test message.

The message payload is stored in Amazon S3 and the reference to it is published. The Amazon SQS
Extended Client is used to receive the message.

SDK for Java 1.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run in
the AWS Code Examples Repository.

Large message payloads 57

https://github.com/awslabs/amazon-sns-java-extended-client-lib/blob/main/src/main/java/software/amazon/sns/SNSExtendedClientConfiguration.java
https://github.com/awslabs/amazon-sns-java-extended-client-lib/blob/main/src/main/java/software/amazon/sns/SNSExtendedClientConfiguration.java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/java/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

To publish a large message, use the Amazon SNS Extended Client Library for Java. The message
that you send references an Amazon S3 object containing the actual message content.

import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.sns.AmazonSNS;
import com.amazonaws.services.sns.AmazonSNSClientBuilder;
import com.amazonaws.services.sns.model.CreateTopicRequest;
import com.amazonaws.services.sns.model.PublishRequest;
import com.amazonaws.services.sns.model.SetSubscriptionAttributesRequest;
import com.amazonaws.services.sns.util.Topics;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.CreateQueueRequest;
import com.amazonaws.services.sqs.model.ReceiveMessageResult;
import software.amazon.sns.AmazonSNSExtendedClient;
import software.amazon.sns.SNSExtendedClientConfiguration;

public class Example {

 public static void main(String[] args) {
 final String BUCKET_NAME = "extended-client-bucket";
 final String TOPIC_NAME = "extended-client-topic";
 final String QUEUE_NAME = "extended-client-queue";
 final Regions region = Regions.DEFAULT_REGION;

 // Message threshold controls the maximum message size that will be
 allowed to
 // be published
 // through SNS using the extended client. Payload of messages
 exceeding this
 // value will be stored in
 // S3. The default value of this parameter is 256 KB which is the
 maximum
 // message size in SNS (and SQS).
 final int EXTENDED_STORAGE_MESSAGE_SIZE_THRESHOLD = 32;

 // Initialize SNS, SQS and S3 clients

Large message payloads 58

Amazon Simple Notification Service Developer Guide

 final AmazonSNS snsClient =
 AmazonSNSClientBuilder.standard().withRegion(region).build();
 final AmazonSQS sqsClient =
 AmazonSQSClientBuilder.standard().withRegion(region).build();
 final AmazonS3 s3Client =
 AmazonS3ClientBuilder.standard().withRegion(region).build();

 // Create bucket, topic, queue and subscription
 s3Client.createBucket(BUCKET_NAME);
 final String topicArn = snsClient.createTopic(
 new
 CreateTopicRequest().withName(TOPIC_NAME)).getTopicArn();
 final String queueUrl = sqsClient.createQueue(
 new
 CreateQueueRequest().withQueueName(QUEUE_NAME)).getQueueUrl();
 final String subscriptionArn = Topics.subscribeQueue(
 snsClient, sqsClient, topicArn, queueUrl);

 // To read message content stored in S3 transparently through SQS
 extended
 // client,
 // set the RawMessageDelivery subscription attribute to TRUE
 final SetSubscriptionAttributesRequest subscriptionAttributesRequest
 = new SetSubscriptionAttributesRequest();
 subscriptionAttributesRequest.setSubscriptionArn(subscriptionArn);

 subscriptionAttributesRequest.setAttributeName("RawMessageDelivery");
 subscriptionAttributesRequest.setAttributeValue("TRUE");
 snsClient.setSubscriptionAttributes(subscriptionAttributesRequest);

 // Initialize SNS extended client
 // PayloadSizeThreshold triggers message content storage in S3 when
 the
 // threshold is exceeded
 // To store all messages content in S3, use AlwaysThroughS3 flag
 final SNSExtendedClientConfiguration snsExtendedClientConfiguration
 = new SNSExtendedClientConfiguration()
 .withPayloadSupportEnabled(s3Client, BUCKET_NAME)

 .withPayloadSizeThreshold(EXTENDED_STORAGE_MESSAGE_SIZE_THRESHOLD);
 final AmazonSNSExtendedClient snsExtendedClient = new
 AmazonSNSExtendedClient(snsClient,
 snsExtendedClientConfiguration);

Large message payloads 59

Amazon Simple Notification Service Developer Guide

 // Publish message via SNS with storage in S3
 final String message = "This message is stored in S3 as it exceeds
 the threshold of 32 bytes set above.";
 snsExtendedClient.publish(topicArn, message);

 // Initialize SQS extended client
 final ExtendedClientConfiguration sqsExtendedClientConfiguration =
 new ExtendedClientConfiguration()
 .withPayloadSupportEnabled(s3Client, BUCKET_NAME);
 final AmazonSQSExtendedClient sqsExtendedClient = new
 AmazonSQSExtendedClient(sqsClient,
 sqsExtendedClientConfiguration);

 // Read the message from the queue
 final ReceiveMessageResult result =
 sqsExtendedClient.receiveMessage(queueUrl);
 System.out.println("Received message is " +
 result.getMessages().get(0).getBody());
 }
}

Other endpoint protocols

Both the Amazon SNS and Amazon SQS libraries use the Payload Offloading Java Common Library
for AWS to store and retrieve message payloads with Amazon S3. Any Java-enabled endpoint (for
example, an HTTPS endpoint that's implemented in Java) can use the same library to de-reference
the message content.

Endpoints that can't use the Payload Offloading Java Common Library for AWS can still publish
messages with payloads stored in Amazon S3. The following is an example of an Amazon S3
reference that is published by the above code example:

[
 "software.amazon.payloadoffloading.PayloadS3Pointer",
 {
 "s3BucketName": "extended-client-bucket",
 "s3Key": "xxxx-xxxxx-xxxxx-xxxxxx"
 }
]

Large message payloads 60

https://github.com/awslabs/payload-offloading-java-common-lib-for-aws
https://github.com/awslabs/payload-offloading-java-common-lib-for-aws

Amazon Simple Notification Service Developer Guide

Amazon SNS Extended Client Library for Python

Topics

• Prerequisites

• Configuring message storage

• Example: Publishing messages to Amazon SNS with the payload stored in Amazon S3

Prerequisites

The following are the prerequisites for using the Amazon SNS Extended Client Library for Python:

• An AWS SDK.

The example on this page uses AWS Python SDK Boto3. To install and set up the SDK, see the
AWS SDK for Python documentation.

• An AWS account with the proper credentials.

To create an AWS account, navigate to the AWS home page, and then choose Create an AWS
Account. Follow the instructions.

For information about credentials, see Credentials in the AWS SDK for Python Developer Guide.

• Python 3.x (or later) and pip.

• The Amazon SNS Extended Client Library for Python (also available from PyPI).

Configuring message storage

The below attributes are available on Boto3 Amazon SNS Client, Topic, and PlatformEndpoint
objects to configure the Amazon S3 message storage options.

• large_payload_support – The Amazon S3 bucket name to store large messages.

• message_size_threshold – The threshold for storing the message in the large messages
bucket. Cannot be less than 0, or greater than 262144. The default is 262144.

• always_through_s3 – If True, then all messages are stored in Amazon S3. The default is
False.

• s3 – The Boto3 Amazon S3 resource object used to store objects in Amazon S3. Use this
if you want to control the Amazon S3 resource (for example, a custom Amazon S3 config or
credentials). If not previously set on first use, the default is boto3.resource("s3").

Large message payloads 61

https://github.com/awslabs/amazon-sns-python-extended-client-lib
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://aws.amazon.com/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://pypi.org/project/amazon-sns-extended-client/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sns.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sns/topic/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sns/platformendpoint/index.html

Amazon Simple Notification Service Developer Guide

Example: Publishing messages to Amazon SNS with the payload stored in Amazon S3

The following code example shows how to:

• Create a sample Amazon SNS topic and Amazon SQS queue.

• Subscribe the queue to receive messages from the topic.

• Publish a test message.

• The message payload is stored in Amazon S3, and the reference to it is published.

• Print the published message from the queue along with the original message retrieved from
Amazon S3.

To publish a large message, use the Amazon SNS Extended Client Library for Python. The message
you send references an Amazon S3 object containing the actual message content.

import boto3
import sns_extended_client
from json import loads

s3_extended_payload_bucket = "extended-client-bucket-store"
TOPIC_NAME = "TOPIC-NAME"
QUEUE_NAME = "QUEUE-NAME"

Create an helper to fetch message from S3
def get_msg_from_s3(body):
 json_msg = loads(body)
 s3_client = boto3.client("s3")
 s3_object = s3_client.get_object(
 Bucket=json_msg[1].get("s3BucketName"), Key=json_msg[1].get("s3Key")
)
 msg = s3_object.get("Body").read().decode()
 return msg

Create an helper to fetch and print message SQS queue and S3
def fetch_and_print_from_sqs(sqs, queue_url):
 """Handy Helper to fetch and print message from SQS queue and S3"""
 message = sqs.receive_message(
 QueueUrl=queue_url, MessageAttributeNames=["All"], MaxNumberOfMessages=1
).get("Messages")[0]
 message_body = message.get("Body")
 print("Published Message: {}".format(message_body))
 print("Message Stored in S3 Bucket is: {}\n".format(get_msg_from_s3(message_body)))

Large message payloads 62

Amazon Simple Notification Service Developer Guide

Initialize the SNS client and create SNS Topic
sns_extended_client = boto3.client("sns", region_name="us-east-1")
create_topic_response = sns_extended_client.create_topic(Name=TOPIC_NAME)
demo_topic_arn = create_topic_response.get("TopicArn")

Create and subscribe an SQS queue to the SNS client
sqs = boto3.client("sqs")
demo_queue_url = sqs.create_queue(QueueName=QUEUE_NAME).get("QueueUrl")
demo_queue_arn = sqs.get_queue_attributes(QueueUrl=demo_queue_url,
AttributeNames=["QueueArn"])["Attributes"].get("QueueArn")
Set the RawMessageDelivery subscription attribute to TRUE
sns_extended_client.subscribe(TopicArn=demo_topic_arn, Protocol="sqs",
Endpoint=demo_queue_arn, Attributes={"RawMessageDelivery":"true"})

sns_extended_client.large_payload_support = s3_extended_payload_bucket

To store all messages content in S3, set always_through_s3 to True
In the example, we set message size threshold as 32 bytes, adjust this threshold as
 per your usecase
Message will only be uploaded to S3 when its payload size exceeded threshold
sns_extended_client.message_size_threshold = 32
sns_extended_client.publish(
 TopicArn=demo_topic_arn,
 Message="This message should be published to S3 as it exceeds the
 message_size_threshold limit",
)
Print message stored in s3
fetch_and_print_from_sqs(sqs, demo_queue_url)

Output

Published Message:
[
 "software.amazon.payloadoffloading.PayloadS3Pointer",
 {
 "s3BucketName": "extended-client-bucket-store",
 "s3Key": "xxxx-xxxxx-xxxxx-xxxxxx"
 }
]
Message Stored in S3 Bucket is: This message should be published to S3 as it exceeds
 the message_size_threshold limit

Large message payloads 63

Amazon Simple Notification Service Developer Guide

Amazon SNS message attributes

Amazon SNS supports delivery of message attributes, which let you provide structured metadata
items (such as timestamps, geospatial data, signatures, and identifiers) about the message. For
SQS subscriptions, a maximum of 10 message attributes can be sent when Raw Message Delivery
is enabled. To send more than 10 message attributes, Raw Message Delivery must be disabled.
Messages with more than 10 message attributes directed towards Raw Message Delivery enabled
Amazon SQS subscriptions will be discarded as client side errors.

Message attributes are optional and separate from—but are sent together with—the message
body. The receiver can use this information to decide how to handle the message without having to
process the message body first.

For information about sending messages with attributes using the AWS Management Console
or the AWS SDK for Java, see the To publish messages to Amazon SNS topics using the AWS
Management Console tutorial.

Note

Message attributes are sent only when the message structure is String, not JSON.

You can also use message attributes to help structure the push notification message for mobile
endpoints. In this scenario, the message attributes are used only to help structure the push
notification message. The attributes are not delivered to the endpoint as they are when sending
messages with message attributes to Amazon SQS endpoints.

You can also use message attributes to make your messages filterable using subscription filter
policies. You can apply filter policies to topic subscriptions. When a filter policy is applied with filter
policy scope set to MessageAttributes (default), a subscription receives only those messages
that have attributes that the policy accepts. For more information, see Amazon SNS message
filtering.

Note

When message attributes are used for filtering, the value must be a valid JSON string.
Doing this ensures that the message is delivered to a subscription with message attributes
filtering enabled.

Message attributes 64

Amazon Simple Notification Service Developer Guide

Message attribute items and validation

Each message attribute consists of the following items:

• Name – The message attribute name can contain the following characters: A-Z, a-z, 0-9,
underscore(_), hyphen(-), and period (.). The name must not start or end with a period, and it
should not have successive periods. The name is case-sensitive and must be unique among all
attribute names for the message. The name can be up to 256 characters long. The name cannot
start with AWS. or Amazon. (or any variations in casing) because these prefixes are reserved for
use by Amazon Web Services.

• Type – The supported message attribute data types are String, String.Array, Number, and
Binary. The data type has the same restrictions on the content as the message body. For more
information, see the Message attribute data types and validation section.

• Value – The user-specified message attribute value. For string data types, the value attribute has
the same restrictions on the content as the message body. For more information, see the Publish
action in the Amazon Simple Notification Service API Reference.

Name, type, and value must not be empty or null. In addition, the message body should not be
empty or null. All parts of the message attribute, including name, type, and value, are included in
the message size restriction, which is 256 KB.

Message attribute data types and validation

Message attribute data types identify how the message attribute values are handled by Amazon
SNS. For example, if the type is a number, Amazon SNS validates that it's a number.

Amazon SNS supports the following logical data types for all endpoints except as noted:

• String – Strings are Unicode with UTF-8 binary encoding. For a list of code values, see http://
en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

Note

Surrogate values are not supported in the message attributes. For example, using
a surrogate value to represent an emoji will give you the following error: Invalid
attribute value was passed in for message attribute.

Message attributes 65

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon Simple Notification Service Developer Guide

• String.Array – An array, formatted as a string, that can contain multiple values. The values
can be strings, numbers, or the keywords true, false, and null. A String.Array of number or
boolean type does not require quotes. Multiple String.Array values are separated by commas.

This data type isn't supported for AWS Lambda subscriptions. If you specify this data type for
Lambda endpoints, it's passed as the String data type in the JSON payload that Amazon SNS
delivers to Lambda.

• Number – Numbers are positive or negative integers or floating-point numbers. Numbers have
sufficient range and precision to encompass most of the possible values that integers, floats, and
doubles typically support. A number can have a value from -109 to 109, with 5 digits of accuracy
after the decimal point. Leading and trailing zeroes are trimmed.

This data type isn't supported for AWS Lambda subscriptions. If you specify this data type for
Lambda endpoints, it's passed as the String data type in the JSON payload that Amazon SNS
delivers to Lambda.

• Binary – Binary type attributes can store any binary data; for example, compressed data,
encrypted data, or images.

Reserved message attributes for mobile push notifications

The following table lists the reserved message attributes for mobile push notification services that
you can use to structure your push notification message:

Push notification service Reserved message attribute

ADM AWS.SNS.MOBILE.ADM.TTL

AWS.SNS.MOBILE.APNS_MDM.TTL

AWS.SNS.MOBILE.APNS_MDM_SANDBOX.TTL

AWS.SNS.MOBILE.APNS_PASSBOOK.TTL

AWS.SNS.MOBILE.APNS_PASSBOOK_SANDBOX.TTL

AWS.SNS.MOBILE.APNS_SANDBOX.TTL

APNs1

AWS.SNS.MOBILE.APNS_VOIP.TTL

Message attributes 66

Amazon Simple Notification Service Developer Guide

Push notification service Reserved message attribute

AWS.SNS.MOBILE.APNS_VOIP_SANDBOX.TTL

AWS.SNS.MOBILE.APNS.COLLAPSE_ID

AWS.SNS.MOBILE.APNS.PRIORITY

AWS.SNS.MOBILE.APNS.PUSH_TYPE

AWS.SNS.MOBILE.APNS.TOPIC

AWS.SNS.MOBILE.APNS.TTL

AWS.SNS.MOBILE.BAIDU.DeployStatus

AWS.SNS.MOBILE.BAIDU.MessageKey

AWS.SNS.MOBILE.BAIDU.MessageType

Baidu

AWS.SNS.MOBILE.BAIDU.TTL

AWS.SNS.MOBILE.FCM.TTLFCM

AWS.SNS.MOBILE.GCM.TTL

AWS.SNS.MOBILE.MACOS_SANDBOX.TTLmacOS

AWS.SNS.MOBILE.MACOS.TTL

AWS.SNS.MOBILE.MPNS.NotificationClass

AWS.SNS.MOBILE.MPNS.TTL

MPNS

AWS.SNS.MOBILE.MPNS.Type

AWS.SNS.MOBILE.WNS.CachePolicy

AWS.SNS.MOBILE.WNS.Group

WNS

AWS.SNS.MOBILE.WNS.Match

Message attributes 67

Amazon Simple Notification Service Developer Guide

Push notification service Reserved message attribute

AWS.SNS.MOBILE.WNS.SuppressPopup

AWS.SNS.MOBILE.WNS.Tag

AWS.SNS.MOBILE.WNS.TTL

AWS.SNS.MOBILE.WNS.Type

1 Apple will reject Amazon SNS notifications if message attributes do not meet their requirements.
For additional details, see Sending Notification Requests to APNs on the Apple Developer website.

Amazon SNS message batching

What is message batching?

An alternative to publishing messages to either Standard or FIFO topics in individual Publish API
requests, is using the Amazon SNS PublishBatch API to publish up to 10 messages in a single API
request. Sending messages in batches can help you reduce the costs associated with connecting
distributed applications (A2A messaging) or sending notifications to people (A2P messaging)
with Amazon SNS by a factor of up to 10. Amazon SNS has quotas on how many messages you
can publish to a topic per second based on the region in which you operate. See the Amazon
SNS endpoints and quotas page in the AWS General Reference guide for more information on API
quotas.

Note

The total aggregate size of all messages that you send in a single PublishBatch API
request can’t exceed 262,144 bytes (256 KB).
The PublishBatch API uses the same Publish API action for IAM policies.

How does message batching work?

Publishing messages with the PublishBatch API is similar to publishing messages with the
Publish API. The main difference is that each message within a PublishBatch API request
needs to be assigned a unique batch ID (up to 80 characters). This way, Amazon SNS can return

Message batching 68

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/sending_notification_requests_to_apns
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/general/latest/gr/sns.html

Amazon Simple Notification Service Developer Guide

individual API responses for every message within a batch to confirm that each message was either
published or that a failure occurred. For messages being published to FIFO topics, in addition to
including assigning a unique batch ID, you still need to include a MessageDeduplicationID and
MessageGroupId for each individual message.

Examples

Publishing a batch of 10 messages to a FIFO topic

// Imports
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishBatchRequest;
import software.amazon.awssdk.services.sns.model.PublishBatchRequestEntry;
import software.amazon.awssdk.services.sns.model.PublishBatchResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

// Code
private static final int MAX_BATCH_SIZE = 10;

public static void publishBatchToTopic(SnsClient snsClient, String topicArn, int
 batchSize) {
 try {
 // Validate the batch size
 if (batchSize > MAX_BATCH_SIZE) {
 throw new IllegalArgumentException("Batch size cannot exceed " +
 MAX_BATCH_SIZE);
 }

 // Create the batch entries
 List<PublishBatchRequestEntry> entries = IntStream.range(0, batchSize)
 .mapToObj(i -> PublishBatchRequestEntry.builder()
 .id("id" + i)
 .message("message" + i)
 .build())
 .collect(Collectors.toList());

 // Build the batch request
 PublishBatchRequest request = PublishBatchRequest.builder()
 .topicArn(topicArn)

Message batching 69

Amazon Simple Notification Service Developer Guide

 .publishBatchRequestEntries(entries)
 .build();

 // Publish the batch request
 PublishBatchResponse response = snsClient.publishBatch(request);

 // Handle successful messages
 response.successful().forEach(success -> {
 System.out.println("Successful Batch Id: " + success.id());
 System.out.println("Message Id: " + success.messageId());
 });

 // Handle failed messages
 response.failed().forEach(failure -> {
 System.err.println("Failed Batch Id: " + failure.id());
 System.err.println("Error Code: " + failure.code());
 System.err.println("Sender Fault: " + failure.senderFault());
 System.err.println("Error Message: " + failure.message());
 });

 } catch (SnsException e) {
 // Log and handle exceptions
 System.err.println("SNS Exception: " + e.awsErrorDetails().errorMessage());
 } catch (IllegalArgumentException e) {
 System.err.println("Validation Error: " + e.getMessage());
 }
}

Publishing a batch of 10 messages to a FIFO topic

// Imports
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishBatchRequest;
import software.amazon.awssdk.services.sns.model.PublishBatchRequestEntry;
import software.amazon.awssdk.services.sns.model.PublishBatchResponse;
import software.amazon.awssdk.services.sns.model.BatchResultErrorEntry;
import software.amazon.awssdk.services.sns.model.SnsException;

import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

// Code

Message batching 70

Amazon Simple Notification Service Developer Guide

private static final int MAX_BATCH_SIZE = 10;

public static void publishBatchToFifoTopic(SnsClient snsClient, String topicArn) {
 try {
 // Create the batch entries to send
 List<PublishBatchRequestEntry> entries = IntStream.range(0, MAX_BATCH_SIZE)
 .mapToObj(i -> PublishBatchRequestEntry.builder()
 .id("id" + i)
 .message("message" + i)
 .messageGroupId("groupId")
 .messageDeduplicationId("deduplicationId" + i)
 .build())
 .collect(Collectors.toList());

 // Create the batch request
 PublishBatchRequest request = PublishBatchRequest.builder()
 .topicArn(topicArn)
 .publishBatchRequestEntries(entries)
 .build();

 // Publish the batch request
 PublishBatchResponse response = snsClient.publishBatch(request);

 // Handle the successfully sent messages
 response.successful().forEach(success -> {
 System.out.println("Batch Id for successful message: " + success.id());
 System.out.println("Message Id for successful message: " +
 success.messageId());
 System.out.println("Sequence Number for successful message: " +
 success.sequenceNumber());
 });

 // Handle the failed messages
 response.failed().forEach(failure -> {
 System.err.println("Batch Id for failed message: " + failure.id());
 System.err.println("Error Code for failed message: " + failure.code());
 System.err.println("Sender Fault for failed message: " +
 failure.senderFault());
 System.err.println("Failure Message for failed message: " +
 failure.message());
 });

 } catch (SnsException e) {
 // Handle any exceptions from the request

Message batching 71

Amazon Simple Notification Service Developer Guide

 System.err.println("SNS Exception: " + e.awsErrorDetails().errorMessage());
 }
}

Deleting an Amazon SNS topic and subscription

When a topic is deleted, its associated subscriptions are deleted asynchronously. While customers
can still access these subscriptions, the subscriptions are no longer associated with the topic–even
if you recreate the topic using the same name. If a publisher attempts to publish a message to
the deleted topic, the publisher will receive an error message indicating that the topic doesn't
exist. Similarly, any attempt to subscribe to the deleted topic will also result in an error message.
You can't delete a subscription that's pending confirmation. Amazon SNS automatically deletes
unconfirmed subscriptions after 48 hours.

Topics

• To delete an Amazon SNS topic or subscription using the AWS Management Console

• To delete a subscription and topic using an AWS SDK

To delete an Amazon SNS topic or subscription using the AWS
Management Console

Deleting an Amazon SNS topic or subscription ensures efficient resource management, preventing
unnecessary usage and keeping the Amazon SNS console organized. This step helps avoid potential
costs from idle resources and streamlines administration by removing topics or subscriptions that
are no longer needed.

To delete a topic using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Topics.

3. On the Topics page, select a topic, and then choose Delete.

4. In the Delete topic dialog box, enter delete me, and then choose Delete.

The console deletes the topic.

Step 4: Deleting a subscription and topic 72

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

To delete a subscription using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Subscriptions.

3. On the Subscriptions page, select a subscription with a status of Confirmed, and then choose
Delete.

4. In the Delete subscription dialog box, choose Delete.

The console deletes the subscription.

To delete a subscription and topic using an AWS SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code examples show how to use DeleteTopic.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a topic by its topic ARN.

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn

AWS SDKs 73

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTopic in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::deleteTopic(const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::DeleteTopicRequest request;
 request.SetTopicArn(topicARN);

 const Aws::SNS::Model::DeleteTopicOutcome outcome =
 snsClient.DeleteTopic(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the Amazon SNS topic " << topicARN <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting topic " << topicARN << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 }

AWS SDKs 74

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 return outcome.IsSuccess();
}

• For API details, see DeleteTopic in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an SNS topic

The following delete-topic example deletes the specified SNS topic.

aws sns delete-topic \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic"

This command produces no output.

• For API details, see DeleteTopic in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"

AWS SDKs 75

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/DeleteTopic
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/delete-topic.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(ctx context.Context, topicArn string) error {
 _, err := actor.SnsClient.DeleteTopic(ctx, &sns.DeleteTopicInput{
 TopicArn: aws.String(topicArn)})
 if err != nil {
 log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err)
 }
 return err
}

• For API details, see DeleteTopic in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**

AWS SDKs 76

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to delete.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println("Deleting a topic with name: " + topicArn);
 deleteSNSTopic(snsClient, topicArn);
 snsClient.close();
 }

 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {

AWS SDKs 77

Amazon Simple Notification Service Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteTopic in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { DeleteTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to delete.
 */
export const deleteTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new DeleteTopicCommand({ TopicArn: topicArn }),
);

AWS SDKs 78

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a10e2886-5a8f-5114-af36-75bd39498332',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteTopic in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteSNSTopic(topicArnVal: String) {
 val request =
 DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println("$topicArnVal was successfully deleted.")
 }
}

• For API details, see DeleteTopic in AWS SDK for Kotlin API reference.

AWS SDKs 79

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-deletetopic
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Deletes an SNS topic and all its subscriptions.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->deleteTopic([
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

AWS SDKs 80

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see DeleteTopic in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def delete_topic(topic):
 """
 Deletes a topic. All subscriptions to the topic are also deleted.
 """
 try:
 topic.delete()
 logger.info("Deleted topic %s.", topic.arn)
 except ClientError:
 logger.exception("Couldn't delete topic %s.", topic.arn)
 raise

• For API details, see DeleteTopic in AWS SDK for Python (Boto3) API Reference.

AWS SDKs 81

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/DeleteTopic

Amazon Simple Notification Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->deletetopic(iv_topicarn = iv_topic_arn).
 MESSAGE 'SNS topic deleted.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteTopic in AWS SDK for SAP ABAP API reference.

Next steps

Now that you've created a topic with a subscription and sent messages to the topic, you might
want to try the following:

• Explore the AWS Developer Center.

• Learn about protecting your data in the Security section.

• Enable server-side encryption for a topic.

• Enable server-side encryption for a topic with an encrypted Amazon Simple Queue Service
(Amazon SQS) queue subscribed.

• Subscribe AWS Event Fork Pipelines to a topic.

Next steps 82

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://aws.amazon.com/developer/

Amazon Simple Notification Service Developer Guide

Message ordering and deduplication strategies using
Amazon SNS FIFO topics

This topic provides information of the features and functionalities of Amazon SNS FIFO (First-
In-First-Out) topics and how they integrate with Amazon SQS FIFO queues. You'll learn how
to use these services together to ensure strict message ordering and deduplication, essential
for applications that require data consistency. This content covers the specific use cases where
Amazon SNS FIFO topics are beneficial, providing insight into scenarios where message order and
uniqueness are critical.

You'll also learn about the technical details of message ordering, message grouping, and how these
affect message delivery. The message deduplication topic explains the mechanisms that prevent
duplicate messages, ensuring that each message is processed only once. Additionally, you'll learn
about message filtering, security, and durability, which are important for maintaining the integrity
and reliability of your messaging system. This content also includes information on message
archiving and replay, offering strategies for managing message histories. Practical code examples
are also provided to help you implement these features in your own applications, giving you hands-
on experience with Amazon SNS FIFO topics and their integration with Amazon SQS FIFO queues.

Amazon SNS FIFO topic example use case

The following example describes an ecommerce platform built by an auto parts manufacturer
using Amazon SNS FIFO topics and Amazon SQS queues. The platform is composed of four
serverless applications:

• Inventory managers use a price management application to set the price for each item in stock.
At this company, product prices can change based on currency exchange fluctuation, market
demand, and shifts in sales strategy. The price management application uses an AWS Lambda
function that publishes price updates to an Amazon SNS FIFO topic whenever prices change.

• A wholesale application provides the backend for a website where auto body shops and car
manufacturers can buy the company's auto parts in bulk. To get price change notifications,
the wholesale application subscribes its Amazon SQS FIFO queue to the price management
application's Amazon SNS FIFO topic.

• A retail application provides the backend for another website where car owners and car
tuning enthusiasts can purchase individual auto parts for their vehicles. To get price change

FIFO topic use case 83

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon Simple Notification Service Developer Guide

notifications, the retail application also subscribes its Amazon SQS FIFO queue to the price
management application's Amazon SNS FIFO topic.

• An analytics application that aggregates price updates and stores them into an Amazon S3
bucket, enabling Amazon Athena to query the bucket for business intelligence (BI) purposes.
To get price change notifications, the analytics application subscribes its Amazon SQS standard
queue to the price management application's Amazon SNS FIFO topic. Unlike the other
applications, the analytics one doesn't require the price updates to be strictly ordered.

For the wholesale and retail applications to receive price updates in the correct order, the price
management application must use a strictly ordered message distribution system. Using Amazon
SNS FIFO topics and Amazon SQS FIFO queues enables the processing of messages in order and
with no duplication. For more information, see Amazon SNS message ordering details for FIFO
topics. For code snippets that implement this use case, see Amazon SNS code examples for FIFO
topics.

FIFO topic use case 84

Amazon Simple Notification Service Developer Guide

Amazon SNS message ordering details for FIFO topics

An Amazon SNS FIFO topic always delivers messages to subscribed Amazon SQS queues in the
exact order in which the messages are published to the topic, and only once. With an Amazon SQS
FIFO queue subscribed, the consumer of the queue receives the messages in the exact order in
which the messages are delivered to the queue, and no duplicates. With an Amazon SQS standard
queue subscribed, however, the consumer of the queue may receive messages out of order, and
more than once. This enables further decoupling of subscribers from publishers, giving subscribers
more flexibility in terms of message consumption and cost optimization, as shown in the following
diagram, based on the Amazon SNS FIFO topic example use case.

Note that there is no implied ordering of the subscribers. The following example shows that
message m1 is delivered first to the wholesale subscriber and then to the retail subscriber and then
to the analytics subscriber. Message m2 is delivered first to the retail subscriber and then to the
wholesale subscriber and finally to the analytics subscriber. Though the two messages are delivered
to the subscribers in a different order, message ordering is preserved for each Amazon SQS FIFO
subscriber. Each subscriber is perceived in isolation from any other subscribers.

Message ordering details 85

Amazon Simple Notification Service Developer Guide

If an Amazon SQS queue subscriber becomes unreachable, it can get out of sync. For example, say
the wholesale application queue owner mistakenly changes the Amazon SQS queue policy in a
way that prevents the Amazon SNS service principal from delivering messages to the queue. In this
case, price update deliveries to the wholesale queue fail, while the ones to the retail and analytics
queues succeed, causing the subscribers to be out of sync. When the wholesale application queue
owner corrects its queue policy, Amazon SNS resumes delivering messages to the subscribed
queue. Any messages published to the topic that target the incorrectly configured queue are
dropped, unless the corresponding subscription has a dead-letter queue configured.

Message ordering details 86

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-using-identity-based-policies.html

Amazon Simple Notification Service Developer Guide

You can have multiple applications (or multiple threads within the same application) publishing
messages to an SNS FIFO topic in parallel. When you do this, you effectively delegate message
sequencing to the Amazon SNS service. To determine the established sequence of messages, you
can check the sequence number.

The sequence number is a large, non-consecutive number that Amazon SNS assigns to each
message. The length of the sequence number is 128-bits, and continues to increase for each
Message Group. The sequence number is passed to the subscribed Amazon SQS queues as part of
the message body. However, if you enable raw message delivery, the message that's delivered to
the Amazon SQS queue doesn't include the sequence number or any other Amazon SNS message
metadata.

Message ordering details 87

Amazon Simple Notification Service Developer Guide

Amazon SNS FIFO topics define ordering in the context of a message group. For more information,
see Amazon SNS message grouping for FIFO topics.

Amazon SNS message grouping for FIFO topics

Messages that belong to the same group are processed one by one, in a strict order relative to the
group.

When you publish messages to an Amazon SNS FIFO topic, you set the message group ID. The
group ID is a mandatory token that specifies that a message belongs to a specific message group.
The SNS FIFO topic passes the group ID to the subscribed Amazon SQS FIFO queues. There is no
limit to the number of group IDs in SNS FIFO topics or SQS FIFO queues. Message group ID is not
passed to Amazon SQS standard queues.

There's no affinity between a message group and a subscription. Therefore, messages that are
published to any message group are delivered to all subscribed queues, subject to any filter policies
attached to subscriptions. For more information, see Amazon SNS message delivery for FIFO topics
and Amazon SNS message filtering for FIFO topics.

In the auto parts price management example use case, there's a dedicated message group for
each product sold in the platform. The same Amazon SNS FIFO topic is used for processing all
price updates. The sequence of price updates is preserved within the context of a single auto parts
product, but not across multiple products. The following diagram shows how this works. Notice
that, for the product whose message group ID is product-214, message m1 is processed before

Message grouping 88

Amazon Simple Notification Service Developer Guide

m4. This sequence is preserved throughout the workflows that use Amazon SNS FIFO to Amazon
SQS FIFO. Likewise, for the product whose message group ID is product-799, message m1 is
processed before m3. However, when using Amazon SQS standard queues, the message order is no
longer guaranteed, and message groups do not exist. The product-214 and product-799 message
groups are independent of each other, so there is no relationship between how their messages are
sequenced.

Distributing data by message group IDs for improved performance

To optimize delivery throughput, Amazon SNS FIFO topics deliver messages from different
message groups in parallel, while message order is strictly maintained within each message group.
Each individual message group can deliver a maximum of 300 messages per second. Therefore,
to achieve high throughput for a single topic, use a large number of distinct message group IDs.
By utilizing a diverse set of message groups, Amazon SNS FIFO topics automatically distributes
messages across a larger number of parallel partitions.

Distributing data by message group IDs for improved performance 89

Amazon Simple Notification Service Developer Guide

Note

Amazon SNS FIFO topics are optimized for uniform distribution of messages across
message group IDs, regardless of the number of groups. AWS recommends that you use a
large number of distinct message group IDs for optimized performance.

When publishing to your Amazon SNS FIFO topic with high throughput and one or more Amazon
SQS FIFO queues are subscribed, it is recommended that you enable high throughput on your
queues. For more see High throughput for FIFO queues in the Amazon Simple Queue Service
Developer Guide.

Amazon SNS message delivery for FIFO topics

Amazon SNS FIFO (first in, first out) topics support delivery to both Amazon SQS standard and
FIFO queues to provide customers with flexibility and control when integrating distributed
applications that require data consistency in near real-time.

For workloads that need to preserve strict message ordering or de-duplication, the combination
of Amazon SNS FIFO topics with Amazon SQS FIFO queues subscribed as the delivery endpoint
provides enhance messaging between applications when the order of operations and events is
critical, or where duplicates can’t be tolerated.

For workloads that tolerate best-effort ordering and at-least-once delivery, subscribing Amazon
SQS standard queues to Amazon SNS FIFO topics provides the ability to lower costs, in addition to
sharing queues across workloads that don't utilize FIFO.

Note

To fan out messages from Amazon SNS FIFO topics to AWS Lambda functions, extra steps
are required. First, subscribe Amazon SQS FIFO or standard queues to the topic. Then
configure the queues to trigger the functions. For more information, see the SQS FIFO as
an event source post on the AWS Compute Blog.

SNS FIFO topics can't deliver messages to customer managed endpoints, such as email addresses,
mobile apps, phone numbers for text messaging (SMS), or HTTP(S) endpoints. These endpoint

Message delivery 90

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-sqs-fifo-as-an-event-source/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-sqs-fifo-as-an-event-source/

Amazon Simple Notification Service Developer Guide

types aren't guaranteed to preserve strict message ordering. Attempts to subscribe customer
managed endpoints to SNS FIFO topics result in errors.

SNS FIFO topics support the same message filtering capabilities as standard topics. For more
information, see Amazon SNS message filtering for FIFO topics and the Simplify Your Pub/Sub
Messaging with Amazon SNS Message Filtering post on the AWS Compute Blog.

Amazon SNS message filtering for FIFO topics

Amazon SNS FIFO topics support message filtering. Using message filtering simplifies your
architecture by offloading the message routing logic from your publisher systems and the message
filtering logic from your subscriber systems.

When you subscribe an Amazon SQS FIFO or standard queue to an SNS FIFO topic, you can use
message filtering to specify that the subscriber receives a subset of messages, rather than all of
them. Each subscriber can set its own filter policy as subscription attributes. Based on the filter
policy scope, filter policy is matched against incoming message-attributes or message-body. If the
filter policy matches, the topic delivers a copy of the message to the subscriber. If there's no match,
the topic doesn't deliver a copy of the message.

In the auto parts price management example use case, assume that the following Amazon SNS
filter policies are set and filter policy scope is MessageBody:

• For the wholesale queue, the filter policy {"business":["wholesale"]} matches every
message which contains a key named business and with wholesale in the set of values. In the
following diagram, one of the keys in message m1 is business with the value of wholesale.
One of the keys in message m3 is business with a value of ["wholesale,retail"]. Thus,
both m1 and m3 match the filter policy's criteria, and both messages are delivered to the
wholesale queue.

• For the retail queue, the filter policy {"business":["retail"]} matches every message
which contains a key named business and with retail in the set of values. In the diagram,
one of the keys in message m2 is business with the value of retail. One of the keys in
message m3 is business with the value of ["wholesale,retail"]. Thus, both m2 and m3
match the filter policy's criteria, and both messages are delivered to the retail queue.

• For the analytics queue, we want Amazon Athena to receive all records, so no filter policy is
applied.

Message filtering 91

https://aws.amazon.com/blogs/compute/simplify-pubsub-messaging-with-amazon-sns-message-filtering/
https://aws.amazon.com/blogs/compute/simplify-pubsub-messaging-with-amazon-sns-message-filtering/

Amazon Simple Notification Service Developer Guide

SNS FIFO topics support a variety of matching operators, including attribute string values, attribute
numeric values, and attribute keys. For more information, see Amazon SNS message filtering.

SNS FIFO topics don't deliver duplicate messages to subscribed endpoints. For more information,
see Amazon SNS message deduplication for FIFO topics.

Amazon SNS message deduplication for FIFO topics

Amazon SNS FIFO topics and Amazon SQS FIFO queues support message deduplication, which
provides exactly-once message delivery and processing as long as the following conditions are met:

• The subscribed Amazon SQS FIFO queue exists and has permissions that allow the Amazon SNS
service principal to deliver messages to the queue.

• The Amazon SQS FIFO queue consumer processes the message and deletes it from the queue
before the visibility timeout expires.

• The Amazon SNS subscription topic has no message filtering. When you configure message
filtering, Amazon SNS FIFO topics support at-most-once delivery, as messages can be filtered out
based on your subscription filter policies.

• There are no network disruptions that prevent acknowledgment of the message delivery.

Message deduplication 92

Amazon Simple Notification Service Developer Guide

Note

Message deduplication applies to an entire Amazon SNS FIFO topic, not to an individual
message group.

When you publish a message to an Amazon SNS FIFO topic, the message must include a
deduplication ID. This ID is included in the message that the Amazon SNS FIFO topic delivers to the
subscribed Amazon SQS FIFO queues.

If a message with a particular deduplication ID is successfully published to an Amazon SNS FIFO
topic, any message published with the same deduplication ID, within the five-minute deduplication
interval, is accepted but not delivered. The Amazon SNS FIFO topic continues to track the message
deduplication ID, even after the message is delivered to subscribed endpoints.

If the message body is guaranteed to be unique for each published message, you can enable
content-based deduplication for an Amazon SNS FIFO topic and the subscribed Amazon SQS
FIFO queues. Amazon SNS uses the message body to generate a unique hash value to use as the
deduplication ID for each message, so you don't need to set a deduplication ID when you send each
message.

Note

Message attributes are not included in the hash calculation.

When content-based deduplication is enabled for an Amazon SNS FIFO topic, and a message is
published with a deduplication ID, the published deduplication ID overrides the generated content-
based deduplication ID.

In the auto parts price management example use case, the company must set a universally
unique deduplication ID for each price update. This is because the message body can be identical
even when the message attribute is different for wholesale and retail. However, if the company
added the business type (wholesale or retail) to the message body alongside the product ID and
product price, they could enable content-based duplication in the Amazon SNS FIFO topic and the
subscribed Amazon SQS FIFO queues.

Message deduplication 93

Amazon Simple Notification Service Developer Guide

In addition to message ordering and deduplication, Amazon SNS FIFO topics support message
server-side encryption (SSE) with AWS KMS keys, and message privacy via VPC endpoints with AWS
PrivateLink. For more information, see Amazon SNS message security for FIFO topics.

Amazon SNS message security for FIFO topics

You can choose to have Amazon SNS and Amazon SQS encrypt messages sent to FIFO topics and
queues, using AWS Key Management Service (AWS KMS) customer master keys (CMKs). You can
create encrypted FIFO topics and queues, or choose to encrypt existing FIFO topics and queues.
Amazon SNS and Amazon SQS encrypt only the body of the message. They don't encrypt the
message attributes, resource metadata, or resource metrics.

Note

Adding encryption to an existing FIFO topic or queue doesn't encrypt any backlogged
messages, and removing encryption from a topic or queue leaves backlogged messages
encrypted.

Message security 94

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon Simple Notification Service Developer Guide

SNS FIFO topics decrypt the messages immediately before delivering them to subscribed
endpoints. SQS FIFO queues decrypt the message just before returning them to the consumer
application. For more information, see Amazon SNS data encryption and the Encrypting messages
published to Amazon SNS with AWS KMS post on the AWS Compute Blog.

In addition, SNS FIFO topics and SQS FIFO queues support message privacy with interface VPC
endpoints powered by AWS PrivateLink. Using interface endpoints, you can send messages from
Amazon Virtual Private Cloud (Amazon VPC) subnets to FIFO topics and queues without traversing
the public internet. This model keeps your messaging within the AWS infrastructure and network,
which enhances the overall security of your application. When you use AWS PrivateLink, you
don't need to set up an internet gateway, network address translation (NAT), or virtual private
network (VPN). For more information, see Securing Amazon SNS traffic with VPC endpoints and the
Securing messages published to Amazon SNS with AWS PrivateLink post on the AWS Security Blog.

SNS FIFO topics also support dead-letter queues and message storage across Availability Zones.
For more information, see Amazon SNS message durability for FIFO topics.

Amazon SNS message durability for FIFO topics

Amazon SNS FIFO topics and Amazon SQS queues are durable. Both resource types store messages
redundantly across multiple Availability Zones, and provide dead-letter queues to handle
exceptional cases.

In Amazon SNS, message delivery fails when the Amazon SNS topic can't access a subscribed
Amazon SQS queue due to a client-side or server-side error:

• Client-side errors occur when the Amazon SNS FIFO topic has stale subscription metadata. Two
common causes of client-side errors are when the Amazon SQS queue owner does one of the
following:

• Deletes the queue.

• Changes the queue policy in a way that prevents the Amazon SNS service principal from
delivering messages to it.

Amazon SNS doesn't retry delivering messages that failed due to client-side errors.

• Server-side errors can occur in these situations:

• The Amazon SQS service is unavailable.

• Amazon SQS fails to process a valid request from the Amazon SNS service.

Message durability 95

https://aws.amazon.com/blogs/compute/encrypting-messages-published-to-amazon-sns-with-aws-kms/
https://aws.amazon.com/blogs/compute/encrypting-messages-published-to-amazon-sns-with-aws-kms/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink

Amazon Simple Notification Service Developer Guide

When server-side errors occur, Amazon SNS FIFO topics retry the failed deliveries up to 100,015
times over 23 days. For more information, see Amazon SNS message delivery retries.

For any type of error, Amazon SNS can sideline messages to Amazon SQS dead-letter queues so
data isn't lost.

In Amazon SQS, message processing fails when the consumer application fails to receive the
message, process it, and delete it from the queue. When the maximum number of receive requests
fail, Amazon SQS can sideline messages to dead-letter queues so data isn't lost.

In the auto parts price management example use case, the company can assign an Amazon SQS
dead-letter queue (DLQ) to each Amazon SNS FIFO topic subscription, as well as to each subscribed
Amazon SQS queue. This protects the company from any price update loss.

The dead-letter queue associated with an Amazon SNS subscription must be an Amazon SQS
queue of the same type as the subscribing queue. For example, the Amazon SNS FIFO subscription
for an Amazon SQS FIFO queue must have an Amazon SQS FIFO queue as the dead-letter queue.

Message durability 96

Amazon Simple Notification Service Developer Guide

Similarly, the Amazon SNS FIFO subscription for an Amazon SQS standard queue must have
an Amazon SQS standard queue as its dead-letter queue. For more information, see Amazon
SNS dead-letter queues and the Designing durable serverless apps with DLQs for Amazon SNS,
Amazon SQS, AWS Lambda post on the AWS Compute Blog.

For extended durability to assist in recovery from downstream failures, topic owners can also use
FIFO topics to archive messages up to 365 days. Topic subscribers can then replay those messages
to a subscribed endpoint to recover messages lost due to a failure in a downstream application, or
to replicate a state of an existing application. For more, see Amazon SNS message archiving and
replay for FIFO topics.

Amazon SNS message archiving and replay for FIFO topics

What is message archiving and replay?

Amazon SNS provides a no-code message archiving and replay feature, specifically designed
for FIFO (First-In-First-Out) topics. This feature allows topic owners to store messages directly
within the topic archive for up to 365 days and replay them to subscribers when needed. Message
archiving and replay are essential for recovering lost messages and synchronizing applications
across regions or systems by replicating states.

This functionality can be accessed through the AWS API, SDK, AWS CloudFormation, and AWS
Management Console.

Key use cases

• Message recovery – Recover messages lost due to downstream application failures by replaying
them to the subscriber’s endpoint.

• State replication – Replicate the state of an existing system in a new environment by replaying
messages starting from a specific timestamp.

• Error correction – Resend missed messages during outages to ensure all events are processed
correctly.

Components of message archiving and replay

Manage message archiving and replay for Amazon SNS FIFO topics, including setting retention
periods, monitoring archived messages using CloudWatch, initiating replays through subscription
attributes, and understanding the permissions required to modify and initiate replays.

Message archiving and replay 97

https://aws.amazon.com/blogs/compute/designing-durable-serverless-apps-with-dlqs-for-amazon-sns-amazon-sqs-aws-lambda/
https://aws.amazon.com/blogs/compute/designing-durable-serverless-apps-with-dlqs-for-amazon-sns-amazon-sqs-aws-lambda/

Amazon Simple Notification Service Developer Guide

Message archiving

• The topic owner enables the archiving feature and sets the message retention period, which can
be up to 365 days. For more, see Amazon SNS message archiving for FIFO topic owners

• CloudWatch metrics help monitor the archived messages.

Message replay

• A subscriber initiates a replay, selecting the time window for the messages to be reprocessed to
the subscribed endpoint. For more see, Amazon SNS message replay for FIFO topic subscribers.

• You manage the replay through subscription attributes using the ReplayPolicy feature.

Relevant permissions

• SetSubscriptionAttributes – Required to configure or modify replay settings using the
ReplayPolicy attribute on a subscription.

• Subscribe – Necessary to attach a new subscription and initiate replays.

• GetTopicAttributes – Allows viewing the topic's properties, but replay initiation primarily
revolves around subscription management.

Amazon SNS message archiving for FIFO topic owners

Message archiving provides the ability to archive a single copy of all messages published to your
topic. You can store published messages within your topic by enabling the message archive policy
on the topic, which enables message archiving for all subscriptions linked to that topic. Messages
can be archived for a minimum of one day to a maximum of 365 days.

Additional charges apply when setting an archive policy. For pricing information, see Amazon SNS
pricing.

Create a message archive policy using the AWS Management Console

Use this option to create a new message archive policy using the AWS Management Console.

1. Sign in to the Amazon SNS console.

2. Choose a topic or create a new one. To learn more about creating topics, see Creating an
Amazon SNS topic.

For topic owners 98

https://aws.amazon.com/sns/pricing/
https://aws.amazon.com/sns/pricing/
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

Note

Amazon SNS message archiving and replay is only available for application-to-
application (A2A) FIFO topics.

3. On the Edit topic page, expand the Archive policy section.

4. Enable the Archive policy feature, and enter the number of days for which you want to
archive messages in the topic.

5. Choose Save changes.

To view, edit, and deactivate a message archiving topic policy

• On the Topic details page, the Retention policy displays the status of the archive policy,
including the number of days for which it is set. Select the Archive policy tab to view the
following message archive details:

• Status – The archive and replay status appears as active when an archive policy is applied. The
archive and replay status appears as inactive when the archive policy is set to an empty JSON
object.

• Message retention period – The specified number of days for message retention.

• Archive start date – The date from which subscribers can replay messages.

• JSON preview – The JSON preview of the archive policy.

• (Optional) To edit an archive policy, go to the topic summary page and choose Edit.

• (Optional) To deactivate an archive policy, go to the topic summary page and choose Edit.
Deactivate the Archive Policy and choose Save changes.

• (Optional) To delete a topic with an archive policy, you must first deactivate the archive policy as
previously described.

Important

To avoid accidental message deletions, you can not delete a topic with an active message
archive policy. The topic's message archive policy must be deactivated before the topic
can be deleted. When you deactivate a message archive policy, Amazon SNS deletes all
of the archived messages. When deleting a topic, subscriptions are removed, and any
messages in transit may not be delivered.

For topic owners 99

Amazon Simple Notification Service Developer Guide

Create a message archive policy using the API

To create a message archive policy using the API, you need to add the attribute ArchivePolicy
to your topic. You can set an ArchivePolicy using the API actions CreateTopic and
SetTopicAttributes. ArchivePolicy has a single value, MessageRetentionPeriod, which
represents the number of days Amazon SNS retains messages. To activate message archiving for
your topic, set the MessageRetentionPeriod to an integer value greater than zero. For example,
to retain messages in your archive for 30 days, set the ArchivePolicy to:

{
 "ArchivePolicy": {
 "MessageRetentionPeriod": "30"
 }
}

To disable message archiving for your topic, and clear the archive, unset the ArchivePolicy, as
follows:

{}

Create a message archive policy using the SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see Shared
config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code example shows how to set the ArchivePolicy for an Amazon SNS topic to
retain all messages published to the topic for 30 days.

// Specify the ARN of the Amazon SNS topic to set the ArchivePolicy for.
String topicArn =
 "arn:aws:sns:us-east-2:123456789012:MyArchiveTopic.fifo";

// Set the MessageRetentionPeriod to 30 days for the ArchivePolicy.
String archivePolicy =
 "{\"MessageRetentionPeriod\":\"30\"}";

// Set the ArchivePolicy for the Amazon SNS topic
SetTopicAttributesRequest request = new SetTopicAttributesRequest()
 .withTopicArn(topicArn)
 .withAttributeName("ArchivePolicy")

For topic owners 100

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html

Amazon Simple Notification Service Developer Guide

 .withAttributeValue(archivePolicy);
sns.setTopicAttributes(request);

Create a message archive policy using AWS CloudFormation

To create an archive policy using AWS CloudFormation see AWS::SNS::Topic in the AWS
CloudFormation User Guide.

Grant access to an encrypted archive

Before a subscriber can begin replaying messages from an encrypted topic, you must complete
the following steps. Because past messages are replayed, Amazon SNS needs to be provisioned
Decrypt access to the KMS key that was used to encrypt the messages in the archive.

1. When you encrypt messages with a KMS key and store them within the topic, you must grant
Amazon SNS the ability to decrypt these messages via Key Policy. For more, see Grant decrypt
permissions to Amazon SNS.

2. Enable AWS KMS for Amazon SNS. For more, see Configuring AWS KMS permissions.

Important

When you add the new sections to your KMS key policy, do not change any existing sections
in the policy. If encryption is enabled on a topic, and the KMS key is disabled or deleted, or
the KMS key policy is not correctly configured for Amazon SNS, Amazon SNS cannot replay
messages to your subscribers.

Grant decrypt permissions to Amazon SNS

In order for Amazon SNS to access encrypted messages from within your topic’s archive and replay
them to subscribed endpoints, you must enable the Amazon SNS service principle to decrypt these
messages.

The following is an example policy that is required to allow the Amazon SNS service principal to
decrypt stored messages during a replay of historical messages from within your topic.

{
 "Sid": "Allow SNS to decrypt archived messages",

For topic owners 101

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-topic.html

Amazon Simple Notification Service Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*"
}

Monitor message archive metrics using Amazon CloudWatch

You can monitor archived messages using Amazon CloudWatch using the following metrics. To
be notified of anomalies in your workloads and help avoid impact, you can configure Amazon
CloudWatch alarms on these metrics. For more details, see Logging and monitoring in Amazon
SNS.

Metric Description

ApproximateNumberOfMessagesArchived Provides the topic owner with the aggregate
number of messages archived in the topic
archive, at 60-minute resolution.

ApproximateNumberOfBytesArchived Provides the topic owner with the aggregate
number of bytes archived, across all messages
in the topic archive, at 60-minute resolution.

NumberOfMessagesArchiveProcessing Provides the topic owner with the number of
messages saved to the topic archive during the
interval in 1-minute resolution.

NumberOfBytesArchiveProcessing Provides the topic owner with the aggregate
number of bytes saved to the topic archive
during the interval in 1-minute resolution.

The GetTopicAttributes API has a BeginningArchiveTime property, which represents the
oldest timestamp at which a subscriber can start a replay. The following represents a sample
response for this API action:

For topic owners 102

Amazon Simple Notification Service Developer Guide

{
 "ArchivePolicy": {
 "MessageRetentionPeriod": "<integer>"
 },
 "BeginningArchiveTime": "<timestamp>",
 ...
}

Amazon SNS message replay for FIFO topic subscribers

Amazon SNS replay lets topic subscribers retrieve archived messages from the topic data store
and redeliver (or replay) them to a subscribed endpoint. Messages can be replayed as soon as the
subscription is created. A replayed message has the same content, MessageId, and Timestamp
as the original copy, and also contains the attribute Replayed, to help you identify that it's a
replayed message. To only replay select messages, you can add a filter policy to your subscription.
For more on filtering messages, see Filter replayed messages.

Create a message replay policy using the AWS Management Console

Use this option to create a new replay policy using the AWS Management Console.

1. Sign in to the Amazon SNS console.

2. Choose a topic subscription or create a new one. To learn more about creating subscriptions,
see Creating a subscription to an Amazon SNS topic.

3. To initiate the message replay, go to the Replay drop-down and choose Start replay.

4. From the Replay timeframe modal, make the following selections:

a. Choose replay start date and time – Choose the date (YYYY/MM/DD format) and time
(24-hour hh:mm:ss format) from which you want to start replaying archived messages.
The start time should be later than the beginning of the approximated archive time.

b. (Optional) Choose replay end date and time – Choose the date (YYYY/MM/DD format)
and time (24-hour hh:mm:ss format) when you want to stop replaying archived messages.

c. Choose Start replay.

5. (Optional) To stop a message replay, go to the Subscription details page and choose Stop
replay from the Replay drop-down.

6. (Optional) To monitor message replay metrics from within this workflow using CloudWatch,
see Monitor message replay metrics using Amazon CloudWatch.

For topic subscribers 103

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

To view and edit a message replay policy

You can perform the following actions from the Subscription details page:

• To view the message replay status, the Replay status field displays the following values:

• Completed – The replay has successfully redelivered all messages, and is now delivering newly
published messages.

• In progress – The replay is currently replaying the selected messages.

• Failed – The replay was unable to complete.

• Pending – The default state while the replay initiates.

• (Optional) To modify a message replay policy, go to the Subscription details page and choose
Start replay from the Replay drop-down. Starting a replay will replace the existing replay.

Add a replay policy to the subscription using the API

To replay archived messages use the attribute ReplayPolicy. ReplayPolicy can be used with
the Subscribe and SetSubscriptionAttributes API actions. This policy has the following
values:

• StartingPoint (Required) – Signals where to start replaying messages from.

• EndingPoint (Optional) – Signals when to stop replaying messages. If EndingPoint is
omitted, then the replay will continue until caught up to the current time.

• PointType (Required) – Sets the type of starting and ending points. Currently, the supported
value for PointType is Timestamp.

For example, to recover from a downstream failure and resend all messages for a two hour
time period on October 1, 2023, use the SetSubscriptionAttributes API action to set a
ReplayPolicy as follows:

{
 "PointType":"Timestamp",
 "StartingPoint":"2023-10-01T10:00:00.000Z",
 "EndingPoint":"2023-10-01T12:00:00.000Z"
}

For topic subscribers 104

Amazon Simple Notification Service Developer Guide

To replay all messages sent to the topic as of October 1, 2023, and continue receiving all newly
published messages to your topic, use the SetSubscriptionAttributes API action to set a
ReplayPolicy on your subscription as follows:

{
 "PointType":"Timestamp",
 "StartingPoint":"2023-10-01T00:00:00.000Z"
}

To verify that a message has been replayed, the boolean attribute Replayed is added to each
replayed message.

Add a replay policy to the subscription using the SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see Shared
config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code example shows how to set the ReplayPolicy on a subscription to redeliver
messages from the Amazon SNS FIFO topic's archive for a 2-hour time window on October 1st
2023.

// Specify the ARN of the Amazon SNS subscription to initiate the ReplayPolicy on.
String subscriptionArn =
 "arn:aws:sns:us-
east-2:123456789012:MyArchiveTopic.fifo:1d2a3e9d-7f2f-447c-88ae-03f1c68294da";

// Set the ReplayPolicy to replay messages from the topic's archive
// for a 2 hour time period on October 1st 2023 between 10am and 12pm UTC.
String replayPolicy =
 "{\"PointType\":\"Timestamp\",\"StartingPoint\":\"2023-10-01T10:00:00.000Z\",
\"EndingPoint\":\"2023-10-01T12:00:00.000Z\"}";

// Set the ArchivePolicy for the Amazon SNS topic
SetSubscriptionAttributesRequest request = new SetSubscriptionAttributesRequest()
 .withSubscriptionArn(subscriptionArn)
 .withAttributeName("ReplayPolicy")
 .withAttributeValue(replayPolicy);
sns.setSubscriptionAttributes(request);

For topic subscribers 105

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html

Amazon Simple Notification Service Developer Guide

Understanding the EndingPoint

When you apply a ReplayPolicy to an Amazon SNS subscription, the EndingPoint value is
optional. If no EndingPoint is provided, the replay will start from the specified StartingPoint
and continue until it catches up to the current time, including processing any newly published
messages. Once caught up, the subscription will function as a regular subscription, receiving new
messages as they are published.

If an EndingPoint is specified, the service will replay messages from the StartingPoint up
to the EndingPoint and then stop. This action effectively pauses the subscription. While the
subscription is paused, newly published messages will not be delivered to the subscribed endpoint.

To resume message delivery, apply a new ReplayPolicy without providing an EndingPoint,
and set the StartingPoint to the desired point in time from which to continue receiving
messages. For example, to resume a subscription from where a prior replay finished, set the new
StartingPoint to the previously provided EndingPoint.

Filter replayed messages

Amazon SNS message filtering let's you control the replayed messages that Amazon SNS replays
to your subscriber endpoint. When message filtering and message archiving are both enabled,
Amazon SNS first retrieves the message from the topic’s data store, then applies the message
against the subscription’s FilterPolicy. The message is delivered to the subscribed endpoint
when there is a match, otherwise message is filtered out. For more information, see Amazon SNS
subscription filter policies.

Monitor message replay metrics using Amazon CloudWatch

You can monitor replay messages using Amazon CloudWatch using the following metrics. To
be notified of anomalies in your workloads and help avoid impact, you can configure Amazon
CloudWatch alarms on these metrics. For more details, see Logging and monitoring in Amazon
SNS.

Metric Description

NumberOfReplayedNotificationsDelivered Provides the subscriber with the aggregate
number of messages replayed from the topic
archive, at 1-minute resolution.

For topic subscribers 106

Amazon Simple Notification Service Developer Guide

Metric Description

NumberOfReplayedNotificationsFailed Provides the subscriber with the aggregate
number of messages replayed that failed to
deliver from the topic archive, at 1-minute
resolution.

Amazon SNS code examples for FIFO topics

You can use the following code examples to integrate the auto parts price management example
use case using an Amazon SNS FIFO topic with an Amazon SQS FIFO queue or standard queue.

Using an AWS SDK

Using an AWS SDK, you create an Amazon SNS FIFO topic by setting its FifoTopic attribute to
true. You create an Amazon SQS FIFO queue by setting its FifoQueue attribute to true. Also,
you must add the .fifo suffix to the name of each FIFO resource. After you create a FIFO topic or
queue, you can't convert it into a standard topic or queue.

The following code examples create these FIFO and standard queue resources:

• The Amazon SNS FIFO topic that distributes the price updates

• The Amazon SQS FIFO queues that provide these updates to the wholesale and retail
applications

• The Amazon SQS standard queue for the analytics application that stores records, which can be
queried for business intelligence (BI)

• The Amazon SNS FIFO subscriptions that connect the three queues to the topic

This example sets filter policies in the subscriptions. If you test the example by publishing a
message to the topic, make sure that you publish the message with the business attribute.
Specify either retail or wholesale for the attribute value. Otherwise, the message is filtered
out and not delivered to the subscribed queues. For more information, see Amazon SNS message
filtering for FIFO topics.

Code examples 107

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example

• creates an Amazon SNS FIFO topic, two Amazon SQS FIFO queues, and one Standard
queue.

• subscribes the queues to the topic and publishes a message to the topic.

The test verifies the receipt of the message to each queue. The complete example also
shows the addition of access policies and deletes the resources at the end.

public class PriceUpdateExample {
 public final static SnsClient snsClient = SnsClient.create();
 public final static SqsClient sqsClient = SqsClient.create();

 public static void main(String[] args) {

 final String usage = "\n" +
 "Usage: " +
 " <topicName> <wholesaleQueueFifoName> <retailQueueFifoName>
 <analyticsQueueName>\n\n" +
 "Where:\n" +
 " fifoTopicName - The name of the FIFO topic that you want to
 create. \n\n" +
 " wholesaleQueueARN - The name of a SQS FIFO queue that will be
 created for the wholesale consumer. \n\n"
 +
 " retailQueueARN - The name of a SQS FIFO queue that will
 created for the retail consumer. \n\n" +
 " analyticsQueueARN - The name of a SQS standard queue that
 will be created for the analytics consumer. \n\n";
 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

FIFO example (AWS SDKs) 108

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/test/java/com/example/sns/PriceUpdateExampleTest.java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/main/java/com/example/sns/PriceUpdateExample.java

Amazon Simple Notification Service Developer Guide

 final String fifoTopicName = args[0];
 final String wholeSaleQueueName = args[1];
 final String retailQueueName = args[2];
 final String analyticsQueueName = args[3];

 // For convenience, the QueueData class holds metadata about a queue:
 ARN, URL,
 // name and type.
 List<QueueData> queues = List.of(
 new QueueData(wholeSaleQueueName, QueueType.FIFO),
 new QueueData(retailQueueName, QueueType.FIFO),
 new QueueData(analyticsQueueName, QueueType.Standard));

 // Create queues.
 createQueues(queues);

 // Create a topic.
 String topicARN = createFIFOTopic(fifoTopicName);

 // Subscribe each queue to the topic.
 subscribeQueues(queues, topicARN);

 // Allow the newly created topic to send messages to the queues.
 addAccessPolicyToQueuesFINAL(queues, topicARN);

 // Publish a sample price update message with payload.
 publishPriceUpdate(topicARN, "{\"product\": 214, \"price\": 79.99}",
 "Consumables");

 // Clean up resources.
 deleteSubscriptions(queues);
 deleteQueues(queues);
 deleteTopic(topicARN);
 }

 public static String createFIFOTopic(String topicName) {
 try {
 // Create a FIFO topic by using the SNS service client.
 Map<String, String> topicAttributes = Map.of(
 "FifoTopic", "true",
 "ContentBasedDeduplication", "false");

 CreateTopicRequest topicRequest = CreateTopicRequest.builder()

FIFO example (AWS SDKs) 109

Amazon Simple Notification Service Developer Guide

 .name(topicName)
 .attributes(topicAttributes)
 .build();

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 String topicArn = response.topicArn();
 System.out.println("The topic ARN is" + topicArn);

 return topicArn;

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static void subscribeQueues(List<QueueData> queues, String topicARN) {
 queues.forEach(queue -> {
 SubscribeRequest subscribeRequest = SubscribeRequest.builder()
 .topicArn(topicARN)
 .endpoint(queue.queueARN)
 .protocol("sqs")
 .build();

 // Subscribe to the endpoint by using the SNS service client.
 // Only Amazon SQS queues can receive notifications from an Amazon
 SNS FIFO
 // topic.
 SubscribeResponse subscribeResponse =
 snsClient.subscribe(subscribeRequest);
 System.out.println("The queue [" + queue.queueARN + "] subscribed to
 the topic [" + topicARN + "]");
 queue.subscriptionARN = subscribeResponse.subscriptionArn();
 });
 }

 public static void publishPriceUpdate(String topicArn, String payload, String
 groupId) {

 try {
 // Create and publish a message that updates the wholesale price.
 String subject = "Price Update";
 String dedupId = UUID.randomUUID().toString();

FIFO example (AWS SDKs) 110

Amazon Simple Notification Service Developer Guide

 String attributeName = "business";
 String attributeValue = "wholesale";

 MessageAttributeValue msgAttValue = MessageAttributeValue.builder()
 .dataType("String")
 .stringValue(attributeValue)
 .build();

 Map<String, MessageAttributeValue> attributes = new HashMap<>();
 attributes.put(attributeName, msgAttValue);
 PublishRequest pubRequest = PublishRequest.builder()
 .topicArn(topicArn)
 .subject(subject)
 .message(payload)
 .messageGroupId(groupId)
 .messageDeduplicationId(dedupId)
 .messageAttributes(attributes)
 .build();

 final PublishResponse response = snsClient.publish(pubRequest);
 System.out.println(response.messageId());
 System.out.println(response.sequenceNumber());
 System.out.println("Message was published to " + topicArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateTopic

• Publish

• Subscribe

FIFO example (AWS SDKs) 111

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SNS FIFO topic, subscribe Amazon SQS FIFO and standard queues to the
topic, and publish a message to the topic.

def usage_demo():
 """Shows how to subscribe queues to a FIFO topic."""
 print("-" * 88)
 print("Welcome to the `Subscribe queues to a FIFO topic` demo!")
 print("-" * 88)

 sns = boto3.resource("sns")
 sqs = boto3.resource("sqs")
 fifo_topic_wrapper = FifoTopicWrapper(sns)
 sns_wrapper = SnsWrapper(sns)

 prefix = "sqs-subscribe-demo-"
 queues = set()
 subscriptions = set()

 wholesale_queue = sqs.create_queue(
 QueueName=prefix + "wholesale.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(wholesale_queue)
 print(f"Created FIFO queue with URL: {wholesale_queue.url}.")

 retail_queue = sqs.create_queue(

FIFO example (AWS SDKs) 112

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 QueueName=prefix + "retail.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(retail_queue)
 print(f"Created FIFO queue with URL: {retail_queue.url}.")

 analytics_queue = sqs.create_queue(QueueName=prefix + "analytics",
 Attributes={})
 queues.add(analytics_queue)
 print(f"Created standard queue with URL: {analytics_queue.url}.")

 topic = fifo_topic_wrapper.create_fifo_topic("price-updates-topic.fifo")
 print(f"Created FIFO topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 fifo_topic_wrapper.add_access_policy(q, topic.attributes["TopicArn"])

 print(f"Added access policies for topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 sub = fifo_topic_wrapper.subscribe_queue_to_topic(
 topic, q.attributes["QueueArn"]
)
 subscriptions.add(sub)

 print(f"Subscribed queues to topic: {topic.attributes['TopicArn']}.")

 input("Press Enter to publish a message to the topic.")

 message_id = fifo_topic_wrapper.publish_price_update(
 topic, '{"product": 214, "price": 79.99}', "Consumables"
)

 print(f"Published price update with message ID: {message_id}.")

 # Clean up the subscriptions, queues, and topic.
 input("Press Enter to clean up resources.")
 for s in subscriptions:

FIFO example (AWS SDKs) 113

Amazon Simple Notification Service Developer Guide

 sns_wrapper.delete_subscription(s)

 sns_wrapper.delete_topic(topic)

 for q in queues:
 fifo_topic_wrapper.delete_queue(q)

 print(f"Deleted subscriptions, queues, and topic.")

 print("Thanks for watching!")
 print("-" * 88)

class FifoTopicWrapper:
 """Encapsulates Amazon SNS FIFO topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def create_fifo_topic(self, topic_name):
 """
 Create a FIFO topic.
 Topic names must be made up of only uppercase and lowercase ASCII
 letters,
 numbers, underscores, and hyphens, and must be between 1 and 256
 characters long.
 For a FIFO topic, the name must end with the .fifo suffix.

 :param topic_name: The name for the topic.
 :return: The new topic.
 """
 try:
 topic = self.sns_resource.create_topic(
 Name=topic_name,
 Attributes={
 "FifoTopic": str(True),
 "ContentBasedDeduplication": str(False),
 },
)
 logger.info("Created FIFO topic with name=%s.", topic_name)

FIFO example (AWS SDKs) 114

Amazon Simple Notification Service Developer Guide

 return topic
 except ClientError as error:
 logger.exception("Couldn't create topic with name=%s!", topic_name)
 raise error

 @staticmethod
 def add_access_policy(queue, topic_arn):
 """
 Add the necessary access policy to a queue, so
 it can receive messages from a topic.

 :param queue: The queue resource.
 :param topic_arn: The ARN of the topic.
 :return: None.
 """
 try:
 queue.set_attributes(
 Attributes={
 "Policy": json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "test-sid",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": "SQS:SendMessage",
 "Resource": queue.attributes["QueueArn"],
 "Condition": {
 "ArnLike": {"aws:SourceArn": topic_arn}
 },
 }
],
 }
)
 }
)
 logger.info("Added trust policy to the queue.")
 except ClientError as error:
 logger.exception("Couldn't add trust policy to the queue!")
 raise error

FIFO example (AWS SDKs) 115

Amazon Simple Notification Service Developer Guide

 @staticmethod
 def subscribe_queue_to_topic(topic, queue_arn):
 """
 Subscribe a queue to a topic.

 :param topic: The topic resource.
 :param queue_arn: The ARN of the queue.
 :return: The subscription resource.
 """
 try:
 subscription = topic.subscribe(
 Protocol="sqs",
 Endpoint=queue_arn,
)
 logger.info("The queue is subscribed to the topic.")
 return subscription
 except ClientError as error:
 logger.exception("Couldn't subscribe queue to topic!")
 raise error

 @staticmethod
 def publish_price_update(topic, payload, group_id):
 """
 Compose and publish a message that updates the wholesale price.

 :param topic: The topic to publish to.
 :param payload: The message to publish.
 :param group_id: The group ID for the message.
 :return: The ID of the message.
 """
 try:
 att_dict = {"business": {"DataType": "String", "StringValue":
 "wholesale"}}
 dedup_id = uuid.uuid4()
 response = topic.publish(
 Subject="Price Update",
 Message=payload,
 MessageAttributes=att_dict,
 MessageGroupId=group_id,
 MessageDeduplicationId=str(dedup_id),
)
 message_id = response["MessageId"]
 logger.info("Published message to topic %s.", topic.arn)

FIFO example (AWS SDKs) 116

Amazon Simple Notification Service Developer Guide

 except ClientError as error:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise error
 return message_id

 @staticmethod
 def delete_queue(queue):
 """
 Removes an SQS queue. When run against an AWS account, it can take up to
 60 seconds before the queue is actually deleted.

 :param queue: The queue to delete.
 :return: None
 """
 try:
 queue.delete()
 logger.info("Deleted queue with URL=%s.", queue.url)
 except ClientError as error:
 logger.exception("Couldn't delete queue with URL=%s!", queue.url)
 raise error

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateTopic

• Publish

• Subscribe

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

FIFO example (AWS SDKs) 117

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

Create a FIFO topic, subscribe an Amazon SQS FIFO queue to the topic, and publish a
message to an Amazon SNS topic.

 " Creates a FIFO topic. "
 DATA lt_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>tt_topicattributesmap.
 DATA ls_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>ts_topicattributesmap_maprow.
 ls_tpc_attributes-key = 'FifoTopic'.
 ls_tpc_attributes-value = NEW /aws1/cl_snstopicattrsmap_w(iv_value =
 'true').
 INSERT ls_tpc_attributes INTO TABLE lt_tpc_attributes.

 TRY.
 DATA(lo_create_result) = lo_sns->createtopic(
 iv_name = iv_topic_name
 it_attributes = lt_tpc_attributes
).
 DATA(lv_topic_arn) = lo_create_result->get_topicarn().
 ov_topic_arn = lv_topic_arn. "
 ov_topic_arn is returned for testing purposes. "
 MESSAGE 'FIFO topic created' TYPE 'I'.
 CATCH /aws1/cx_snstopiclimitexcdex.
 MESSAGE 'Unable to create more topics. You have reached the maximum
 number of topics allowed.' TYPE 'E'.
 ENDTRY.

 " Subscribes an endpoint to an Amazon Simple Notification Service (Amazon
 SNS) topic. "
 " Only Amazon Simple Queue Service (Amazon SQS) FIFO queues can be subscribed
 to an SNS FIFO topic. "
 TRY.
 DATA(lo_subscribe_result) = lo_sns->subscribe(
 iv_topicarn = lv_topic_arn
 iv_protocol = 'sqs'
 iv_endpoint = iv_queue_arn
).
 DATA(lv_subscription_arn) = lo_subscribe_result->get_subscriptionarn().
 ov_subscription_arn = lv_subscription_arn. "
 ov_subscription_arn is returned for testing purposes. "
 MESSAGE 'SQS queue was subscribed to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.

FIFO example (AWS SDKs) 118

Amazon Simple Notification Service Developer Guide

 MESSAGE 'Topic does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snssubscriptionlmte00.
 MESSAGE 'Unable to create subscriptions. You have reached the maximum
 number of subscriptions allowed.' TYPE 'E'.
 ENDTRY.

 " Publish message to SNS topic. "
 TRY.
 DATA lt_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>tt_messageattributemap.
 DATA ls_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>ts_messageattributemap_maprow.
 ls_msg_attributes-key = 'Importance'.
 ls_msg_attributes-value = NEW /aws1/cl_snsmessageattrvalue(iv_datatype =
 'String' iv_stringvalue = 'High').
 INSERT ls_msg_attributes INTO TABLE lt_msg_attributes.

 DATA(lo_result) = lo_sns->publish(
 iv_topicarn = lv_topic_arn
 iv_message = 'The price of your mobile plan has been increased from
 $19 to $23'
 iv_subject = 'Changes to mobile plan'
 iv_messagegroupid = 'Update-2'
 iv_messagededuplicationid = 'Update-2.1'
 it_messageattributes = lt_msg_attributes
).
 ov_message_id = lo_result->get_messageid(). "
 ov_message_id is returned for testing purposes. "
 MESSAGE 'Message was published to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in AWS SDK for SAP ABAP API reference.

• CreateTopic

• Publish

• Subscribe

FIFO example (AWS SDKs) 119

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

Receiving messages from FIFO subscriptions

You can now receive price updates in the three subscribed applications. As shown in the the section
called “FIFO topic use case”, the point of entry for each consumer application is the Amazon SQS
queue, which its corresponding AWS Lambda function can poll automatically. When an Amazon
SQS queue is an event source for a Lambda function, Lambda scales its fleet of pollers as needed
to efficiently consume messages.

For more information, see Using AWS Lambda with Amazon SQS in the AWS Lambda Developer
Guide. For information on writing your own queue pollers, see Recommendations for Amazon
SQS standard and FIFO queues in the Amazon Simple Queue Service Developer Guide and
ReceiveMessage in the Amazon Simple Queue Service API Reference.

Using AWS CloudFormation

AWS CloudFormation allows you to use a template file to create and configure a collection of
AWS resources together as a single unit. This section has an example template that creates the
following:

• The Amazon SNS FIFO topic that distributes the price updates

• The Amazon SQS FIFO queues that provide these updates to the wholesale and retail
applications

• The Amazon SQS standard queue for the analytics application that stores records, which can be
queried for business intelligence (BI)

• The Amazon SNS FIFO subscriptions that connect the three queues to the topic

• A filter policy that specifies that subscriber applications receive only the price updates that they
need

Note

If you test this code sample by publishing a message to the topic, make sure that you
publish the message with the business attribute. Specify either retail or wholesale
for the attribute value. Otherwise, the message is filtered out and not delivered to the
subscribed queues.

{

FIFO example (AWS CloudFormation) 120

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-best-practices.html#sqs-standard-fifo-queue-best-practices
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-best-practices.html#sqs-standard-fifo-queue-best-practices
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Notification Service Developer Guide

 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "PriceUpdatesTopic": {
 "Type": "AWS::SNS::Topic",
 "Properties": {
 "TopicName": "PriceUpdatesTopic.fifo",
 "FifoTopic": true,
 "ContentBasedDeduplication": false,
 "ArchivePolicy": {
 "MessageRetentionPeriod": "30"
 }
 }
 },
 "WholesaleQueue": {
 "Type": "AWS::SQS::Queue",
 "Properties": {
 "QueueName": "WholesaleQueue.fifo",
 "FifoQueue": true,
 "ContentBasedDeduplication": false
 }
 },
 "RetailQueue": {
 "Type": "AWS::SQS::Queue",
 "Properties": {
 "QueueName": "RetailQueue.fifo",
 "FifoQueue": true,
 "ContentBasedDeduplication": false
 }
 },
 "AnalyticsQueue": {
 "Type": "AWS::SQS::Queue",
 "Properties": {
 "QueueName": "AnalyticsQueue"
 }
 },
 "WholesaleSubscription": {
 "Type": "AWS::SNS::Subscription",
 "Properties": {
 "TopicArn": {
 "Ref": "PriceUpdatesTopic"
 },
 "Endpoint": {
 "Fn::GetAtt": [
 "WholesaleQueue",

FIFO example (AWS CloudFormation) 121

Amazon Simple Notification Service Developer Guide

 "Arn"
]
 },
 "Protocol": "sqs",
 "RawMessageDelivery": "false",
 "FilterPolicyScope": "MessageBody",
 "FilterPolicy": {
 "business": [
 "wholesale"
]
 }
 }
 },
 "RetailSubscription": {
 "Type": "AWS::SNS::Subscription",
 "Properties": {
 "TopicArn": {
 "Ref": "PriceUpdatesTopic"
 },
 "Endpoint": {
 "Fn::GetAtt": [
 "RetailQueue",
 "Arn"
]
 },
 "Protocol": "sqs",
 "RawMessageDelivery": "false",
 "FilterPolicyScope": "MessageBody",
 "FilterPolicy": {
 "business": [
 "retail"
]
 }
 }
 },
 "AnalyticsSubscription": {
 "Type": "AWS::SNS::Subscription",
 "Properties": {
 "TopicArn": {
 "Ref": "PriceUpdatesTopic"
 },
 "Endpoint": {
 "Fn::GetAtt": [
 "AnalyticsQueue",

FIFO example (AWS CloudFormation) 122

Amazon Simple Notification Service Developer Guide

 "Arn"
]
 },
 "Protocol": "sqs",
 "RawMessageDelivery": "false"
 }
 },
 "SalesQueuesPolicy": {
 "Type": "AWS::SQS::QueuePolicy",
 "Properties": {
 "PolicyDocument": {
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": [
 "sqs:SendMessage"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": {
 "Ref": "PriceUpdatesTopic"
 }
 }
 }
 }
]
 },
 "Queues": [
 {
 "Ref": "WholesaleQueue"
 },
 {
 "Ref": "RetailQueue"
 },
 {
 "Ref": "AnalyticsQueue"
 }
]
 }
 }

FIFO example (AWS CloudFormation) 123

Amazon Simple Notification Service Developer Guide

 }
}

For more information about deploying AWS resources using an AWS CloudFormation template, see
Get Started in the AWS CloudFormation User Guide.

FIFO example (AWS CloudFormation) 124

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html

Amazon Simple Notification Service Developer Guide

Amazon SNS message filtering

By default, an Amazon SNS topic subscriber receives every message that's published to the topic.
To receive only a subset of the messages, a subscriber must assign a filter policy to the topic
subscription.

A filter policy is a JSON object containing properties that define which messages the subscriber
receives. Amazon SNS supports policies that act on the message attributes or on the message body,
according to the filter policy scope that you set for the subscription. Filter policies for the message
body assume that the message payload is a well-formed JSON object.

If a subscription doesn't have a filter policy, the subscriber receives every message published
to its topic. When you publish a message to a topic with a filter policy in place, Amazon SNS
compares the message attributes or the message body to the properties in the filter policy for each
of the topic's subscriptions. If all of the message attributes or message body properties satisfy
the conditions specified in the filter policy, Amazon SNS sends the message to the subscriber.
Otherwise, Amazon SNS doesn't send the message to that subscriber.

For more information, see Filter Messages Published to Topics.

Amazon SNS subscription filter policy scope

The FilterPolicyScope subscription attribute lets you choose the filtering scope by setting one
of the following values:

• MessageAttributes – The filter policy is applied to the message attributes. This is the default.

• MessageBody – The filter policy is applied to the message body.

Note

If no filter policy scope is defined for an existing filter policy, the scope defaults to
MessageAttributes.

Subscription filter policy scope 125

https://aws.amazon.com/getting-started/tutorials/filter-messages-published-to-topics/

Amazon Simple Notification Service Developer Guide

Amazon SNS subscription filter policies

A subscription filter policy allows you to specify property names and assign a list of values to each
property name. For more information, see Amazon SNS message filtering.

When Amazon SNS evaluates message attributes or message body properties against the
subscription filter policy, it ignores the ones that aren't specified in the policy.

Important

AWS services such as IAM and Amazon SNS use a distributed computing model called
eventual consistency. Additions or changes to a subscription filter policy require up to 15
minutes to fully take effect.

A subscription accepts a message under the following conditions:

• When the filter policy scope is set to MessageAttributes, each property name in the filter
policy matches a message attribute name. For each matching property name in the filter policy,
at least one property value matches the message attribute value.

• When the filter policy scope is set to MessageBody, each property name in the filter policy
matches a message body property name. For each matching property name in the filter policy, at
least one property value matches the message body property value.

Amazon SNS currently supports the following filter operators:

• AND logic

• OR logic

• OR operator

• Key matching

• Numeric value exact matching

• Numeric value anything-but matching

• Numeric value range matching

• String value exact matching

• String value anything-but matching

Subscription filter policies 126

Amazon Simple Notification Service Developer Guide

• String matching using a prefix with the anything-but operator

• String value equals-ignore case

• String value IP address matching

• String value prefix matching

• String value suffix matching

Amazon SNS example filter policies

The following example shows a message payload delivered by an Amazon SNS topic that processes
customer transactions.

The first example includes the MessageAttributes field with attributes that describe the
transaction:

• Customer's interests

• Store name

• Event state

• Purchase price in USD

Because this message includes the MessageAttributes field, any topic subscription that sets a
FilterPolicy can selectively accept or reject the message, as long as FilterPolicyScope is
set to MessageAttributes in the subscription. For information about applying attributes to a
message, see Amazon SNS message attributes.

{
 "Type": "Notification",
 "MessageId": "a1b2c34d-567e-8f90-g1h2-i345j67klmn8",
 "TopicArn": "arn:aws:sns:us-east-2:123456789012:MyTopic",
 "Message": "message-body-with-transaction-details",
 "Timestamp": "2019-11-03T23:28:01.631Z",
 "SignatureVersion": "4",
 "Signature": "signature",
 "UnsubscribeURL": "unsubscribe-url",
 "MessageAttributes": {
 "customer_interests": {
 "Type": "String.Array",
 "Value": "[\"soccer\", \"rugby\", \"hockey\"]"
 },

Amazon SNS example filter policies 127

Amazon Simple Notification Service Developer Guide

 "store": {
 "Type": "String",
 "Value":"example_corp"
 },
 "event": {
 "Type": "String",
 "Value": "order_placed"
 },
 "price_usd": {
 "Type": "Number",
 "Value": "210.75"
 }
 }
}

The following example shows the same attributes included within the Message field, also
referred to as the message payload or message body. Any topic subscription that includes a
FilterPolicy can selectively accept or reject the message, as long as FilterPolicyScope is
set to MessageBody in the subscription.

{
"Type": "Notification",
 "MessageId": "a1b2c34d-567e-8f90-g1h2-i345j67klmn8",
 "TopicArn": "arn:aws:sns:us-east-2:123456789012:MyTopic",
 "Message": "{
 \"customer_interests\": [\"soccer\", \"rugby\", \"hockey\"],
 \"store\": \"example_corp\",
 \"event\":\"order_placed\",
 \"price_usd\":210.75
 }",
 "Timestamp": "2019-11-03T23:28:01.631Z",
 "SignatureVersion": "4",
 "Signature": "signature",
 "UnsubscribeURL": "unsubscribe-url"
}

The following filter policies accept or reject messages based on their property names and values.

A policy that accepts the example message

The properties in the following subscription filter policy match the attributes assigned to the
example message. Note that the same filter policy works for a FilterPolicyScope whether

Amazon SNS example filter policies 128

Amazon Simple Notification Service Developer Guide

it's set to MessageAttributes or MessageBody. Each subscriber chooses their filtering scope
according to the composition of the messages that they receive from the topic.

If any single property in this policy doesn't match an attribute assigned to the message, the policy
rejects the message.

{
 "store": ["example_corp"],
 "event": [{"anything-but": "order_cancelled"}],
 "customer_interests": [
 "rugby",
 "football",
 "baseball"
],
 "price_usd": [{"numeric": [">=", 100]}]
}

A policy that rejects the example message

The following subscription filter policy has multiple mismatches between its properties and the
attributes assigned to the example message. For example, because the encrypted property name
isn't present in the message attributes, this policy property causes the message to be rejected
regardless of the value assigned to it.

If any mismatches occur, the policy rejects the message.

{
 "store": ["example_corp"],
 "event": ["order_cancelled"],
 "encrypted": [false],
 "customer_interests": [
 "basketball",
 "baseball"
]
}

Filter policy constraints in Amazon SNS

When you’re setting up filter policies in Amazon SNS, there are a few important rules to keep in
mind. These rules help ensure the effective application of filter policies while maintaining system
performance and compatibility.

Filter policy constraints 129

Amazon Simple Notification Service Developer Guide

Common policy constraints

When you create a filter policy, keep the following constraints in mind.

• String matching – For string matching in the filter policy, the comparison is case-sensitive.

• Numeric matching – For numeric matching, the value can range from -109 to 109 (-1 billion to 1
billion), with five digits of accuracy after the decimal point.

• Filter policy complexity – The total combination of values in a filter policy must not exceed
150. To calculate the total combination, multiply the number of values in each array in the filter
policy.

• Limit number of keys – A filter policy can have a maximum of five keys.

Additional considerations

• The JSON of the filter policy can contain the following:

• Strings enclosed in quotation marks

• Numbers

• The keywords true, false, and null, without quotation marks

• When using the Amazon SNS API, you must pass the JSON of the filter policy as a valid UTF-8
string.

• The maximum size of a filter policy is 256 KB.

• By default, you can have up to 200 filter policies per topic, and 10,000 filter policies per AWS
account.

This policy limit won't stop Amazon SQS queue subscriptions from being created with the
Subscribe API. However, it will fail when you attach the filter policy in the Subscribe API call
(or the SetSubscriptionAttributes API call).

To increase this quota, you can use AWS Service Quotas.

Policy constraints for attribute-based filtering

Attribute-based filtering is the default option. FilterPolicyScope is set to
MessageAttributes in the subscription.

Filter policy constraints 130

https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html#API_SetSubscriptionAttributes_RequestParameters

Amazon Simple Notification Service Developer Guide

• Amazon SNS doesn't accept a nested filter policy for attribute-based filtering.

• Amazon SNS compares policy properties only to message attributes that have the following data
types:

• String

• String.Array

Important

When using attribute-based filtering in Amazon SNS, you must double-escape certain
special characters, specifically:

• Double quotes (")

• Backslashes ()
Failure to double-escape these characters will result in the filter policy not matching the
attributes of a published message, and the notification won't be delivered.

Additional considerations

• Passing objects in arrays isn't recommended because it may yield unexpected results due to
the nesting, which isn't supported by attribute-based filtering. Use payload-based filtering for
nested policies.

• Number is supported for numeric attribute values.

• Amazon SNS ignores message attributes with the Binary data type.

Example policy for complexity:

In the following policy example, the first key has three match operators, the second has one match
operator, and the third has two match operators.

{
 "key_a": ["value_one", "value_two", "value_three"],
 "key_b": ["value_one"],
 "key_c": ["value_one", "value_two"]
}

The total combination is calculated as the product of the number of match operators for each key
in the filter policy:

Filter policy constraints 131

Amazon Simple Notification Service Developer Guide

3(match operators of key_a)
x 1(match operators of key_b)
x 2(match operators of key_c)
= 6

Policy constraints for payload-based filtering

To switch from attribute-based (default) to payload-based filtering, you must set the
FilterPolicyScope to MessageBody in the subscription.

• Amazon SNS accepts a nested filter policy for payload-based filtering.

• For a nested policy, only leaf keys are counted towards the five key limit.

Example policy for key limit:

In the following policy example:

• There are two leaf keys: key_c and key_e.

• key_c has four match operators with a nested level of three, and key_e has three match
operators with a nested level of two.

{
"key_a": {
 "key_b": {
 "key_c": ["value_one", "value_two", "value_three", "value_four"]
 }
 },
"key_d": {
 "key_e": ["value_one", "value_two", "value_three"]
 }
}

The total combination is calculated as the product of the number of match operators and the
nested level for each key in the filter policy:

4(match operators of key_c)
x 3(nested level of key_c)
x 3(match operators of key_e)
x 2(nested level of key_e)

Filter policy constraints 132

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeprovisionIpamPoolCidr.html

Amazon Simple Notification Service Developer Guide

= 72

AND/OR logic

You can use operations that include AND/OR logic to match message attributes or message body
properties.

Topics

• AND logic

• OR logic

• OR operator

AND logic

You can apply AND logic using multiple property names.

Consider the following policy:

{
 "customer_interests": ["rugby"],
 "price_usd": [{"numeric": [">", 100]}]
}

It matches any message attribute or message body property with the value of
customer_interests set to rugby and the value of price_usd set to a number larger than
100.

Note

You can't apply AND logic to values of the same attribute.

OR logic

You can apply OR logic by assigning multiple values to a property name.

Consider the following policy:

{

AND/OR logic 133

Amazon Simple Notification Service Developer Guide

 "customer_interests": ["rugby", "football", "baseball"]
}

It matches any message attribute or message body property with the value of
customer_interests set to rugby, football, or baseball.

OR operator

You can use the "$or" operator to explicitly define a filter policy to express the OR relationship
between multiple attributes in the policy.

Amazon SNS only recognizes an "$or" relationship when the policy has met all of the following
conditions. When all of these conditions are not met, "$or" is treated as a regular attribute name,
the same as any other string in the policy.

• There is an "$or" field attribute in the rule followed with an array, for example “$or” : [].

• There are at least 2 objects in the "$or" array: "$or": [{}, {}].

• None of the objects in the "$or" array have field names that are reserved keywords.

Otherwise "$or" is treated as a normal attribute name, the same as other strings in the policy.

The following policy isn't parsed as an OR relationship because numeric and prefix are reserved
keywords.

{
 "$or": [{"numeric" : 123}, {"prefix": "abc"}]
}

OR operator examples

Standard OR:

{
 "source": ["aws.cloudwatch"],
 "$or": [
 { "metricName": ["CPUUtilization"] },
 { "namespace": ["AWS/EC2"] }
]
}

AND/OR logic 134

Amazon Simple Notification Service Developer Guide

The filter logic for this policy is:

"source" && ("metricName" || "namespace")

It matches either of the following sets of message attributes:

"source": {"Type": "String", "Value": "aws.cloudwatch"},
"metricName": {"Type": "String", "Value": "CPUUtilization"}

or

"source": {"Type": "String", "Value": "aws.cloudwatch"},
"namespace": {"Type": "String", "Value": "AWS/EC2"}

It also matches either of the following message bodies:

{
 "source": "aws.cloudwatch",
 "metricName": "CPUUtilization"
}

or

{
 "source": "aws.cloudwatch",
 "namespace": "AWS/EC2"
}

Policy constraints that include OR relationships

Consider the following policy:

{
 "source": ["aws.cloudwatch"],
 "$or": [
 { "metricName": ["CPUUtilization", "ReadLatency"] },
 {
 "metricType": ["MetricType"] ,
 "$or" : [
 { "metricId": [1234, 4321] },

AND/OR logic 135

Amazon Simple Notification Service Developer Guide

 { "spaceId": [1000, 2000, 3000] }
]
 }
]
 }

The logic for this policy can also be simplified as:

("source" AND "metricName")
OR
("source" AND "metricType" AND "metricId")
OR
("source" AND "metricType" AND "spaceId")

The complexity calculation for policies with OR relationships can be simplified as the sum of the
combination complexities for each OR statement.

The total combination is calculated as follows:

(source * metricName) + (source * metricType * metricId) + (source * metricType *
 spaceId)
= (1 * 2) + (1 * 1 * 2) + (1 * 1 * 3)
= 7

source has one value, metricName has two values, metricType has one value, metricId has
two values and spaceId has three values.

Consider the following nested filter policy:

{
 "$or": [
 { "metricName": ["CPUUtilization", "ReadLatency"] },
 { "namespace": ["AWS/EC2", "AWS/ES"] }
],
 "detail" : {
 "scope" : ["Service"],
 "$or": [
 { "source": ["aws.cloudwatch"] },
 { "type": ["CloudWatch Alarm State Change"] }
]
 }

AND/OR logic 136

Amazon Simple Notification Service Developer Guide

 }

The logic for this policy can be simplified as:

("metricName" AND ("detail"."scope" AND "detail"."source")
OR
("metricName" AND ("detail"."scope" AND "detail"."type")
OR
("namespace" AND ("detail"."scope" AND "detail"."source")
OR
("namespace" AND ("detail"."scope" AND "detail"."type")

The calculation for total combinations is the same for non-nested policies except we need to
consider the a key’s nesting level.

The total combination is calculated as follows:

(2 * 2 * 2) + (2 * 2 * 2) + (2 * 2 * 2) + (2 * 2 * 2) = 32

metricName has two values, namespace has two values, scope is a two level nested key with one
value, source is a two level nested key with one value, and type is a two level nested key with
one value.

Key matching

You can use the exists operator to match incoming messages with or without specified
properties in the filter policy. exists matching only works on leaf nodes. It does not work on
intermediate nodes.

• Use "exists": true to match incoming messages that include the specified property. The key
must have a non-null and non-empty value.

For example, the following policy property uses the exists operator with a value of true:

"store": [{"exists": true}]

It matches any list of message attributes that contains the store attribute key, such as the
following:

"store": {"Type": "String", "Value": "fans"}

Key matching 137

Amazon Simple Notification Service Developer Guide

"customer_interests": {"Type": "String.Array", "Value": "[\"baseball\", \"basketball
\"]"}

It also matches either of the following message body:

{
 "store": "fans"
 "customer_interests": ["baseball", "basketball"]
}

However, it doesn't match any list of message attributes without the store attribute key, such as
the following:

"customer_interests": {"Type": "String.Array", "Value": "[\"baseball\", \"basketball
\"]"}

Nor does it match the following message body:

{
 "customer_interests": ["baseball", "basketball"]
}

• Use "exists": false to match incoming messages that don't include the specified property.

Note

"exists": false only matches if at least one attribute is present. An empty set of
attributes results in the filter not matching.

For example, the following policy property uses the exists operator with a value of false:

"store": [{"exists": false}]

It doesn't match any list of message attributes that contains the store attribute key, such as the
following:

"store": {"Type": "String", "Value": "fans"}

Key matching 138

Amazon Simple Notification Service Developer Guide

"customer_interests": {"Type": "String.Array", "Value": "[\"baseball\", \"basketball
\"]"}

It also doesn’t match the following message body:

{
 "store": "fans"
 "customer_interests": ["baseball", "basketball"]
}

However, it matches any list of message attributes without the store attribute key, such as the
following:

"customer_interests": {"Type": "String.Array", "Value": "[\"baseball\", \"basketball
\"]"}

It also matches the following message body:

{
 "customer_interests": ["baseball", "basketball"]
}

Numeric value matching

You can filter messages by matching numeric values to message attribute values or to message
body property values. Numeric values aren't enclosed in double quotation marks in the JSON
policy. You can use the following numeric operations for filtering.

Note

Prefixes are supported for string matching only.

Topics

• Exact matching

• Anything-but matching

• Value range matching

Numeric value matching 139

Amazon Simple Notification Service Developer Guide

Exact matching

When a policy property value includes the keyword numeric and the operator =, it matches
any message attribute or message body property values that have the same name and an equal
numeric value.

Consider the following policy property:

"price_usd": [{"numeric": ["=",301.5]}]

It matches either of the following message attributes:

"price_usd": {"Type": "Number", "Value": 301.5}

"price_usd": {"Type": "Number", "Value": 3.015e2}

It also matches either of the following message bodies:

{
 "price_usd": 301.5
}

{
 "price_usd": 3.015e2
}

Anything-but matching

When a policy property value includes the keyword anything-but, it matches any message
attribute or message body property values that don't include any of the policy property values.

Consider the following policy property:

"price": [{"anything-but": [100, 500]}]

It matches either of the following message attributes:

"price": {"Type": "Number", "Value": 101}

Numeric value matching 140

Amazon Simple Notification Service Developer Guide

"price": {"Type": "Number", "Value": 100.1}

It also matches either of the following message bodies:

{
 "price": 101
}

{
 "price": 100.1
}

Moreover, it matches the following message attribute (because it contains a value that isn't 100 or
500):

"price": {"Type": "Number.Array", "Value": "[100, 50]"}

And it also matches the following message body (because it contains a value that isn't 100 or 500):

{
 "price": [100, 50]
}

However, it doesn't match the following message attribute:

"price": {"Type": "Number", "Value": 100}

Nor does it match the following message body:

{
 "price": 100
}

Value range matching

In addition to the operator =, a numeric policy property can include the following operators: <, <=,
>, and >=.

Numeric value matching 141

Amazon Simple Notification Service Developer Guide

Consider the following policy property:

"price_usd": [{"numeric": ["<", 0]}]

It matches any message attribute or message body property with negative numeric values.

Consider another message attribute:

"price_usd": [{"numeric": [">", 0, "<=", 150]}]

It matches any message attribute or message body property with positive numbers up to and
including 150.

String value matching

You can filter messages by matching string values to message attribute values or message body
property values. String values are enclosed in double quotation marks in the JSON policy. You can
use the following string operations to match message attributes or message body properties:

Topics

• Exact matching

• Anything-but matching

• Using a prefix with the anything-but operator

• Equals-ignore-case matching

• IP address matching

• Prefix matching

• Suffix matching

Exact matching

Exact matching occurs when a policy property value matches one or more message attribute
values. For String.Array type attributes, each element in the array is treated as a separate string
for matching purposes.

Consider the following policy property:

"customer_interests": ["rugby", "tennis"]

String value matching 142

Amazon Simple Notification Service Developer Guide

It matches the following message attributes:

"customer_interests": {"Type": "String", "Value": "rugby"}

"customer_interests": {"Type": "String", "Value": "tennis"}

"customer_interests": {"Type": "String.Array", "Value": "[\"rugby\", \"tennis\"]"}

It also matches the following message bodies:

{
 "customer_interests": "rugby"
}

{
 "customer_interests": "tennis"
}

However, it doesn't match the following message attributes:

"customer_interests": {"Type": "String", "Value": "baseball"}

"customer_interests": {"Type": "String.Array", "Value": "[\"baseball\"]"}

Nor does it match the following message body:

{
 "customer_interests": "baseball"
}

Anything-but matching

When a policy property value includes the keyword anything-but, it matches any message
attribute or message body values that don't include any of the policy property values. anything-
but can be combined with "exists": false. For String.Array type attributes, it matches if
none of the array elements are listed in the policy property.

Consider the following policy property:

String value matching 143

Amazon Simple Notification Service Developer Guide

"customer_interests": [{"anything-but": ["rugby", "tennis"]}]

It matches any of the following message attributes:

"customer_interests": {"Type": "String", "Value": "baseball"}

"customer_interests": {"Type": "String", "Value": "football"}

"customer_interests": {"Type": "String.Array", "Value": "[\"rugby\", \"baseball\"]"}

It also matches either of the following message bodies:

{
 "customer_interests": "baseball"
}

{
 "customer_interests": "football"
}

Moreover, it matches the following message attribute (because it contains a value that isn't rugby
or tennis):

"customer_interests": {"Type": "String.Array", "Value": "[\"rugby\", \"baseball\"]"}

And it also matches the following message body (because it contains a value that isn't rugby or
tennis):

{
 "customer_interests": ["rugby", "baseball"]
}

However, it doesn't match the following message attributes:

"customer_interests": {"Type": "String", "Value": "rugby"}

"customer_interests": {"Type": "String.Array", "Value": "[\"rugby\"]"}

String value matching 144

Amazon Simple Notification Service Developer Guide

Nor does it match the following message body:

{
 "customer_interests": ["rugby"]
}

Using a prefix with the anything-but operator

For string matching, you can also use a prefix with the anything-but operator. For example, the
following policy property denies the order- prefix:

"event":[{"anything-but": {"prefix": "order-"}}]

It matches either of the following attributes:

"event": {"Type": "String", "Value": "data-entry"}

"event": {"Type": "String", "Value": "order_number"}

It also matches either of the following message bodies:

{
 "event": "data-entry"
}

{
 "event": "order_number"
}

However, it doesn't match the following message attribute:

"event": {"Type": "String", "Value": "order-cancelled"}

Nor does it match the following message body:

{
 "event": "order-cancelled"
}

String value matching 145

Amazon Simple Notification Service Developer Guide

Equals-ignore-case matching

When a policy property includes the keyword equals-ignore-case, it will perform a case-
insensitive match with any message attribute or body property value.

Consider the following policy property:

"customer_interests": [{"equals-ignore-case": "tennis"}]

It matches either of the following message attributes:

"customer_interests": {"Type": "String", "Value": "TENNIS"}

"customer_interests": {"Type": "String", "Value": "Tennis"}

It also matches either of the following message bodies:

{
 "customer_interests": "TENNIS"
}

{
 "customer_interests": "teNnis"
{

IP address matching

You can use the cidr operator to check whether an incoming message originates from a specific IP
address or subnet.

Consider the following policy property:

"source_ip":[{"cidr": "10.0.0.0/24"}]

It matches either of the following message attributes:

"source_ip": {"Type": "String", "Value": "10.0.0.0"}

"source_ip": {"Type": "String", "Value": "10.0.0.255"}

String value matching 146

Amazon Simple Notification Service Developer Guide

It also matches either of the following message bodies:

{
 "source_ip": "10.0.0.0"
}

{
 "source_ip": "10.0.0.255"
}

However, it doesn't match the following message attribute:

"source_ip": {"Type": "String", "Value": "10.1.1.0"}

Nor does it match the following message body:

{
 "source_ip": "10.1.1.0"
}

Prefix matching

When a policy property includes the keyword prefix, it matches any message attribute or body
property values that begin with the specified characters.

Consider the following policy property:

"customer_interests": [{"prefix": "bas"}]

It matches either of the following message attributes:

"customer_interests": {"Type": "String", "Value": "baseball"}

"customer_interests": {"Type": "String", "Value": "basketball"}

It also matches either of the following message bodies:

{
 "customer_interests": "baseball"

String value matching 147

Amazon Simple Notification Service Developer Guide

}

{
 "customer_interests": "basketball"
}

However, it doesn't match the following message attribute:

"customer_interests": {"Type": "String", "Value": "rugby"}

Nor does it match the following message body:

{
 "customer_interests": "rugby"
}

Suffix matching

When a policy property includes the keyword suffix, it matches any message attribute or body
property values that end with the specified characters.

Consider the following policy property:

"customer_interests": [{"suffix": "ball"}]

It matches either of the following message attributes:

"customer_interests": {"Type": "String", "Value": "baseball"}

"customer_interests": {"Type": "String", "Value": "basketball"}

It also matches either of the following message bodies:

{
 "customer_interests": "baseball"
}

{
 "customer_interests": "basketball"

String value matching 148

Amazon Simple Notification Service Developer Guide

}

However, it doesn't match the following message attribute:

"customer_interests": {"Type": "String", "Value": "rugby"}

Nor does it match the following message body:

{
 "customer_interests": "rugby"
}

Applying a subscription filter policy in Amazon SNS

Message filtering in Amazon SNS allows you to selectively deliver messages to subscribers based
on filter policies. These policies define conditions that messages must meet to be delivered to a
subscription. While raw message delivery is an option that can affect message processing, it is not
required for subscription filters to work.

You can apply a filter policy to an Amazon SNS subscription using the Amazon SNS console.
Or, to apply policies programmatically, you can use the Amazon SNS API, the AWS Command
Line Interface (AWS CLI), or any AWS SDK that supports Amazon SNS. You can also use AWS
CloudFormation.

Enabling Raw Message Delivery

Raw message delivery ensures that message payloads are delivered as-is to subscribers without
any additional encoding or transformation. This can be useful when subscribers require the original
message format for processing. However, raw message delivery is not directly related to the
functionality of subscription filters.

Applying Subscription Filters

To apply message filters to a subscription, you define a filter policy using JSON syntax. This policy
specifies the conditions that a message must meet to be delivered to the subscription. Filters can
be based on message attributes, such as message attributes, message structure, or even message
content.

Relationship between Raw Message Delivery and Subscription Filters

Applying a subscription filter policy 149

Amazon Simple Notification Service Developer Guide

While enabling raw message delivery can affect how messages are delivered and processed by
subscribers, it is not a prerequisite for using subscription filters. However, in scenarios where
subscribers require the original message format without any modifications, enabling raw message
delivery might be beneficial alongside subscription filters.

Considerations for Effective Filtering

When implementing message filtering, consider the specific requirements of your application and
subscribers. Define filter policies that accurately match the criteria for message delivery to ensure
efficient and targeted message distribution.

Important

AWS services such as IAM and Amazon SNS use a distributed computing model called
eventual consistency. Additions or changes to a subscription filter policy require up to 15
minutes to fully take effect.

AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Subscriptions.

3. Select a subscription and then choose Edit.

4. On the Edit page, expand the Subscription filter policy section.

5. Choose between attribute-based filtering or payload-based filtering.

6. In the JSON editor field, provide the JSON body of your filter policy.

7. Choose Save changes.

Amazon SNS applies your filter policy to the subscription.

AWS CLI

To apply a filter policy with the AWS Command Line Interface (AWS CLI), use the set-
subscription-attributes command, as shown in the following example. For the --
attribute-name option, specify FilterPolicy. For --attribute-value, specify your JSON
policy.

AWS Management Console 150

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/cli/latest/reference/sns/set-subscription-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/sns/set-subscription-attributes.html

Amazon Simple Notification Service Developer Guide

$ aws sns set-subscription-attributes --subscription-arn arn:aws:sns: ... --
attribute-name FilterPolicy --attribute-value '{"store":["example_corp"],"event":
["order_placed"]}'

To provide valid JSON for your policy, enclose the attribute names and values in double quotes.
You must also enclose the entire policy argument in quotes. To avoid escaping quotes, you can use
single quotes to enclose the policy and double quotes to enclose the JSON names and values, as
shown in the above example.

If you want to switch from attribute-based (default) to payload-based message filtering, you can
use the set-subscription-attributes command as well. For the --attribute-name option, specify
FilterPolicyScope. For --attribute-value, specify MessageBody.

$ aws sns set-subscription-attributes --subscription-arn arn:aws:sns: ... --attribute-
name FilterPolicyScope --attribute-value MessageBody

To verify that your filter policy was applied, use the get-subscription-attributes command.
The attributes in the terminal output should show your filter policy for the FilterPolicy key, as
shown in the following example:

$ aws sns get-subscription-attributes --subscription-arn arn:aws:sns: ...
{
 "Attributes": {
 "Endpoint": "endpoint . . .",
 "Protocol": "https",
 "RawMessageDelivery": "false",
 "EffectiveDeliveryPolicy": "delivery policy . . .",
 "ConfirmationWasAuthenticated": "true",
 "FilterPolicy": "{\"store\": [\"example_corp\"], \"event\": [\"order_placed
\"]}",
 "FilterPolicyScope": "MessageAttributes",
 "Owner": "111122223333",
 "SubscriptionArn": "arn:aws:sns: . . .",
 "TopicArn": "arn:aws:sns: . . ."
 }
}

AWS SDKs

The following code examples show how to use SetSubscriptionAttributes.

AWS SDKs 151

https://docs.aws.amazon.com/cli/latest/reference/sns/set-subscription-attributes.html

Amazon Simple Notification Service Developer Guide

Important

If you are using the SDK for Java 2.x example, the class SNSMessageFilterPolicy is not
available out of the box. For instructions on how to install this class, see the example from
the GitHub website.

CLI

AWS CLI

To set subscription attributes

The following set-subscription-attributes example sets the RawMessageDelivery
attribute to an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \
 --attribute-name RawMessageDelivery \
 --attribute-value true

This command produces no output.

The following set-subscription-attributes example sets a FilterPolicy attribute
to an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \
 --attribute-name FilterPolicy \
 --attribute-value "{ \"anyMandatoryKey\": [\"any\", \"of\", \"these\"] }"

This command produces no output.

The following set-subscription-attributes example removes the FilterPolicy
attribute from an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \

AWS SDKs 152

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javav2/example_code/sns/src/main/java/com/example/sns/SNSMessageFilterPolicy.java

Amazon Simple Notification Service Developer Guide

 --attribute-name FilterPolicy \
 --attribute-value "{}"

This command produces no output.

• For API details, see SetSubscriptionAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.ArrayList;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class UseMessageFilterPolicy {
 public static void main(String[] args) {
 final String usage = """

 Usage: <subscriptionArn>

 Where:
 subscriptionArn - The ARN of a subscription.

 """;

AWS SDKs 153

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-subscription-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String subscriptionArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 usePolicy(snsClient, subscriptionArn);
 snsClient.close();
 }

 public static void usePolicy(SnsClient snsClient, String subscriptionArn) {
 try {
 SNSMessageFilterPolicy fp = new SNSMessageFilterPolicy();
 // Add a filter policy attribute with a single value
 fp.addAttribute("store", "example_corp");
 fp.addAttribute("event", "order_placed");

 // Add a prefix attribute
 fp.addAttributePrefix("customer_interests", "bas");

 // Add an anything-but attribute
 fp.addAttributeAnythingBut("customer_interests", "baseball");

 // Add a filter policy attribute with a list of values
 ArrayList<String> attributeValues = new ArrayList<>();
 attributeValues.add("rugby");
 attributeValues.add("soccer");
 attributeValues.add("hockey");
 fp.addAttribute("customer_interests", attributeValues);

 // Add a numeric attribute
 fp.addAttribute("price_usd", "=", 0);

 // Add a numeric attribute with a range
 fp.addAttributeRange("price_usd", ">", 0, "<=", 100);

 // Apply the filter policy attributes to an Amazon SNS subscription
 fp.apply(snsClient, subscriptionArn);

 } catch (SnsException e) {

AWS SDKs 154

Amazon Simple Notification Service Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SetSubscriptionAttributes in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def add_subscription_filter(subscription, attributes):
 """
 Adds a filter policy to a subscription. A filter policy is a key and a
 list of values that are allowed. When a message is published, it must
 have an
 attribute that passes the filter or it will not be sent to the
 subscription.

 :param subscription: The subscription the filter policy is attached to.
 :param attributes: A dictionary of key-value pairs that define the
 filter.
 """

AWS SDKs 155

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetSubscriptionAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 try:
 att_policy = {key: [value] for key, value in attributes.items()}
 subscription.set_attributes(
 AttributeName="FilterPolicy",
 AttributeValue=json.dumps(att_policy)
)
 logger.info("Added filter to subscription %s.", subscription.arn)
 except ClientError:
 logger.exception(
 "Couldn't add filter to subscription %s.", subscription.arn
)
 raise

• For API details, see SetSubscriptionAttributes in AWS SDK for Python (Boto3) API
Reference.

Amazon SNS API

To apply a filter policy with the Amazon SNS API, make a request to the
SetSubscriptionAttributes action. Set the AttributeName parameter to FilterPolicy,
and set the AttributeValue parameter to your filter policy JSON.

If you want to switch from attribute-based (default) to payload-based message filtering, you can
use the SetSubscriptionAttributes action as well. Set the AttributeName parameter to
FilterPolicyScope, and set the AttributeValue parameter to MessageBody.

AWS CloudFormation

To apply a filter policy using AWS CloudFormation, use a JSON or YAML template to create
a AWS CloudFormation stack. For more information, see the FilterPolicy property of the
AWS::SNS::Subscription resource in the AWS CloudFormation User Guide and the example
AWS CloudFormation template.

1. Sign in to the AWS CloudFormation console.

2. Choose Create Stack.

3. On the Select Template page, choose Upload a template to Amazon S3, choose the file, and
choose Next.

Amazon SNS API 156

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/SetSubscriptionAttributes
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-subscription.html#cfn-sns-subscription-filterpolicy
https://github.com/aws-samples/aws-sns-samples/blob/master/templates/SNS-Subscription-Attributes-Tutorial-CloudFormation.template
https://github.com/aws-samples/aws-sns-samples/blob/master/templates/SNS-Subscription-Attributes-Tutorial-CloudFormation.template
https://console.aws.amazon.com/cloudformation

Amazon Simple Notification Service Developer Guide

4. On the Specify Details page, do the following:

a. For Stack Name, type MyFilterPolicyStack.

b. For myHttpEndpoint, type the HTTP endpoint to be subscribed to your topic.

Tip

If you don't have an HTTP endpoint, create one.

5. On the Options page, choose Next.

6. On the Review page, choose Create.

Removing a subscription filter policy in Amazon SNS

To stop filtering the messages that are sent to a subscription, remove the subscription's filter policy
by overwriting it with an empty JSON body. After you remove the policy, the subscription accepts
every message that's published to it.

Using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Subscriptions.

3. Select a subscription and then choose Edit.

4. On the Edit EXAMPLE1-23bc-4567-d890-ef12g3hij456 page, expand the Subscription
filter policy section.

5. In the JSON editor field, provide an empty JSON body for your filter policy: {}.

6. Choose Save changes.

Amazon SNS applies your filter policy to the subscription.

Using the AWS CLI

To remove a filter policy with the AWS CLI, use the set-subscription-attributes command
and provide an empty JSON body for the --attribute-value argument:

Removing a subscription filter policy 157

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/cli/latest/reference/sns/set-subscription-attributes.html

Amazon Simple Notification Service Developer Guide

$ aws sns set-subscription-attributes --subscription-arn arn:aws:sns: ... --attribute-
name FilterPolicy --attribute-value "{}"

Using the Amazon SNS API

To remove a filter policy with the Amazon SNS API, make a request to the
SetSubscriptionAttributes action. Set the AttributeName parameter to FilterPolicy,
and provide an empty JSON body for the AttributeValue parameter.

Using the Amazon SNS API 158

https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

Amazon Simple Notification Service Developer Guide

Message data protection in Amazon SNS

Topics

• What is message data protection?

• Why should I use message data protection?

• Understanding Amazon SNS data protection policies

• Amazon SNS data identifiers

What is message data protection?

Message data protection safeguards the data that's published to your Amazon SNS topics by
using data protection policies to audit, mask, redact, or block the sensitive information that moves
between applications or AWS services.

Message data protection scans data in motion for personally identifiable information (PII) and
protected health information (PHI) using data identifiers. You can choose to use predefined (or
Amazon SNS managed) data identifiers (for example, names, addresses, credit card numbers,
and prescription drug codes), or you can create your own custom data identifiers, specific to your
business use case. Using the scanned information, message data protection provides detailed audit
logs, and allows you to take action to protect that data.

Message data protection supports the following actions to help protect sensitive customer
information:

• Audit – Audit up to 99% of the data that's published to an Amazon SNS topic. You can then
choose to send the findings to Amazon CloudWatch, Amazon S3, or Amazon Data Firehose.

• De-identify – Mask or redact sensitive data without interrupting message publishing or
delivering.

• Deny – Block the transmission of data between applications and AWS resources if sensitive data
is present within the payload.

Note

Amazon SNS supports message data protection for Amazon SNS standard topics only.

What is message data protection 159

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

Amazon Simple Notification Service Developer Guide

Why should I use message data protection?

By introducing message data protection into your governance, risk management, and compliance
programs, you can implement data protection policies that help you to identify and prevent data
leakage. This provides your teams with tools that can help to reduce financial, legal, and regulatory
risks by complying with privacy regulations such as HIPAA, GDPR, PCI, and FedRAMP. It also frees
your developers from the operational overhead that's associated with building and managing your
own tools to protect sensitive data.

For example, you can use message data protection to create an audit policy to determine whether
any of your systems are inadvertently sending or receiving sensitive data. If your audit results show
that systems are sending credit card information to systems that don’t require it, you can use a
block policy to prevent the delivery of the data.

Note

Amazon SNS supports message data protection for Amazon SNS standard topics only.

Understanding Amazon SNS data protection policies

Topics

• What are data protection policies?

• How is the data protection policy structured?

• How do I determine the IAM principals for my data protection policy?

• Data protection policy operations in Amazon SNS

• Amazon SNS data protection policy examples

• Creating data protection policies in Amazon SNS

• Deleting data protection policies in Amazon SNS

What are data protection policies?

Amazon SNS uses data protection policies to select the sensitive data for which you want to
scan, and the actions that you want to take to protect that data from being exchanged by your

Why use message data protection 160

Amazon Simple Notification Service Developer Guide

Amazon SNS topics. To select the sensitive data of interest, you use data identifiers. Amazon SNS
message data protection then detects the sensitive data by using machine learning and pattern
matching. To act upon data identifiers that are found, you can define an audit, de-identify, or
deny operation. These operations let you log the sensitive data that is found (or not found), mask
or redact sensitive data, or deny message delivery.

How is the data protection policy structured?

As illustrated in the following figure, a data protection policy document includes the following
elements:

• Optional policy-wide information at the top of the document

• One or more individual statements

Each statement includes information about a single permission.

Overview of data protection policy structure 161

Amazon Simple Notification Service Developer Guide

Only one data protection policy can be defined per Amazon SNS topic. The data protection policy
can have one or more deny or de-identify statements, but only one audit statement.

JSON properties for the data protection policy

A data protection policy requires the following basic policy information for identification:

• Name – The policy name.

• Description (Optional) – The policy description.

• Version – The policy language version. The current version is 2021-06-01.

• Statement – A list of statements that specifies data protection policy actions.

{
 "Name": "basicPII-protection",
 "Description": "Protect basic types of sensitive data",
 "Version": "2021-06-01",
 "Statement": [

Overview of data protection policy structure 162

Amazon Simple Notification Service Developer Guide

 ...
]
}

JSON properties for a policy statement

A policy statement sets the detection context for the data protection operation.

• Sid (Optional) – The statement identifier.

• DataDirection – Inbound (for Publish API requests) or Outbound (for notification deliveries) with
respect to the Amazon SNS topic.

• DataIdentifier – The sensitive data for which the Amazon SNS topic should scan. For example,
name, address, or phone number.

• Principal – The IAM principal that is published to the topic, or the IAM principal that is
subscribed to the topic.

• Operation – The follow-on action, either Audit, De-identify (mask or redact), or Deny (block),
which the Amazon SNS topic executes once it finds sensitive data.

{
 "Sid": "basicPII-inbound-protection",
 "DataDirection": "Inbound",
 "Principal": ["*"],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/Name",
 "arn:aws:dataprotection::aws:data-identifier/PhoneNumber-US"
],
 "Operation": {
 ...
 }
}

JSON properties for a policy statement operation

A policy statement sets one of the following data protection operations.

• Audit – Emits metrics and finding logs without interrupting message publishing or delivery.

• De-identify – Mask or redact sensitive data without interrupting message publishing.

• Deny – Blocks the Amazon SNS publish request or fails the message delivery.

Overview of data protection policy structure 163

Amazon Simple Notification Service Developer Guide

How do I determine the IAM principals for my data protection policy?

Message data protection uses two IAM principals that interact with Amazon SNS.

1. Publish API Principal (Inbound) – The authenticated IAM principal calling the Amazon SNS
Publish API.

2. Subscription Principal (Outbound) – The authenticated IAM principal that called the
Subscribe API during subscription creation.

The SubscriptionPrincipal is a publicly available Amazon SNS subscription property that can
be retrieved from the GetSubscriptionAttributes API.

{
 "Attributes": {
 "SubscriptionPrincipal": "arn:aws:iam::123456789012:user/NoNameAccess",
 "Owner": "123412341234",
 "RawMessageDelivery": "true",
 "TopicArn": "arn:aws:sns:us-east-1:123412341234:PII-data-topic",
 "Endpoint": "arn:aws:sqs:us-east-1:123456789012:NoNameAccess",
 "Protocol": "sqs",
 "PendingConfirmation": "false",
 "ConfirmationWasAuthenticated": "true",
 "SubscriptionArn": "arn:aws:sns:us-east-1:123412341234:PII-data-
topic:5d8634ef-67ef-49eb-a824-4042b28d6f55"
 }
}

Data protection policy operations in Amazon SNS

The following are examples of data protection policies that you can use to audit and deny sensitive
data. For a complete tutorial that includes an example application, see the Introducing message
data protection for Amazon SNS blog post.

Topics

• Audit operation

• De-identify operation

• Deny operation

How do I determine the IAM principals 164

https://aws.amazon.com/blogs/compute/introducing-message-data-protection-for-amazon-sns/
https://aws.amazon.com/blogs/compute/introducing-message-data-protection-for-amazon-sns/

Amazon Simple Notification Service Developer Guide

Audit operation

The Audit operation samples topic inbound messages, and logs the sensitive data findings in an
AWS destination. The sample rate can be an integer between 0–99. This operation requires one of
the following types of logging destinations:

1. FindingsDestination – The logging destination when the Amazon SNS topic finds sensitive data
in the payload.

2. NoFindingsDestination – The logging destination when the Amazon SNS topic doesn't find
sensitive data in the payload.

You can use the following AWS services in each of the following log destination types:

• Amazon CloudWatch Logs (Optional) – The LogGroup must be in the topic region and the name
must start with /aws/vendedlogs/.

• Amazon Data Firehose (Optional) – The DeliveryStream must be in the topic region and have
Direct PUT as the source of delivery stream. For additional details, see Source, Destination, and
Name in the Amazon Data Firehose Developer Guide.

• Amazon S3 (Optional) – An Amazon S3 bucket name. Extra actions are required for using
Amazon S3 bucket with SSE-KMS encryption enabled.

{
 "Operation": {
 "Audit": {
 "SampleRate": "99",
 "FindingsDestination": {
 "CloudWatchLogs": {
 "LogGroup": "/aws/vendedlogs/log-group-name"
 },
 "Firehose": {
 "DeliveryStream": "delivery-stream-name"
 },
 "S3": {
 "Bucket": "bucket-name"
 }
 },
 "NoFindingsDestination": {
 "CloudWatchLogs": {
 "LogGroup": "/aws/vendedlogs/log-group-name"

Data protection policy operations 165

https://docs.aws.amazon.com/firehose/latest/dev/create-name.html
https://docs.aws.amazon.com/firehose/latest/dev/create-name.html

Amazon Simple Notification Service Developer Guide

 },
 "Firehose": {
 "DeliveryStream": "delivery-stream-name"
 },
 "S3": {
 "Bucket": "bucket-name"
 }
 }
 }
 }
}

Required permissions when specifying log destinations

When you specify logging destinations in the data protection policy, you must add the following
permissions to the IAM identity policy of the IAM principal that is calling the Amazon SNS
PutDataProtectionPolicy API, or the CreateTopic API with the --data-protection-
policy parameter.

Audit destination IAM permission

Default logs:CreateLogDelivery

logs:GetLogDelivery

logs:UpdateLogDelivery

logs:DeleteLogDelivery

logs:ListLogDeliveries

CloudWatchLogs logs:PutResourcePolicy

logs:DescribeResourcePolicies

logs:DescribeLogGroups

Firehose iam:CreateServiceLinkedRole

firehose:TagDeliveryStream

S3 s3:PutBucketPolicy

Data protection policy operations 166

Amazon Simple Notification Service Developer Guide

Audit destination IAM permission

s3:GetBucketPolicy

Extra actions are required for using Amazon
S3 bucket with SSE-KMS encryption enabled.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:region:account-id:SampleLogGroupName:*:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "firehose:TagDeliveryStream"
],
 "Resource": "*"
 },

Data protection policy operations 167

Amazon Simple Notification Service Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "s3:PutBucketPolicy",
 "s3:GetBucketPolicy"
],
 "Resource": [
 "arn:aws:s3:::bucket-name"
]
 }
]
}

Required key policy for use with SSE-KMS

If you use an Amazon S3 bucket as a log destination, you can protect the data in your bucket by
enabling either Server-Side Encryption with Amazon S3-Managed Keys (SSE-S3), or Server-Side
Encryption with AWS KMS keys (SSE-KMS). For more information, see Protecting data using server-
side encryption in the Amazon S3 User Guide.

If you choose SSE-S3, no additional configuration is required. Amazon S3 handles the encryption
key.

If you choose SSE-KMS, you must use a customer managed key. You must update the key policy for
your customer managed key so that the log delivery account can write to your S3 bucket. For more
information about the required key policy for use with SSE-KMS, see Amazon S3 bucket server-side
encryption in the Amazon CloudWatch Logs User Guide.

Audit destination log example

In the following example, callerPrincipal is used to identify the source of the sensitive
content, and messageID is used as a reference to check against the Publish API response.

{
 "messageId": "34d9b400-c6dd-5444-820d-fbeb0f1f54cf",
 "auditTimestamp": "2022-05-12T2:10:44Z",
 "callerPrincipal": "arn:aws:iam::123412341234:role/Publisher",
 "resourceArn": "arn:aws:sns:us-east-1:123412341234:PII-data-topic",
 "dataIdentifiers": [
 {
 "name": "Name",

Data protection policy operations 168

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-SSE-KMS-S3
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-SSE-KMS-S3

Amazon Simple Notification Service Developer Guide

 "count": 1,
 "detections": [
 {
 "start": 1,
 "end": 2
 }
]
 },
 {
 "name": "PhoneNumber",
 "count": 2,
 "detections": [
 {
 "start": 3,
 "end": 4
 },
 {
 "start": 5,
 "end": 6
 }
]
 }
]
}

Audit operation metrics

When an audit operation has specified the FindingsDestination or the
NoFindingsDestination property, the topic owners also receive CloudWatch
MessagesWithFindings and MessagesWithNoFindings metrics.

Data protection policy operations 169

Amazon Simple Notification Service Developer Guide

De-identify operation

The De-identify operation masks or redacts sensitive data from published or delivered messages.
This operation is available for both inbound and outbound messages, and requires one of the
following types of configurations:

• MaskConfig – Mask using a supported character from the following table. For example, ssn:
123-45-6789 becomes ssn: ###########.

{
"Operation": {
 "Deidentify": {
 "MaskConfig": {
 "MaskWithCharacter": "#"
 }
 }
}

Supported mask character Name

* Asterisk

A-Z, a-z, and 0-9 Alphanumeric

Space

! Exclamation mark

$ Dollar sign

% Percent sign

& Ampersand

() Parenthesis

+ Plus sign

, Comma

- Hyphen

Data protection policy operations 170

Amazon Simple Notification Service Developer Guide

Supported mask character Name

. Period

/\ Slash, back slash

Number sign

: Colon

; Semicolon

=, <> Equals. less or greater than

@ At sign

[] Brackets

^ Caret symbol

_ Underscore

` Backtick

| Vertical bar

~ Tilde symbol

• RedactConfig – Redact by removing the data entirely. For example, ssn: 123-45-6789 becomes
ssn: .

{
"Operation": {
 "Deidentify": {
 "RedactConfig": {}
 }
}

On an inbound message, the sensitive data is de-identified after the audit operation, and the
SNS:Publish API caller receives the following invalid parameter error when the entire message is
sensitive.

Data protection policy operations 171

Amazon Simple Notification Service Developer Guide

Error code: AuthorizationError ...

Deny operation

The Deny operation interrupts either the Publish API request or the delivery of the message
if the message contains sensitive data. The Deny operation object is empty, as it doesn't require
additional configuration.

"Operation": {
 "Deny": {}
}

On an inbound message, the SNS:Publish API caller receives an authorization error.

Error code: AuthorizationError ...

On an outbound message, the Amazon SNS topic does not deliver the message to the subscription.
To track unauthorized deliveries, enable the topic’s delivery status logging. The following is an
example of a delivery status log:

{
 "notification": {
 "messageMD5Sum": "29638742ffb68b32cf56f42a79bcf16b",
 "messageId": "34d9b400-c6dd-5444-820d-fbeb0f1f54cf",
 "topicArn": "arn:aws:sns:us-east-1:123412341234:PII-data-topic",
 "timestamp": "2022-05-12T2:12:44Z"
 },
 "delivery": {
 "deliveryId": "98236591c-56aa-51ee-a5ed-0c7d43493170",
 "destination": "arn:aws:sqs:us-east-1:123456789012:NoNameAccess",
 "providerResponse": "The topic's data protection policy prohibits this message
 from being delivered to <subscription-arn>",
 "dwellTimeMs":20,
 "attempts":1,
 "statusCode": 403
 },
 "status": "FAILURE"
}

Data protection policy operations 172

Amazon Simple Notification Service Developer Guide

Amazon SNS data protection policy examples

The following examples are data protection policies that you can use to audit and deny sensitive
data. For a complete tutorial that includes an example application, see the Introducing message
data protection for Amazon SNS blog post.

Topics

• Example policy for auditing

• Example policy with inbound de-identify mask statement

• Example policy with inbound de-identify redact statement

• Example policy with outbound de-identify mask statement

• Example policy with outbound de-identify redact statement

• Example policy with inbound deny statement

• Example policy with outbound deny statement

Example policy for auditing

Audit policies allow you to audit up to 99% of inbound messages and send findings to Amazon
CloudWatch, Amazon Data Firehose, and Amazon S3.

For example, you can create an audit policy to evaluate whether any of your systems are
inadvertently sending or receiving sensitive data. If your audit results show that systems are
sending credit card information to systems that don’t require it, you can implement a data
protection policy to block the delivery of the data.

The following example audits 99% of the messages that flow through the topic by looking for
credit card numbers and sending the findings to CloudWatch Logs, Firehose, and Amazon S3.

Data protection policy:

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Inbound",
 "Principal": ["*"],

Data protection policy examples 173

https://aws.amazon.com/blogs/compute/introducing-message-data-protection-for-amazon-sns/
https://aws.amazon.com/blogs/compute/introducing-message-data-protection-for-amazon-sns/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

Amazon Simple Notification Service Developer Guide

 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Audit": {
 "SampleRate": "99",
 "FindingsDestination": {
 "CloudWatchLogs": {
 "LogGroup": "<example log name>"
 },
 "Firehose": {
 "DeliveryStream": "<example stream name>"
 },
 "S3": {
 "Bucket": "<example bucket name>"
 }
 }
 }
 }
 }
]
}

Audit results format example:

{
 "messageId": "...",
 "callerPrincipal": "arn:aws:sts::123456789012:assumed-role/ExampleRole",
 "resourceArn": "arn:aws:sns:us-east-1:123456789012:ExampleArn",
 "dataIdentifiers": [
 {
 "name": "CreditCardNumber",
 "count": 1,
 "detections": [
 { "start": 1, "end": 2 }
]
 }
],
 "timestamp": "2021-04-20T00:33:40.241Z"
}

Data protection policy examples 174

Amazon Simple Notification Service Developer Guide

Example policy with inbound de-identify mask statement

The following example prevents a user from publishing a message to a topic with
CreditCardNumber by masking the sensitive data from the message content.

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Inbound",
 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {
 "MaskWithCharacter": "#"
 }
 }
 }
 }
]
}

Inbound de-identify mask results example:

// original message
My credit card number is 4539894458086459

// delivered message
My credit card number is ################

Example policy with inbound de-identify redact statement

The following example prevents a user from publishing a message to a topic with
CreditCardNumber by redacting the sensitive data from the message content.

Data protection policy examples 175

Amazon Simple Notification Service Developer Guide

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Inbound",
 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Deidentify": {
 "RedactConfig": {}
 }
 }
 }
]
}

Inbound de-identify redact results example:

// original message
My credit card number is 4539894458086459

// delivered message
My credit card number is

Example policy with outbound de-identify mask statement

The following example prevents a user from receiving a message with CreditCardNumber by
masking the sensitive data from the message content.

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Outbound",

Data protection policy examples 176

Amazon Simple Notification Service Developer Guide

 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {
 "MaskWithCharacter": "-"
 }
 }
 }
 }
]
}

Outbound de-identify mask results example:

// original message
My credit card number is 4539894458086459

// delivered message
My credit card number is ----------------

Example policy with outbound de-identify redact statement

The following example prevents a user from receiving a message with CreditCardNumber by
redacting the sensitive data from the message content.

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Outbound",
 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"

Data protection policy examples 177

Amazon Simple Notification Service Developer Guide

],
 "Operation": {
 "Deidentify": {
 "RedactConfig": {}
 }
 }
 }
]
}

Outbound de-identify redact results example:

// original message
My credit card number is 4539894458086459

// delivered message
My credit card number is

Example policy with inbound deny statement

The following example blocks a user from publishing a message to a topic with
CreditCardNumber in the message content. Denied payloads in the API response have a status
code of "403 AuthorizationError".

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Inbound",
 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Deny": {}
 }
 }
]

Data protection policy examples 178

Amazon Simple Notification Service Developer Guide

}

Example policy with outbound deny statement

The following example blocks an AWS account from receiving messages that contain
CreditCardNumber.

{
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Statement": [
 {
 "DataDirection": "Outbound",
 "Principal": [
 "arn:aws:iam::123456789012:user/ExampleUser"
],
 "DataIdentifier": [
 "arn:aws:dataprotection::aws:data-identifier/CreditCardNumber"
],
 "Operation": {
 "Deny": {}
 }
 }
]
}

Outbound deny results example, logged in Amazon CloudWatch:

{
 "notification": {
 "messageMD5Sum": "2e8f58ff2eeed723b56b15493fbfb5a5",
 "messageId": "8747a956-ebf1-59da-b291-f2c2e4b87c9c",
 "topicArn": "arn:aws:sns:us-east-2:664555388960:test1",
 "timestamp": "2022-09-08 15:40:57.144"
 },
 "delivery": {
 "deliveryId": "6a422437-78cc-5171-ad64-7fa3778507aa",
 "destination": "arn:aws:sqs:us-east-2:664555388960:test",
 "providerResponse": "The topic's data protection policy prohibits this message from
 being delivered to <subscription arn>",
 "dwellTimeMs": 22,

Data protection policy examples 179

Amazon Simple Notification Service Developer Guide

 "attempts": 1,
 "statusCode": 403
 },
 "status": "FAILURE"
}

Creating data protection policies in Amazon SNS

Data protection policies help you safeguard the data that's published to your Amazon SNS
topics by auditing, de-identifying (masking or redacting), and denying (blocking) sensitive
information that moves between applications or AWS services. You can use AWS API, AWS CLI, AWS
CloudFormation, or AWS Management Console to create data protection policies in Amazon SNS.
Only one policy can be defined per Amazon SNS topic. Each data protection policy can have one or
more de-identify and deny statements, but only one audit statement.

Topics

• Creating data protection policies in Amazon SNS using the API

• Creating data protection policies in Amazon SNS using the CLI

• Creating data protection policies in Amazon SNS using CloudFormation

• Creating data protection policies in Amazon SNS using the console

• Creating Amazon SNS data protection policies to secure message data using the SDK

Creating data protection policies in Amazon SNS using the API

The number and size of Amazon SNS resources in an AWS account are limited. For more
information, see Amazon Simple Notification Service endpoints and quotas.

Creating a data protection policy using API

You can create an Amazon SNS data protection policy using the AWS API.

To create a data protection policy together with an Amazon SNS topic (AWS API)

Use the DataProtectionPolicy property of a standard Amazon SNS topic:

• CreateTopic

To retrieve or create a data protection policy for an existing Amazon SNS topic (AWS API)

Creating data protection policies 180

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html

Amazon Simple Notification Service Developer Guide

Call one of the following operations:

• GetDataProtectionPolicy

• PutDataProtectionPolicy

Creating data protection policies in Amazon SNS using the CLI

The number and size of Amazon SNS resources in an AWS account are limited. For more
information, see Amazon Simple Notification Service endpoints and quotas.

Creating data protection policies using the AWS CLI

You can create an Amazon SNS data protection policy using the AWS Command Line Interface.

To create a data protection policy together with an Amazon SNS topic (AWS CLI)

Use this option to create a new data protection policy together with a standard Amazon SNS topic:

• create-topic

To create or retrieve a data protection policy for an existing Amazon SNS topic (AWS CLI)

Call one of the following operations:

• get-data-protection-policy

• put-data-protection-policy

Creating data protection policies in Amazon SNS using CloudFormation

The number and size of Amazon SNS resources in an AWS account are limited. For more
information, see Amazon Simple Notification Service endpoints and quotas.

Creating data protection policies (CloudFormation)

You can create an Amazon SNS data protection policy using AWS CloudFormation.

To create a data protection policy together with an Amazon SNS topic (CloudFormation)

Use this option to create a new data protection policy together with a standard Amazon SNS topic:

• AWS::SNS::Topic

Creating data protection policies 181

https://docs.aws.amazon.com/sns/latest/api/API_GetDataProtectionPolicy.html
https://docs.aws.amazon.com/sns/latest/api/API_PutDataProtectionPolicy.html
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/cli/latest/reference/sns/create-topic.html
https://docs.aws.amazon.com/cli/latest/reference/sns/get-data-protection-policy.html
https://docs.aws.amazon.com/cli/latest/reference/sns/put-data-protection-policy.html
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-topic.html

Amazon Simple Notification Service Developer Guide

Creating data protection policies in Amazon SNS using the console

The number and size of Amazon SNS resources in an AWS account are limited. For more
information, see Amazon Simple Notification Service endpoints and quotas.

To create a data protection policy together with an Amazon SNS topic (Console)

Use this option to create a new data protection policy together with a standard Amazon SNS topic.

1. Sign in to the Amazon SNS console.

2. Choose a topic or create a new one. For more details on creating topics, see Creating an
Amazon SNS topic.

3. On the Create topic page, in the Details section, choose Standard.

a. Enter a Name for the topic.

b. (Optional) Enter a Display name for the topic.

4. Expand Data protection policy.

5. Choose a Configuration mode:

• Basic – Define a data protection policy using a simple menu.

• Advanced – Define a custom data protection policy using JSON.

6. (Optional) To create your own custom data identifier, expand the Custom data identifier
configuration section do the following:

a. Enter a unique name for the custom data identifier. Custom data identifier names
support alphanumeric, underscore (_), and hyphen (-) characters. Up to 128 character are
supported. This name cannot share the same name as a managed data identifier. For a full
list of custom data identifier limitations, see Custom data identifier constraints.

b. Enter a regular expression (RegEx) for the custom data identifier. RegEx supports
alphanumeric characters, RegEx reserved characters, and symbols. RegEx has a maximum
length of 200 characters. If the RegEx is too complicated, Amazon SNS will fail the API
call. For a full list of RegEx limitations, see Custom data identifier constraints.

c. (Optional) Choose Add custom data identifier to add additional data identifiers as
needed. A maximum of 10 custom data identifiers are supported for each data protection
policy.

Creating data protection policies 182

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

7. Choose the statement(s) that you'd like to add to your data protection policy. You can add
audit, de-identify (mask or redact), and deny (block) statement types to the same data
protection policy.

a. Add audit statement – Configure which sensitive data to audit, what percentage of
messages you want to audit for that data, and where to send audit logs.

Note

Only one audit statement is allowed per data protection policy or topic.

i. Select data identifiers to define the sensitive data that you want to audit.

ii. For Audit sample rate, enter the percentage of messages to audit for sensitive
information, up to a maximum of 99%.

iii. For Audit destination, select which AWS services to send the audit finding results,
and enter a destination name for each AWS service that you use. You can select from
the following Amazon Web Services:

• Amazon CloudWatch – CloudWatch Logs is the AWS standard logging solution.
Using CloudWatch Logs, you can perform log analytics using Logs Insights (see
samples here) and create metrics and alarms. CloudWatch Logs is where many
services publish logs, which makes it easier to aggregate all logs using one solution.
For information about Amazon CloudWatch, see the Amazon CloudWatch User
Guide.

• Amazon Data Firehose – Firehose satisfies the demands for real-time streaming
to Splunk, OpenSearch, and Amazon Redshift for further log analytics. For
information about Amazon Data Firehose, see the Amazon Data Firehose User
Guide.

• Amazon Simple Storage Service – Amazon S3 is an economical log destination for
archival purposes. You may be required to retain logs for a period of years. In this
case, you can put logs into Amazon S3 to save costs. For information about Amazon
Simple Storage Service, see the Amazon Simple Storage Service User Guide.

b. Add a de-identify statement – Configure the sensitive data you want to de-identify in the
message, whether you want to mask or redact that data, and the accounts to stop delivery
of that data.

Creating data protection policies 183

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-examples.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax-examples.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

Amazon Simple Notification Service Developer Guide

i. For Data identifiers, select the sensitive data that you want to de-identify.

ii. For Define this de-identify statement for, select the AWS accounts or IAM principals
to which this de-identify statement applies. You can apply it to all AWS accounts,
or to specific AWS accounts or IAM entities (account roots, roles, or users) that use
account IDs or IAM entity ARNs. Separate multiple IDs or ARNs using a comma (,).

The following IAM principals are supported:

• IAM account principals – For example,arn:aws:iam::AWS-account-ID:root.

• IAM role principals – For example, arn:aws:iam::AWS-account-ID:role/
role-name.

• IAM user principals – For example, arn:aws:iam::AWS-account-ID:user/
user-name.

iii. For De-identify Option, select how you want to de-identify the sensitive data. The
following options are supported:

• Redact – Completely removes data. For example, email: classified@amazon.com
becomes email: .

• Mask – Replaces the data with single characters. For example, email:
classified@amazon.com becomes email: *********************.

iv. (Optional) Continue to add de-identify statements as needed.

c. Add deny statement – Configure which sensitive data to prevent from moving through
your topic, and which principals to prevent from delivering that data.

i. For data direction , choose the direction of the messages for the deny statement:

• Inbound messages – Apply this deny statement to messages that are sent to the
topic.

• Outbound messages – Apply this deny statement to messages that the topic
delivers to subscription endpoints.

ii. Choose the data identifiers to define the sensitive data that you want to deny.

iii. Choose the IAM principals that apply to this deny statement. You can apply it to all
AWS accounts, to specific AWS accounts, or IAM entities (for example, account roots,
roles, or users) that use account IDs or IAM entity ARNs. Separate multiple IDs or ARNs
using a comma (,). The following IAM principals are supported:

Creating data protection policies 184

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html

Amazon Simple Notification Service Developer Guide

• IAM account principals – For example, arn:aws:iam::AWS-account-ID:root.

• IAM role principals – For example, arn:aws:iam::AWS-account-ID:role/
role-name.

• IAM user principals – For example, arn:aws:iam::AWS-account-ID:user/
user-name.

iv. (Optional) Continue to add deny statements as needed.

Creating Amazon SNS data protection policies to secure message data using the
SDK

The number and size of Amazon SNS resources in an AWS account are limited. For more
information, see Amazon Simple Notification Service endpoints and quotas.

Creating data protection policies using the AWS SDK

You can create an Amazon SNS data protection policy using the AWS SDK.

To create a data protection policy together with an Amazon SNS topic (AWS SDK)

Use the following options to create a new data protection policy together with a standard Amazon
SNS topic:

Java

/**
 * For information regarding CreateTopic see this documentation topic:
 *
 * https://docs.aws.amazon.com/code-samples/latest/catalog/javav2-sns-src-main-java-
com-example-sns-CreateTopic.java.html
 */

public static String createSNSTopicWithDataProtectionPolicy(SnsClient snsClient,
 String topicName, String dataProtectionPolicy) {

 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .dataProtectionPolicy(dataProtectionPolicy)
 .build();

Creating data protection policies 185

https://docs.aws.amazon.com/general/latest/gr/sns.html

Amazon Simple Notification Service Developer Guide

 CreateTopicResponse result = snsClient.createTopic(request);
 return result.topicArn();
 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
}

JavaScript

// Import required AWS SDK clients and commands for Node.js
import {CreateTopicCommand } from "@aws-sdk/client-sns";
import {snsClient } from "./libs/snsClient.js";

// Set the parameters
const params = { Name: "TOPIC_NAME", DataProtectionPolicy:
 "DATA_PROTECTION_POLICY" };

const run = async () => {
 try {
 const data = await snsClient.send(new CreateTopicCommand(params));
 console.log("Success.", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err.stack);
 }
};
run();

To create or retrieve a data protection policy for an existing Amazon SNS topic (AWS SDK)

Use the following options to create or retrieve a new data protection policy together with a
standard Amazon SNS topic:

Java

public static void putDataProtectionPolicy(SnsClient snsClient, String topicName,
 String dataProtectionPolicy) {

 try {

Creating data protection policies 186

Amazon Simple Notification Service Developer Guide

 PutDataProtectionPolicyRequest request =
 PutDataProtectionPolicyRequest.builder()
 .resourceArn(topicName)
 .dataProtectionPolicy(dataProtectionPolicy)
 .build();

 PutDataProtectionPolicyResponse result =
 snsClient.putDataProtectionPolicy(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode()
 + "\n\nTopic " + request.resourceArn()
 + " DataProtectionPolicy " + request.dataProtectionPolicy());
 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
}

public static void getDataProtectionPolicy(SnsClient snsClient, String topicName) {

 try {
 GetDataProtectionPolicyRequest request =
 GetDataProtectionPolicyRequest.builder()
 .resourceArn(topicName)
 .build();

 GetDataProtectionPolicyResponse result =
 snsClient.getDataProtectionPolicy(request);

 System.out.println("\n\nStatus is " + result.sdkHttpResponse().statusCode()
 + "\n\nDataProtectionPolicy: \n\n" + result.dataProtectionPolicy());
 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
}

JavaScript

// Import required AWS SDK clients and commands for Node.js
import {PutDataProtectionPolicyCommand, GetDataProtectionPolicyCommand } from "@aws-
sdk/client-sns";

Creating data protection policies 187

Amazon Simple Notification Service Developer Guide

import {snsClient } from "./libs/snsClient.js";

// Set the parameters
const putParams = { ResourceArn: "TOPIC_ARN", DataProtectionPolicy:
 "DATA_PROTECTION_POLICY" };

const runPut = async () => {
 try {
 const data = await snsClient.send(new
 PutDataProtectionPolicyCommand(putParams));
 console.log("Success.", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err.stack);
 }
};
runPut();

// Set the parameters
const getParams = { ResourceArn: "TOPIC_ARN" };

const runGet = async () => {
 try {
 const data = await snsClient.send(new
 GetDataProtectionPolicyCommand(getParams));
 console.log("Success.", data);
 return data; // For unit tests.
 } catch (err) {
 console.log("Error", err.stack);
 }
};
runGet();

Deleting data protection policies in Amazon SNS

You can delete Amazon SNS data protection policies using the AWS API, AWS CLI, AWS
CloudFormation, or AWS Management Console.

For general information about Amazon SNS data protection policies, see Understanding Amazon
SNS data protection policies.

Deleting data protection policies 188

Amazon Simple Notification Service Developer Guide

The number and size of Amazon SNS data protection policy resources in an AWS account are
limited. For more information, see Amazon SNS API throttling in AWS General Reference.

Topics

• Deleting data protection policies using the console

• Deleting a data protection policy using an empty JSON string

• Deleting a data protection policy using the AWS CLI

Deleting data protection policies using the console

To delete a managed data protection policy using the console

1. Sign in to the Amazon SNS console.

2. Choose the topic that contains the data protection policy that you want to delete.

3. Choose Edit.

4. Expand the Data protection policy section.

5. Choose Remove next to the data protection policy statement that you want to remove.

6. Choose Save changes.

Deleting a data protection policy using an empty JSON string

You can delete a data protection policy by updating it to an empty JSON string.

Deleting a data protection policy using the AWS CLI

You can delete a data protection policy using the AWS CLI.

//aws sns put-data-protection-policy --resource-arn topic-arn --data-
protection-policy ""

Amazon SNS data identifiers

Amazon SNS uses a combination of criteria and techniques, including machine learning and pattern
matching, to detect sensitive data. These criteria and techniques, collectively referred to as data
identifiers, can detect a large and growing list of sensitive data types for many countries and
regions. Amazon SNS managed data identifiers offer preconfigured data types for protecting
financial data, personal health information (PHI), and personally identifiable information (PII). You

Data identifiers 189

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

can also use custom data identifiers to create your own data identifiers tailored to your specific use
case.

Topics

• Using managed data identifiers in Amazon SNS

• Using custom data identifiers in Amazon SNS

Using managed data identifiers in Amazon SNS

Topics

• What are managed data identifiers?

• Amazon SNS sensitive data types: Credentials

• Amazon SNS sensitive data types: Devices

• Amazon SNS sensitive data types: Financial

• Amazon SNS sensitive data types: Protected health information (PHI)

• Amazon SNS sensitive data types: Personally identifiable information (PII)

What are managed data identifiers?

Amazon SNS managed data identifiers are designed to detect a specific type of sensitive data,
such as credit card numbers, AWS secret access keys, or passport numbers for a particular country
or region. When you create a data protection policy, you can configure Amazon SNS to use these
identifiers to analyze messages going through the topic, and take actions when they are detected.

Amazon SNS can detect the following categories of sensitive data by using managed data
identifiers:

• Credentials, such as private keys or AWS secret access keys

• Device identifiers, such as IP address or MAC address

• Financial information, such as credit card numbers

• Health information, for PHI such as health insurance or medical identification numbers

• Personal information, for PII such as driver’s licenses or social security numbers

Within each category, Amazon SNS can detect multiple types of sensitive data. The topics in
this section list and describe each type and any relevant requirements for detecting it. For each

Managed data identifiers 190

Amazon Simple Notification Service Developer Guide

type, they also indicate the unique identifier (ID) for the managed data identifier that's designed
to detect the data. When you create a data protection policy, you can use this ID to include the
managed data identifier for message data protection to detect.

Keyword requirements

To detect certain types of sensitive data, Amazon SNS scans for keywords in proximity of the data.
If this is the case for a particular type of data, a subsequent topic in this section indicates specific
keyword requirements for that data.

Keywords aren’t case sensitive. In addition, if a keyword contains a space, Amazon SNS
automatically matches keyword variations that don’t contain the space, or contain an underscore
(_) or a hyphen (-) instead of the space. In certain cases, Amazon SNS also expands or abbreviates a
keyword to address common variations of the keyword.

Amazon SNS managed data identifiers for sensitive data types

The following table lists and describes the types of credential, device, financial, medical, and
personal health information (PHI) that Amazon SNS can detect using managed data identifiers.
These are in addition to certain types of data that might also qualify as personally identifiable
information (PII).

Region-dependent data identifiers require the identifier name with a dash, and the two letter (ISO
3166-1 alpha-2) codes. For example, DriversLicense-US.

Identifier Category Countries/Languages

BankAccountNumber Financial DE, ES, FR, GB, IT

CepCode Personal BR

Cnpj Personal BR

CpfCode Personal BR

DriversLicense Personal AT, AU, BE, BG, CA, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR,
HU, IE, IT, LT, LU, LV, MT, NL,
PL, PT, RO, SE, SI, SK, US

Managed data identifiers 191

Amazon Simple Notification Service Developer Guide

Identifier Category Countries/Languages

DrugEnforcementAge
ncyNumber

Health US

ElectoralRollNumber Personal GB

HealthInsuranceCardNumber Health EU

HealthInsuranceClaimNumber Health US

HealthInsuranceNumber Health FR

HealthcareProcedureCode Health US

IndividualTaxIdentification
Number

Personal US

InseeCode Personal FR

MedicareBeneficiaryNumber Health US

NationalDrugCode Health US

NationalIdentificationNumber Personal DE, ES, IT

NationalInsuranceNumber Personal GB

NationalProviderId Health US

NhsNumber Health GB

NieNumber Personal ES

NifNumber Personal ES

PassportNumber Personal CA, DE, ES, FR, GB, IT, US

PermanentResidenceNumber Personal CA

PersonalHealthNumber Health CA

Managed data identifiers 192

Amazon Simple Notification Service Developer Guide

Identifier Category Countries/Languages

PhoneNumber Personal BR, DE, ES, FR, GB, IT, US

PostalCode Personal CA

RgNumber Personal BR

SocialInsuranceNumber Personal CA

Ssn Personal ES, US

TaxId Personal DE, ES, FR, GB

ZipCode Personal US

Supported Identifiers that are language/region independent

Identifier Category

Address Personal

AwsSecretKey Credentials

CreditCardExpiration Financial

CreditCardNumber Financial

CreditCardSecurityCode Financial

EmailAddress Personal

IpAddress Personal

LatLong Personal

Name Personal

OpenSshPrivateKey Credentials

Managed data identifiers 193

Amazon Simple Notification Service Developer Guide

Identifier Category

PgpPrivateKey Credentials

PkcsPrivateKey Credentials

PuttyPrivateKey Credentials

VehicleIdentificationNumber Personal

Amazon SNS sensitive data types: Credentials

The following table lists and describes the types of credentials that Amazon SNS can detect using
managed data identifiers.

Detection type Managed data
identifier ID

Keyword required Countries and
regions

AWS secret access key AwsSecretKey aws_secret_access_
key, credentials,
secret access key,
secret key, set-awscr
edential

Any

OpenSSH private key OpenSshPrivateKey No Any

PGP private key PgpPrivateKey No Any

Public-Key Cryptogra
phy Standard (PKCS)
private key

PkcsPrivateKey No Any

PuTTY private key PuttyPrivateKey No Any

Data identifier ARNs for credential data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Managed data identifiers 194

Amazon Simple Notification Service Developer Guide

Credential data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/AwsSecretKey

arn:aws:dataprotection::aws:data-identifier/OpenSshPrivateKey

arn:aws:dataprotection::aws:data-identifier/PgpPrivateKey

arn:aws:dataprotection::aws:data-identifier/PkcsPrivateKey

arn:aws:dataprotection::aws:data-identifier/PuttyPrivateKey

Amazon SNS sensitive data types: Devices

The following table lists and describes the types of device identifiers that Amazon SNS can detect
using managed data identifiers.

Detection type Managed data
identifier ID

Keyword required Countries and
regions

IP Address IpAddress No Any

Data identifier ARNs for device data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Device data identifier ARN

arn:aws:dataprotection::aws:data-identifier/IpAddress

Amazon SNS sensitive data types: Financial

The following table lists and describes the types of financial information that Amazon SNS can
detect using managed data identifiers.

Managed data identifiers 195

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Bank account
number

BankAccou
ntNumber

BankAccou
ntNumber-US

Yes, see
Keywords for
bank account
numbers.

This includes:
International
Bank Account
Numbers (IBANs)
that consist
of up to 34
alphanume
ric character
s, including
elements such as
country code.

France,
Germany, Italy,
Spain, UK

Credit card
expiration date

CreditCar
dExpiration

exp d, exp m,
exp y, expiration,
expiry

– Any

Credit card
magnetic strip
data

CreditCar
dMagneticStripe

Yes, including
: card data,
iso7813, mag,
magstripe,
stripe, swipe.

This includes
tracks 1 and 2.

Any

Credit card
number

CreditCar
dNumber

account number,
american
express, amex,
bank card, card,
card num, card
number, cc #,
ccn, check card,
credit, credit
card#, dankort,
debit, debit
card, diners
club, discover,

Detection
requires the data
to be a 13–19
digit sequence
that adheres to
the Luhn check
formula, and
uses a standard
card number
prefix for any of
the following
types of credit

Any

Managed data identifiers 196

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

electron, elo
verification
code, japanese
card bureau, jcb,
mastercard, mc,
pan, payment
account number,
payment card
number, pcn,
union pay, visa

cards: American
Express,
Dankort, Diner’s
Club, Discover,
 Electron,
Japanese Card
Bureau (JCB),
Mastercard,
UnionPay, and
Visa (superscript
link below 1).

Credit card
verification code

CreditCar
dSecurityCode

card id, card
identification
code, card
identification
number, card
security code,
card validatio
n code, card
validation
number, card
verification data,
card verification
value, cvc, cvc2,
cvv, cvv2, elo
verification code

– Any

1.
Amazon SNS doesn't report occurrences of the following sequences, which credit card issuers
have reserved for public testing:

122000000000003, 2222405343248877, 2222990905257051, 2223007648726984,
2223577120017656, 30569309025904, 34343434343434, 3528000700000000,

Managed data identifiers 197

Amazon Simple Notification Service Developer Guide

3530111333300000, 3566002020360505, 36148900647913, 36700102000000,
371449635398431, 378282246310005, 378734493671000, 38520000023237,
4012888888881881, 4111111111111111, 4222222222222, 4444333322221111,
4462030000000000, 4484070000000000, 4911830000000, 4917300800000000,
4917610000000000, 4917610000000000003, 5019717010103742, 5105105105105100,
5111010030175156, 5185540810000019, 5200828282828210, 5204230080000017,
5204740009900014, 5420923878724339, 5454545454545454, 5455330760000018,
5506900490000436, 5506900490000444, 5506900510000234, 5506920809243667,
5506922400634930, 5506927427317625, 5553042241984105, 5555553753048194,
5555555555554444, 5610591081018250, 6011000990139424, 6011000400000000,
6011111111111117, 630490017740292441, 630495060000000000, 6331101999990016,
6759649826438453, 6799990100000000019, and 76009244561.

Keywords for bank account numbers

Use the following keywords to detect International Bank Account Numbers (IBANs) that consist of
up to 34 alphanumeric characters, including elements such as country code.

Country or
region

Keywords

France account code,
account number,
accountno
#, accountnu
mber#, bban,
code bancaire,
compte
bancaire,
customer
account id,
customer
account number,
customer bank
account id, iban,

Managed data identifiers 198

Amazon Simple Notification Service Developer Guide

Country or
region

Keywords

numéro de
compte

Germany account code,
account number,
accountno
#, accountnu
mber#, bankleitz
ahl, bban,
customer
account id,
customer
account number,
customer bank
account id,
geheimzah
l, iban,
kartennummer,
kontonumm
er, kreditkar
tennummer,
sepa

Managed data identifiers 199

Amazon Simple Notification Service Developer Guide

Country or
region

Keywords

Italy account code,
account number,
accountno
#, accountnu
mber#, bban,
codice bancario,
conto bancario,
customer
account id,
customer
account number,
customer bank
account id, iban,
numero di conto

Managed data identifiers 200

Amazon Simple Notification Service Developer Guide

Country or
region

Keywords

Spain account code,
account number,
accountno
#, accountnu
mber#, bban,
código cuenta,
código cuenta
bancaria,
cuenta cliente
id, customer
account ID,
customer
account number,
customer bank
account id, iban,
número cuenta
bancaria cliente,
número cuenta
cliente

UK account code,
account number,
accountno
#, accountnu
mber#, bban,
customer
account id,
customer
account number,
customer bank
account id, iban,
sepa

Managed data identifiers 201

Amazon Simple Notification Service Developer Guide

Country or
region

Keywords

US bank account,
bank acct,
checking
account,
checking acct,
deposit account,
deposit acct,
savings account,
savings acct,
chequing
account,
chequing acct

Data identifier ARNs for financial data types

The following lists the Amazon Resource Names (ARNs) for the data identifiers that you can add to
your data protection policies.

Financial data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-DE

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-ES

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-FR

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-GB

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-IT

arn:aws:dataprotection::aws:data-identifier/BankAccountNumber-US

arn:aws:dataprotection::aws:data-identifier/CreditCardExpiration

arn:aws:dataprotection::aws:data-identifier/CreditCardNumber

Managed data identifiers 202

Amazon Simple Notification Service Developer Guide

Financial data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/CreditCardSecurityCode

Amazon SNS sensitive data types: Protected health information (PHI)

The following table lists and describes the types of protected health information (PHI) that
Amazon SNS can detect using managed data identifiers.

Detection type Managed data
identifier ID

Keyword required Countries and
regions

Drug Enforceme
nt Agency (DEA)
Registration Number

DrugEnforcementAge
ncyNumber

dea number, dea
registration

US

Health Insurance
Card Number (EHIC)

HealthInsuranceCar
dNumber

assicurazione
sanitaria numero,
carta assicuraz
ione numero, carte
d’assurance maladie,
carte européenne
d'assurance maladie,
ceam, ehic, ehic#,
finlandehicnumber#
, gesundheitskarte,
hälsokort, health
card, health card
number, health
insurance card, health
insurance number,
insurance card
number, krankenve
rsicherungskarte,
krankenversicherun
gsnummer, medical
account number,

EU

Managed data identifiers 203

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword required Countries and
regions

numero conto
medico, numéro
d’assurance maladie,
numéro de carte
d’assurance, numéro
de compte medical,
número de cuenta
médica, número de
seguro de salud,
número de tarjeta
de seguro, sairaanho
itokortin, sairausva
kuutuskortti,
sairausvakuutusnum
ero, sjukförsäkring
nummer, sjukförsä
kringskort, suomi
ehic-numero, tarjeta
de salud, terveysko
rtti, tessera sanitaria
assicurazione
numero, versicher
ungsnummer

Health Insurance
Claim Number (HICN)

HealthInsuranceCla
imNumber

health insurance
claim number, hic no,
hic no., hic number,
hic#, hicn, hicn#.,
hicno#

US

Health insurance or
medical identification
number

HealthInsuranceNum
ber

carte d'assuré social,
carte vitale, insurance
card

FR

Managed data identifiers 204

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword required Countries and
regions

Healthcare Common
Procedure Coding
System (HCPCS) code

HealthcareProcedur
eCode

current procedural
terminology, hcpcs,
healthcare common
procedure coding
system

US

Medicare Beneficiary
Number (MBN)

MedicareBeneficiar
yNumber

mbi, medicare
beneficiary

US

National Drug Code
(NDC)

NationalDrugCode national drug code,
ndc

US

National Provider
Identifier (NPI)

NationalProviderId hipaa, n.p.i, national
provider, npi

US

National Health
Service (NHS)
Number

NhsNumber national health
service, NHS

GB

Personal Health
Number (PHN)

PersonalHealthNumb
er

canada healthcare
number, msp number,
personal healthcare
number, phn, soins de
santé

CA

Keywords for health insurance and medical identification numbers

To detect various types of health insurance and medical identification numbers, Amazon SNS
requires a keyword to be in proximity of the numbers. This includes European Health Insurance
Card numbers (EU, Finland), health insurance numbers (France), Medicare Beneficiary Identifiers
(US), National Insurance numbers (UK), NHS numbers (UK), and Personal Health Numbers (Canada).

The following table lists the keywords that Amazon SNS recognizes for specific countries and
regions.

Managed data identifiers 205

Amazon Simple Notification Service Developer Guide

Country or region Keywords

Canada Canada healthcare number, msp number,
personal healthcare number, phn, soins de
santé

EU assicurazione sanitaria numero, carta assicuraz
ione numero, carte d’assurance maladie,
carte européenne d'assurance maladie, ceam,
ehic, ehic#, finlandehicnumber#, gesundhei
tskarte, hälsokort, health card, health card
number, health insurance card, health
insurance number, insurance card number,
krankenversicherungskarte, krankenve
rsicherungsnummer, medical account number,
numero conto medico, numéro d’assurance
maladie, numéro de carte d’assurance, numéro
de compte medical, número de cuenta médica,
número de seguro de salud, número de tarjeta
de seguro, sairaanhoitokortin, sairausva
kuutuskortti, sairausvakuutusnumero,
sjukförsäkring nummer, sjukförsäkringskort,
suomi ehic-numero, tarjeta de salud, terveysko
rtti, tessera sanitaria assicurazione numero,
versicherungsnummer

Finland ehic, ehic#, finland health insurance card,
finlandehicnumber#, finska sjukförsäkringskor
t, hälsokort, health card, health card number,
health insurance card, health insurance
number, sairaanhoitokortin, sairaanho
itokortin, sairausvakuutuskortti, sairausva
kuutusnumero, sjukförsäkring nummer,
sjukförsäkringskort, suomen sairausva
kuutuskortti, suomi ehic-numero, terveyskortti

Managed data identifiers 206

Amazon Simple Notification Service Developer Guide

Country or region Keywords

France carte d'assuré social, carte vitale, insurance
card

UK national health service, NHS

US mbi, medicare beneficiary

Data identifier ARNs for protected health information data types (PHI)

The following lists the data identifier Amazon Resource Names (ARNs) that can be used in PHI data
protection policies.

PHI data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/DrugEnforcementAgencyNumber-US

arn:aws:dataprotection::aws:data-identifier/HealthcareProcedureCode-US

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceCardNumber-EU

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceClaimNumber-US

arn:aws:dataprotection::aws:data-identifier/HealthInsuranceNumber-FR

arn:aws:dataprotection::aws:data-identifier/MedicareBeneficiaryNumber-US

arn:aws:dataprotection::aws:data-identifier/NationalDrugCode-US

arn:aws:dataprotection::aws:data-identifier/NationalInsuranceNumber-GB

arn:aws:dataprotection::aws:data-identifier/NationalProviderId-US

arn:aws:dataprotection::aws:data-identifier/NhsNumber-GB

arn:aws:dataprotection::aws:data-identifier/PersonalHealthNumber-CA

Managed data identifiers 207

Amazon Simple Notification Service Developer Guide

Amazon SNS sensitive data types: Personally identifiable information (PII)

The following table lists and describes the types of personally identifiable information (PII) that
Amazon SNS can detect using managed data identifiers.

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Birth date DateOfBirth dob, date of
birth, birthdate
, birth date,
birthday, b-day,
bday

Support includes
most date
formats, such
as all digits and
combinations of
digits and names
of months. Date
components can
be separated by
spaces, slashes
(/), or hyphens
(‐).

Any

Código de
Endereçamento
Postal (CEP)

CepCode cep, código de
endereçamento
postal, codigo
de endereçam
ento postal

– Brazil

Cadastro
Nacional da
Pessoa Jurídica
(CNPJ)

Cnpj cadastro
nacional da
pessoa jurídica,
cadastro
nacional da
pessoa juridica,
 cnpj

– Brazil

Cadastro de
Pessoas Físicas
(CPF)

CpfCode Cadastro de
pessoas fisicas,
cadastro de

– Brazil

Managed data identifiers 208

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

pessoas físicas,
cadastro de
pessoa física,
cadastro de
pessoa fisica, cpf

Driver’s license
identification
number

DriversLicense Yes, see
Keywords for
driver’s license
identification
numbers.

– Australia,
Austria, Belgium,
Bulgaria,
Canada, Croatia,
Cyprus, Czech
Republic,
 Denmark,
Estonia,
Finland, France,
Germany,
Greece, Hungary,
Ireland, Italy,
Latvia, Lithuania
, Luxembourg,
Malta, Netherlan
ds, Poland,
Portugal,
Romania,
Slovakia,
 Slovenia, Spain,
Sweden, UK, US

Managed data identifiers 209

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Electoral roll
number

Electoral
RollNumber

electoral#,
electoral #,
electoralnumber,
electoral
number,
electoralroll#,
electoral roll#,
electoral roll
#, electoral roll
no., electoral
roll number,
electoralrollno

– UK

Individua
l taxpayer
identification

Individua
lTaxIdent
ificationNumber

Yes, see
Keywords
for taxpayer
identification
and reference
numbers.

– US

National
Institute for
Statistics and
Economic
Studies (INSEE)

InseeCode Yes, see
Keywords for
national identific
ation numbers.

– France

Managed data identifiers 210

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

National
identification
number

NationalI
dentifica
tionNumber

Yes, see
Keywords for
national identific
ation numbers.

This includes
Documento
Nacional de
Identidad (DNI)
identifiers
(Spain), Codice
fiscale codes
(Italy), and
National Identity
Card numbers
(German).

Germany, Italy,
Spain

National
Insurance
Number (NINO)

NationalI
nsuranceN
umber

insurance
no., insurance
number,
insurance
#, national
insurance
number,
nationali
nsurance#
, nationali
nsurancen
umber, nin, nino

– UK

Número de
identidad de
extranjero (NIE)

NieNumber Yes, see
Keywords
for taxpayer
identification
and reference
numbers.

– Spain

Managed data identifiers 211

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Número de
Identificación
Fiscal (NIF)

NifNumber Yes, see
Keywords
for taxpayer
identification
and reference
numbers.

– Spain

Passport
number

PassportNumber Yes, see
Keywords
for passport
numbers.

– Canada, France,
Germany, Italy,
Spain, UK, US

Managed data identifiers 212

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Permanent
residence
number

Permanent
Residence
Number

carte résident
permanent
, numéro
carte résident
permanent,
numéro résident
permanent
, permanent
resident card,
permanent
resident card
number,
permanent
resident no,
permanent
resident no.,
permanent
resident number,
pr no, pr no.,
pr non, pr
number, résident
permanent
no., résident
permanent non

– Canada

Managed data identifiers 213

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Phone number PhoneNumber Brazil: keywords
also include: cel,
celular, fone,
móvel, número
residenci
al, numero
residencial,
telefone

Others: cell,
contact, fax,
fax number,
mobile, phone,
phone number,
tel, telephone
, telephone
number

This includes
toll-free
numbers in
the US and fax
numbers. If a
keyword is in
proximity of
the data, the
number doesn’t
have to include a
country code. If
a keyword isn’t
in proximity of
the data, the
number has
to include a
country code.

Brazil, Canada,
France,
Germany, Italy,
Spain, UK, US

Postal Code PostalCode No – Canada

Registro Geral
(RG)

RgNumber Yes, see
Keywords for
national identific
ation numbers.

– Brazil

Social Insurance
Number (SIN)

SocialIns
uranceNumber

canadian
id, numéro
d'assurance
sociale, social
insurance
number, sin

– Canada

Managed data identifiers 214

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Social Security
number (SSN)

Ssn Spain – número
de la seguridad
social, social
security no.,
social security
no. número de
la seguridad
social, social
security number,
socialsec
urityno#, ssn,
ssn#

US – social
security, ss#, ssn

– Spain, US

Taxpayer
identification
or reference
number

TaxId Yes, see
Keywords
for taxpayer
identification
and reference
numbers.

This includes
TIN (France);
Steueride
ntifikati
onsnummer
(Germany); CIF
(Spain); and
TRN, UTR (UK).

France,
Germany, Spain,
UK

US postal code ZipCode zip code, zip+4 – US

Managed data identifiers 215

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Mailing address Address No Although
a keyword
isn't required,
detection
requires the
address to
include the
name of a city or
place and a ZIP
or Postal Code.

Australia,
Canada, France,
Germany, Italy,
Spain, UK, US

Electronic mail
address

EmailAddress email, email
address, e mail,
e mail address

– Any

Managed data identifiers 216

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Global Positioni
ng System (GPS)
coordinates

LatLong coordinate,
coordinates, lat
long, latitude
longitude
, location,
 position

Amazon SNS
can detect GPS
coordinates if
the latitude
and longitude
coordinates are
stored as a pair
and they're in
Decimal Degrees
(DD) format,
for example,
41.948614
,-87.6553
11. Support
doesn't include
coordinates
in Degrees
Decimal Minutes
(DDM) format,
for example
41°56.9168'N
87°39.3187'W,
or Degrees,
Minutes,
Seconds (DMS)
format, for
example
41°56'55.
0104"N
87°39'19.
1196"W.

Any

Managed data identifiers 217

Amazon Simple Notification Service Developer Guide

Detection type Managed data
identifier ID

Keyword
required

Additional
information

Countries and
regions

Full name Name No Amazon SNS
can detect full
names only.
Support is
limited to Latin
character sets.

Any

Vehicle identific
ation number
(VIN)

VehicleId
entificat
ionNumber

Fahrgeste
llnummer, niv,
numarul de
identificare,
numarul seriei
de sasiu, serie
sasiu, numer
VIN, Número de
Identificação do
Veículo, Número
de Identificación
de Automóvil
es, numéro
d'identification
du véhicule,
vehicle identific
ation number,
vin, VIN numeris

Amazon SNS
can detect VINs
that consist of
a 17-character
sequence and
adhere to the
ISO 3779 and
3780 standards.
These standards
were designed
for worldwide
use.

Any

Keywords for driver’s license identification numbers

To detect various types of driver’s license identification numbers, Amazon SNS requires a keyword
to be in proximity of the numbers. The following table lists the keywords that Amazon SNS
recognizes for specific countries and regions.

Managed data identifiers 218

Amazon Simple Notification Service Developer Guide

Country or region Keywords

Australia dl# dl:, dl :, dlno# driver licence, driver license,
driver permit, drivers lic., drivers licence,
driver's licence, drivers license, driver's license,
drivers permit, driver's permit, drivers permit
number, driving licence, driving license, driving
permit

Austria führerschein, fuhrerschein, führerschein
republik österreich, fuhrerschein republik
osterreich

Belgium fuehrerschein, fuehrerschein- nr, fuehrersc
heinnummer, fuhrerschein, führerschein,
fuhrerschein- nr, führerschein- nr, fuhrersch
einnummer, führerscheinnummer, numéro
permis conduire, permis de conduire, rijbewijs,
rijbewijsnummer

Bulgaria превозно средство, свидетелство за
управление на моторно, свидетелство
за управление на мпс, сумпс, шофьорска
книжка

Canada dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,
drivers permit number, driving licence, driving
license, driving permit, permis de conduire

Croatia vozačka dozvola

Cyprus άδεια οδήγησης

Managed data identifiers 219

Amazon Simple Notification Service Developer Guide

Country or region Keywords

Czech Republic číslo licence, císlo licence řidiče, číslo řidičskéh
o průkazu, ovladače lic., povolení k jízdě,
povolení řidiče, řidiči povolení, řidičský prúkaz,
řidičský průkaz

Denmark kørekort, kørekortnummer

Estonia juhi litsentsi number, juhiloa number, juhiluba,
juhiluba number

Finland ajokortin numero, ajokortti, förare lic., körkort,
körkort nummer, kuljettaja lic., permis de
conduire

France permis de conduire

Germany fuehrerschein, fuehrerschein- nr, fuehrersc
heinnummer, fuhrerschein, führerschein,
fuhrerschein- nr, führerschein- nr, fuhrersch
einnummer, führerscheinnummer

Greece δεια οδήγησης, adeia odigisis

Hungary illesztőprogramok lic, jogosítvány, jogsi,
licencszám, vezető engedély, vezetői engedély

Ireland ceadúnas tiomána

Italy patente di guida, patente di guida numero,
patente guida, patente guida numero

Latvia autovadītāja apliecība, licences numurs,
vadītāja apliecība, vadītāja apliecības numurs,
vadītāja atļauja, vadītāja licences numurs,
vadītāji lic.

Lithuania vairuotojo pažymėjimas

Managed data identifiers 220

Amazon Simple Notification Service Developer Guide

Country or region Keywords

Luxembourg fahrerlaubnis, führerschäin

Malta liċenzja tas-sewqan

Netherlands permis de conduire, rijbewijs, rijbewijsnummer

Poland numer licencyjny, prawo jazdy, zezwolenie na
prowadzenie

Portugal carta de condução, carteira de habilitação,
carteira de motorist, carteira habilitação,
carteira motorist, licença condução, licença de
condução, número de licença, número licença,
permissão condução, permissão de condução

Romania numărul permisului de conducere, permis de
conducere

Slovakia číslo licencie, číslo vodičského preukazu,
ovládače lic., povolenia vodičov, povolenie
jazdu, povolenie na jazdu, povolenie vodiča,
vodičský preukaz

Slovenia vozniško dovoljenje

Spain carnet conducer, el carnet de conducer,
licencia conducer, licencia de manejo, número
carnet conducer, número de carnet de
conducer, número de permiso conducer,
número de permiso de conducer, número
licencia conducer, número permiso conducer,
permiso conducción, permiso conducer,
permiso de conducción

Sweden ajokortin numero, dlno# ajokortti, drivere lic.,
förare lic., körkort, körkort nummer, körkortsn
ummer, kuljettajat lic.

Managed data identifiers 221

Amazon Simple Notification Service Developer Guide

Country or region Keywords

UK dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,
drivers permit number, driving licence, driving
license, driving permit

US dl#, dl:, dlno#, driver licence, driver licences,
driver license, driver licenses, driver permit,
drivers lic., drivers licence, driver's licence,
drivers licences, driver's licences, drivers
license, driver's license, drivers licenses,
driver's licenses, drivers permit, driver's permit,
drivers permit number, driving licence, driving
license, driving permit

Keywords for national identification numbers

To detect various types of national identification numbers, Amazon SNS requires a keyword to be
in close proximity to the numbers. This includes Documento Nacional de Identidad (DNI) identifiers
(Spain), French National Institute for Statistics and Economic Studies (INSEE) codes, German
National Identity Card numbers, and Registro Geral (RG) numbers (Brazil).

The following table lists the keywords that Amazon SNS recognizes for specific countries and
regions.

Country or region Keywords

Brazil registro geral, rg

France assurance sociale, carte nationale d’identit
é, cni, code sécurité sociale, French social
security number, fssn#, insee, insurance

Managed data identifiers 222

Amazon Simple Notification Service Developer Guide

Country or region Keywords

number, national id number, nationalid#,
numéro d'assurance, sécurité sociale, sécurité
sociale non., sécurité sociale numéro, social,
social security, social security number,
socialsecuritynumber, ss#, ssn, ssn#

Germany ausweisnummer, id number, identification
number, identity number, insurance number,
personal id, personalausweis

Italy codice fiscal, dati anagrafici, ehic, health card,
health insurance card, p. iva, partita i.v.a.,
personal data, tax code, tessera sanitaria

Spain dni, dni#, dninúmero#, documento nacional
de identidad, identidad único, identidad
único#, insurance number, national identific
ation number, national identity, nationalid#,
nationalidno#, número nacional identidad
, personal identification number, personal
identity no, unique identity number, uniqueid#

Keywords for passport numbers

To detect various types of passport numbers, Amazon SNS requires a keyword to be in proximity
of the numbers. The following table lists the keywords that Amazon SNS recognizes for specific
countries and regions.

Country or region Keywords

Canada passeport, passeport#, passport, passport#,
passportno, passportno#

France numéro de passeport, passeport, passeport
#, passeport #, passeportn °, passeport n °,
passeportNon, passeport non

Managed data identifiers 223

Amazon Simple Notification Service Developer Guide

Country or region Keywords

Germany ausstellungsdatum, ausstellungsort,
geburtsdatum, passport, passports, reisepass,
reisepass–nr, reisepassnummer

Italy italian passport number, numéro passeport
, numéro passeport italien, passaporto,
passaporto italiana, passaporto numero,
passport number, repubblica italiana
passaporto

Spain españa pasaporte, libreta pasaporte, número
pasaporte, pasaporte, passport, passport
book, passport no, passport number, spain
passport

UK passeport #, passeport n °, passeportNon,
passeport non, passeportn °, passport #,
passport no, passport number, passport#,
passportid

US passport, travel document

Keywords for taxpayer identification and reference numbers

To detect various types of taxpayer identification and reference numbers, Amazon SNS requires a
keyword to be in proximity of the numbers. The following table lists the keywords that Amazon
SNS recognizes for specific countries and regions.

Country or region Keywords

Brazil cadastro de pessoa física, cadastro de pessoa
fisica, cadastro de pessoas físicas, cadastro de
pessoas fisicas, cadastro nacional da pessoa
jurídica, cadastro nacional da pessoa juridica,
cnpj, cpf

Managed data identifiers 224

Amazon Simple Notification Service Developer Guide

Country or region Keywords

France numéro d'identification fiscale, tax id, tax
identification number, tax number, tin, tin#

Germany identifikationsnummer, steuer id, steueride
ntifikationsnummer, steuernummer, tax id, tax
identification number, tax number

Spain cif, cif número, cifnúmero#, nie, nif, número
de contribuyente, número de identidad de
extranjero, número de identificación fiscal,
número de impuesto corporativo, personal tax
number, tax id, tax identification number, tax
number, tin, tin#

UK paye, tax id, tax id no., tax id number, tax
identification, tax identification#, tax no.,
tax number, tax reference, tax#, taxid#,
temporary reference number, tin, trn, unique
tax reference, unique taxpayer reference, utr

US individual taxpayer identification number, itin,
i.t.i.n.

Data identifier ARNs for personally identifiable information (PII)

The following table lists the Amazon Resource Names (ARNs) for the data identifiers that you can
add to your data protection policies.

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/Address

arn:aws:dataprotection::aws:data-identifier/CepCode-BR

arn:aws:dataprotection::aws:data-identifier/Cnpj-BR

Managed data identifiers 225

Amazon Simple Notification Service Developer Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/CpfCode-BR

arn:aws:dataprotection::aws:data-identifier/DateOfBirth

arn:aws:dataprotection::aws:data-identifier/DriversLicense-AT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-AU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-BE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-BG

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CA

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CY

arn:aws:dataprotection::aws:data-identifier/DriversLicense-CZ

arn:aws:dataprotection::aws:data-identifier/DriversLicense-DE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-DK

arn:aws:dataprotection::aws:data-identifier/DriversLicense-EE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-ES

arn:aws:dataprotection::aws:data-identifier/DriversLicense-FI

arn:aws:dataprotection::aws:data-identifier/DriversLicense-FR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-GB

arn:aws:dataprotection::aws:data-identifier/DriversLicense-GR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-HR

arn:aws:dataprotection::aws:data-identifier/DriversLicense-HU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-IE

Managed data identifiers 226

Amazon Simple Notification Service Developer Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/DriversLicense-IT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LU

arn:aws:dataprotection::aws:data-identifier/DriversLicense-LV

arn:aws:dataprotection::aws:data-identifier/DriversLicense-MT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-NL

arn:aws:dataprotection::aws:data-identifier/DriversLicense-PL

arn:aws:dataprotection::aws:data-identifier/DriversLicense-PT

arn:aws:dataprotection::aws:data-identifier/DriversLicense-RO

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SE

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SI

arn:aws:dataprotection::aws:data-identifier/DriversLicense-SK

arn:aws:dataprotection::aws:data-identifier/DriversLicense-US

arn:aws:dataprotection::aws:data-identifier/ElectoralRollNumber-GB

arn:aws:dataprotection::aws:data-identifier/EmailAddress

arn:aws:dataprotection::aws:data-identifier/IndividualTaxIdentificationNumber-US

arn:aws:dataprotection::aws:data-identifier/InseeCode-FR

arn:aws:dataprotection::aws:data-identifier/LatLong

arn:aws:dataprotection::aws:data-identifier/Name

arn:aws:dataprotection::aws:data-identifier/NationalIdentificationNumber-DE

Managed data identifiers 227

Amazon Simple Notification Service Developer Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/NationalIdentificationNumber-ES

arn:aws:dataprotection::aws:data-identifier/NationalIdentificationNumber-IT

arn:aws:dataprotection::aws:data-identifier/NieNumber-ES

arn:aws:dataprotection::aws:data-identifier/NifNumber-ES

arn:aws:dataprotection::aws:data-identifier/PassportNumber-CA

arn:aws:dataprotection::aws:data-identifier/PassportNumber-DE

arn:aws:dataprotection::aws:data-identifier/PassportNumber-ES

arn:aws:dataprotection::aws:data-identifier/PassportNumber-FR

arn:aws:dataprotection::aws:data-identifier/PassportNumber-GB

arn:aws:dataprotection::aws:data-identifier/PassportNumber-IT

arn:aws:dataprotection::aws:data-identifier/PassportNumber-US

arn:aws:dataprotection::aws:data-identifier/PermanentResidenceNumber-CA

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-BR

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-DE

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-ES

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-FR

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-GB

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-IT

arn:aws:dataprotection::aws:data-identifier/PhoneNumber-US

arn:aws:dataprotection::aws:data-identifier/PostalCode-CA

Managed data identifiers 228

Amazon Simple Notification Service Developer Guide

PII data identifier ARNs

arn:aws:dataprotection::aws:data-identifier/RgNumber-BR

arn:aws:dataprotection::aws:data-identifier/SocialInsuranceNumber-CA

arn:aws:dataprotection::aws:data-identifier/Ssn-ES

arn:aws:dataprotection::aws:data-identifier/Ssn-US

arn:aws:dataprotection::aws:data-identifier/TaxId-DE

arn:aws:dataprotection::aws:data-identifier/TaxId-ES

arn:aws:dataprotection::aws:data-identifier/TaxId-FR

arn:aws:dataprotection::aws:data-identifier/TaxId-GB

arn:aws:dataprotection::aws:data-identifier/VehicleIdentificationNumber

arn:aws:dataprotection::aws:data-identifier/ZipCode-US

Using custom data identifiers in Amazon SNS

Custom data identifiers (CDIs) let you define your own custom regular expressions that can be
used in your data protection policy. Using custom data identifiers, you can target business-specific
personally identifiable information (PII) use cases that managed data identifiers can't provide. For
example, you can use a custom data identifier to look for company-specific employee IDs. Custom
data identifiers can be used in conjunction with managed data identifiers.

Topics

• What are custom data identifiers?

• Using custom data identifiers in your data protection policy

• Custom data identifier constraints

Custom data identifiers 229

Amazon Simple Notification Service Developer Guide

What are custom data identifiers?

Custom data identifiers (CDIs) let you define your own custom regular expressions that can be
used in your data protection policy. Using custom data identifiers, you can target business-specific
personally identifiable information (PII) use cases that managed data identifiers can't provide. For
example, you can use a custom data identifier to look for company-specific employee IDs. Custom
data identifiers can be used in conjunction with managed data identifiers.

Using custom data identifiers in your data protection policy

The following data protection policy instructs the Amazon SNS topic to detect payloads that carry
company-specific employee IDs, then mask these IDs using the hash symbol (#).

1. Create a Configuration block within your data protection policy.

2. Enter a Name for your custom data identifier. For example, EmployeeId.

3. Enter a Regex for your custom data identifier. For example, EID-\d{9}-US.

4. Refer to the following custom data identifier in a policy statement.

 {
 "Name": "__example_data_protection_policy",
 "Description": "Example data protection policy",
 "Version": "2021-06-01",
 "Configuration": {
 "CustomDataIdentifier": [
 {"Name": "EmployeeId", "Regex": "EID-\d{9}-US"}
]
 },
 "Statement": [
 {
 "DataDirection": "Inbound",
 "Principal": ["*"],
 "DataIdentifier": [
 "EmployeeId"
],
 "Operation": {
 "Deidentify": {
 "MaskConfig": {
 "MaskWithCharacter": "#"
 }
 }
 }

Custom data identifiers 230

Amazon Simple Notification Service Developer Guide

 }
]
}

5. (Optional) Continue to add additional custom data identifiers to the Configuration
block as needed. Data protection policies currently support a maximum of 10 custom data
identifiers.

Custom data identifier constraints

Amazon SNS custom data identifiers have the following limitations:

• A maximum of 10 custom data identifiers are supported for each data protection policy.

• Custom data identifier names have a maximum length of 128 characters. The following
characters are supported:

• Alphanumeric: (a-zA-Z0-9)

• Symbols: ('_' | '-')

• RegEx has a maximum length of 200 characters. The following characters are supported:

• Alphanumeric: (a-zA-Z0-9)

• Symbols: ('_' | '#' | '=' | '@' |'/' | ';' | ',' | '-' | ' ')

• RegEx reserved characters: ('^' | '$' | '?' | '[' | ']' | '{' | '}' | '|' | '\\' | '*' | '+' | '.')

• Custom data identifiers cannot share the same name as a managed data identifier.

• Custom data identifiers must be specified in every data protection policy for each Amazon SNS
topic.

Custom data identifiers 231

Amazon Simple Notification Service Developer Guide

Amazon SNS message delivery

This topic describes how Amazon SNS handles message delivery across various scenarios. You'll
learn about raw message delivery, where Amazon SNS delivers messages in their original,
unmodified format to the endpoint. You'll also discover how to send messages from an Amazon
SNS topic to an Amazon SQS queue in a different AWS account, providing insights into cross-
account messaging.

This topic provides information on the delivery of Amazon SNS messages to an Amazon SQS
queue or a Lambda function in different AWS Regions, how cross-region delivery works, and the
considerations involved.

Additionally, you'll learn how to monitor and interpret message delivery status, which provides
critical information on whether messages were successfully delivered or encountered issues.
In cases where message delivery fails, you'll understand the message delivery retry process,
including how Amazon SNS automatically attempts to redeliver messages to ensure they reach
their intended destinations. This topic also discusses the use of dead-letter queues to capture
messages that could not be delivered after multiple attempts, enabling you to analyze and
troubleshoot these failures effectively.

Topics

• Amazon SNS raw message delivery

• Sending Amazon SNS messages to an Amazon SQS queue in a different account

• Sending Amazon SNS messages to an Amazon SQS queue or AWS Lambda function in a different
Region

• Amazon SNS message delivery status

• Amazon SNS message delivery retries

• Amazon SNS dead-letter queues

Amazon SNS raw message delivery

To avoid having Amazon Data Firehose, Amazon SQS, and HTTP/S endpoints process the JSON
formatting of messages, Amazon SNS allows raw message delivery:

• When you enable raw message delivery for Amazon Data Firehose or Amazon SQS endpoints,
any Amazon SNS metadata is stripped from the published message and the message is sent as is.

Raw message delivery 232

Amazon Simple Notification Service Developer Guide

• When you enable raw message delivery for HTTP/S endpoints, the HTTP header x-amz-sns-
rawdelivery with its value set to true is added to the message, indicating that the message
has been published without JSON formatting.

• When you enable raw message delivery for HTTP/S endpoints, the message body, client IP, and
the required headers are delivered. When you specify message attributes, it won't be sent.

• When you enable raw message delivery for Firehose endpoints, the message body is delivered.
When you specify message attributes, it won't be sent.

To enable raw message delivery using an AWS SDK, you must use the
SetSubscriptionAttribute API action and set the value of the RawMessageDelivery
attribute to true.

Enabling raw message delivery using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. On the Topics page, choose a topic subscribed to an Firehose, Amazon SQS, or HTTP/S
endpoint.

4. On the MyTopic page, in the Subscription section, choose a subscription and choose Edit.

5. On the Edit EXAMPLE1-23bc-4567-d890-ef12g3hij456 page, in the Details section,
choose Enable raw message delivery.

6. Choose Save changes.

Message format examples

In the following examples, the same message is sent to the same Amazon SQS queue twice. The
only difference is that raw message delivery is disabled for the first message, and enabled for the
second.

• Raw message delivery is disabled

{
 "Type": "Notification",
 "MessageId": "dc1e94d9-56c5-5e96-808d-cc7f68faa162",
 "TopicArn": "arn:aws:sns:us-east-2:111122223333:ExampleTopic1",

Enabling raw message delivery using the AWS Management Console 233

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

 "Subject": "TestSubject",
 "Message": "This is a test message.",
 "Timestamp": "2021-02-16T21:41:19.978Z",
 "SignatureVersion": "1",
 "Signature":
 "FMG5tlZhJNHLHUXvZgtZzlk24FzVa7oX0T4P03neeXw8ZEXZx6z35j2FOTuNYShn2h0bKNC/
zLTnMyIxEzmi2X1shOBWsJHkrW2xkR58ABZF+4uWHEE73yDVR4SyYAikP9jstZzDRm
+bcVs8+T0yaLiEGLrIIIL4esi1llhIkgErCuy5btPcWXBdio2fpCRD5x9oR6gmE/
rd5O7lX1c1uvnv4r1Lkk4pqP2/iUfxFZva1xLSRvgyfm6D9hNklVyPfy
+7TalMD0lzmJuOrExtnSIbZew3foxgx8GT+lbZkLd0ZdtdRJlIyPRP44eyq78sU0Eo/
LsDr0Iak4ZDpg8dXg==",
 "SigningCertURL": "https://sns.us-east-2.amazonaws.com/
SimpleNotificationService-010a507c1833636cd94bdb98bd93083a.pem",
 "UnsubscribeURL": "https://sns.us-east-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
east-2:111122223333:ExampleTopic1:e1039402-24e7-40a3-a0d4-797da162b297"
}

• Raw message delivery is enabled

This is a test message.

Message attributes and raw message delivery for Amazon SQS
subscriptions

Amazon SNS supports the delivery of message attributes, which allow you to provide structured
metadata items, such as timestamps, geospatial data, signatures, and identifiers, about the
message. For Amazon SQS subscriptions with Raw Message Delivery enabled, a maximum of 10
message attributes can be sent. To send more than 10 message attributes, you must disable Raw
Message Delivery. However, Amazon SNS discards messages with more than 10 message attributes
directed towards Amazon SQS subscriptions with Raw Message Delivery enabled, treating them as
client-side errors.

Sending Amazon SNS messages to an Amazon SQS queue in a
different account

This document describes how to publish a notification to an Amazon SNS topic with one or more
subscriptions to Amazon SQS queues in another account. You set up the topic and queues the same

Message attributes and raw message delivery for Amazon SQS subscriptions 234

Amazon Simple Notification Service Developer Guide

way you would if they were in the same account (see Fanout Amazon SNS notifications to Amazon
SQS queues for asynchronous processing). The major difference is how you handle subscription
confirmation, and that depends on how you subscribe the queue to the topic.

It is a best practice to follow the steps referenced in the Queue owner creates subscription section
when possible, because confirmation is automatic when the queue owner creates the subscription.

Note

If the Amazon SQS queue has a high volume of messages, we recommend that the queue
owner creates the subscription.

Topics

• Queue owner creates subscription

• A user who does not own the queue creates a subscription

• How do I force a subscription to require authentication on unsubscribe requests?

Queue owner creates subscription

The account that created the Amazon SQS queue is the queue owner. When the queue owner
creates a subscription, the subscription doesn't require confirmation. The queue begins to receive
notifications from the topic as soon as the Subscribe action completes. To let the queue owner
subscribe to the topic owner's topic, the topic owner must give the queue owner's account
permission to call the Subscribe action on the topic.

Step 1: To set the topic policy using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. Select a topic and then choose Edit.

4. On the Edit MyTopic page, expand the Access policy section.

5. Enter the following policy:

{
 "Statement": [

Queue owner creates subscription 235

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": "sns:Subscribe",
 "Resource": "arn:aws:sns:us-east-2:123456789012:MyTopic"
 }
]
}

This policy gives account 111122223333 permission to call sns:Subscribe on MyTopic in
account 123456789012.

A user with the credentials for account 111122223333 can subscribe to MyTopic. This
permission allows the account ID to delegate permission to their IAM user/role. Only the root
account or administrator users are allowed to call sns:Subscribe. The IAM user/role must
also have sns:subscribe to allow their queue to subscribe.

6. Choose Save changes.

A user with the credentials for account 111122223333 can subscribe to MyTopic.

Step 2: To add an Amazon SQS queue subscription to a topic in another AWS
account using the AWS Management Console

Before you begin, make sure you have the ARNs for your topic and queue, and that you have given
permission to the topic to send messages to the queue.

1. Sign in to the Amazon SQS console.

2. On the navigation panel, choose Queues.

3. From the list of queues, choose the queue to subscribe to the Amazon SNS topic.

4. Choose Subscribe to Amazon SNS topic.

5. From the Specify an Amazon SNS topic available for this queue menu, choose the Amazon
SNS topic for your queue.

6. Choose Enter Amazon SNS topic ARN and then enter the topic's Amazon Resource Name
(ARN).

7. Choose Save.

Queue owner creates subscription 236

https://console.aws.amazon.com/sqs/home

Amazon Simple Notification Service Developer Guide

Note

• To be able to communicate with the service, the queue must have permissions for
Amazon SNS.

• Because you are the owner of the queue, you don't have to confirm the subscription.

A user who does not own the queue creates a subscription

Any user who creates a subscription but isn't the owner of the queue must confirm the
subscription.

When you use the Subscribe action, Amazon SNS sends a subscription confirmation to the queue.
The subscription is displayed in the Amazon SNS console, with its subscription ID set to Pending
Confirmation.

To confirm the subscription, a user with permission to read messages from the queue must retrieve
the subscription confirmation URL, and the subscription owner must confirm the subscription using
the subscription confirmation URL. Until the subscription is confirmed, no notifications published
to the topic are sent to the queue. To confirm the subscription, you can use the Amazon SQS
console or the ReceiveMessage action.

Note

Before you subscribe an endpoint to the topic, make sure that the queue can receive
messages from the topic by setting the sqs:SendMessage permission for the queue. For
more information, see Step 2: Give permission to the Amazon SNS topic to send messages
to the Amazon SQS queue.

Step 1: To add an Amazon SQS queue subscription to a topic in another AWS
account using the AWS Management Console

Before you begin, make sure you have the ARNs for your topic and queue, and that you have given
permission to the topic to send messages to the queue.

1. Sign in to the Amazon SNS console.

A user who does not own the queue creates a subscription 237

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

2. On the navigation panel, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, in the Details section, do the following:

a. For Topic ARN, enter the ARN of the topic.

b. For Protocol, choose Amazon SQS.

c. For Endpoint, enter the ARN of the queue.

d. Choose Create subscription.

Note

• To be able to communicate with the service, the queue must have permissions
for Amazon SNS.

The following is an example policy statement that allows the Amazon SNS topic to send a message
to the Amazon SQS queue.

{
 "Sid": "Stmt1234",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-west-2:111111111111:QueueName",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:sns:us-west-2:555555555555:TopicName"
 }
 }
}

Step 2: To confirm a subscription using the AWS Management Console

1. Sign in to the Amazon SQS console.

2. Select the queue that has a pending subscription to the topic.

3. Choose Send and receive messages, and then choose Poll for messages.

A message with the subscription confirmation is received in the queue.

A user who does not own the queue creates a subscription 238

https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide

4. In the Body column, do the following:

a. Choose More Details.

b. In the Message Details dialog box, find and note the SubscribeURL value. This is your
subscription link (example below). For additional details on API token validation, see
ConfirmSubscription in the Amazon SNS API Reference.

https://sns.us-west-2.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-
east-2:123456789012:MyTopic&Token=2336412f37fb...

c. Make a note of the subscription confirmation link. The URL must be passed from the
queue owner to the subscription owner. The subscription owner must enter the URL into
the Amazon SNS console.

5. Log in as the subscription owner to the Amazon SNS console The subscription owner
performs the confirmation.

6. Choose the relevant topic.

7. Choose the relevant subscription in the topic's subscription listings table. It is labeled as
"Pending confirmation".

8. Choose Confirm subscription.

9. A modal appears prompting the subscription confirmation link. Paste the subscription
confirmation link.

10. Select the Confirm subscription in the modal.

An XML response is displayed, for example:

<ConfirmSubscriptionResponse>
 <ConfirmSubscriptionResult>
 <SubscriptionArn>arn:aws:sns:us-east-2:123456789012:MyTopic:1234a567-
bc89-012d-3e45-6fg7h890123i</SubscriptionArn>
 </ConfirmSubscriptionResult>
 <ResponseMetadata>
 <RequestId>abcd1efg-23hi-jkl4-m5no-p67q8rstuvw9</RequestId>
 </ResponseMetadata>
</ConfirmSubscriptionResponse>

The subscribed queue is ready to receive messages from the topic.

A user who does not own the queue creates a subscription 239

https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://console.aws.amazon.com/sns/v3/home
https://console.aws.amazon.com/sns/v3/home

Amazon Simple Notification Service Developer Guide

11. (Optional) If you view the topic subscription in the Amazon SNS console, you can see that
the Pending Confirmation message has been replaced by the subscription ARN in the
Subscription ID column.

How do I force a subscription to require authentication on unsubscribe
requests?

The subscription owner must set the AuthenticateOnUnsubscribe flag to true on subscription-
confirmation.

• AuthenticateOnUnsubscribe is automatically set to true when the queue owner creates the
subscription.

• AuthenticateOnUnsubscribe cannot be set to true when the subscription confirmation link is
navigated to without authentication.

Sending Amazon SNS messages to an Amazon SQS queue or
AWS Lambda function in a different Region

Amazon SNS supports cross-region deliveries, both for Regions that are enabled by default and for
opt-in Regions. For the current list of AWS Regions that Amazon SNS supports, including opt-in
Regions, see Amazon Simple Notification Service endpoints and quotas in the Amazon Web Services
General Reference.

Amazon SNS supports the cross-region delivery of notifications to Amazon SQS queues and to
AWS Lambda functions. When one of the Regions is an opt-in Region, you must specify a different
Amazon SNS service principal in the subscribed resource's policy.

The Amazon SNS subscription command must be executed in the region where Amazon SNS is
hosted, in the corresponding region. For example, if Amazon SNS is in account "A" in the us-east-1
region, and the Lambda function is in account "B" in the us-east-2 region, the subscription CLI
command must be executed in account "A" in the us-east-1 region.

Opt-in Regions

Amazon SNS supports the following opt-in Regions:

How do I force a subscription to require authentication on unsubscribe requests? 240

https://docs.aws.amazon.com/general/latest/gr/sns.html

Amazon Simple Notification Service Developer Guide

Region name Region

Africa (Cape Town) Region af-south-1

Asia Pacific (Hong Kong) Region ap-east-1

Asia Pacific (Hyderabad) Region ap-south-2

Asia Pacific (Jakarta) Region ap-southeast-3

Asia Pacific (Melbourne) Region ap-southeast-4

Europe (Milan) Region eu-south-1

Europe (Spain) Region eu-south-2

Europe (Zurich) Region eu-central-2

Israel (Tel Aviv) Region il-central-1

Middle East (Bahrain) Region me-south-1

Middle East (UAE) Region me-central-1

For information on enabling an opt-in Region, see Managing AWS Regions in the Amazon Web
Services General Reference.

When you use Amazon SNS to deliver messages from opt-in Regions to Regions that are enabled
by default, you must alter the resource policy created for the queue. Replace the principal
sns.amazonaws.com with sns.<opt-in-region>.amazonaws.com. For example:

• To subscribe an Amazon SQS queue in US East (N. Virginia) to an Amazon SNS topic
in Asia Pacific (Hong Kong), change the principal in the queue policy to sns.ap-
east-1.amazonaws.com. Opt-in regions include any regions launched after March 20, 2019,
which includes Asia Pacific (Hong Kong), Asia Pacific (Jakarta), Middle East (Bahrain), Europe
(Milan), and Africa (Cape Town). Regions launched prior to March 20, 2019 are enabled by
default.

Opt-in Regions 241

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

Amazon Simple Notification Service Developer Guide

Cross-region delivery support to Amazon SQS

Cross-region
delivery type

Supported/Not supported

Default-enabled
Region to opt-in
Region

Supported using sns.<opt-in-region
>.amazonaws.com in the service
principal for the queue

Opt-in Region to
default-enabled
Region

Supported using sns.<opt-in-region
>.amazonaws.com in the service
principal for the queue

Opt-in Region to
opt-in Region

Not supported

The following is an example of an access policy statement that allows an Amazon SNS topic in an
opt-in Region (af-south-1) to deliver to an Amazon SQS queue in an enabled-by-default Region
(us-east-1). It contains the necessary regionalized service principal configuration under the path
Statement/Principal/Service.

{
 "Version": "2008-10-17",
 "Id": "__default_policy_ID",
 "Statement": [
 {
 "Sid": "allow_sns_arn:aws:sns:af-south-1:111111111111:source_topic_name",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.af-south-1.amazonaws.com"
 },
 "Action": "SQS:SendMessage",
 "Resource": "arn:aws:sqs:us-east-1:111111111111:destination_queue_name",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sns:af-south-1:111111111111:source_topic_name"
 }
 }

Opt-in Regions 242

Amazon Simple Notification Service Developer Guide

 },
 ...
]
}

• To subscribe an AWS Lambda function in US East (N. Virginia) to an Amazon SNS topic in Asia
Pacific (Hong Kong), change the principal in the AWS Lambda function policy to sns.ap-
east-1.amazonaws.com. Opt-in regions include any regions launched after March 20, 2019,
which includes Asia Pacific (Hong Kong), Asia Pacific (Jakarta), Middle East (Bahrain), Europe
(Milan), and Africa (Cape Town). Regions launched prior to March 20, 2019 are enabled by
default.

Cross-region delivery support to AWS Lambda

Cross-region
delivery type

Supported/Not supported

Default-enabled
Region to opt-in
Region

Not supported

Opt-in Region to
default-enabled
Region

Supported using sns.<opt-in-region
>.amazonaws.com in the service
principal for the Lambda function

Opt-in Region to
opt-in Region

Not supported

Amazon SNS message delivery status

Amazon SNS provides support for logging the delivery status of notification messages sent to
topics with the following Amazon SNS endpoints:

• Amazon Data Firehose

• Amazon Simple Queue Service

• AWS Lambda

• HTTPS

Message delivery status 243

Amazon Simple Notification Service Developer Guide

• Platform application endpoint

Delivery status logs are sent to Amazon CloudWatch Logs, providing insights into message delivery
operations. These logs help you:

• Determine whether a message was successfully delivered to an endpoint.

• Identify the response from the endpoint to Amazon SNS.

• Measure message dwell time (time between publish timestamp and handoff to the endpoint).

You can configure delivery status logging using the AWS Management Console, AWS SDKs, Query
API, or AWS CloudFormation.

Prerequisites for delivery status logging

This topic outlines the necessary IAM permissions for enabling Amazon SNS to write delivery logs
to CloudWatch and explains the default log group naming convention. This ensures you have the
correct setup and access to monitor and analyze message delivery logs in CloudWatch logs.

Required IAM permissions

The IAM role attached for delivery status logging must include the following permissions to enable
Amazon SNS to write to CloudWatch Logs. You can use an existing role with these permissions or
create a new role during setup.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

Log group naming convention

Prerequisites for delivery status logging 244

Amazon Simple Notification Service Developer Guide

By default, Amazon SNS creates CloudWatch log groups for delivery status logs using the
following naming convention. Log streams within this group correspond to the endpoint protocols
(for example, Lambda, Amazon SQS). Ensure you have permissions to view these logs in the
CloudWatch Logs console.

sns/<region>/<account-id>/<topic-name>

Configuring delivery status logging using the AWS Management
Console

This topic explains how to enable message delivery status logging for Amazon SNS topics,
including configuring logging settings, assigning IAM roles, and verifying that CloudWatch Logs
capture delivery logs for monitoring and troubleshooting.

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. Select the desired topic and then choose Edit.

4. Expand the Delivery status logging section.

5. Choose the protocol for which you want to enable logging (for example, HTTP, Lambda,
Amazon SQS).

6. Enter the Success sample rate, which is the percentage of successful messages for which you
want to receive CloudWatch Logs.

7. In the IAM roles section, you must configure roles for both success and failure logging:

• Use an existing service role – Select an existing IAM role that has the required permissions
for Amazon SNS to write logs to CloudWatch.

• Create a new service role – Choose Create new roles to define the IAM roles for successful
and failed deliveries in the IAM console. For permission details, see Prerequisites for delivery
status logging.

8. Choose Save changes.

After enabling logging, you can view and parse the CloudWatch Logs containing the
message delivery status. For more information about using CloudWatch, see the CloudWatch
documentation.

Configuring delivery status logging using the AWS Management Console 245

https://console.aws.amazon.com/sns/home
https://aws.amazon.com/documentation/cloudwatch
https://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide

Verifying log setup

1. Sign into the CloudWatch Logs console.

2. Locate the log group named sns/<region>/<account-id>/<topic-name>.

3. Ensure log streams exist for the configured endpoint protocol.

4. Send a test message to your topic and confirm that log entries appear, indicating successful or
failed deliveries.

Configuring delivery status logging using the AWS SDKs

The AWS SDKs provide APIs in several languages to set topic attributes for message delivery status
logging. For example, use the SetTopicAttributes API to configure:

• LambdaSuccessFeedbackRoleArn – IAM role for successful message delivery to Lambda
endpoints.

• LambdaSuccessFeedbackSampleRate – Sampling rate for successful messages to Lambda
endpoints.

• LambdaFailureFeedbackRoleArn – IAM role for failed message delivery to Lambda
endpoints.

Example AWS CLI command

aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --attribute-name LambdaSuccessFeedbackRoleArn \
 --attribute-value arn:aws:iam::123456789012:role/MyFeedbackRole

Topic attributes

You can use the following topic attribute name values for message delivery status:

HTTP

• HTTPSuccessFeedbackRoleArn – Successful message delivery status for an Amazon SNS topic
that is subscribed to an HTTP endpoint.

• HTTPSuccessFeedbackSampleRate – Percentage of successful messages to sample for an
Amazon SNS topic that is subscribed to an HTTP endpoint.

Configuring delivery status logging using the AWS SDKs 246

https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon Simple Notification Service Developer Guide

• HTTPFailureFeedbackRoleArn – Failed message delivery status for an Amazon SNS topic
that is subscribed to an HTTP endpoint.

Amazon Data Firehose

• FirehoseSuccessFeedbackRoleArn – Successful message delivery status for an Amazon SNS
topic that is subscribed to an Amazon Kinesis Data Firehose endpoint.

• FirehoseSuccessFeedbackSampleRate – Percentage of successful messages to sample for
an Amazon SNS topic that is subscribed to an Amazon Kinesis Data Firehose endpoint.

• FirehoseFailureFeedbackRoleArn – Failed message delivery status for an Amazon SNS
topic that is subscribed to an Amazon Kinesis Data Firehose endpoint.

AWS Lambda

• LambdaSuccessFeedbackRoleArn – Successful message delivery status for an Amazon SNS
topic that is subscribed to an Lambda endpoint.

• LambdaSuccessFeedbackSampleRate – Percentage of successful messages to sample for an
Amazon SNS topic that is subscribed to an Lambda endpoint.

• LambdaFailureFeedbackRoleArn – Failed message delivery status for an Amazon SNS topic
that is subscribed to an Lambda endpoint.

Platform application endpoints

• ApplicationSuccessFeedbackRoleArn – Successful message delivery status for an Amazon
SNS topic that is subscribed to an AWS application endpoint.

• ApplicationSuccessFeedbackSampleRate – Percentage of successful messages to sample
for an Amazon SNS topic that is subscribed to an AWS application endpoint.

• ApplicationFailureFeedbackRoleArn – Failed message delivery status for an Amazon SNS
topic that is subscribed to an AWS application endpoint.

Note

Additionally, you can configure application attributes to log delivery status directly to
push notification services. For more information, see Using Amazon SNS Application
Attributes for Message Delivery Status.

Configuring delivery status logging using the AWS SDKs 247

https://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
https://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html

Amazon Simple Notification Service Developer Guide

Amazon SQS

• SQSSuccessFeedbackRoleArn – Successful message delivery status for an Amazon SNS topic
that is subscribed to an Amazon SQS endpoint.

• SQSSuccessFeedbackSampleRate – Percentage of successful messages to sample for an
Amazon SNS topic that is subscribed to an Amazon SQS endpoint.

• SQSFailureFeedbackRoleArn – Failed message delivery status for an Amazon SNS topic that
is subscribed to an Amazon SQS endpoint.

Logs for platform application endpoints are written to the same CloudWatch Logs group as other
endpoints.

Note

The <ENDPOINT>SuccessFeedbackRoleArn and
<ENDPOINT>FailureFeedbackRoleArn attributes are used to give
Amazon SNS write access to use CloudWatch Logs on your behalf. The
<ENDPOINT>SuccessFeedbackSampleRate attribute is for specifying the sample
rate percentage (0-100) of successfully delivered messages. After you configure the
<ENDPOINT>FailureFeedbackRoleArn attribute, then all failed message deliveries
generate CloudWatch Logs.

AWS SDK examples to configure topic attributes

The following code examples show how to use SetTopicAttributes.

CLI

AWS CLI

To set an attribute for a topic

The following set-topic-attributes example sets the DisplayName attribute for the
specified topic.

aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --attribute-name DisplayName \

AWS SDK examples to configure topic attributes 248

Amazon Simple Notification Service Developer Guide

 --attribute-value MyTopicDisplayName

This command produces no output.

• For API details, see SetTopicAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetTopicAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetTopicAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SetTopicAttributes {

 public static void main(String[] args) {
 final String usage = """

 Usage: <attribute> <topicArn> <value>

 Where:
 attribute - The attribute action to use. Valid parameters are:
 Policy | DisplayName | DeliveryPolicy .
 topicArn - The ARN of the topic.\s

AWS SDK examples to configure topic attributes 249

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-topic-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 value - The value for the attribute.
 """;

 if (args.length < 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String attribute = args[0];
 String topicArn = args[1];
 String value = args[2];

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 setTopAttr(snsClient, attribute, topicArn, value);
 snsClient.close();
 }

 public static void setTopAttr(SnsClient snsClient, String attribute, String
 topicArn, String value) {
 try {
 SetTopicAttributesRequest request =
 SetTopicAttributesRequest.builder()
 .attributeName(attribute)
 .attributeValue(value)
 .topicArn(topicArn)
 .build();

 SetTopicAttributesResponse result =
 snsClient.setTopicAttributes(request);
 System.out.println(
 "\n\nStatus was " + result.sdkHttpResponse().statusCode() +
 "\n\nTopic " + request.topicArn()
 + " updated " + request.attributeName() + " to " +
 request.attributeValue());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

AWS SDK examples to configure topic attributes 250

Amazon Simple Notification Service Developer Guide

• For API details, see SetTopicAttributes in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { SetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const setTopicAttributes = async (
 topicArn = "TOPIC_ARN",
 attributeName = "DisplayName",
 attributeValue = "Test Topic",
) => {
 const response = await snsClient.send(
 new SetTopicAttributesCommand({
 AttributeName: attributeName,
 AttributeValue: attributeValue,
 TopicArn: topicArn,
 }),
);

AWS SDK examples to configure topic attributes 251

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd1b08d0e-e9a4-54c3-b8b1-d03238d2b935',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SetTopicAttributes in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun setTopAttr(
 attribute: String?,
 topicArnVal: String?,
 value: String?,
) {
 val request =
 SetTopicAttributesRequest {
 attributeName = attribute
 attributeValue = value
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->

AWS SDK examples to configure topic attributes 252

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsstttopicattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SetTopicAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 snsClient.setTopicAttributes(request)
 println("Topic ${request.topicArn} was updated.")
 }
}

• For API details, see SetTopicAttributes in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Configure the message delivery status attributes for an Amazon SNS Topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);
$attribute = 'Policy | DisplayName | DeliveryPolicy';
$value = 'First Topic';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {

AWS SDK examples to configure topic attributes 253

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 $result = $SnSclient->setTopicAttributes([
 'AttributeName' => $attribute,
 'AttributeValue' => $value,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see SetTopicAttributes in AWS SDK for PHP API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Service class to enable an SNS resource with a specified policy
class SnsResourceEnabler
 # Initializes the SnsResourceEnabler with an SNS resource client
 #
 # @param sns_resource [Aws::SNS::Resource] The SNS resource client
 def initialize(sns_resource)
 @sns_resource = sns_resource
 @logger = Logger.new($stdout)
 end

 # Sets a policy on a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource to include in the policy
 # @param policy_name [String] The name of the policy attribute to set
 def enable_resource(topic_arn, resource_arn, policy_name)
 policy = generate_policy(topic_arn, resource_arn)

AWS SDK examples to configure topic attributes 254

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 topic = @sns_resource.topic(topic_arn)

 topic.set_attributes({
 attribute_name: policy_name,
 attribute_value: policy
 })
 @logger.info("Policy #{policy_name} set successfully for topic
 #{topic_arn}.")
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Failed to set policy: #{e.message}")
 end

 private

 # Generates a policy string with dynamic resource ARNs
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource
 # @return [String] The policy as a JSON string
 def generate_policy(topic_arn, resource_arn)
 {
 Version: '2008-10-17',
 Id: '__default_policy_ID',
 Statement: [{
 Sid: '__default_statement_ID',
 Effect: 'Allow',
 Principal: { "AWS": '*' },
 Action: ['SNS:Publish'],
 Resource: topic_arn,
 Condition: {
 ArnEquals: {
 "AWS:SourceArn": resource_arn
 }
 }
 }]
 }.to_json
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'MY_TOPIC_ARN' # Should be replaced with a real topic ARN
 resource_arn = 'MY_RESOURCE_ARN' # Should be replaced with a real resource ARN
 policy_name = 'POLICY_NAME' # Typically, this is "Policy"

AWS SDK examples to configure topic attributes 255

Amazon Simple Notification Service Developer Guide

 sns_resource = Aws::SNS::Resource.new
 enabler = SnsResourceEnabler.new(sns_resource)

 enabler.enable_resource(topic_arn, resource_arn, policy_name)
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see SetTopicAttributes in AWS SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->settopicattributes(
 iv_topicarn = iv_topic_arn
 iv_attributename = iv_attribute_name
 iv_attributevalue = iv_attribute_value
).
 MESSAGE 'Set/updated SNS topic attributes.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see SetTopicAttributes in AWS SDK for SAP ABAP API reference.

Configuring delivery status logging using AWS CloudFormation

To configure DeliveryStatusLogging using AWS CloudFormation, use a JSON or
YAML template to create an AWS CloudFormation stack. For more information, see the

Configuring delivery status logging using AWS CloudFormation 256

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-enable-resource.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

DeliveryStatusLogging property of the AWS::SNS::Topic resource in the AWS
CloudFormation User Guide. Below are examples of AWS CloudFormation templates in JSON
and YAML to create a new topic or update an existing topic with all DeliveryStatusLogging
attributes for the Amazon SQS protocol.

Ensure the IAM roles referenced in SuccessFeedbackRoleArn and FailureFeedbackRoleArn
have the required CloudWatch Logs permissions.

JSON

"Resources": {
 "MySNSTopic" : {
 "Type" : "AWS::SNS::Topic",
 "Properties" : {
 "TopicName" : "TestTopic",
 "DisplayName" : "TEST",
 "SignatureVersion" : "2",
 "DeliveryStatusLogging" : [{
 "Protocol": "sqs",
 "SuccessFeedbackSampleRate": "45",
 "SuccessFeedbackRoleArn": "arn:aws:iam::123456789012:role/
SNSSuccessFeedback_test1",
 "FailureFeedbackRoleArn": "arn:aws:iam::123456789012:role/
SNSFailureFeedback_test2"
 }]
 }
 }
}

YAML

Resources:
 MySNSTopic:
 Type: AWS::SNS::Topic
 Properties:
 TopicName:TestTopic
 DisplayName:TEST
 SignatureVersion:2
 DeliveryStatusLogging:
 - Protocol: sqs
 SuccessFeedbackSampleRate: 45
 SuccessFeedbackRoleArn: arn:aws:iam::123456789012:role/
SNSSuccessFeedback_test1

Configuring delivery status logging using AWS CloudFormation 257

Amazon Simple Notification Service Developer Guide

 FailureFeedbackRoleArn: arn:aws:iam::123456789012:role/
SNSFailureFeedback_test2

Amazon SNS message delivery retries

Amazon SNS defines a delivery policy for each delivery protocol. The delivery policy defines how
Amazon SNS retries the delivery of messages when server-side errors occur (when the system
that hosts the subscribed endpoint becomes unavailable). When the delivery policy is exhausted,
Amazon SNS stops retrying the delivery and discards the message—unless a dead-letter queue is
attached to the subscription. For more information, see Amazon SNS dead-letter queues.

Topics

• Delivery protocols and policies

• Delivery policy stages

• Creating an HTTP/S delivery policy

Delivery protocols and policies

Note

• With the exception of HTTP/S, you can't change Amazon SNS-defined delivery policies.
Only HTTP/S supports custom policies. See Creating an HTTP/S delivery policy.

• Amazon SNS applies jittering to delivery retries. For more information, see the
Exponential Backoff and Jitter post on the AWS Architecture Blog.

• The total policy retry time for an HTTP/S endpoint cannot be greater than 3,600
seconds. This is a hard limit and cannot be increased.

Message delivery retries 258

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Amazon Simple Notification Service Developer Guide

Endpoint
type

Delivery
protocols

Immediate
retry (no
delay)
phase

Pre-backo
ff phase

Backoff
phase

Post-back
off phase

Total
attempts

Amazon
Data
Firehose¹

AWS
Lambda

AWS
managed
endpoints

Amazon
SQS

3 times,
without
delay

2 times,
1 second
apart

10 times,
with
exponenti
al backoff,
from 1
second to
20 seconds

100,000
times, 20
seconds
apart

100,015
times, over
23 days

SMTP

SMS

Customer
managed
endpoints

Mobile
push

0 times,
without
delay

2 times, 10
seconds
apart

10 times,
with
exponenti
al backoff,
from 10
seconds
to 600
seconds
(10
minutes)

38 times,
600
seconds
(10
minutes)
apart

50
attempts,
over 6
hours

¹ For throttling errors with the Firehose protocol, Amazon SNS uses the same delivery policy as for
customer managed endpoints.

Delivery policy stages

The following diagram shows the phases of a delivery policy.

Delivery policy stages 259

Amazon Simple Notification Service Developer Guide

Each delivery policy is comprised of four phases.

1. Immediate Retry Phase (No Delay) – This phase occurs immediately after the initial delivery
attempt. There is no delay between retries in this phase.

2. Pre-Backoff Phase – This phase follows the Immediate Retry Phase. Amazon SNS uses this
phase to attempt a set of retries before applying a backoff function. This phase specifies the
number of retries and the amount of delay between them.

3. Backoff Phase – This phase controls the delay between retries by using the retry-backoff
function. This phase sets a minimum delay, a maximum delay, and a retry-backoff function that
defines how quickly the delay increases from the minimum to the maximum delay. The backoff
function can be arithmetic, exponential, geometric, or linear.

4. Post-Backoff Phase – This phase follows the backoff phase. It specifies a number of retries and
the amount of delay between them. This is the final phase.

Creating an HTTP/S delivery policy

You can use a delivery policy and its four phases to define how Amazon SNS retries the delivery of
messages to HTTP/S endpoints. Amazon SNS lets you override the default retry policy for HTTP
endpoints when you might, for example, want to customize the policy based on your HTTP server's
capacity.

You can set your HTTP/S delivery policy as a JSON object at the subscription or topic level. When
you define the policy at the topic level, it applies to all HTTP/S subscriptions associated with the
topic. To set the delivery policy at the subscription level, you can use either the Subscribe or
SetSubscriptionAttributes API action. To set the delivery policy at the topic level, you can

Creating an HTTP/S delivery policy 260

https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

Amazon Simple Notification Service Developer Guide

use either the CreateTopic or SetTopicAttributes API action. Alternatively, you can also use
the AWS::SNS::Subscription resource in your AWS CloudFormation templates.

You should customize your delivery policy according to your HTTP/S server's capacity. You can set
the policy as a topic attribute or a subscription attribute. If all HTTP/S subscriptions in your topic
target the same HTTP/S server, we recommend that you set the delivery policy as a topic attribute,
so that it remains valid for all HTTP/S subscriptions in the topic. Otherwise, you must compose a
delivery policy for each HTTP/S subscription in your topic, according the capacity of the HTTP/S
server that the policy targets.

You can also set the Content-Type header in the request policy to specify the media type of the
notification. By default, Amazon SNS sends all the notification to HTTP/S endpoints with content
type set to text/plain; charset=UTF-8. Amazon SNS lets you override the default request
policy. See the table below for supported headerContentType and restraints.

The following JSON object represents a delivery policy that instructs Amazon SNS to retry a failed
HTTP/S delivery attempt, as follows:

1. 3 times immediately in the no-delay phase

2. 2 times (1 second apart) in the pre-backoff phase

3. 10 times (with exponential backoff from 1 second to 60 seconds)

4. 35 times (60 seconds apart) in the post-backoff phase

In this sample delivery policy, Amazon SNS makes a total of 50 attempts before discarding the
message. To keep the message after the retries specified in the delivery policy are exhausted,
configure your subscription to move undeliverables messages to a dead-letter queue (DLQ). For
more information, see Amazon SNS dead-letter queues.

Note

This delivery policy also instructs Amazon SNS to throttle deliveries to no more than 10
per second, using the maxReceivesPerSecond property. This self-throttling rate could
result in more messages published (inbound traffic) than delivered (outbound traffic).
When there's more inbound than outbound traffic, your subscription can accumulate a
large message backlog, which might cause high message delivery latency. In your delivery
policies, be sure to specify a value for maxReceivesPerSecond that doesn't adversely
impact your workload.

Creating an HTTP/S delivery policy 261

https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-subscription.html

Amazon Simple Notification Service Developer Guide

Note

This delivery policy overrides the default content type for HTTP/S notification to
application/json.

{
 "healthyRetryPolicy": {
 "minDelayTarget": 1,
 "maxDelayTarget": 60,
 "numRetries": 50,
 "numNoDelayRetries": 3,
 "numMinDelayRetries": 2,
 "numMaxDelayRetries": 35,
 "backoffFunction": "exponential"
 },
 "throttlePolicy": {
 "maxReceivesPerSecond": 10
 },
 "requestPolicy": {
 "headerContentType": "application/json"
 }
}

The delivery policy is composed of a retry policy, throttle policy and a request policy. In total, there
are 9 attributes in a delivery policy.

Policy Description Constraint

minDelayTarget The minimum delay for a
retry.

Unit: Seconds

1 to maximum delay

Default: 20

maxDelayTarget The maximum delay for a
retry.

Unit: Seconds

Minimum delay to 3,600

Default: 20

Creating an HTTP/S delivery policy 262

Amazon Simple Notification Service Developer Guide

Policy Description Constraint

numRetries The total number of retries,
including immediate, pre-
backoff, backoff, and post-
backoff retries.

0 to 100

Default: 3

numNoDelayRetries The number of retries to be
done immediately, with no
delay between them.

0 or greater

Default: 0

numMinDelayRetries The number of retries in the
pre-backoff phase, with the
specified minimum delay
between them.

0 or greater

Default: 0

numMaxDelayRetries The number of retries in the
post-backoff phase, with the
maximum delay between
them.

0 or greater

Default: 0

backoffFunction The model for backoff
between retries.

One of four options:

• arithmetic

• exponential

• geometric

• linear

Default: linear

maxReceivesPerSecond The maximum number of
deliveries per second, per
subscription.

1 or greater

Default: No throttling

Creating an HTTP/S delivery policy 263

Amazon Simple Notification Service Developer Guide

Policy Description Constraint

headerContentType The content type of the
notification being sent to
HTTP/S endpoints.

If the request policy is not
defined, the content type
defaults to text/plain;
charset=UTF-8 .

When the raw message
delivery is disabled for a
subscription (default), or
when the delivery policy is
defined on the topic-level,
the supported header content
types are application/
json and text/plain .

When the raw message
delivery is enabled for a
subscription, the following
content types are supported:

• text/css

• text/csv

• text/html

• text/plain

• text/xml

• application/atom+xml

• application/json

• application/octet-stream

• application/soap+xml

• application/x-www-form-
urlencoded

• application/xhtml+xml

• application/xml

Creating an HTTP/S delivery policy 264

Amazon Simple Notification Service Developer Guide

Amazon SNS uses the following formula to calculate the number of retries in the backoff phase:

numRetries - numNoDelayRetries - numMinDelayRetries - numMaxDelayRetries

You can use three parameters to control the frequency of retries in the backoff phase.

• minDelayTarget – Defines the delay associated with the first retry attempt in the backoff
phase.

• maxDelayTarget – Defines the delay associated with the final retry attempt in the backoff
phase.

• backoffFunction – Defines the algorithm that Amazon SNS uses to calculate the delays
associated with all of the retry attempts between the first and last retries in the backoff phase.
You can use one of four retry-backoff functions.

The following diagram shows how each retry backoff function affects the delay associated with
retries during the backoff phase: A delivery policy with the total number of retries set to 10,
the minimum delay set to 5 seconds, and the maximum delay set to 260 seconds. The vertical
axis represents the delay in seconds associated with each of the 10 retries. The horizontal axis
represents the number of retries, from the first to the tenth attempt.

Creating an HTTP/S delivery policy 265

Amazon Simple Notification Service Developer Guide

Amazon SNS dead-letter queues

A dead-letter queue is an Amazon SQS queue that an Amazon SNS subscription can target for
messages that can't be delivered to subscribers successfully. Messages that can't be delivered
due to client errors or server errors are held in the dead-letter queue for further analysis or
reprocessing. For more information, see Configuring an Amazon SNS dead-letter queue for a
subscription and Amazon SNS message delivery retries.

Note

• The Amazon SNS subscription and Amazon SQS queue must be under the same AWS
account and Region.

• For a FIFO topic, you can use an Amazon SQS queue as a dead-letter queue for the
Amazon SNS subscription. FIFO topic subscriptions use FIFO queues, and standard topic
subscriptions use standard queues.

• To use an encrypted Amazon SQS queue as a dead-letter queue, you must use a custom
KMS with a key policy that grants the Amazon SNS service principal access to AWS KMS
API actions. For more information, see Securing Amazon SNS data with server-side
encryption in this guide and Protecting Amazon SQS Data Using Server-Side Encryption
(SSE) and AWS KMS in the Amazon Simple Queue Service Developer Guide.

Topics

• Why do message deliveries fail?

• How do dead-letter queues work?

• How are messages moved into a dead-letter queue?

• How can I move messages out of a dead-letter queue?

• How can I monitor and log dead-letter queues?

• Configuring an Amazon SNS dead-letter queue for a subscription

Why do message deliveries fail?

In general, message delivery fails when Amazon SNS can't access a subscribed endpoint due
to a client-side or server-side error. When Amazon SNS receives a client-side error, or continues

Dead-letter queues 266

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html

Amazon Simple Notification Service Developer Guide

to receive a server-side error for a message beyond the number of retries specified by the
corresponding retry policy, Amazon SNS discards the message—unless a dead-letter queue is
attached to the subscription. Failed deliveries don't change the status of your subscriptions. For
more information, see Amazon SNS message delivery retries.

Client-side errors

Client-side errors can happen when Amazon SNS has stale subscription metadata. These errors
commonly occur when an owner deletes the endpoint (for example, a Lambda function subscribed
to an Amazon SNS topic) or when an owner changes the policy attached to the subscribed
endpoint in a way that prevents Amazon SNS from delivering messages to the endpoint. Amazon
SNS doesn't retry the message delivery that fails as a result of a client-side error.

Server-side errors

Server-side errors can happen when the system responsible for the subscribed endpoint becomes
unavailable or returns an exception that indicates that it can't process a valid request from Amazon
SNS. When server-side errors occur, Amazon SNS retries the failed deliveries using either a linear or
exponential backoff function. For server-side errors caused by AWS managed endpoints backed by
Amazon SQS or AWS Lambda, Amazon SNS retries delivery up to 100,015 times, over 23 days.

Customer managed endpoints (such as HTTP, SMTP, SMS, or mobile push) can also cause server-
side errors. Amazon SNS retries delivery to these types of endpoints as well. While HTTP endpoints
support customer-defined retry policies, Amazon SNS sets an internal delivery retry policy to 50
times over 6 hours, for SMTP, SMS, and mobile push endpoints.

How do dead-letter queues work?

A dead-letter queue is attached to an Amazon SNS subscription (rather than a topic) because
message deliveries happen at the subscription level. This lets you identify the original target
endpoint for each message more easily.

A dead-letter queue associated with an Amazon SNS subscription is an ordinary Amazon SQS
queue. For more information about the message retention period, see Quotas Related to Messages
in the Amazon Simple Queue Service Developer Guide. You can change the message retention
period using the Amazon SQS SetQueueAttributes API action. To make your applications more
resilient, we recommend setting the maximum retention period for dead-letter queues to 14 days.

How do dead-letter queues work? 267

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-quotas.html#quotas-messages
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Notification Service Developer Guide

How are messages moved into a dead-letter queue?

Your messages are moved into a dead-letter queue using a redrive policy. A redrive policy is a JSON
object that refers to the ARN of the dead-letter queue. The deadLetterTargetArn attribute
specifies the ARN. The ARN must point to an Amazon SQS queue in the same AWS account and
Region as your Amazon SNS subscription. For more information, see Configuring an Amazon SNS
dead-letter queue for a subscription.

The following JSON object is a sample redrive policy, attached to an SNS subscription.

{
 "deadLetterTargetArn": "arn:aws:sqs:us-east-2:123456789012:MyDeadLetterQueue"
}

How can I move messages out of a dead-letter queue?

You can move messages out of a dead-letter queue in two ways:

• Avoid writing Amazon SQS consumer logic – Set your dead-letter queue as an event source to
the Lambda function to drain your dead-letter queue.

• Write Amazon SQS consumer logic – Use the Amazon SQS API, AWS SDK, or AWS CLI to write
custom consumer logic for polling, processing, and deleting the messages in the dead-letter
queue.

How can I monitor and log dead-letter queues?

You can use Amazon CloudWatch metrics to monitor dead-letter queues associated with your
Amazon SNS subscriptions. All Amazon SQS queues emit CloudWatch metrics at one-minute
intervals. For more information, see Available CloudWatch metrics for Amazon SQS in the Amazon
Simple Queue Service Developer Guide. All Amazon SNS subscriptions with dead-letter queues
also emit CloudWatch metrics. For more information, see Monitoring Amazon SNS topics using
CloudWatch.

To be notified of activity in your dead-letter queues, you can use CloudWatch metrics and alarms.
Setting up an alarm for the NumberOfMessagesSent metric is not suitable because this metric
does not capture messages sent to a DLQ as a result of failed processing attempts. Instead, use
the ApproximateNumberOfMessagesVisible metric, which captures all messages currently
available in the DLQ, including those moved due to processing failures.

How are messages moved into a dead-letter queue? 268

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html

Amazon Simple Notification Service Developer Guide

Example CloudWatch alarm setup

1. Create a CloudWatch alarm for the ApproximateNumberOfMessagesVisible metric.

2. Set the alarm threshold to 1 (or another appropriate value based on your expectations and
DLQ traffic).

3. Specify an Amazon SNS topic to be notified when the alarm goes off. This Amazon SNS topic
can deliver your alarm notification to any endpoint type (such as an email address, phone
number, or mobile pager app).

You can use CloudWatch Logs to investigate the exceptions that cause any Amazon SNS deliveries
to fail and for messages to be sent to dead-letter queues. Amazon SNS can log both successful and
failed deliveries in CloudWatch. For more information, see Amazon SNS mobile app attributes.

Configuring an Amazon SNS dead-letter queue for a subscription

A dead-letter queue is an Amazon SQS queue that an Amazon SNS subscription can target for
messages that can't be delivered to subscribers successfully. Messages that can't be delivered
due to client errors or server errors are held in the dead-letter queue for further analysis or
reprocessing. For more information, see Amazon SNS dead-letter queues and Amazon SNS
message delivery retries.

This page shows how you can use the AWS Management Console, an AWS SDK, the AWS CLI, and
AWS CloudFormation to configure a dead-letter queue for an Amazon SNS subscription.

Note

For a FIFO topic, you can use an Amazon SQS queue as a dead-letter queue for the
Amazon SNS subscription. FIFO topic subscriptions use FIFO queues, and standard topic
subscriptions use standard queues.

Prerequisites

Before you configure a dead-letter queue, complete the following prerequisites:

1. Create an Amazon SNS topic named MyTopic.

2. Create an Amazon SQS queue named MyEndpoint, to be used as the endpoint for the
Amazon SNS subscription.

Configuring a dead-letter queue 269

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html

Amazon Simple Notification Service Developer Guide

3. (Skip for AWS CloudFormation) Subscribe the queue to the topic.

4. Create another Amazon SQS queue named MyDeadLetterQueue, to be used as the dead-
letter queue for the Amazon SNS subscription.

5. To give Amazon SNS principal access to the Amazon SQS API action, set the following queue
policy for MyDeadLetterQueue.

{
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "SQS:SendMessage",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:MyDeadLetterQueue",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:sns:us-east-2:123456789012:MyTopic"
 }
 }
 }]
}

Topics

• To configure a dead-letter queue for an Amazon SNS subscription using the AWS Management
Console

• To configure a dead-letter queue for an Amazon SNS subscription using an AWS SDK

• To configure a dead-letter queue for an Amazon SNS subscription using the AWS CLI

• To configure a dead-letter queue for an Amazon SNS subscription using AWS CloudFormation

To configure a dead-letter queue for an Amazon SNS subscription using the AWS
Management Console

Before your begin this tutorial, make sure you complete the prerequisites.

1. Sign in to the Amazon SQS console.

2. Create an Amazon SQS queue or use an existing queue and note the ARN of the queue on the
Details tab of the queue, for example:

Configuring a dead-letter queue 270

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html

Amazon Simple Notification Service Developer Guide

arn:aws:sqs:us-east-2:123456789012:MyDeadLetterQueue

3. Sign in to the Amazon SNS console.

4. On the navigation panel, choose Subscriptions.

5. On the Subscriptions page, select an existing subscription and then choose Edit.

6. On the Edit 1234a567-bc89-012d-3e45-6fg7h890123i page, expand the Redrive policy
(dead-letter queue) section, and then do the following:

a. Choose Enabled.

b. Specify the ARN of an Amazon SQS queue.

7. Choose Save changes.

Your subscription is configured to use a dead-letter queue.

To configure a dead-letter queue for an Amazon SNS subscription using an AWS
SDK

Before you run this example, make sure that you complete the prerequisites.

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code example shows how to use SetSubscriptionAttributesRedrivePolicy.

Java

SDK for Java 1.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Specify the ARN of the Amazon SNS subscription.
String subscriptionArn =
 "arn:aws:sns:us-east-2:123456789012:MyEndpoint:1234a567-
bc89-012d-3e45-6fg7h890123i";

Configuring a dead-letter queue 271

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/java/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

// Specify the ARN of the Amazon SQS queue to use as a dead-letter queue.
String redrivePolicy =
 "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-2:123456789012:MyDeadLetterQueue\"}";

// Set the specified Amazon SQS queue as a dead-letter queue
// of the specified Amazon SNS subscription by setting the RedrivePolicy
 attribute.
SetSubscriptionAttributesRequest request = new SetSubscriptionAttributesRequest()
 .withSubscriptionArn(subscriptionArn)
 .withAttributeName("RedrivePolicy")
 .withAttributeValue(redrivePolicy);
sns.setSubscriptionAttributes(request);

To configure a dead-letter queue for an Amazon SNS subscription using the AWS
CLI

Before your begin this tutorial, make sure you complete the prerequisites.

1. Install and configure the AWS CLI. For more information, see the AWS Command Line Interface
User Guide.

2. Use the following command.

aws sns set-subscription-attributes \
--subscription-arn arn:aws:sns:us-east-2:123456789012:MyEndpoint:1234a567-
bc89-012d-3e45-6fg7h890123i
--attribute-name RedrivePolicy
--attribute-value "{\"deadLetterTargetArn\": \"arn:aws:sqs:us-
east-2:123456789012:MyDeadLetterQueue\"}"

To configure a dead-letter queue for an Amazon SNS subscription using AWS
CloudFormation

Before your begin this tutorial, make sure you complete the prerequisites.

1. Copy the following JSON code to a file named MyDeadLetterQueue.json.

Configuring a dead-letter queue 272

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/

Amazon Simple Notification Service Developer Guide

{
 "Resources": {
 "mySubscription": {
 "Type" : "AWS::SNS::Subscription",
 "Properties" : {
 "Protocol": "sqs",
 "Endpoint": "arn:aws:sqs:us-east-2:123456789012:MyEndpoint",
 "TopicArn": "arn:aws:sns:us-east-2:123456789012:MyTopic",
 "RedrivePolicy": {
 "deadLetterTargetArn":
 "arn:aws:sqs:us-east-2:123456789012:MyDeadLetterQueue"
 }
 }
 }
 }
}

2. Sign in to the AWS CloudFormation console.

3. On the Select Template page, choose Upload a template to Amazon S3, choose your
MyDeadLetterQueue.json file, and then choose Next.

4. On the Specify Details page, enter MyDeadLetterQueue for Stack Name, and then choose
Next.

5. On the Options page, choose Next.

6. On the Review page, choose Create.

AWS CloudFormation begins to create the MyDeadLetterQueue stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, AWS CloudFormation displays
the CREATE_COMPLETE status.

Configuring a dead-letter queue 273

https://console.aws.amazon.com/cloudformation/

Amazon Simple Notification Service Developer Guide

Amazon SNS message archiving, replay, and analytics

Amazon SNS standard topics support message archiving through Amazon Data Firehose. You can
fan out notifications to Firehose delivery streams, which allows you to send notifications to storage
and analytics destinations that Firehose supports, including Amazon Simple Storage Service
(Amazon S3), Amazon Redshift, and more.

Amazon SNS FIFO topics support an in-place, no-code, message archive that lets topic owners
store (or archive) messages published to a topic for up to 365 days. For topics with an active
ArchivePolicy, subscribers can then create a ReplayPolicy to retrieve (or replay) the archived
messages back to a subscribed endpoint. To learn more about this feature, see Amazon SNS
message archiving and replay for FIFO topics.

Features Standard Topics FIFO Topics

Message archiving Fanout to Firehose delivery
streams

Amazon SNS message
archiving for FIFO topic
owners

Message replay Replay for standard topics is
not a built in feature. Many
customers build their own
based on their message
archive.

Amazon SNS message replay
for FIFO topic subscribers

274

Amazon Simple Notification Service Developer Guide

Resource management and optimization in Amazon SNS

This topic provides guidance on how to leverage the full potential of Amazon SNS by ensuring
optimal performance, reducing unnecessary costs, and maintaining well-organized resources.

Topics

• Amazon SNS topic tagging

Amazon SNS topic tagging

Amazon SNS supports tagging of Amazon SNS topics. This can help you track and manage the
costs associated with your topics, provide enhanced security in your AWS Identity and Access
Management (IAM) policies, and lets you easily search or filter through thousands of topics.
Tagging enables you to manage your Amazon SNS topics using AWS Resource Groups. For more
information on Resource Groups, see the AWS Resource Groups User Guide.

Topics

• Tagging for cost allocation

• Tagging for access control

• Tagging for resource searching and filtering

• Configuring Amazon SNS topic tags

Tagging for cost allocation

To organize and identify your Amazon SNS topics for cost allocation, you can add tags that identify
the purpose of a topic. This is especially useful when you have many topics. You can use cost
allocation tags to organize your AWS bill to reflect your own cost structure. To do this, sign up to
get your AWS account bill to include the tag keys and values. For more information, see Setting Up
a Monthly Cost Allocation Report in the AWS Billing and Cost Management User Guide.

For example, you can add tags that represent the cost center and purpose of your Amazon SNS
topics, as follows:

Tagging 275

https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html

Amazon Simple Notification Service Developer Guide

Resource Key Value

Cost Center 43289Topic 1

Application Order processing

Cost Center 43289Topic 2

Application Payment processing

Cost Center 76585Topic 3

Application Archiving

This tagging scheme lets you to group two topics performing related tasks in the same cost center,
while tagging an unrelated activity with a different cost allocation tag.

Tagging for access control

AWS Identity and Access Management supports controlling access to resources based on tags. After
tagging your resources, provide information about your resource tags in the condition element of
an IAM policy to manage tag-based access. For information on how to tag your resources using the
Amazon SNS console or the AWS SDK, see Configuring tags.

You can restrict access for an IAM identity. For example, you can restrict Publish and
PublishBatch access to all Amazon SNS topics that include a tag with the key environment
and the value production, while allowing access to all other Amazon SNS topics. In the example
below, the policy restricts the ability to publish messages to topics tagged with production, while
allowing messages to be published to topics tagged with development. For more information, see
Controlling Access Using Tags in the IAM User Guide.

Note

Setting the IAM permission for Publish sets permission for both Publish and
PublishBatch.

{

Tagging for access control 276

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Amazon Simple Notification Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:*:*:*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "production"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:*:*:*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "development"
 }
 }
 }]
}

Tagging for resource searching and filtering

An AWS account can have tens of thousands of Amazon SNS topics (see Amazon SNS Quotas for
details). By tagging your topics, you can simplify the process of searching through or filtering out
topics.

For example, you may have hundreds of topics associated with your production environment.
Rather than having to manually search for these topics, you can query for all topics with a given
tag:

import com.amazonaws.services.resourcegroups.AWSResourceGroups;
import com.amazonaws.services.resourcegroups.AWSResourceGroupsClientBuilder;
import com.amazonaws.services.resourcegroups.model.QueryType;
import com.amazonaws.services.resourcegroups.model.ResourceQuery;
import com.amazonaws.services.resourcegroups.model.SearchResourcesRequest;

Tagging for resource searching and filtering 277

https://docs.aws.amazon.com/general/latest/gr/sns.html

Amazon Simple Notification Service Developer Guide

import com.amazonaws.services.resourcegroups.model.SearchResourcesResult;

public class Example {
 public static void main(String[] args) {
 // Query Amazon SNS Topics with tag "keyA" as "valueA"
 final String QUERY = "{\"ResourceTypeFilters\":[\"AWS::SNS::Topic\"],
\"TagFilters\":[{\"Key\":\"keyA\", \"Values\":[\"valueA\"]}]}";

 // Initialize ResourceGroup client
 AWSResourceGroups awsResourceGroups = AWSResourceGroupsClientBuilder
 .standard()
 .build();

 // Query all resources with certain tags from ResourceGroups
 SearchResourcesResult result = awsResourceGroups.searchResources(
 new SearchResourcesRequest().withResourceQuery(
 new ResourceQuery()
 .withType(QueryType.TAG_FILTERS_1_0)
 .withQuery(QUERY)
));
 System.out.println("SNS Topics with certain tags are " +
 result.getResourceIdentifiers());
 }
}

Configuring Amazon SNS topic tags

This page shows how you can use the AWS Management Console, an AWS SDK, and the AWS CLI to
configure tags for an Amazon SNS topic.

Important

Do not add personally identifiable information (PII) or other confidential or sensitive
information in tags. Tags are accessible to other Amazon Web Services, including billing.
Tags are not intended to be used for private or sensitive data.

Topics

• Listing, adding, and removing tags for an Amazon SNS topic using the AWS Management
Console

• Adding tags to a topic using an AWS SDK

Configuring tags 278

Amazon Simple Notification Service Developer Guide

• Managing tags with Amazon SNS API actions

• API actions that support ABAC

Listing, adding, and removing tags for an Amazon SNS topic using the AWS
Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. On the Topics page, choose a topic and then choose Edit.

4. Expand the Tags section.

The tags added to the topic are listed.

5. Modify topic tags:

• To add a tag, choose Add tag and enter a Key and Value (optional).

• To remove a tag, choose Remove tag next to a key-value pair.

6. Choose Save changes.

Adding tags to a topic using an AWS SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code examples show how to use TagResource.

CLI

AWS CLI

To add a tag to a topic

The following tag-resource example adds a metadata tag to the specified Amazon SNS
topic.

aws sns tag-resource \
 --resource-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --tags Key=Team,Value=Alpha

Configuring tags 279

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html

Amazon Simple Notification Service Developer Guide

This command produces no output.

• For API details, see TagResource in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.Tag;
import software.amazon.awssdk.services.sns.model.TagResourceRequest;
import java.util.ArrayList;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class AddTags {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to which tags are added.

 """;

Configuring tags 280

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/tag-resource.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 addTopicTags(snsClient, topicArn);
 snsClient.close();
 }

 public static void addTopicTags(SnsClient snsClient, String topicArn) {
 try {
 Tag tag = Tag.builder()
 .key("Team")
 .value("Development")
 .build();

 Tag tag2 = Tag.builder()
 .key("Environment")
 .value("Gamma")
 .build();

 List<Tag> tagList = new ArrayList<>();
 tagList.add(tag);
 tagList.add(tag2);

 TagResourceRequest tagResourceRequest = TagResourceRequest.builder()
 .resourceArn(topicArn)
 .tags(tagList)
 .build();

 snsClient.tagResource(tagResourceRequest);
 System.out.println("Tags have been added to " + topicArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Configuring tags 281

Amazon Simple Notification Service Developer Guide

• For API details, see TagResource in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun addTopicTags(topicArn: String) {
 val tag =
 Tag {
 key = "Team"
 value = "Development"
 }

 val tag2 =
 Tag {
 key = "Environment"
 value = "Gamma"
 }

 val tagList = mutableListOf<Tag>()
 tagList.add(tag)
 tagList.add(tag2)

 val request =
 TagResourceRequest {
 resourceArn = topicArn
 tags = tagList
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.tagResource(request)
 println("Tags have been added to $topicArn")
 }
}

Configuring tags 282

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see TagResource in AWS SDK for Kotlin API reference.

Managing tags with Amazon SNS API actions

To manage tags using the Amazon SNS API, use the following API actions:

• ListTagsForResource

• TagResource

• UntagResource

API actions that support ABAC

The following is a list of API actions that support attribute-based access control (ABAC). For more
details about ABAC, see What is ABAC for AWS? in the IAM User Guide.

• AddPermission

• ConfirmSubscription

• DeleteTopic

• GetDataProtectionPolicy

• GetSubscriptionAttributes

• GetTopicAttributes

• ListSubscriptionsByTopic

• ListTagsForResource

• Publish

• PublishBatch

• PutDataProtectionPolicy

• RemovePermission

• SetSubscriptionAttributes

• SetTopicAttributes

• Subscribe

• TagResource

Configuring tags 283

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/sns/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/sns/latest/api/API_TagResource.html
https://docs.aws.amazon.com/sns/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/sns/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_GetDataProtectionPolicy.html
https://docs.aws.amazon.com/sns/latest/api/API_GetSubscriptionAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetTopicAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptionsByTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/sns/latest/api/API_PublishBatch.html
https://docs.aws.amazon.com/sns/latest/api/API_PutDataProtectionPolicy.html
https://docs.aws.amazon.com/sns/latest/api/API_RemovePermission.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_TagResource.html

Amazon Simple Notification Service Developer Guide

• Unsubscribe

• UntagResource

Configuring tags 284

https://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_UntagResource.html

Amazon Simple Notification Service Developer Guide

Amazon SNS event sources and destinations
Amazon SNS connects AWS services and external systems by routing event-driven notifications.
Amazon SNS receives events from various AWS services, such as data pipeline updates, Amazon
EC2 scaling actions, or security alerts, and publishes these events to Amazon SNS topics. These
topics then send notifications to designated destinations.

Amazon SNS supports two main types of destinations: Application-to-Application (A2A) and
Application-to-Person (A2P). In A2A messaging, Amazon SNS can send events to Lambda to trigger
custom business logic, to Amazon SQS for queuing messages, and to Amazon Kinesis Data Firehose
for streaming data to storage and analytics services. For A2P messaging, Amazon SNS can send
notifications via SMS, email, and push notifications to mobile devices, ensuring that users or teams
receive timely alerts.

By acting as a central hub, Amazon SNS routes notifications to the right places, helping you
automate and manage your AWS infrastructure more effectively. This setup allows for seamless
integration between services and reliable communication with users and systems.

Topics

• Amazon SNS event sources

• Amazon SNS event destinations

Amazon SNS event sources

Amazon SNS integrates with a wide range of AWS services across various categories, allowing these
services to publish events to Amazon SNS topics. This integration provides real-time notifications
of key events, such as changes in infrastructure, application performance, and cost management.

Note

Amazon SNS introduced FIFO topics in October, 2020. Currently, most AWS services
support sending events to standard topics only.

Topics

• Analytics services

• Application integration services

Event sources 285

Amazon Simple Notification Service Developer Guide

• Billing & cost management services

• Business applications services

• Compute services

• Containers services

• Customer engagement services

• Database services

• Developer tools services

• Front-end web & mobile services

• Game development services

• Internet of Things services

• Machine learning services

• Management & governance services

• Media services

• Migration & transfer services

• Networking & content delivery services

• Security, identity, & compliance services

• Serverless services

• Storage services

• Additional event sources

Analytics services

The following table describes how Amazon SNS integrates with AWS analytics services such as
Athena, AWS Data Pipeline, and Amazon Redshift to provide real-time notifications for key events,
including control limit breaches, pipeline status updates, and data warehouse activities.

You can leverage these integrations to automate responses and maintain effective oversight of
your data operations.

AWS service Benefit of using with Amazon SNS

Amazon Athena – Allows you to analyze data
in Amazon S3 using standard SQL.

Receive notifications when control limits are
exceeded. For more information, see Setting

Analytics 286

https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

data usage control limits in the Amazon
Athena User Guide.

AWS Data Pipeline – Helps automate the
movement and transformation of data.

Receive notifications about the status of
pipeline components. For more informati
on, see SnsAlarm in the AWS Data Pipeline
Developer Guide.

Amazon Redshift – Manages all of the work
of setting up, operating, and scaling a data
 warehouse.

Receive notifications of Amazon Redshift
events. For more information, see Amazon
Redshift event notifications in the Amazon
Redshift Management Guide.

Application integration services

The following table describes how Amazon SNS integrates with application integration services
such as EventBridge and AWS Step Functions, enabling real-time data routing and notifications for
business-critical applications.

You can leverage these integrations to receive alerts from EventBridge events and orchestrate
workflows using Step Functions, enhancing the automation and responsiveness of your
applications.

AWS service Benefit of using with Amazon SNS

Amazon EventBridge – Delivers a stream of
real-time data from your own applications,
software-as-a-service (SaaS) applications
, and AWS services and routes that data to
targets, including Amazon SNS. EventBridge
was formerly called CloudWatch Events.

Receive notifications of EventBridge events.
For more information, see Amazon EventBrid
ge targets in the Amazon EventBridge User
Guide.

AWS Step Functions – Lets you combine AWS
Lambda functions and other AWS services to
 build business-critical applications.

Receive notification of Step Functions events.
For more information, see Call Amazon

Application integration 287

https://docs.aws.amazon.com/athena/latest/ug/workgroups-setting-control-limits-cloudwatch.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-snsalarm.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-event-notifications.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-event-notifications.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-sns.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

SNS with Step Functions in the AWS Step
Functions Developer Guide.

Billing & cost management services

The following table describes how AWS Billing and Cost Management integrates with Amazon SNS
to provide notifications for budgets, price changes, and cost anomalies.

You can leverage this integration to set-up Amazon SNS topics to receive real-time alerts about
your AWS spending, helping you monitor costs and respond to unexpected charges efficiently.

AWS service Benefit of using with Amazon SNS

AWS Billing and Cost Management – Provides
features that help you monitor your costs and
pay your bill.

Receive budget notifications, price change
notifications, and anomaly alerts. For more
information, see the following pages in the
 AWS Billing User Guide:

•
Creating an Amazon SNS topic for budget
notifications

•
Setting up notifications

•
Detecting unusual spend with AWS Cost
Anomaly Detection

Business applications services

The following table describes how Amazon Chime integrates with Amazon SNS to send
notifications for important meeting events, enabling you to stay informed about your
communications and scheduling.

You can leverage this integration to utilize Amazon Chime SDK event notifications to enhance your
collaboration tools within and outside your organization.

Billing and cost management 288

https://docs.aws.amazon.com/step-functions/latest/dg/connect-sns.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-sns-policy.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-sns-policy.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/price-notification.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-ad.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-ad.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

Amazon Chime – Lets you meet, chat, and
place business calls inside and outside of your
organization.

Receive important meeting event notificat
ions. For more information, see Amazon
Chime SDK event notifications in the Amazon
Chime Developer Guide.

Compute services

The following table describes how Amazon SNS integrates with various AWS compute services,
enabling you to receive notifications for key events such as Auto Scaling actions, EC2 Image Builder
completions, Elastic Beanstalk environment changes, Lambda function outputs, and Lightsail
metric thresholds.

You can leverage these integrations to efficiently manage your applications and resources by
staying informed about critical updates and actions across AWS services.

AWS service Benefit of using with Amazon SNS

Amazon EC2 Auto Scaling – Helps you have
the correct number of Amazon Elastic
Compute Cloud (Amazon EC2) instances
available for handling your application's load.

Receive notifications when Auto Scaling
launches or terminates Amazon EC2 instances
in your Auto Scaling group. For more informati
on, see Getting Amazon SNS notifications
when your Auto Scaling group scales in the
 Amazon EC2 Auto Scaling User Guide.

EC2 Image Builder – Helps automate the
creation, management, and deployment of
customized, secure, and up-to-date server
images that are pre-installed and pre-confi
gured with software and settings to meet
specific IT standards.

Receive notifications when builds are
complete. For more information, see Tracking
the latest server images in EC2 Image Builder
pipelines on the AWS Compute Blog.

AWS Elastic Beanstalk – Handles the details
of capacity provisioning, load balancing, and

Receive notifications of important events that
affect your application. For more information,
see Elastic Beanstalk environment notificat

Compute 289

https://docs.aws.amazon.com/chime/latest/dg/what-is-chime.html
https://docs.aws.amazon.com/chime/latest/dg/mtgs-sdk-notifications.html
https://docs.aws.amazon.com/chime/latest/dg/mtgs-sdk-notifications.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ASGettingNotifications.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ASGettingNotifications.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/what-is-image-builder.html
https://aws.amazon.com/blogs/compute/tracking-the-latest-server-images-in-amazon-ec2-image-builder-pipelines/
https://aws.amazon.com/blogs/compute/tracking-the-latest-server-images-in-amazon-ec2-image-builder-pipelines/
https://aws.amazon.com/blogs/compute/tracking-the-latest-server-images-in-amazon-ec2-image-builder-pipelines/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/welcome.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.sns.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

 scaling for your application, and provides
application health monitoring.

ions with Amazon SNS in the AWS Elastic
Beanstalk Developer Guide.

AWS Lambda – Lets you run code without
provisioning or managing servers.

Receive function output data by setting an
SNS topic as a Lambda dead-letter queue
or a Lambda destination. For more informati
on, see Asynchronous invocation in the AWS
Lambda Developer Guide.

Amazon Lightsail – Helps developers get
started using AWS to build websites or web
applications.

Receive notifications when a metric for one of
your instances, databases, or load balancers
crosses a specified threshold. For more infor
mation, see Adding notification contacts in
Amazon Lightsail in the Amazon Lightsail
Developer Guide.

Containers services

The following table describes how Amazon SNS integrates with AWS container services such
as Amazon EKS Distro and Amazon ECS, allowing you to track updates and security patches for
Amazon EKS clusters and receive notifications for new ECS-optimized AMI releases.

You can leverage these integrations to maintain the security and efficiency of your container
deployments by staying informed about important updates and changes.

AWS service Benefit of using with Amazon SNS

Amazon EKS Distro – Lets you create reliable
and secure clusters wherever your appli
cations are deployed.

Track updates and security patches for clusters
created with Amazon EKS Distro. For more
information, see Introducing Amazon EKS
Distro - an open source Kubernetes distrib
ution used by Amazon EKS.

Amazon Elastic Container Service (Amazon
ECS) – Enables you to run, stop, and manage
containers on a cluster.

Receive notifications when a new Amazon
ECS-optimized AMI is available. For more
information, see Subscribing to Amazon ECS-

Containers 290

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.sns.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://lightsail.aws.amazon.com/ls/docs/all
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-adding-editing-notification-contacts
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-adding-editing-notification-contacts
https://docs.aws.amazon.com/eks/latest/userguide/eks-distro.html
https://aws.amazon.com/about-aws/whats-new/2020/12/introducing-amazon-eks-distro/
https://aws.amazon.com/about-aws/whats-new/2020/12/introducing-amazon-eks-distro/
https://aws.amazon.com/about-aws/whats-new/2020/12/introducing-amazon-eks-distro/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS-AMI-SubscribeTopic.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

optimized AMI update notifications in the
 Amazon Elastic Container Service Developer
Guide.

Customer engagement services

The following table describes how Amazon SNS enhances customer engagement services by
integrating with Amazon Connect, AWS End User Messaging SMS, and Amazon Simple Email
Service (SES), enabling you to receive alerts and validations, configure two-way SMS messaging,
and monitor email notifications for bounces, complaints, and deliveries.

These integrations help you manage customer communications across multiple channels.

AWS service Benefit of using with Amazon SNS

Amazon Connect – Lets you set up an
omnichannel cloud contact center to engage
with your customers.

Receive alerts and validations. For more
information, see The power of AWS with
Amazon Connect in the Amazon Connect
Administrator Guide.

AWS End User Messaging SMS – Helps you
engage your customers by sending them
email, SMS and voice messages, and push
 notifications.

Configure two-way SMS, which allows you
to receive messages from your customers
. For more information, see Two-way SMS
messaging in the AWS End User Messaging
SMS User Guide.

Amazon Simple Email Service (Amazon SES)
– Provides cost-effective way for you to send
and receive email using your own email
addresses and domains.

Receive notifications of bounces, complaint
s, and deliveries. For more information, see
Configuring Amazon SNS notifications for
Amazon SES in the Amazon Simple Email
Service Developer Guide.

Customer engagement 291

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS-AMI-SubscribeTopic.html
https://docs.aws.amazon.com/connect/latest/adminguide/what-is-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/related-services-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/related-services-amazon-connect.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-pool-two-way-sms.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-pool-two-way-sms.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html

Amazon Simple Notification Service Developer Guide

Database services

The following table describes how Amazon SNS integrates with AWS database services such
as AWS Database Migration Service (DMS), Amazon DynamoDB, Amazon ElastiCache, Amazon
Neptune, Amazon Redshift, and Amazon Relational Database Service (RDS) to send notifications
about important events such as data migrations, maintenance activities, cache updates, and
database changes.

These integrations help you to monitor and manage your database environments more effectively
by providing timely alerts on key operational events.

AWS service Benefit of using with Amazon SNS

AWS Database Migration Service – Migrates
data from on-premises databases into the
 AWS Cloud.

Receive notifications when AWS DMS events
occur; for example, when a replication
instance is created or deleted. For more
information, see Working with events an
d notifications in AWS Database Migration
Service in the AWS Database Migration Service
User Guide.

Amazon DynamoDB – Provides fast and
predictable performance with seamless
 scalability in this fully managed NoSQL
database service.

Receive notifications when maintenance
events occur. For more information, see
Customizing DAX cluster settings in the
 Amazon DynamoDB Developer Guide.

Amazon ElastiCache – Provides a high
performance, resizeable, and cost-effective
 in-memory cache, while removing complexit
y associated with deploying and managing a
distributed cache environment.

Receive notifications when significant events
occur. For more information, see Event
notifications and Amazon SNS in the Amazon
ElastiCache (Memcached) User Guide.

Amazon Neptune – Enables you to build and
run applications that work with highly con
nected datasets.

Receive notifications when a Neptune event
occurs. For more information, see Using Nep
tune event notification in the Neptune User
Guide.

Database 292

https://docs.aws.amazon.com/dms/latest/userguide/Introduction.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.cluster-management.html#DAX.cluster-management.custom-settings
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/WhatIs.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/ElastiCacheSNS.html
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://docs.aws.amazon.com/neptune/latest/userguide/events.html
https://docs.aws.amazon.com/neptune/latest/userguide/events.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

Amazon Redshift – Manages all of the work
of setting up, operating, and scaling a data
 warehouse.

Receive notifications of Amazon Redshift
events. For more information, see Amazon
Redshift event notifications in the Amazon
Redshift Management Guide.

Amazon Relational Database Service –
 Makes it easier to set up, operate, and scale a
relational database in the AWS Cloud.

Receive notifications of Amazon RDS events.
For more information, see Using Amazon RDS
event notification in the Amazon RDS User
Guide.

Developer tools services

The following table describes how Amazon SNS integrates with AWS developer tools services, such
as AWS CodeBuild, AWS CodeCommit, AWS CodeDeploy, Amazon CodeGuru, AWS CodePipeline,
and AWS CodeStar, to provide notifications for critical events such as build status changes,
repository updates, deployment progress, performance anomalies, and pipeline actions.

These integrations helps you efficiently monitor and manage your software development
workflows by receiving timely alerts on important events.

AWS service Benefit of using with Amazon SNS

AWS CodeBuild – Compiles your source code,
runs unit tests, and produces artifacts that are
ready to deploy.

Receive notifications when builds succeed, fail,
or move from one build phase to another.
For more information, see Build notification
s sample for CodeBuild in the AWS CodeBuild
User Guide.

AWS CodeCommit – Provides version control
for privately storing and managing assets in
the cloud.

Receive notifications about CodeCommit
repository events. For more information,
see Example: Create an AWS CodeCommit
trigger for an Amazon SNS topic in the AWS
CodeCommit User Guide.

Developer tools 293

https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-event-notifications.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-event-notifications.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-build-notifications.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-build-notifications.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify-sns.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify-sns.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

AWS CodeDeploy – Automates applicati
on deployments to Amazon EC2 instances,
 on-premises instances, serverless Lambda
functions, or Amazon ECS services.

Receive notifications for CodeDeploy
deployments or instance events. For more
information, see Create a trigger for a
CodeDeploy event in the AWS CodeDeploy
User Guide.

Amazon CodeGuru – Collects runtime
performance data from your live applications,
and provides recommendations that can help
you fine-tune your application performance.

Receive notifications when anomalies occur.
For more information, see Working with
anomalies and recommendation reports in
 the Amazon CodeGuru User Guide.

AWS CodePipeline – Automates the steps
required to release software changes co
ntinuously.

Receive notifications about approval actions.
For more information, see Manage approval
actions in CodePipeline in the AWS CodePipel
ine User Guide.

AWS CodeStar – Create, manage, and work
with software development projects on AWS.

Receive notifications about events that
occur in the resources that you use. For more
information, see Configure Amazon SNS
topics for notifications in the Developer Tools
Console User Guide.

Front-end web & mobile services

The following table describes how Amazon SNS integrates with AWS End User Messaging SMS to
enhance customer engagement by sending emails, SMS, voice messages, and push notifications,
including the ability to configure two-way SMS for receiving customer messages.

This integration allows you to interact more effectively with your customers across various
communication channels.

AWS service Benefit of using with Amazon SNS

AWS End User Messaging SMS – Helps you
engage your customers by sending them

Configure two-way SMS, which allows you
to receive messages from your customers

Front-end web & mobile 294

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-sns-event-notifications-create-trigger.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring-sns-event-notifications-create-trigger.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-recommendation-reports.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-recommendation-reports.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/approvals.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/approvals.html
https://docs.aws.amazon.com/codestar/latest/userguide/welcome.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/set-up-sns.html
https://docs.aws.amazon.com/dtconsole/latest/userguide/set-up-sns.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

email, SMS and voice messages, and push
 notifications.

. For more information, see Two-way SMS
messaging in the AWS End User Messaging
SMS User Guide.

Game development services

The following table describes how Amazon SNS integrates with Amazon GameLift to provide
notifications for matchmaking and queue events in session-based multiplayer game servers.

This integration helps game developers automate and monitor the deployment, operation, and
scaling of their game servers, ensuring a seamless gaming experience.

AWS service Benefit of using with Amazon SNS

Amazon GameLift – Provides solutions for
hosting session-based multiplayer game
servers in the cloud, including a fully managed
service for deploying, operating, and scaling
game servers.

Receive matchmaking and queue event
notifications. For more information, see the
following pages:

•
For matchmaking notifications, see Set up
FlexMatch event notification in the Amazon
GameLift FlexMatch Developer Guide.

•
For queue notifications, see Set up event
notification for game session placement in
the Amazon GameLift Developer Guide.

Internet of Things services

The following table descrives how Amazon SNS integrates with AWS IoT services, such as AWS IoT
Core, AWS IoT Device Defender, AWS IoT Events, and AWS IoT Greengrass, to provide notifications
for IoT events and alerts.

These integrations allow you to effectively monitor device behavior, receive alerts for abnormal
activities, and manage IoT devices with real-time updates and actions.

Game development 295

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-pool-two-way-sms.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-pool-two-way-sms.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-intro.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-notification.html
https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-notification.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/queue-notification.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/queue-notification.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

AWS IoT Core – Provides the cloud services
that connect your IoT devices to other devices
and AWS Cloud services.

Receive notifications of AWS IoT Core events.
For more information, see Creating an
Amazon SNS rule in the AWS IoT Developer
Guide.

AWS IoT Device Defender – Allows you to
audit the configuration of your devices, m
onitor connected devices to detect abnormal
behavior, and mitigate security risks.

Receive alarms when a device violates a
behavior. For more information, see How to
use AWS IoT Device Defender detect in the
 AWS IoT Developer Guide.

AWS IoT Events – Lets you monitor your
equipment or device fleets for failures or
changes in operation, and trigger actions
when such events occur.

Receive notifications of AWS IoT Events
events. For more information, see Amazon
Simple Notification Service in the AWS IoT
Events Developer Guide.

AWS IoT Greengrass – Extends AWS onto
physical devices so they can act locally on
the data they generate, while still using the
cloud for management, analytics, and durable
storage.

Receive notifications of AWS IoT Greengras
s events. For more information, see SNS
connector in the AWS IoT Greengrass Version 1
Developer Guide.

Machine learning services

The following table describes how Amazon SNS integrates with AWS machine learning services,
such as Amazon CodeGuru, Amazon DevOps Guru, Amazon Lookout for Metrics, Amazon
Rekognition, and Amazon SageMaker AI, to provide notifications for anomalies, operational
insights, and data labeling activities.

These integrations allow you to monitor application performance, receive alerts for data
irregularities, and streamline the deployment of machine learning models with real-time updates.

AWS service Benefit of using with Amazon SNS

Amazon CodeGuru – Collects runtime
performance data from your live applications,

Receive notifications when anomalies occur.
For more information, see Working with

Machine learning 296

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sns-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sns-rule.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/detect-HowToHowTo.html
https://docs.aws.amazon.com/iot/latest/developerguide/detect-HowToHowTo.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html#iotevents-sns
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html#iotevents-sns
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/sns-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/sns-connector.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-recommendation-reports.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

and provides recommendations that can help
you fine-tune your application performance.

anomalies and recommendation reports in
 the Amazon CodeGuru User Guide.

Amazon DevOps Guru – Generates operation
al insights using machine learning to help you
improve the performance of your operational
applications.

Forward insights and confirmations. For
more information, see Deliver ML-powered
operational insights to your on-call teams usi
ng PagerDuty with Amazon DevOps Guru on
the AWS Management & Governance Blog.

Amazon Lookout for Metrics – Finds anomalies
in your data, determines their root causes,
and enables you to quickly take action.

Receive notifications of anomalies. For more
information, see Using Amazon SNS with
Lookout for Metrics in the Amazon Lookout
for Metrics Developer Guide.

Amazon Rekognition – Lets you add image
and video analysis to your applications

Receive notifications of request results. For
more information, see Reference: Video
analysis results notification in the Amazon
Rekognition Developer Guide.

Amazon SageMaker AI – Enables data scientist
s and developers to build and train machine le
arning models, and then directly deploy them
into a production-ready hosted environment.

Receive notifications when a data object is
labeled. For more information, see Creating
a streaming labeling job in the Amazon
SageMaker AI Developer Guide.

Management & governance services

The following table describes how Amazon SNS integrates with AWS management and governance
services such as AWS Chatbot, AWS CloudFormation, CloudTrail, CloudWatch, AWS Config, AWS
Control Tower, AWS License Manager, AWS Service Catalog, and AWS Systems Manager, providing
notifications for key events like infrastructure changes, compliance alerts, and operational insights.

These integrations help you monitor and manage your AWS environments efficiently by delivering
timely alerts and updates to relevant teams and systems.

Management & governance 297

https://docs.aws.amazon.com/codeguru/latest/profiler-ug/working-with-recommendation-reports.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/welcome.html
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/lookoutmetrics-welcome.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-sns.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-sns.html
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
https://docs.aws.amazon.com/rekognition/latest/dg/video-notification-payload.html
https://docs.aws.amazon.com/rekognition/latest/dg/video-notification-payload.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

AWS Chatbot – Enables DevOps and software
development teams to use Amazon Chime and
Slack chat rooms to monitor and respond to
operational events in the AWS Cloud.

Deliver notifications to chat rooms. For more
information, see Setting up AWS Chatbot in
the AWS Chatbot Administrator Guide.

AWS CloudFormation – Enables you to create
and provision AWS infrastructure deploymen
ts predictably and repeatedly.

Receive notifications when stacks are created
and updated. For more information, see
Setting AWS CloudFormation stack options in
the AWS CloudFormation User Guide.

AWS CloudTrail – Provides event history of
your AWS account activity.

Receive notifications when CloudTrail
publishes new log files to your Amazon S3
bucket. For more information, see Configuri
ng Amazon SNS notifications for CloudTrail in
the AWS CloudTrail User Guide.

Amazon CloudWatch – Monitors your AWS
resources and the applications you run on
AWS in real time.

Receive notifications when alarms change
state. For more information, see Using
Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

AWS Config – Provides a detailed view of the
configuration of AWS resources in your AWS
account.

Receive notifications when resources are
updated, or when AWS Config evaluates
custom or managed rules against your
resources. For more information, see Notificat
ions that AWS Config sends to an SNS topic
and Example configuration item change
notifications in the AWS Config Developer
Guide.

AWS Control Tower – Enables you to set up
and govern a secure, compliant, multi-acc
ount AWS environment.

Use alerts to help you prevent drift within
your landing zone, and receive complianc
e notifications. For more information, see
Tracking alerts through Amazon Simple

Management & governance 298

https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/setting-up.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/WhatIsCloudWatch.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/config/latest/developerguide/example-sns-notification.html
https://docs.aws.amazon.com/config/latest/developerguide/example-sns-notification.html
https://docs.aws.amazon.com/controltower/latest/userguide/what-is-control-tower.html
https://docs.aws.amazon.com/controltower/latest/userguide/sns.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

Notification Service in the AWS Control Tower
User Guide.

AWS License Manager – Helps you manage
your software licenses from software vendors
centrally across AWS and your on-premises
 environments.

Receive License Manager notifications and
alerts. For more information, see Settings in
 License Manager in the License Manager User
Guide and Creating ServiceNow incidents for
AWS License Manager notifications on the
AWS Management & Governance Blog.

AWS Service Catalog – Enables IT administr
ators to create, manage, and distribute
 portfolios of approved products to end users,
who can then access the products they need
in a personalized portal.

Receive notifications about stack events. For
more information, see AWS Service Catalog
notification constraints in the Service Catalog
Administrator Guide.

AWS Systems Manager – Lets you view and
control your infrastructure on AWS.

Receive notifications about the status of
commands. For more information, see
Monitoring Systems Manager status changes
using Amazon SNS notifications in the AWS
Systems Manager User Guide.

Media services

The following table describes how Amazon SNS integrates with Amazon Elastic Transcoder to send
notifications when media transcoding jobs change status, enabling you to efficiently monitor and
manage the conversion of media files stored in Amazon S3 into formats suitable for consumer
playback devices.

This integration helps you streamline media processing workflows by providing real-time alerts on
job status.

AWS service Benefit of using with Amazon SNS

Amazon Elastic Transcoder – Lets you convert
media files that you stored in Amazon S3

Receive notifications when jobs change status.
For more information, see Notifications of

Media 299

https://docs.aws.amazon.com/controltower/latest/userguide/sns.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/license-manager/latest/userguide/settings.html
https://docs.aws.amazon.com/license-manager/latest/userguide/settings.html
https://aws.amazon.com/blogs/mt/servicenow-incidents-for-license-manager/
https://aws.amazon.com/blogs/mt/servicenow-incidents-for-license-manager/
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-notification.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/constraints-notification.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/monitoring-sns-notifications.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/monitoring-sns-notifications.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/introduction.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/notifications.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

into media files in the formats required by
consumer playback devices.

job status in the Amazon Elastic Transcoder
Developer Guide.

Migration & transfer services

The following table describes how Amazon SNS integrates with AWS migration and transfer
services, such as AWS Application Discovery Service, AWS Database Migration Service (DMS), and
AWS Snowball, to provide notifications for events like server data collection, database migration
activities, and data transfer jobs.

These integrations help you to effectively manage and monitor your Cloud migration processes by
offering real-time alerts and updates on critical migration tasks.

AWS service Benefit of using with Amazon SNS

AWS Application Discovery Service – Helps
you plan your migration to the AWS Cloud by
collecting usage and configuration data about
 your on-premises servers.

Receive notifications of events through
AWS CloudTrail. For more information, see
Logging Application Discovery Service API
calls with AWS CloudTrail in the Application
Discovery Service User Guide.

AWS Database Migration Service – Migrates
data from on-premises databases into the
 AWS Cloud.

Receive notifications when AWS DMS events
occur; for example, when a replication
instance is created or deleted. For more
information, see Working with events an
d notifications in AWS Database Migration
Service in the AWS Database Migration Service
User Guide.

AWS Snowball – Uses physical storage devices
to transfer large amounts of data between
Amazon S3 and your onsite data storage
location at faster-than-internet speeds.

Receive notifications for Snowball jobs. For
more information, see Notifications for Snow
Family devices in the AWS Snowcone User
Guide.

Migration & transfer 300

https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/notifications.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/dms/latest/userguide/Introduction.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/snowball/latest/ug/whatissnowball.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/notifications.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/notifications.html

Amazon Simple Notification Service Developer Guide

Networking & content delivery services

The following table describes how Amazon SNS integrates with AWS networking and content
delivery services, such as Amazon API Gateway, Amazon CloudFront, AWS Direct Connect, Elastic
Load Balancing, Amazon Route 53, and Amazon VPC, to send notifications for events like API
messages, CloudFront metric alarms, connection state changes, load balancer events, health check
statuses, and VPC endpoint activities.

These integrations help you to monitor and manage your network and content delivery operations
by providing timely alerts and updates.

AWS service Benefit of using with Amazon SNS

Amazon API Gateway – Enables you to create
and deploy your own REST and WebSocket
APIs at any scale.

Receive messages posted to an API Gateway
endpoint. For more information, see Tutorial:
 Build an API Gateway REST API with AWS
integration in the API Gateway Developer
Guide.

Amazon CloudFront – Speeds up distribution
of your static and dynamic web content, such
as .html, .css, .php, image, and media files.

Receive notifications when alarms based on
specified CloudFront metrics occur. For more
information, see Setting alarms to receiv
e notifications in the Amazon CloudFront
Developer Guide.

AWS Direct Connect – Links your internal
network to an AWS Direct Connect location
over a standard Ethernet fiber-optic cable.

Receive notifications when alarms that
monitor the state of an AWS Direct Connect
connection change state. For more informati
on, see Creating CloudWatch alarms to
monitor AWS Direct Connect connections in
 the AWS Direct Connect User Guide.

Elastic Load Balancing – Automatically
distributes your incoming traffic across
multiple targets, such as Amazon EC2
instances, containers, and IP addresses, in
 more or more Availability Zones.

Receive notifications of alarms you've created
for load balancer events. For more informati
on, see Create CloudWatch alarms for your
load balancer in the User Guide for Classic
Load Balancers.

Networking & content delivery 301

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-aws-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-aws-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-aws-proxy.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/receiving-notifications.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/receiving-notifications.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/monitoring-cloudwatch.html#creating-alarms
https://docs.aws.amazon.com/directconnect/latest/UserGuide/monitoring-cloudwatch.html#creating-alarms
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/welcome.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-cloudwatch-metrics.html#create_cw_alarms
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-cloudwatch-metrics.html#create_cw_alarms

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

Amazon Route 53 – Provides domain registrat
ion, DNS routing, and health checking.

Receive notifications when health check status
is unhealthy. For more information, see To
receive an Amazon SNS notification when a
health check status is unhealthy (console) in
the Amazon Route 53 Developer Guide.

Amazon Virtual Private Cloud (Amazon VPC)
– Enables you to launch AWS resources into a
virtual network that you've defined.

Receive notifications for specific events
that occur on interface endpoints. For more
information, see Create and manage a
notification for an endpoint service in the
 Amazon VPC User Guide.

Security, identity, & compliance services

The following table describes how Amazon SNS integrates with AWS security, identity, and
compliance services, such as AWS Directory Service, Amazon GuardDuty, Amazon Inspector, and
AWS Security Hub, to provide notifications for directory status changes, security findings, Inspector
events, and security hub announcements.

These integrations help you to maintain robust security practices by offering timely alerts and
updates on security and compliance events.

AWS service Benefit of using with Amazon SNS

AWS Directory Service – Provides multiple
ways to use Microsoft Active Directory (AD)
with other AWS services.

Receive email or text (SMS) messages when
the status of your directory changes. For more
information, see Configure directory status
notifications in the AWS Directory Service
Administration Guide.

Amazon GuardDuty – Provides continuou
s security monitoring to help to identify u
nexpected and potentially unauthorized or
malicious activity in your AWS environment.

Receive notifications about newly released
finding types, updates to the existing finding
types, and other functionality changes.
For more information, see Subscribing to

Security, identity, & compliance 302

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/monitoring-health-checks.html#monitoring-sns-notification-procedure
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/monitoring-health-checks.html#monitoring-sns-notification-procedure
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/monitoring-health-checks.html#monitoring-sns-notification-procedure
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/create-notification-endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/userguide/create-notification-endpoint-service.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/what_is.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_enable_notifications.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_enable_notifications.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_sns.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

GuardDuty announcements SNS topic in the
 Amazon GuardDuty User Guide.

Amazon Inspector – Tests the network
accessibility of your Amazon EC2 instances
and the security state of your applications that
run on those instances.

Receive notifications for Amazon Inspector
events. For more information, see Setting up
an SNS topic for Amazon Inspector notificat
ions in the Amazon Inspector User Guide.

AWS Security Hub – Automates AWS security
checks and centralizes security alerts.

Receive notifications about AWS Security Hub
announcements, including notifications about
AWS Security Hub controls or standards that
have been added, edited, or retired. For more
information, see Subscribing to AWS Security
Hub announcements with Amazon SNS.

Serverless services

The following table describes how Amazon SNS integrates with services like Amazon DynamoDB,
Amazon EventBridge, and Lambda to send notifications for key events such as maintenance
updates, real-time data streams, and Lambda function outputs.

These integrations help you to efficiently monitor and manage your applications by receiving
timely alerts on critical operations and automating responses to these events.

AWS service Benefit of using with Amazon SNS

Amazon DynamoDB – Provides fast and
predictable performance with seamless
 scalability in this fully managed NoSQL
database service.

Receive notifications when maintenance
events occur. For more information, see
Customizing DAX cluster settings in the
 Amazon DynamoDB Developer Guide.

Amazon EventBridge – Delivers a stream of
real-time data from your own applications,
software-as-a-service (SaaS) applications
, and AWS services and routes that data to

Receive notifications of EventBridge events.
For more information, see Amazon EventBrid
ge targets in the Amazon EventBridge User
Guide.

Serverless 303

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_sns.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_assessments.html#sns-topic
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_assessments.html#sns-topic
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_assessments.html#sns-topic
https://aws.amazon.com/security-hub/
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-announcements.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-announcements.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.cluster-management.html#DAX.cluster-management.custom-settings
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

targets, including Amazon SNS. EventBridge
was formerly called CloudWatch Events.

AWS Lambda – Lets you run code without
provisioning or managing servers.

Receive function output data by setting an
SNS topic as a Lambda dead-letter queue
or a Lambda destination. For more informati
on, see Asynchronous invocation in the AWS
Lambda Developer Guide.

Storage services

The following table describes how Amazon SNS integrates with AWS storage services like AWS
Backup, Amazon Elastic File System (EFS), Amazon S3 Glacier, Amazon S3, and AWS Snowball to
provide notifications for various events such as backup activities, file system alarms, data retrieval
jobs, bucket changes, and data transfer operations.

These integrations help you to efficiently monitor and manage your storage solutions by receiving
timely alerts on critical storage events.

AWS service Benefit of using with Amazon SNS

AWS Backup – Helps you centralize and
automate the backup of data across AWS
services in the Cloud and on premises

Receive notifications of AWS Backup events.
For more information, see Using Amazon
SNS to track AWS Backup events in the AWS
Backup Developer Guide.

Amazon Elastic File System – Provides file
storage for your Amazon EC2 instances.

Receive notifications of alarms you've created
for Amazon EFS events. For more informati
on, see Automated monitoring tools in the
 Amazon Elastic File System User Guide.

Amazon S3 Glacier – Provides storage for
infrequently used data.

Set a notification configuration on a vault so
that when a job completes, a message is sent
to an SNS topic. For more information, see
Configuring vault notifications in Amazon S3

Storage 304

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/sns-notifications.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/sns-notifications.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/efs/latest/ug/monitoring_automated_manual.html#monitoring_automated_tools
https://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/configuring-notifications.html

Amazon Simple Notification Service Developer Guide

AWS service Benefit of using with Amazon SNS

Glacier in the Amazon S3 Glacier Developer
Guide.

Amazon Simple Storage Service (Amazon S3) –
Provides object storage.

Receive notifications when changes occur
to an Amazon S3 bucket or in the rare
instance when objects don't replicate to their
destination Region. For more information, see
Walkthrough: Configure a bucket for notificat
ions (SNS topic or SQS queue) and Monitoring
progress with replication metrics and Amazon
S3 event notifications in the Amazon Simple
Storage Service User Guide.

AWS Snowball – Uses physical storage devices
to transfer large amounts of data between
Amazon S3 and your onsite data storage
location at faster-than-internet speeds.

Receive notifications for Snowball jobs. For
more information, see Notifications for Snow
Family devices in the AWS Snowcone User
Guide.

Additional event sources

The following table describes how Amazon SNS can be used to receive timely notifications about
AWS daily feature updates and changes to AWS IP address ranges, ensuring that you are informed
about the latest AWS service releases, instance types, VPC endpoints, and public IP address
changes.

These integrations help you stay up-to-date with AWS infrastructure changes and manage your
resources effectively.

Source Benefit of using with Amazon SNS

AWS Daily Feature Updates Receive timely detailed information about
releases and updates to AWS via an Amazon
SNS topic. These releases include AWS
Regions, AWS services, Amazon VPC endpoints
, AWS services integrated with AWS Service

Additional event sources 305

https://docs.aws.amazon.com/amazonglacier/latest/dev/configuring-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-metrics.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-metrics.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication-metrics.html
https://docs.aws.amazon.com/snowball/latest/ug/whatissnowball.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/notifications.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/notifications.html
https://aws.amazon.com/blogs/aws/subscribe-to-aws-daily-feature-updates-via-amazon-sns/

Amazon Simple Notification Service Developer Guide

Source Benefit of using with Amazon SNS

Quotas, Amazon EC2 instance types, Amazon
SageMaker AI instance types, Amazon Nimble
Studio instance types, Amazon RDS databa
se engine versions, and Amazon MSK Apache
Kafka versions. For more information, see
Subscribe to AWS Daily Feature Updates via
 Amazon SNS in the AWS News Blog.

AWS IP address ranges Receive notifications of changes to AWS IP
ranges via an Amazon SNS topic. For more
information, see AWS IP address ranges
notifications in the Amazon Web Services
General Reference, and Subscribe to AWS
Public IP Address Changes via Amazon SNS in
the AWS News Blog.

For more information on event-driven computing, see the following sources:

• What is an Event-Driven Architecture?

• Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and
Networking Services on the AWS Compute Blog

• Enriching Event-Driven Architectures with AWS Event Fork Pipelines on the AWS Compute Blog

Amazon SNS event destinations

This page lists all destinations that can receive information on events, grouped by application-to-
application (A2A) messaging and application-to-person (A2P) notifications.

Note

Amazon SNS introduced FIFO topics in October, 2020. Currently, most AWS services
support receiving events from SNS standard topics only. Amazon SQS supports receiving
events from both SNS standard and FIFO topics.

Event destinations 306

https://aws.amazon.com/blogs/aws/subscribe-to-aws-daily-feature-updates-via-amazon-sns/
https://aws.amazon.com/blogs/aws/subscribe-to-aws-daily-feature-updates-via-amazon-sns/
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html#subscribe-notifications
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html#subscribe-notifications
https://aws.amazon.com/blogs/aws/subscribe-to-aws-public-ip-address-changes-via-amazon-sns/
https://aws.amazon.com/blogs/aws/subscribe-to-aws-public-ip-address-changes-via-amazon-sns/
https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/
https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/
https://aws.amazon.com/blogs/compute/enriching-event-driven-architectures-with-aws-event-fork-pipelines/

Amazon Simple Notification Service Developer Guide

Topics

• A2A destinations

• A2P destinations

A2A destinations

The following table describes how Amazon SNS can deliver events to various application-to-
application (A2A) destinations such as Amazon Data Firehose, Lambda, Amazon SQS, AWS Event
Fork Pipelines, and HTTP/S endpoints.

These integrations allow you to archive and analyze data, trigger custom business logic, facilitate
application integration, and route events to external webhooks, enhancing the efficiency and
flexibility of event-driven architectures.

Event destination Benefit of using with Amazon SNS

Amazon Data Firehose Deliver events to delivery streams for
archiving and analysis purposes. Through
delivery streams, you can deliver events to
AWS destinations like Amazon Simple Storage
Service (Amazon S3), Amazon Redshift, and
Amazon OpenSearch Service (OpenSearch
Service), or to third-party destinations such as
Datadog, New Relic, MongoDB, and Splunk.
For more information, see Fanout to Firehose
delivery streams.

AWS Lambda Deliver events to functions for triggering the
execution of custom business logic. For more
information, see Fanout Amazon SNS notificat
ions to Lambda functions for automated
processing.

Amazon SQS Deliver events to queues for application
integration purposes. For more informati
on, see Fanout Amazon SNS notifications

A2A destinations 307

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

Amazon Simple Notification Service Developer Guide

Event destination Benefit of using with Amazon SNS

to Amazon SQS queues for asynchronous
processing.

AWS Event Fork Pipelines Deliver events to event backup and storage,
event search and analytics, or event replay
pipelines. For more information, see Fanout
Amazon SNS events to AWS Event Fork
Pipelines.

HTTP/S Deliver events to external webhooks. For more
information, see Fanout Amazon SNS notificat
ions to HTTPS endpoints.

A2P destinations

The following table describes how Amazon SNS delivers application-to-person (A2P) notifications
to various destinations, including mobile phones via SMS and native push notifications, email
inboxes, Amazon Chime chat rooms, Slack channels, and operational insights to on-call teams via
PagerDuty.

These integrations enhance communication and operational efficiency by enabling real-time alerts
and updates across multiple platforms and communication channels.

Event destination Benefit of using with Amazon SNS

SMS Deliver events to mobile phones as text
messages. For more information, see Mobile
text messaging with Amazon SNS.

Email Deliver events to inboxes as email messages.
For more information, see Amazon SNS email
subscription setup and management.

Platform endpoint Deliver events to mobile phones as native
push notifications. For more information,

A2P destinations 308

Amazon Simple Notification Service Developer Guide

Event destination Benefit of using with Amazon SNS

see Sending mobile push notifications with
Amazon SNS.

AWS Chatbot Deliver events to Amazon Chime chat rooms
or Slack channels. For more information, see
the following pages in the AWS Chatbot A
dministrator Guide:

•
Setting up AWS Chatbot with Amazon
Chime

•
Setting up AWS Chatbot with Slack

•
Using AWS Chatbot with other AWS services

PagerDuty Deliver operational insights to on-call teams.
For more information, see Deliver ML-powere
d operational insights to your on-call teams
 via PagerDuty with Amazon DevOps Guru on
the AWS Management & Governance Blog.

Note

You can deliver both native AWS events and custom events to chat apps:

• Native AWS events – You can use AWS Chatbot to send native AWS events, through
Amazon SNS topics, to Amazon Chime and Slack. The supported set of native AWS
events includes events from AWS Billing and Cost Management, AWS Health, AWS
CloudFormation, Amazon CloudWatch, and more. For more information, see Using AWS
Chatbot with other services in the AWS Chatbot Administrator Guide.

• Custom events – You can also send your custom events, through Amazon SNS topics,
to Amazon Chime, Slack, and Microsoft Teams. To do this, you publish custom events to
an SNS topic, which delivers the events to a subscribed Lambda function. The Lambda
function then uses the chat app's webhook to deliver the events to recipients. For more

A2P destinations 309

https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/getting-started.html#chime-setup
https://docs.aws.amazon.com/chatbot/latest/adminguide/getting-started.html#chime-setup
https://docs.aws.amazon.com/chatbot/latest/adminguide/getting-started.html#slack-setup
https://docs.aws.amazon.com/chatbot/latest/adminguide/related-services.html
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://aws.amazon.com/blogs/mt/deliver-ml-powered-operational-insights-to-your-on-call-teams-via-pagerduty-with-amazon-devops-guru/
https://docs.aws.amazon.com/chatbot/latest/adminguide/related-services.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/related-services.html

Amazon Simple Notification Service Developer Guide

information, see How do I use webhooks to publish Amazon SNS messages to Amazon
Chime, Slack, or Microsoft Teams?

A2P destinations 310

https://aws.amazon.com/premiumsupport/knowledge-center/sns-lambda-webhooks-chime-slack-teams/
https://aws.amazon.com/premiumsupport/knowledge-center/sns-lambda-webhooks-chime-slack-teams/

Amazon Simple Notification Service Developer Guide

Using Amazon SNS for application-to-application
messaging

Amazon SNS simplifies application-to-application (A2A) messaging by separating publishers
from subscribers, which supports microservices, distributed systems, and serverless applications.
Messages are sent to Amazon SNS topics, where they can be filtered and delivered to subscribers
like Lambda, Amazon SQS, or HTTP endpoints. If delivery fails, the messages are stored in a dead-
letter queue for further analysis or reprocessing.

For information about using Amazon SNS for application-to-application messaging with
subscribers, see the following:

Topics

• Fanout to Firehose delivery streams

• Fanout Amazon SNS notifications to Lambda functions for automated processing

• Fanout Amazon SNS notifications to Amazon SQS queues for asynchronous processing

• Fanout Amazon SNS notifications to HTTPS endpoints

• Fanout Amazon SNS events to AWS Event Fork Pipelines

• Using Amazon EventBridge Scheduler with Amazon SNS

311

Amazon Simple Notification Service Developer Guide

Fanout to Firehose delivery streams

You can subscribe Amazon Data Firehose delivery streams to Amazon SNS topics, which allows
you to send notifications to additional storage and analytics endpoints. Messages published to
an Amazon SNS topic are sent to the subscribed Firehose delivery stream, and delivered to the
destination as configured in Firehose. A subscription owner can subscribe up to five Firehose
delivery streams to an Amazon SNS topic. Each Firehose delivery stream has a default quota for
requests and throughput per second. This limit could result in more messages published (inbound
traffic) than delivered (outbound traffic). When there's more inbound than outbound traffic, your
subscription can accumulate a large message backlog, causing high message delivery latency.
You can request an increase in quota based on the publish rate to avoid adverse impact on your
workload.

Through Firehose delivery streams, you can fan out Amazon SNS notifications to Amazon Simple
Storage Service (Amazon S3), Amazon Redshift, Amazon OpenSearch Service (OpenSearch Service),
and to third-party service providers such as Datadog, New Relic, MongoDB, and Splunk.

For example, you can use this functionality to permanently store messages sent to a topic in an
Amazon S3 bucket for compliance, archival, or other purposes. To do this, create a Firehose delivery
stream with an Amazon S3 bucket destination, and subscribe that delivery stream to the Amazon
SNS topic. As another example, to perform analysis on messages sent to an Amazon SNS topic,
create a delivery stream with an OpenSearch Service index destination. You can then subscribe the
Firehose delivery stream to the Amazon SNS topic.

Amazon SNS also supports message delivery status logging for notifications sent to Firehose
endpoints. For more information, see Amazon SNS message delivery status.

Topics

• Prerequisites for subscribing Firehose delivery streams to Amazon SNS topics

• Subscribing a Firehose delivery stream to an Amazon SNS topic

• Managing Amazon SNS messages across multiple delivery stream destinations

• Amazon SNS message archiving and analytics: An example use case for airline ticketing
platforms

Fanout to Firehose delivery streams 312

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/firehose/latest/dev/limits.html
https://support.console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

Amazon Simple Notification Service Developer Guide

Prerequisites for subscribing Firehose delivery streams to Amazon SNS
topics

To subscribe an Amazon Data Firehose delivery stream to an SNS topic, your AWS account must
have:

• A standard SNS topic. For more information, see Creating an Amazon SNS topic.

• A Firehose delivery stream. For more information, see Creating an Amazon Data Firehose
Delivery Stream and Grant Your Application Access to Your Firehose Resources in the Amazon
Data Firehose Developer Guide.

• An AWS Identity and Access Management (IAM) role that trusts the Amazon SNS service principal
and has permission to write to the delivery stream. You'll enter this role's Amazon Resource
Name (ARN) as the SubscriptionRoleARN when you create the subscription. Amazon SNS
assumes this role, which allows Amazon SNS to put records in the Firehose delivery stream.

The following example policy shows the recommended permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:ListDeliveryStreams",
 "firehose:ListTagsForDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": [
 "arn:aws:firehose:us-east-1:111111111111:deliverystream/firehose-sns-
delivery-stream"
],
 "Effect": "Allow"
 }
]
}

To provide full permission for using Firehose, you can also use the AWS managed policy
AmazonKinesisFirehoseFullAccess. Or, to provide stricter permissions for using Firehose,

Prerequisites 313

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#access-to-firehose

Amazon Simple Notification Service Developer Guide

you can create your own policy. At minimum, the policy must provide permission to run the
PutRecord operation on a specific delivery stream.

In all cases, you must also edit the trust relationship to include the Amazon SNS service principal.
For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For more information on creating roles, see Creating a role to delegate permissions to an AWS
service in the IAM User Guide.

After you've completed these requirements, you can subscribe the delivery stream to the SNS topic.

Subscribing a Firehose delivery stream to an Amazon SNS topic

To deliver Amazon SNS notifications to Amazon Data Firehose delivery streams, first make sure
that you've addressed all the prerequisites. For a list of supported endpoints, see Amazon Data
Firehose endpoints and quotas in the Amazon Web Services General Reference.

To subscribe a Firehose delivery stream to a topic

1. Sign in to the Amazon SNS console.

2. In the navigation pane, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, in the Details section, do the following:

a. For Topic ARN, choose the Amazon Resource Name (ARN) of a standard topic.

b. For Protocol, choose Firehose.

Subscribing a delivery stream to a topic 314

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/general/latest/gr/fh.html
https://docs.aws.amazon.com/general/latest/gr/fh.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

c. For Endpoint, choose the ARN of a Firehose delivery stream that can receive notifications
from Amazon SNS.

d. For Subscription role ARN, specify the ARN of the AWS Identity and Access Management
(IAM) role that you created for writing to Firehose delivery streams. For more information,
see Prerequisites for subscribing Firehose delivery streams to Amazon SNS topics.

e. (Optional) To remove any Amazon SNS metadata from published messages, choose
Enable raw message delivery. For more information, see Amazon SNS raw message
delivery.

5. (Optional) To configure a filter policy, expand the Subscription filter policy section. For more
information, see Amazon SNS subscription filter policies.

6. (Optional) To configure a dead-letter queue for the subscription, expand the Redrive policy
(dead-letter queue) section. For more information, see Amazon SNS dead-letter queues.

7. Choose Create subscription.

The console creates the subscription and opens the subscription's Details page.

Managing Amazon SNS messages across multiple delivery stream
destinations

Through Amazon Data Firehose delivery streams, you can send messages to additional endpoints.
This section describes how to work with supported destinations.

Topics

• Storing and analyzing Amazon SNS messages in Amazon S3 destinations

• Integrating Amazon SNS messages with Amazon OpenSearch Service destinations

• Configuring Amazon SNS message delivery and analysis in Amazon Redshift destinations

• Configuring Amazon SNS message delivery to HTTP destinations using Amazon Data Firehose

Storing and analyzing Amazon SNS messages in Amazon S3 destinations

This section provides information about Amazon Data Firehose delivery streams that publish data
to Amazon Simple Storage Service (Amazon S3).

Managing messages across multiple delivery stream destinations 315

Amazon Simple Notification Service Developer Guide

Topics

• Formatting Amazon SNS notifications for storage in Amazon S3 destinations

• Analyzing Amazon SNS messages stored in Amazon S3 using Athena

Formatting Amazon SNS notifications for storage in Amazon S3 destinations

The following example shows an Amazon SNS notification sent to an Amazon Simple Storage
Service (Amazon S3) bucket, using indents for readability.

Note

In this example, raw message delivery is disabled for the published message. When raw
message delivery is disabled, Amazon SNS adds JSON metadata to the message, including
these properties:

• Type

• MessageId

• TopicArn

Managing messages across multiple delivery stream destinations 316

Amazon Simple Notification Service Developer Guide

• Subject

• Timestamp

• UnsubscribeURL

• MessageAttributes

For more information about raw delivery, see Amazon SNS raw message delivery.

{
 "Type": "Notification",
 "MessageId": "719a6bbf-f51b-5320-920f-3385b5e9aa56",
 "TopicArn": "arn:aws:sns:us-east-1:333333333333:my-kinesis-test-topic",
 "Subject": "My 1st subject",
 "Message": "My 1st body",
 "Timestamp": "2020-11-26T23:48:02.032Z",
 "UnsubscribeURL": "https://sns.us-east-1.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:333333333333:my-kinesis-test-
topic:0b410f3c-ee5e-49d8-b59b-3b4aa6d8fcf5",
 "MessageAttributes": {
 "myKey1": {
 "Type": "String",
 "Value": "myValue1"
 },
 "myKey2": {
 "Type": "String",
 "Value": "myValue2"
 }
 }
 }

The following example shows three SNS messages sent through an Amazon Data Firehose delivery
stream to the same Amazon S3 bucket. Buffering is taken into account, and line breaks separate
the messages.

{"Type":"Notification","MessageId":"d7d2513e-6126-5d77-
bbe2-09042bd0a03a","TopicArn":"arn:aws:sns:us-east-1:333333333333:my-
kinesis-test-topic","Subject":"My 1st subject","Message":"My 1st
 body","Timestamp":"2020-11-27T00:30:46.100Z","UnsubscribeURL":"https://
sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
east-1:313276652360:my-kinesis-test-topic:0b410f3c-ee5e-49d8-

Managing messages across multiple delivery stream destinations 317

Amazon Simple Notification Service Developer Guide

b59b-3b4aa6d8fcf5","MessageAttributes":{"myKey1":
{"Type":"String","Value":"myValue1"},"myKey2":{"Type":"String","Value":"myValue2"}}}
{"Type":"Notification","MessageId":"0c0696ab-7733-5bfb-b6db-
ce913c294d56","TopicArn":"arn:aws:sns:us-east-1:333333333333:my-
kinesis-test-topic","Subject":"My 2nd subject","Message":"My 2nd
 body","Timestamp":"2020-11-27T00:31:22.151Z","UnsubscribeURL":"https://
sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
east-1:313276652360:my-kinesis-test-topic:0b410f3c-ee5e-49d8-
b59b-3b4aa6d8fcf5","MessageAttributes":{"myKey1":{"Type":"String","Value":"myValue1"}}}
{"Type":"Notification","MessageId":"816cd54d-8cfa-58ad-91c9-8d77c7d173aa","TopicArn":"arn:aws:sns:us-
east-1:333333333333:my-kinesis-test-topic","Subject":"My 3rd subject","Message":"My
 3rd body","Timestamp":"2020-11-27T00:31:39.755Z","UnsubscribeURL":"https://
sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
east-1:313276652360:my-kinesis-test-topic:0b410f3c-ee5e-49d8-b59b-3b4aa6d8fcf5"}

Analyzing Amazon SNS messages stored in Amazon S3 using Athena

This page describes how to analyze Amazon SNS messages sent through Amazon Data Firehose
delivery streams to Amazon Simple Storage Service (Amazon S3) destinations.

To analyze SNS messages sent through Firehose delivery streams to Amazon S3 destinations

1. Configure your Amazon S3 resources. For instructions, see Creating a bucket in the Amazon
Simple Storage Service User Guide and Working with Amazon S3 Buckets in the Amazon Simple
Storage Service User Guide.

2. Configure your delivery stream. For instructions, see Choose Amazon S3 for Your Destination in
the Amazon Data Firehose Developer Guide.

3. Use Amazon Athena to query the Amazon S3 objects using standard SQL. For more
information, see Getting Started in the Amazon Athena User Guide.

Example query

For this example query, assume the following:

• Messages are stored in the notifications table in the default schema.

• The notifications table includes a timestamp column with a type of string.

The following query returns all SNS messages received in the specified date range:

SELECT *

Managing messages across multiple delivery stream destinations 318

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-s3
https://console.aws.amazon.com/athena
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

Amazon Simple Notification Service Developer Guide

FROM default.notifications
WHERE from_iso8601_timestamp(timestamp) BETWEEN TIMESTAMP '2020-12-01 00:00:00' AND
 TIMESTAMP '2020-12-02 00:00:00';

Integrating Amazon SNS messages with Amazon OpenSearch Service destinations

This section provides information about Amazon Data Firehose delivery streams that publish data
to Amazon OpenSearch Service (OpenSearch Service).

Topics

• Storing and formatting Amazon SNS Notifications in OpenSearch Service indices

• Analyzing Amazon SNS messages for OpenSearch Service destinations

Storing and formatting Amazon SNS Notifications in OpenSearch Service indices

The following example shows an Amazon SNS notification sent to an Amazon OpenSearch Service
(OpenSearch Service) index named my-index. This index has a time filter field on the Timestamp
field. The SNS notification is placed in the _source property of the payload.

Note

In this example, raw message delivery is disabled for the published message. When raw
message delivery is disabled, Amazon SNS adds JSON metadata to the message, including
these properties:

Managing messages across multiple delivery stream destinations 319

Amazon Simple Notification Service Developer Guide

• Type

• MessageId

• TopicArn

• Subject

• Timestamp

• UnsubscribeURL

• MessageAttributes

For more information about raw delivery, see Amazon SNS raw message delivery.

{
 "_index": "my-index",
 "_type": "_doc",
 "_id": "49613100963111323203250405402193283794773886550985932802.0",
 "_version": 1,
 "_score": null,
 "_source": {
 "Type": "Notification",
 "MessageId": "bf32e294-46e3-5dd5-a6b3-bad65162e136",
 "TopicArn": "arn:aws:sns:us-east-1:111111111111:my-topic",
 "Subject": "Sample subject",
 "Message": "Sample message",
 "Timestamp": "2020-12-02T22:29:21.189Z",
 "UnsubscribeURL": "https://sns.us-east-1.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:111111111111:my-
topic:b5aa9bc1-9c3d-452b-b402-aca2cefc63c9",
 "MessageAttributes": {
 "my_attribute": {
 "Type": "String",
 "Value": "my_value"
 }
 }
 },
 "fields": {
 "Timestamp": [
 "2020-12-02T22:29:21.189Z"
]

Managing messages across multiple delivery stream destinations 320

Amazon Simple Notification Service Developer Guide

 },
 "sort": [
 1606948161189
]
}

Analyzing Amazon SNS messages for OpenSearch Service destinations

This page describes how to analyze Amazon SNS messages sent through Amazon Data Firehose
delivery streams to Amazon OpenSearch Service (OpenSearch Service) destinations.

To analyze SNS messages sent through Firehose delivery streams to OpenSearch Service
destinations

1. Configure your OpenSearch Service resources. For instructions, see Getting Started with
Amazon OpenSearch Service in the Amazon OpenSearch Service Developer Guide.

2. Configure your delivery stream. For instructions, see Choose OpenSearch Service for Your
Destination in the Amazon Data Firehose Developer Guide.

3. Run a query using OpenSearch Service queries and Kibana. For more information, see Step 3:
Search Documents in an OpenSearch Service Domain and Kibana in the Amazon OpenSearch
Service Developer Guide.

Example query

The following example queries the my-index index for all SNS messages received in the specified
date range:

POST https://search-my-domain.us-east-1.es.amazonaws.com/my-index/_search
{
 "query": {
 "bool": {
 "filter": [
 {
 "range": {
 "Timestamp": {
 "gte": "2020-12-08T00:00:00.000Z",
 "lte": "2020-12-09T00:00:00.000Z",
 "format": "strict_date_optional_time"
 }
 }

Managing messages across multiple delivery stream destinations 321

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg.html
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-elasticsearch
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-elasticsearch
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-gsg-search.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-kibana.html

Amazon Simple Notification Service Developer Guide

 }
]
 }
 }
}

Configuring Amazon SNS message delivery and analysis in Amazon Redshift
destinations

This section describes how to fan out Amazon SNS notifications to an Amazon Data Firehose
delivery stream that publishes data to Amazon Redshift. With this configuration, you can connect
to the Amazon Redshift database and use a SQL query tool to query the database for Amazon SNS
messages that meet certain criteria.

Topics

• Structuring Amazon SNS message archives in Amazon Redshift tables

• Analyzing Amazon SNS messages stored in Amazon Redshift destinations

Managing messages across multiple delivery stream destinations 322

Amazon Simple Notification Service Developer Guide

Structuring Amazon SNS message archives in Amazon Redshift tables

For Amazon Redshift endpoints, published Amazon SNS messages are archived as rows in a table.
The following is an example.

Note

In this example, raw message delivery is disabled for the published message. When raw
message delivery is disabled, Amazon SNS adds JSON metadata to the message, including
these properties:

• Type

• MessageId

• TopicArn

• Subject

• Message

• Timestamp

• UnsubscribeURL

• MessageAttributes

For more information about raw delivery, see Amazon SNS raw message delivery.
Although Amazon SNS adds properties to the message using the capitalization shown in
this list, column names in Amazon Redshift tables appear in all lowercase characters. To
transform the JSON metadata for the Amazon Redshift endpoint, you can use the SQL
COPY command. For more information, see Copy from JSON examples and Load from JSON
data using the 'auto ignorecase' option in the Amazon Redshift Database Developer Guide.

type messageid topicarn subject message timestamp unsubscri
beurl

messageat
tributes

Notificat
ion

ea544832-
a0d8-581d
-9275-108
243c46103

arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic

Sample
subject

Sample
message

2020-12-0
2T00:33:3
2.272Z

https://s
ns.us-eas
t-1.amazo
naws.com/
?

{\"my_att
ribute\":
{\"Type\"
:\"String
\",\"Valu

Managing messages across multiple delivery stream destinations 323

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#r_COPY_command_examples-copy-from-json
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#copy-from-json-examples-using-auto-ignorecase
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#copy-from-json-examples-using-auto-ignorecase

Amazon Simple Notification Service Developer Guide

type messageid topicarn subject message timestamp unsubscri
beurl

messageat
tributes

Action=U
nsubscrib
e&Subscri
ptionArn=
arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic:3
26deeeb-
c
bf4-45da-
b92b-
ca77
a247813b

e\":
\"my_
value\"}}

Managing messages across multiple delivery stream destinations 324

Amazon Simple Notification Service Developer Guide

type messageid topicarn subject message timestamp unsubscri
beurl

messageat
tributes

Notificat
ion

ab124832-
a0d8-581d
-9275-108
243c46114

arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic

Sample
subject 2

Sample
message
2

2020-12-0
3T00:18:1
1.129Z

https://s
ns.us-eas
t-1.amazo
naws.com/
?
Action=U
nsubscrib
e&Subscri
ptionArn=
arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic:3
26deeeb-
c
bf4-45da-
b92b-
ca77
a247813b

{\"my_att
ribute2\"
:{\"Type
\":\"Strin
g\",\"Val
ue\":
\"my
_value\"}
}

Managing messages across multiple delivery stream destinations 325

Amazon Simple Notification Service Developer Guide

type messageid topicarn subject message timestamp unsubscri
beurl

messageat
tributes

Notificat
ion

ce644832-
a0d8-581d
-9275-108
243c46125

arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic

Sample
subject 3

Sample
message
3

2020-12-0
9T00:08:4
4.405Z

https://s
ns.us-eas
t-1.amazo
naws.com/
?
Action=U
nsubscrib
e&Subscri
ptionArn=
arn:aws:s
ns:us-eas
t-1:11111
1111111:m
y-topic:3
26deeeb-
c
bf4-45da-
b92b-
ca77
a247813b

{\"my_att
ribute3\"
:{\"Type
\":\"Strin
g\",\"Val
ue\":
\"my
_value\"}
}

For more information about fanning out notifications to Amazon Redshift endpoints, see
Configuring Amazon SNS message delivery and analysis in Amazon Redshift destinations.

Analyzing Amazon SNS messages stored in Amazon Redshift destinations

This page describes how to analyze Amazon SNS messages sent through Amazon Data Firehose
delivery streams to Amazon Redshift destinations.

To analyze SNS messages sent through Firehose delivery streams to Amazon Redshift
destinations

1. Configure your Amazon Redshift resources. For instructions, see Getting started with Amazon
Redshift in the Amazon Redshift Getting Started Guide.

Managing messages across multiple delivery stream destinations 326

https://docs.aws.amazon.com/redshift/latest/gsg/getting-started.html
https://docs.aws.amazon.com/redshift/latest/gsg/getting-started.html

Amazon Simple Notification Service Developer Guide

2. Configure your delivery stream. For instructions, see Choose Amazon Redshift for Your
Destination in the Amazon Data Firehose Developer Guide.

3. Run a query. For more information, see Querying a database using the query editor in the
Amazon Redshift Management Guide.

Example query

For this example query, assume the following:

• Messages are stored in the notifications table in the default public schema.

• The Timestamp property from the SNS message is stored in the table's timestamp column with
a column data type of timestamptz.

Note

To transform the JSON metadata for the Amazon Redshift endpoint, you can use the SQL
COPY command. For more information, see Copy from JSON examples and Load from
JSON data using the 'auto ignorecase' option in the Amazon Redshift Database Developer
Guide.

The following query returns all SNS messages received in the specified date range:

SELECT *
FROM public.notifications
WHERE timestamp > '2020-12-01T09:00:00.000Z' AND timestamp <
 '2020-12-02T09:00:00.000Z';

Configuring Amazon SNS message delivery to HTTP destinations using Amazon
Data Firehose

This section provides information about Amazon Data Firehose delivery streams that publish data
to HTTP endpoints.

Managing messages across multiple delivery stream destinations 327

https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-redshift
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-redshift
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#r_COPY_command_examples-copy-from-json
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#copy-from-json-examples-using-auto-ignorecase
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html#copy-from-json-examples-using-auto-ignorecase

Amazon Simple Notification Service Developer Guide

Topics

• Amazon SNS notification format for delivery to HTTP destinations

Amazon SNS notification format for delivery to HTTP destinations

The following is an example HTTP POST request body from Amazon SNS that an Amazon Data
Firehose delivery stream can send to the HTTP endpoint. The SNS notification is encoded as a
base64 payload in the records property.

Note

In this example, raw message delivery is disabled for the published message. For more
information about raw delivery, see Amazon SNS raw message delivery.

"body": {
 "requestId": "ebc9e8b2-fce3-4aef-a8f1-71698bf8175f",
 "timestamp": 1606255960435,
 "records": [

Managing messages across multiple delivery stream destinations 328

Amazon Simple Notification Service Developer Guide

 {
 "data":
 "eyJUeXBlIjoiTm90aWZpY2F0aW9uIiwiTWVzc2FnZUlkIjoiMjFkMmUzOGQtMmNhYi01ZjYxLTliYTItYmJiYWFhYzg0MGY2IiwiVG9waWNBcm4iOiJhcm46YXdzOnNuczp1cy1lYXN0LTE6MTExMTExMTExMTExOm15LXRvcGljIiwiTWVzc2FnZSI6IlNhbXBsZSBtZXNzYWdlIGZvciBBbWF6b24gS2luZXNpcyBEYXRhIEZpcmVob3NlIGVuZHBvaW50cyIsIlRpbWVzdGFtcCI6IjIwMjAtMTEtMjRUMjI6MDc6MzEuNjY3WiIsIlVuc3Vic2NyaWJlVVJMIjoiaHR0cHM6Ly9zbnMudXMtZWFzdC0xLmFtYXpvbmF3cy5jb20vP0FjdGlvbj1VbnN1YnNjcmliZSZTdWJzY3JpcHRpb25Bcm49YXJuOmF3czpzbnM6MTExMTExMTExMTExOm15LXRvcGljOjAxYjY5MTJjLTAwNzAtNGQ4Yi04YjEzLTU1NWJmYjc2ZTdkNCJ9"
 }
]
 }

Amazon SNS message archiving and analytics: An example use case for
airline ticketing platforms

This section provides a tutorial of a common use case for archiving and analyzing Amazon SNS
messages.

The setting of this use case is an airline ticketing platform that operates in a regulated
environment. The platform is subject to a compliance framework that requires the company to
archive all ticket sales for at least five years. To meet the compliance goal on data retention,
the company subscribes an Amazon Data Firehose delivery stream to an existing SNS topic. The
destination for the delivery stream is an Amazon Simple Storage Service (Amazon S3) bucket. With
this configuration, all events published to the SNS topic are archived in the Amazon S3 bucket. The
following diagram shows the architecture of this configuration:

Message archiving and analytics example use case 329

Amazon Simple Notification Service Developer Guide

To run analytics and gain insights on ticket sales, the company runs SQL queries using Amazon
Athena. For example, the company can query to learn about the most popular destinations and the
most frequent flyers.

To create the AWS resources for this use case, you can use the AWS Management Console or an
AWS CloudFormation template.

Topics

• Setting-up initial AWS resources for Amazon SNS message archiving and analytics

• Setting-up a Firehose delivery stream for Amazon SNS message archiving

• Subscribing the Firehose delivery stream to the Amazon SNS topic

• Testing and querying an Amazon SNS configuration for effective data management

• Automating Amazon SNS message archiving with an AWS CloudFormation template

Message archiving and analytics example use case 330

Amazon Simple Notification Service Developer Guide

Setting-up initial AWS resources for Amazon SNS message archiving and analytics

This page describes how to create the following resources for the message archiving and analytics
example use case:

• An Amazon Simple Storage Service (Amazon S3) bucket

• Two Amazon Simple Queue Service (Amazon SQS) queues

• An Amazon SNS topic

• Two Amazon SQS subscriptions to the Amazon SNS topic

To create the initial resources

1. Create the Amazon S3 bucket:

a. Open the Amazon S3 console.

b. Choose Create bucket.

c. For Bucket name, enter a globally unique name. Keep the other fields as the defaults.

d. Choose Create bucket.

For more information about Amazon S3 buckets, see Creating a bucket in the Amazon Simple
Storage Service User Guide and Working with Amazon S3 Buckets in the Amazon Simple Storage
Service User Guide.

2. Create the two Amazon SQS queues:

a. Open the Amazon SQS console.

b. Choose Create queue.

c. For Type, choose Standard.

d. For Name, enter ticketPaymentQueue.

e. Under Access policy, for Choose method, choose Advanced.

f. In the JSON policy box, paste the following policy:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Message archiving and analytics example use case 331

https://console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://console.aws.amazon.com/sqs/home

Amazon Simple Notification Service Developer Guide

 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:sns:us-east-1:123456789012:ticketTopic"
 }
 }
 }
]
}

In this access policy, replace the AWS account number (123456789012) with your own,
and change the AWS Region (us-east-1) accordingly.

g. Choose Create queue.

h. Repeat these steps to create a second SQS queue named ticketFraudQueue.

For more information on creating SQS queues, see Creating an Amazon SQS queue (console) in
the Amazon Simple Queue Service Developer Guide.

3. Create the SNS topic:

a. Open the Topics page of the Amazon SNS console.

b. Choose Create topic.

c. Under Details, for Type, choose Standard.

d. For Name, enter ticketTopic.

e. Choose Create topic.

For more information on creating SNS topics, see Creating an Amazon SNS topic.

4. Subscribe both SQS queues to the SNS topic:

a. In the Amazon SNS console, on the ticketTopic topic's details page, choose Create
subscription.

b. Under Details, for Protocol, choose Amazon SQS.

Message archiving and analytics example use case 332

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-create-queue.html
https://console.aws.amazon.com/sns/home#/topics
https://console.aws.amazon.com/sns/home#/topics

Amazon Simple Notification Service Developer Guide

c. For Endpoint, choose the Amazon Resource Name (ARN) of the ticketPaymentQueue
queue.

d. Choose Create subscription.

e. Repeat these steps to create a second subscription using the ARN of the
ticketFraudQueue queue.

For more information on subscribing to SNS topics, see Creating a subscription to an
Amazon SNS topic. You can also subscribe SQS queues to SNS topics from the Amazon
SQS console. For more information, see Subscribing an Amazon SQS queue to an Amazon
SNS topic (console) in the Amazon Simple Queue Service Developer Guide.

You've created the initial resources for this example use case. To continue, see Setting-up a
Firehose delivery stream for Amazon SNS message archiving.

Setting-up a Firehose delivery stream for Amazon SNS message archiving

This page describes how to create the Amazon Data Firehose delivery stream for the message
archiving and analytics example use case.

To create the Firehose delivery stream

1. Open the Amazon Kinesis services console.

2. Choose Firehose and then choose Create delivery stream.

3. On the New delivery stream page, for Delivery stream name, enter ticketUploadStream,
and then choose Next.

4. On the Process records page, choose Next.

5. On the Choose a destination page, do the following:

a. For Destination, choose Amazon S3.

b. Under S3 destination, for S3 bucket, choose the S3 bucket that you created initially.

c. Choose Next.

6. On the Configure settings page, for S3 buffer conditions, do the following:

• For Buffer size, enter 1.

• For Buffer interval, enter 60.

Message archiving and analytics example use case 333

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-subscribe-queue-sns-topic.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-subscribe-queue-sns-topic.html
https://console.aws.amazon.com/kinesis/home

Amazon Simple Notification Service Developer Guide

Using these values for the Amazon S3 buffer lets you quickly test the configuration. The first
condition that is satisfied triggers data delivery to the S3 bucket.

7. On the Configure settings page, for Permissions, choose to create an AWS Identity and Access
Management (IAM) role with the required permissions assigned automatically. Then choose
Next.

8. On the Review page, choose Create delivery stream.

9. From the Kinesis Data Firehose delivery streams page, choose the delivery stream you just
created (ticketUploadStream). On the Details tab, note the stream's Amazon Resource Name
(ARN) for later.

For more information on creating delivery streams, see Creating an Amazon Data Firehose Delivery
Stream in the Amazon Data Firehose Developer Guide. For more information on creating IAM roles,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

You've created the Firehose delivery stream with the required permissions. To continue, see
Subscribing the Firehose delivery stream to the Amazon SNS topic.

Subscribing the Firehose delivery stream to the Amazon SNS topic

This page describes how to create the following for the message archiving and analytics example
use case:

• The AWS Identity and Access Management (IAM) role that allows the Amazon SNS subscription
to put records on the Amazon Data Firehose delivery stream

• The Firehose delivery stream subscription to the SNS topic

To create the IAM role for the Amazon SNS subscription

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For Select type of trusted entity, choose AWS service.

4. For Choose a use case, choose SNS. Then choose Next: Permissions.

5. Choose Next: Tags.

6. Choose Next: Review.

Message archiving and analytics example use case 334

https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://console.aws.amazon.com/iam/home?#/roles

Amazon Simple Notification Service Developer Guide

7. On the Review page, for Role name, enter ticketUploadStreamSubscriptionRole. Then
choose Create role.

8. When the role is created, choose its name (ticketUploadStreamSubscriptionRole).

9. On the role's Summary page, choose Add inline policy.

10. On the Create policy page, choose the JSON tab, and then paste the following policy into the
box:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "firehose:DescribeDeliveryStream",
 "firehose:ListDeliveryStreams",
 "firehose:ListTagsForDeliveryStream",
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": [
 "arn:aws:firehose:us-east-1:123456789012:deliverystream/
ticketUploadStream"
],
 "Effect": "Allow"
 }
]
}

In this policy, replace the AWS account number (123456789012) with your own, and change
the AWS Region (us-east-1) accordingly.

11. Choose Review policy.

12. On the Review policy page, for Name, enter FirehoseSnsPolicy. Then choose Create
policy.

13. On the role's Summary page, note the Role ARN for later.

For more information on creating IAM roles, see Creating a role to delegate permissions to an AWS
service in the IAM User Guide.

Message archiving and analytics example use case 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Notification Service Developer Guide

To subscribe the Firehose delivery stream to the SNS topic

1. Open the Topics page of the Amazon SNS console.

2. On the Subscriptions, tab, choose Create subscription.

3. Under Details, for Protocol, choose Amazon Data Firehose.

4. For Endpoint, enter the Amazon Resource Name (ARN) of the ticketUploadStream
delivery stream that you created earlier. For example, enter arn:aws:firehose:us-
east-1:123456789012:deliverystream/ticketUploadStream.

5. For Subscription role ARN, enter the ARN of the ticketUploadStreamSubscriptionRole IAM
role that you created earlier. For example, enter arn:aws:iam::123456789012:role/
ticketUploadStreamSubscriptionRole.

6. Select the Enable raw message delivery check box.

7. Choose Create subscription.

You've created the IAM role and SNS topic subscription. To continue, see Testing and querying an
Amazon SNS configuration for effective data management.

Testing and querying an Amazon SNS configuration for effective data
management

This page describes how to test the message archiving and analytics example use case by
publishing a message to the Amazon SNS topic. The instructions include an example query that
you can run and adapt to your own needs.

To test your configuration

1. Open the Topics page of the Amazon SNS console.

2. Choose the ticketTopic topic.

3. Choose Publish message.

4. On the Publish message to topic page, enter the following for the message body. Add a
newline character at the end of the message.

{"BookingDate":"2020-12-15","BookingTime":"2020-12-15
 04:15:05","Destination":"Miami","FlyingFrom":"Vancouver","TicketNumber":"abcd1234"}

Keep all other options as their defaults.

Message archiving and analytics example use case 336

https://console.aws.amazon.com/sns/home#/topics
https://console.aws.amazon.com/sns/home#/topics

Amazon Simple Notification Service Developer Guide

5. Choose Publish message.

For more information on publishing messages, see Publishing an Amazon SNS message.

6. After the delivery stream interval of 60 seconds, open the Amazon Simple Storage Service
(Amazon S3) console and choose the Amazon S3 bucket that you created initially.

The published message appears in the bucket.

To query the data

1. Open the Amazon Athena console.

2. Run a query.

For example, assume that the notifications table in the default schema contains the
following data:

{"BookingDate":"2020-12-15","BookingTime":"2020-12-15
 04:15:05","Destination":"Miami","FlyingFrom":"Vancouver","TicketNumber":"abcd1234"}
{"BookingDate":"2020-12-15","BookingTime":"2020-12-15
 11:30:15","Destination":"Miami","FlyingFrom":"Omaha","TicketNumber":"efgh5678"}
{"BookingDate":"2020-12-15","BookingTime":"2020-12-15
 3:30:10","Destination":"Miami","FlyingFrom":"NewYork","TicketNumber":"ijkl9012"}
{"BookingDate":"2020-12-15","BookingTime":"2020-12-15
 12:30:05","Destination":"Delhi","FlyingFrom":"Omaha","TicketNumber":"mnop3456"}

To find the top destination, run the following query:

SELECT destination
FROM default.notifications
GROUP BY destination
ORDER BY count(*) desc
LIMIT 1;

To query for tickets sold during a specific date and time range, run a query like the following:

SELECT *
FROM default.notifications
WHERE bookingtime
 BETWEEN TIMESTAMP '2020-12-15 10:00:00'

Message archiving and analytics example use case 337

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/athena/home

Amazon Simple Notification Service Developer Guide

 AND TIMESTAMP '2020-12-15 12:00:00';

You can adapt both sample queries for your own needs. For more information on using Athena
to run queries, see Getting Started in the Amazon Athena User Guide.

Cleaning up

To avoid incurring usage charges after you're done testing, delete the following resources that you
created during the tutorial:

• Amazon SNS subscriptions

• Amazon SNS topic

• Amazon Simple Queue Service (Amazon SQS) queues

• Amazon S3 bucket

• Amazon Data Firehose delivery stream

• AWS Identity and Access Management (IAM) roles and policies

Automating Amazon SNS message archiving with an AWS CloudFormation
template

To automate the deployment of the Amazon SNS message archiving and analytics example use
case, you can use the following YAML template:

AWSTemplateFormatVersion: '2010-09-09'
Description: Template for creating an SNS archiving use case
Resources:
 ticketUploadStream:
 DependsOn:
 - ticketUploadStreamRolePolicy
 Type: AWS::KinesisFirehose::DeliveryStream
 Properties:
 S3DestinationConfiguration:
 BucketARN: !Sub 'arn:${AWS::Partition}:s3:::${ticketArchiveBucket}'
 BufferingHints:
 IntervalInSeconds: 60
 SizeInMBs: 1
 CompressionFormat: UNCOMPRESSED
 RoleARN: !GetAtt ticketUploadStreamRole.Arn

Message archiving and analytics example use case 338

https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

Amazon Simple Notification Service Developer Guide

 ticketArchiveBucket:
 Type: AWS::S3::Bucket
 ticketTopic:
 Type: AWS::SNS::Topic
 ticketPaymentQueue:
 Type: AWS::SQS::Queue
 ticketFraudQueue:
 Type: AWS::SQS::Queue
 ticketQueuePolicy:
 Type: AWS::SQS::QueuePolicy
 Properties:
 PolicyDocument:
 Statement:
 Effect: Allow
 Principal:
 Service: sns.amazonaws.com
 Action:
 - sqs:SendMessage
 Resource: '*'
 Condition:
 ArnEquals:
 aws:SourceArn: !Ref ticketTopic
 Queues:
 - !Ref ticketPaymentQueue
 - !Ref ticketFraudQueue
 ticketUploadStreamSubscription:
 Type: AWS::SNS::Subscription
 Properties:
 TopicArn: !Ref ticketTopic
 Endpoint: !GetAtt ticketUploadStream.Arn
 Protocol: firehose
 SubscriptionRoleArn: !GetAtt ticketUploadStreamSubscriptionRole.Arn
 ticketPaymentQueueSubscription:
 Type: AWS::SNS::Subscription
 Properties:
 TopicArn: !Ref ticketTopic
 Endpoint: !GetAtt ticketPaymentQueue.Arn
 Protocol: sqs
 ticketFraudQueueSubscription:
 Type: AWS::SNS::Subscription
 Properties:
 TopicArn: !Ref ticketTopic
 Endpoint: !GetAtt ticketFraudQueue.Arn
 Protocol: sqs

Message archiving and analytics example use case 339

Amazon Simple Notification Service Developer Guide

 ticketUploadStreamRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Sid: ''
 Effect: Allow
 Principal:
 Service: firehose.amazonaws.com
 Action: sts:AssumeRole
 ticketUploadStreamRolePolicy:
 Type: AWS::IAM::Policy
 Properties:
 PolicyName: FirehoseticketUploadStreamRolePolicy
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action:
 - s3:AbortMultipartUpload
 - s3:GetBucketLocation
 - s3:GetObject
 - s3:ListBucket
 - s3:ListBucketMultipartUploads
 - s3:PutObject
 Resource:
 - !Sub 'arn:aws:s3:::${ticketArchiveBucket}'
 - !Sub 'arn:aws:s3:::${ticketArchiveBucket}/*'
 Roles:
 - !Ref ticketUploadStreamRole
 ticketUploadStreamSubscriptionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - sns.amazonaws.com
 Action:
 - sts:AssumeRole
 Policies:

Message archiving and analytics example use case 340

Amazon Simple Notification Service Developer Guide

 - PolicyName: SNSKinesisFirehoseAccessPolicy
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Action:
 - firehose:DescribeDeliveryStream
 - firehose:ListDeliveryStreams
 - firehose:ListTagsForDeliveryStream
 - firehose:PutRecord
 - firehose:PutRecordBatch
 Effect: Allow
 Resource:
 - !GetAtt ticketUploadStream.Arn

Fanout Amazon SNS notifications to Lambda functions for
automated processing

Amazon SNS and AWS Lambda are integrated so you can invoke Lambda functions with Amazon
SNS notifications. When a message is published to an SNS topic that has a Lambda function
subscribed to it, the Lambda function is invoked with the payload of the published message. The
Lambda function receives the message payload as an input parameter and can manipulate the
information in the message, publish the message to other SNS topics, or send the message to other
AWS services.

Amazon SNS also supports message delivery status attributes for message notifications sent to
Lambda endpoints. For more information, see Amazon SNS message delivery status.

Topics

• Prerequisites for integrating Amazon SNS with Lambda functions across regions

• Subscribing a Lambda function to an Amazon SNS topic

Prerequisites for integrating Amazon SNS with Lambda functions
across regions

To invoke Lambda functions using Amazon SNS notifications, you need the following:

• Lambda function

• Amazon SNS topic

Fanout to Lambda functions 341

Amazon Simple Notification Service Developer Guide

For information about creating a Lambda function to use with Amazon SNS, see Using Lambda
with Amazon SNS. For information about creating an Amazon SNS topic, see Create a topic.

When you use Amazon SNS to deliver messages from opt-in regions to regions which are enabled
by default, you must alter the policy created in the AWS Lambda function by replacing the
principal sns.amazonaws.com with sns.<opt-in-region>.amazonaws.com.

For example, if you want to subscribe a Lambda function in US East (N. Virginia) to an SNS topic
in Asia Pacific (Hong Kong), change the principal in the AWS Lambda function policy to sns.ap-
east-1.amazonaws.com. Opt-in regions include any regions launched after March 20, 2019,
which includes Asia Pacific (Hong Kong), Middle East (Bahrain), EU (Milano), and Africa (Cape Town).
Regions launched prior to March 20, 2019 are enabled by default.

Note

AWS doesn't support cross-region delivery to Lambda from a region that is enabled by
default to an opt-in region. Also, cross-region forwarding of SNS messages from opt-in
regions to other opt-in regions is not supported.

Subscribing a Lambda function to an Amazon SNS topic

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. On the Topics page, choose a topic.

4. In the Subscriptions section, choose Create subscription.

5. On the Create subscription page, in the Details section, do the following:

a. Verify the chosen Topic ARN.

b. For Protocol choose AWS Lambda.

c. For Endpoint enter the ARN of a function.

d. Choose Create subscription.

When a message is published to an SNS topic that has a Lambda function subscribed to it, the
Lambda function is invoked with the payload of the published message. For information about how
to use AWS Lambda with Amazon SNS, including a tutorial, see Using AWS Lambda with Amazon
SNS.

Subscribing a function to a topic 342

https://docs.aws.amazon.com/lambda/latest/dg/with-sns-example.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sns-example.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/lambda/latest/dg/with-sns.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sns.html

Amazon Simple Notification Service Developer Guide

Fanout Amazon SNS notifications to Amazon SQS queues for
asynchronous processing

Amazon SNS works closely with Amazon Simple Queue Service (Amazon SQS). These services
provide different benefits for developers. Amazon SNS allows applications to send time-critical
messages to multiple subscribers through a “push” mechanism, eliminating the need to periodically
check or “poll” for updates. Amazon SQS is a message queue service used by distributed
applications to exchange messages through a polling model, and can be used to decouple sending
and receiving components—without requiring each component to be concurrently available.
Using Amazon SNS and Amazon SQS together, messages can be delivered to applications that
require immediate notification of an event, and also persisted in an Amazon SQS queue for other
applications to process at a later time.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, you can publish a message to
the topic and Amazon SNS sends an Amazon SQS message to the subscribed queue. The Amazon
SQS message contains the subject and message that were published to the topic along with
metadata about the message in a JSON document. The Amazon SQS message will look similar to
the following JSON document.

{
 "Type" : "Notification",
 "MessageId" : "63a3f6b6-d533-4a47-aef9-fcf5cf758c76",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "Testing publish to subscribed queues",
 "Message" : "Hello world!",
 "Timestamp" : "2012-03-29T05:12:16.901Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEnTrFPa3...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-
f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-west-2:123456789012:MyTopic:c7fe3a54-
ab0e-4ec2-88e0-db410a0f2bee"
}

Subscribing an Amazon SQS queue to an Amazon SNS topic

To enable an Amazon SNS topic to send messages to an Amazon SQS queue, do one of the
following:

Fanout to Amazon SQS queues 343

https://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide

• Use the Amazon SQS console, which simplifies the process. For more information, see
Subscribing an Amazon SQS queue to an Amazon SNS topic in the Amazon Simple Queue Service
Developer Guide.

• Follow these steps:

1. Get the Amazon Resource Name (ARN) of the queue you want to send messages to and the
topic to which you want to subscribe the queue.

2. Give sqs:SendMessage permission to the Amazon SNS topic so that it can send messages to
the queue.

3. Subscribe the queue to the Amazon SNS topic.

4. Give IAM users or AWS accounts the appropriate permissions to publish to the Amazon SNS
topic and read messages from the Amazon SQS queue.

5. Test it out by publishing a message to the topic and reading the message from the queue.

To learn about how to set up a topic to send messages to a queue that is in a different AWS-
account, see Sending Amazon SNS messages to an Amazon SQS queue in a different account.

To see an AWS CloudFormation template that creates a topic that sends messages to two queues,
see Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation.

Step 1: Get the ARN of the queue and topic

When subscribing a queue to your topic, you'll need a copy of the ARN for the queue. Similarly,
when giving permission for the topic to send messages to the queue, you'll need a copy of the ARN
for the topic.

To get the queue ARN, you can use the Amazon SQS console or the GetQueueAttributes API action.

To get the queue ARN from the Amazon SQS console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose ARN you want to get.

3. From the Details section, copy the ARN value so that you can use it to subscribe to the Amazon
SNS topic.

To get the topic ARN, you can use the Amazon SNS console, the sns-get-topic-attributes
command, or the GetQueueAttributes API action.

Subscribing a queue to a topic 344

https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-subscribe-queue-sns-topic.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/cli/latest/reference/sns/get-topic-attributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html

Amazon Simple Notification Service Developer Guide

To get the topic ARN from the Amazon SNS console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose the topic whose ARN you want to get.

3. From the Details section, copy the ARN value so that you can use it to give permission for the
Amazon SNS topic to send messages to the queue.

Step 2: Give permission to the Amazon SNS topic to send messages to the Amazon
SQS queue

For an Amazon SNS topic to be able to send messages to a queue, you must set a policy on the
queue that allows the Amazon SNS topic to perform the sqs:SendMessage action.

Before you subscribe a queue to a topic, you need a topic and a queue. If you haven't already
created a topic or queue, create them now. For more information, see Creating a topic, and see
Create a queue in the Amazon Simple Queue Service Developer Guide.

To set a policy on a queue, you can use the Amazon SQS console or the SetQueueAttributes API
action. Before you start, make sure you have the ARN for the topic that you want to allow to send
messages to the queue. If you are subscribing a queue to multiple topics, your policy must contain
one Statement element for each topic.

To set a SendMessage policy on a queue using the Amazon SQS console

1. Sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Select the box for the queue whose policy you want to set, choose the Access policy tab, and
then choose Edit.

3. In the Access policy section, define who can access your queue.

• Add a condition that allows the action for the topic.

• Set Principal to be the Amazon SNS service, as shown in the example below.

• Use the aws:SourceArn or aws:SourceAccount global condition keys to protect against
the confused deputy scenario. To use these condition keys, set the value to the ARN of your
topic. If your queue is subscribed to multiple topics, you can use aws:SourceAccount
instead.

Subscribing a queue to a topic 345

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/step-create-queue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QuerySetQueueAttributes.html
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Simple Notification Service Developer Guide

For example, the following policy allows MyTopic to send messages to MyQueue.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:MyQueue",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:sns:us-east-2:123456789012:MyTopic"
 }
 }
 }
]
}

Step 3: Subscribe the queue to the Amazon SNS topic

To send messages to a queue through a topic, you must subscribe the queue to the Amazon SNS
topic. You specify the queue by its ARN. To subscribe to a topic, you can use the Amazon SNS
console, the sns-subscribe CLI command, or the Subscribe API action. Before you start, make
sure you have the ARN for the queue that you want to subscribe.

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. On the Topics page, choose a topic.

4. On the MyTopic page, in the Subscriptions page, choose Create subscription.

5. On the Create subscription page, in the Details section, do the following:

a. Verify the Topic ARN.

b. For Protocol, choose Amazon SQS.

c. For Endpoint, enter the ARN of an Amazon SQS queue.

d. Choose Create Subscription.

Subscribing a queue to a topic 346

https://docs.aws.amazon.com/cli/latest/reference/sns/subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

When the subscription is confirmed, your new subscription's Subscription ID displays its
subscription ID. If the owner of the queue creates the subscription, the subscription is
automatically confirmed and the subscription should be active almost immediately.

Usually, you'll be subscribing your own queue to your own topic in your own account.
However, you can also subscribe a queue from a different account to your topic. If the user
who creates the subscription is not the owner of the queue (for example, if a user from
account A subscribes a queue from account B to a topic in account A), the subscription must
be confirmed. For more information about subscribing a queue from a different account and
confirming the subscription, see Sending Amazon SNS messages to an Amazon SQS queue in a
different account.

Step 4: Give users permissions to the appropriate topic and queue actions

You should use AWS Identity and Access Management (IAM) to allow only appropriate users to
publish to the Amazon SNS topic and to read/delete messages from the Amazon SQS queue. For
more information about controlling actions on topics and queues for IAM users, see Using identity-
based policies with Amazon SNS, and Identity and access management in Amazon SQS in the
Amazon Simple Queue Service Developer Guide.

There are two ways to control access to a topic or queue:

• Add a policy to an IAM user or group. The simplest way to give users permissions to topics or
queues is to create a group and add the appropriate policy to the group and then add users to
that group. It's much easier to add and remove users from a group than to keep track of which
policies you set on individual users.

• Add a policy to topic or queue. If you want to give permissions to a topic or queue to another
AWS account, the only way you can do that is by adding a policy that has as its principal the AWS
account you want to give permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions
for users by adding or removing the appropriate users to the groups). If you need to give
permissions to a user in another account, you should use the second method.

Subscribing a queue to a topic 347

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Amazon Simple Notification Service Developer Guide

Adding a policy to an IAM user or group

If you added the following policy to an IAM user or group, you would give that user or members of
that group permission to perform the sns:Publish action on the topic MyTopic.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:123456789012:MyTopic"
 }
]
}

If you added the following policy to an IAM user or group, you would give that user or members of
that group permission to perform the sqs:ReceiveMessage and sqs:DeleteMessage actions
on the queues MyQueue1 and MyQueue2.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage"
],
 "Resource": [
 "arn:aws:sqs:us-east-2:123456789012:MyQueue1",
 "arn:aws:sqs:us-east-2:123456789012:MyQueue2"
]
 }
]
}

Adding a policy to a topic or queue

The following example policies show how to give another account permissions to a topic and
queue.

Subscribing a queue to a topic 348

Amazon Simple Notification Service Developer Guide

Note

When you give another AWS account access to a resource in your account, you are also
giving IAM users who have admin-level access (wildcard access) permissions to that
resource. All other IAM users in the other account are automatically denied access to your
resource. If you want to give specific IAM users in that AWS account access to your resource,
the account or an IAM user with admin-level access must delegate permissions for the
resource to those IAM users. For more information about cross-account delegation, see
Enabling Cross-Account Access in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give
account 111122223333 permission to perform the sns:Publish action on that topic.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:123456789012:MyTopic"
 }
]
}

If you added the following policy to a queue MyQueue in account 123456789012, you
would give account 111122223333 permission to perform the sqs:ReceiveMessage and
sqs:DeleteMessage actions on that queue.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": [
 "sqs:DeleteMessage",

Subscribing a queue to a topic 349

https://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

Amazon Simple Notification Service Developer Guide

 "sqs:ReceiveMessage"
],
 "Resource": [
 "arn:aws:sqs:us-east-2:123456789012:MyQueue"
]
 }
]
}

Step 5: Test the topic's queue subscriptions

You can test a topic's queue subscriptions by publishing to the topic and viewing the message that
the topic sends to the queue.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic,
sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. On the navigation panel, choose the topic and choose Publish to Topic.

3. In the Subject box, enter a subject (for example, Testing publish to queue) in the
Message box, enter some text (for example, Hello world!), and choose Publish Message.
The following message appears: Your message has been successfully published.

To view the message from the topic using the Amazon SQS console

1. Using the credentials of the AWS account or IAM user with permission to view messages in the
queue, sign in to the AWS Management Console and open the Amazon SQS console at https://
console.aws.amazon.com/sqs/.

2. Choose a queue that is subscribed to the topic.

3. Choose Send and receive messages, and then choose Poll for messages. A message with a
type of Notification appears.

4. In the Body column, choose More Details. The Message Details box contains a JSON
document that contains the subject and message that you published to the topic. The message
looks similar to the following JSON document.

{
 "Type" : "Notification",

Subscribing a queue to a topic 350

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide

 "MessageId" : "63a3f6b6-d533-4a47-aef9-fcf5cf758c76",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "Testing publish to subscribed queues",
 "Message" : "Hello world!",
 "Timestamp" : "2012-03-29T05:12:16.901Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEnTrFPa3...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/
SimpleNotificationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
west-2:123456789012:MyTopic:c7fe3a54-ab0e-4ec2-88e0-db410a0f2bee"
}

5. Choose Close. You have successfully published to a topic that sends notification messages to a
queue.

Automate Amazon SNS to Amazon SQS messaging with AWS
CloudFormation

AWS CloudFormation enables you to use a template file to create and configure a collection of
AWS resources together as a single unit. This section has an example template that makes it easy
to deploy topics that publish to queues. The templates take care of the setup steps for you by
creating two queues, creating a topic with subscriptions to the queues, adding a policy to the
queues so that the topic can send messages to the queues, and creating IAM users and groups to
control access to those resources.

For more information about deploying AWS resources using an AWS CloudFormation template, see
Get Started in the AWS CloudFormation User Guide.

Using an AWS CloudFormation template to set up topics and queues within an
AWS account

The example template creates an Amazon SNS topic that can send messages to two Amazon SQS
queues with appropriate permissions for members of one IAM group to publish to the topic and
another to read messages from the queues. The template also creates IAM users that are added to
each group.

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 351

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html

Amazon Simple Notification Service Developer Guide

You copy the template contents into a file. You can also download the template from the AWS
CloudFormation Templates page. On the templates page, choose Browse sample templates by
AWS serviceand then choose Amazon Simple Queue Service.

MySNSTopic is set up to publish to two subscribed endpoints, which are two Amazon SQS
queues (MyQueue1 and MyQueue2). MyPublishTopicGroup is an IAM group whose members have
permission to publish to MySNSTopic using the Publish API action or sns-publish command. The
template creates the IAM users MyPublishUser and MyQueueUser and gives them login profiles
and access keys. The user who creates a stack with this template specifies the passwords for the
login profiles as input parameters. The template creates access keys for the two IAM users with
MyPublishUserKey and MyQueueUserKey. AddUserToMyPublishTopicGroup adds MyPublishUser to
the MyPublishTopicGroup so that the user will have the permissions assigned to the group.

MyRDMessageQueueGroup is an IAM group whose members have permission to read and delete
messages from the two Amazon SQS queues using the ReceiveMessage and DeleteMessage API
actions. AddUserToMyQueueGroup adds MyQueueUser to the MyRDMessageQueueGroup so that
the user will have the permissions assigned to the group. MyQueuePolicy assigns permission for
MySNSTopic to publish its notifications to the two queues.

The following listing shows the AWS CloudFormation template contents.

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Description" : "AWS CloudFormation Sample Template SNSToSQS: This Template creates
 an SNS topic that can send messages to
 two SQS queues with appropriate permissions for one IAM user to publish to the topic
 and another to read messages from the queues.
 MySNSTopic is set up to publish to two subscribed endpoints, which are two SQS queues
 (MyQueue1 and MyQueue2). MyPublishUser is an IAM user
 that can publish to MySNSTopic using the Publish API. MyTopicPolicy assigns that
 permission to MyPublishUser. MyQueueUser is an IAM user
 that can read messages from the two SQS queues. MyQueuePolicy assigns those
 permissions to MyQueueUser. It also assigns permission for
 MySNSTopic to publish its notifications to the two queues. The template creates
 access keys for the two IAM users with MyPublishUserKey
 and MyQueueUserKey. ***Warning*** you will be billed for the AWS resources used if
 you create a stack from this template.",

 "Parameters": {
 "MyPublishUserPassword": {

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 352

http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/cli/latest/reference/sns/publish.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryDeleteMessage.html

Amazon Simple Notification Service Developer Guide

 "NoEcho": "true",
 "Type": "String",
 "Description": "Password for the IAM user MyPublishUser",
 "MinLength": "1",
 "MaxLength": "41",
 "AllowedPattern": "[a-zA-Z0-9]*",
 "ConstraintDescription": "must contain only alphanumeric characters."
 },
 "MyQueueUserPassword": {
 "NoEcho": "true",
 "Type": "String",
 "Description": "Password for the IAM user MyQueueUser",
 "MinLength": "1",
 "MaxLength": "41",
 "AllowedPattern": "[a-zA-Z0-9]*",
 "ConstraintDescription": "must contain only alphanumeric characters."
 }
 },

 "Resources": {
 "MySNSTopic": {
 "Type": "AWS::SNS::Topic",
 "Properties": {
 "Subscription": [{
 "Endpoint": {
 "Fn::GetAtt": ["MyQueue1", "Arn"]
 },
 "Protocol": "sqs"
 },
 {
 "Endpoint": {
 "Fn::GetAtt": ["MyQueue2", "Arn"]
 },
 "Protocol": "sqs"
 }
]
 }
 },
 "MyQueue1": {
 "Type": "AWS::SQS::Queue"
 },
 "MyQueue2": {
 "Type": "AWS::SQS::Queue"

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 353

Amazon Simple Notification Service Developer Guide

 },
 "MyPublishUser": {
 "Type": "AWS::IAM::User",
 "Properties": {
 "LoginProfile": {
 "Password": {
 "Ref": "MyPublishUserPassword"
 }
 }
 }
 },
 "MyPublishUserKey": {
 "Type": "AWS::IAM::AccessKey",
 "Properties": {
 "UserName": {
 "Ref": "MyPublishUser"
 }
 }
 },
 "MyPublishTopicGroup": {
 "Type": "AWS::IAM::Group",
 "Properties": {
 "Policies": [{
 "PolicyName": "MyTopicGroupPolicy",
 "PolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": {
 "Ref": "MySNSTopic"
 }
 }]
 }
 }]
 }
 },
 "AddUserToMyPublishTopicGroup": {
 "Type": "AWS::IAM::UserToGroupAddition",
 "Properties": {
 "GroupName": {
 "Ref": "MyPublishTopicGroup"
 },

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 354

Amazon Simple Notification Service Developer Guide

 "Users": [{
 "Ref": "MyPublishUser"
 }]
 }
 },
 "MyQueueUser": {
 "Type": "AWS::IAM::User",
 "Properties": {
 "LoginProfile": {
 "Password": {
 "Ref": "MyQueueUserPassword"
 }
 }
 }
 },
 "MyQueueUserKey": {
 "Type": "AWS::IAM::AccessKey",
 "Properties": {
 "UserName": {
 "Ref": "MyQueueUser"
 }
 }
 },
 "MyRDMessageQueueGroup": {
 "Type": "AWS::IAM::Group",
 "Properties": {
 "Policies": [{
 "PolicyName": "MyQueueGroupPolicy",
 "PolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Resource": [{
 "Fn::GetAtt": ["MyQueue1", "Arn"]
 },
 {
 "Fn::GetAtt": ["MyQueue2", "Arn"]
 }
]
 }]
 }

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 355

Amazon Simple Notification Service Developer Guide

 }]
 }
 },
 "AddUserToMyQueueGroup": {
 "Type": "AWS::IAM::UserToGroupAddition",
 "Properties": {
 "GroupName": {
 "Ref": "MyRDMessageQueueGroup"
 },
 "Users": [{
 "Ref": "MyQueueUser"
 }]
 }
 },
 "MyQueuePolicy": {
 "Type": "AWS::SQS::QueuePolicy",
 "Properties": {
 "PolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": ["sqs:SendMessage"],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": {
 "Ref": "MySNSTopic"
 }
 }
 }
 }]
 },
 "Queues": [{
 "Ref": "MyQueue1"
 }, {
 "Ref": "MyQueue2"
 }]
 }
 }
 },
 "Outputs": {
 "MySNSTopicTopicARN": {

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 356

Amazon Simple Notification Service Developer Guide

 "Value": {
 "Ref": "MySNSTopic"
 }
 },
 "MyQueue1Info": {
 "Value": {
 "Fn::Join": [
 " ",
 [
 "ARN:",
 {
 "Fn::GetAtt": ["MyQueue1", "Arn"]
 },
 "URL:",
 {
 "Ref": "MyQueue1"
 }
]
]
 }
 },
 "MyQueue2Info": {
 "Value": {
 "Fn::Join": [
 " ",
 [
 "ARN:",
 {
 "Fn::GetAtt": ["MyQueue2", "Arn"]
 },
 "URL:",
 {
 "Ref": "MyQueue2"
 }
]
]
 }
 },
 "MyPublishUserInfo": {
 "Value": {
 "Fn::Join": [
 " ",
 [
 "ARN:",

Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation 357

Amazon Simple Notification Service Developer Guide

 {
 "Fn::GetAtt": ["MyPublishUser", "Arn"]
 },
 "Access Key:",
 {
 "Ref": "MyPublishUserKey"
 },
 "Secret Key:",
 {
 "Fn::GetAtt": ["MyPublishUserKey", "SecretAccessKey"]
 }
]
]
 }
 },
 "MyQueueUserInfo": {
 "Value": {
 "Fn::Join": [
 " ",
 [
 "ARN:",
 {
 "Fn::GetAtt": ["MyQueueUser", "Arn"]
 },
 "Access Key:",
 {
 "Ref": "MyQueueUserKey"
 },
 "Secret Key:",
 {
 "Fn::GetAtt": ["MyQueueUserKey", "SecretAccessKey"]
 }
]
]
 }
 }
 }
}

Fanout Amazon SNS notifications to HTTPS endpoints

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.
When you subscribe an endpoint to a topic, you can publish a notification to the topic and Amazon

Fanout notifications to HTTPS endpoints 358

https://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide

SNS sends an HTTP POST request delivering the contents of the notification to the subscribed
endpoint. When you subscribe the endpoint, you choose whether Amazon SNS uses HTTP or
HTTPS to send the POST request to the endpoint. If you use HTTPS, then you can take advantage
of the support in Amazon SNS for the following:

• Server Name Indication (SNI)—This allows Amazon SNS to support HTTPS endpoints that
require SNI, such as a server requiring multiple certificates for hosting multiple domains. For
more information about SNI, see Server Name Indication.

• Basic and Digest Access Authentication—This allows you to specify a username and password
in the HTTPS URL for the HTTP POST request, such as https://user:password@domain.com
or https://user@domain.com The username and password are encrypted over the SSL
connection established when using HTTPS. Only the domain name is sent in plaintext. For more
information about Basic and Digest Access Authentication, see RFC-2617.

Important

Amazon SNS does not currently support private HTTP(S) endpoints.
HTTPS URLs are only retrievable from the Amazon SNS GetSubscriptionAttributes
API action, for principals to which you have granted API access.

Note

The client service must be able to support the HTTP/1.1 401 Unauthorized header
response

The request contains the subject and message that were published to the topic along with
metadata about the notification in a JSON document. The request will look similar to the following
HTTP POST request. For details about the HTTP header and the JSON format of the request body,
see HTTP/HTTPS headers and HTTP/HTTPS notification JSON format.

POST / HTTP/1.1
 x-amz-sns-message-type: Notification
 x-amz-sns-message-id: da41e39f-ea4d-435a-b922-c6aae3915ebe
 x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic

Fanout notifications to HTTPS endpoints 359

http://en.wikipedia.org/wiki/Server_Name_Indication
http://www.rfc-editor.org/info/rfc2617

Amazon Simple Notification Service Developer Guide

 x-amz-sns-subscription-arn: arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55
 Content-Length: 761
 Content-Type: text/plain; charset=UTF-8
 Host: ec2-50-17-44-49.compute-1.amazonaws.com
 Connection: Keep-Alive
 User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "Notification",
 "MessageId" : "da41e39f-ea4d-435a-b922-c6aae3915ebe",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "test",
 "Message" : "test message",
 "Timestamp" : "2012-04-25T21:49:25.719Z",
 "SignatureVersion" : "1",
 "Signature" :
 "EXAMPLElDMXvB8r9R83tGoNn0ecwd5UjllzsvSvbItzfaMpN2nk5HVSw7XnOn/49IkxDKz8YrlH2qJXj2iZB0Zo2O71c4qQk1fMUDi3LGpij7RCW7AW9vYYsSqIKRnFS94ilu7NFhUzLiieYr4BKHpdTmdD6c0esKEYBpabxDSc=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-
f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55"
}

Topics

• Subscribing an HTTPS endpoint to an Amazon SNS topic

• Verifying the signatures of Amazon SNS messages

• Parsing Amazon SNS message formats

Subscribing an HTTPS endpoint to an Amazon SNS topic

The pages in this section describe how to subscribe HTTP/S endpoints to Amazon SNS topics.

Topics

• Step 1: Make sure your endpoint is ready to process Amazon SNS messages

• Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic

• Step 3: Confirm your Amazon SNS subscription

• Step 4: Optional - Set the delivery policy for the Amazon SNS subscription

Subscribing an endpoint to a topic 360

Amazon Simple Notification Service Developer Guide

• Step 5: Optional - Give users permissions to publish to the Amazon SNS topic

• Step 6: Send Amazon SNS messages to the HTTP/HTTPS endpoint

Step 1: Make sure your endpoint is ready to process Amazon SNS messages

Before you subscribe your HTTP or HTTPS endpoint to a topic, you must make sure that the HTTP
or HTTPS endpoint has the capability to handle the HTTP POST requests that Amazon SNS uses
to send the subscription confirmation and notification messages. Usually, this means creating and
deploying a web application (for example, a Java servlet if your endpoint host is running Linux with
Apache and Tomcat) that processes the HTTP requests from Amazon SNS. When you subscribe an
HTTP endpoint, Amazon SNS sends it a subscription confirmation request. Your endpoint must be
prepared to receive and process this request when you create the subscription because Amazon
SNS sends this request at that time. Amazon SNS will not send notifications to the endpoint
until you confirm the subscription. Once you confirm the subscription, Amazon SNS will send
notifications to the endpoint when a publish action is performed on the subscribed topic.

To set up your endpoint to process subscription confirmation and notification messages

1. Your code should read the HTTP headers of the HTTP POST requests that Amazon SNS
sends to your endpoint. Your code should look for the header field x-amz-sns-message-
type, which tells you the type of message that Amazon SNS has sent to you. By looking at
the header, you can determine the message type without having to parse the body of the
HTTP request. There are two types that you need to handle: SubscriptionConfirmation
and Notification. The UnsubscribeConfirmation message is used only when the
subscription is deleted from the topic.

For details about the HTTP header, see HTTP/HTTPS headers. The following HTTP POST
request is an example of a subscription confirmation message.

POST / HTTP/1.1
 x-amz-sns-message-type: SubscriptionConfirmation
 x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b
 x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
 Content-Length: 1336
 Content-Type: text/plain; charset=UTF-8
 Host: example.com
 Connection: Keep-Alive
 User-Agent: Amazon Simple Notification Service Agent

Subscribing an endpoint to a topic 361

Amazon Simple Notification Service Developer Guide

{
 "Type" : "SubscriptionConfirmation",
 "MessageId" : "165545c9-2a5c-472c-8df2-7ff2be2b3b1b",
 "Token" : "2336412f37f...",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to subscribe to the topic arn:aws:sns:us-
west-2:123456789012:MyTopic.\nTo confirm the subscription, visit the SubscribeURL
 included in this message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-
west-2:123456789012:MyTopic&Token=2336412f37...",
 "Timestamp" : "2012-04-26T20:45:04.751Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEpH+...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/
SimpleNotificationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem"
}

2. Your code should parse the JSON document in the body of the HTTP POST request and
content-type text/plain to read the name-value pairs that make up the Amazon SNS message.
Use a JSON parser that handles converting the escaped representation of control characters
back to their ASCII character values (for example, converting \n to a newline character). You
can use an existing JSON parser such as the Jackson JSON Processor or write your own. In
order to send the text in the subject and message fields as valid JSON, Amazon SNS must
convert some control characters to escaped representations that can be included in the JSON
document. When you receive the JSON document in the body of the POST request sent to your
endpoint, you must convert the escaped characters back to their original character values if
you want an exact representation of the original subject and messages published to the topic.
This is critical if you want to verify the signature of a notification because the signature uses
the message and subject in their original forms as part of the string to sign.

3. Your code should verify the authenticity of a notification, subscription confirmation, or
unsubscribe confirmation message sent by Amazon SNS. Using information contained in the
Amazon SNS message, your endpoint can recreate the signature so that you can verify the
contents of the message by matching your signature with the signature that Amazon SNS
sent with the message. For more information about verifying the signature of a message, see
Verifying the signatures of Amazon SNS messages.

4. Based on the type specified by the header field x-amz-sns-message-type, your code should
read the JSON document contained in the body of the HTTP request and process the message.
Here are the guidelines for handling the two primary types of messages:

Subscribing an endpoint to a topic 362

https://github.com/FasterXML/jackson

Amazon Simple Notification Service Developer Guide

SubscriptionConfirmation

Read the value for SubscribeURL and visit that URL. To confirm the subscription and
start receiving notifications at the endpoint, you must visit the SubscribeURLURL (for
example, by sending an HTTP GET request to the URL). See the example HTTP request in
the previous step to see what the SubscribeURL looks like. For more information about
the format of the SubscriptionConfirmation message, see HTTP/HTTPS subscription
confirmation JSON format. When you visit the URL, you will get back a response that looks
like the following XML document. The document returns the subscription ARN for the
endpoint within the ConfirmSubscriptionResult element.

<ConfirmSubscriptionResponse xmlns="http://sns.amazonaws.com/doc/2010-03-31/">
 <ConfirmSubscriptionResult>
 <SubscriptionArn>arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55</
SubscriptionArn>
 </ConfirmSubscriptionResult>
 <ResponseMetadata>
 <RequestId>075ecce8-8dac-11e1-bf80-f781d96e9307</RequestId>
 </ResponseMetadata>
</ConfirmSubscriptionResponse>

As an alternative to visiting the SubscribeURL, you can confirm the subscription
using the ConfirmSubscription action with the Token set to its corresponding value
in the SubscriptionConfirmation message. If you want to allow only the topic
owner and subscription owner to be able to unsubscribe the endpoint, you call the
ConfirmSubscription action with an AWS signature.

Notification

Read the values for Subject and Message to get the notification information that was
published to the topic.

For details about the format of the Notification message, see HTTP/HTTPS headers.
The following HTTP POST request is an example of a notification message sent to the
endpoint example.com.

POST / HTTP/1.1
 x-amz-sns-message-type: Notification

Subscribing an endpoint to a topic 363

https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide

 x-amz-sns-message-id: 22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324
 x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
 x-amz-sns-subscription-arn: arn:aws:sns:us-
west-2:123456789012:MyTopic:c9135db0-26c4-47ec-8998-413945fb5a96
 Content-Length: 773
 Content-Type: text/plain; charset=UTF-8
 Host: example.com
 Connection: Keep-Alive
 User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "Notification",
 "MessageId" : "22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "My First Message",
 "Message" : "Hello world!",
 "Timestamp" : "2012-05-02T00:54:06.655Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEw6JRN...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/
SimpleNotificationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
west-2:123456789012:MyTopic:c9135db0-26c4-47ec-8998-413945fb5a96"
}

5. Make sure that your endpoint responds to the HTTP POST message from Amazon SNS with
the appropriate status code. The connection will time out in approximately 15 seconds. If
your endpoint does not respond before the connection times out, or if your endpoint returns
a status code outside the range of 200–4xx, Amazon SNS will consider the delivery of the
message as a failed attempt.

6. Make sure that your code can handle message delivery retries from Amazon SNS. If Amazon
SNS doesn't receive a successful response from your endpoint, it attempts to deliver the
message again. This applies to all messages, including the subscription confirmation message.
By default, if the initial delivery of the message fails, Amazon SNS attempts up to three retries
with a delay between failed attempts set at 20 seconds.

Note

The message request times out after approximately 15 seconds. This means that, if the
message delivery failure is caused by a timeout, Amazon SNS retries for approximately

Subscribing an endpoint to a topic 364

Amazon Simple Notification Service Developer Guide

35 seconds after the previous delivery attempt. You can set a different delivery policy
for the endpoint.

Amazon SNS uses the x-amz-sns-message-id header field to uniquely identify each
message published to an Amazon SNS topic. By comparing the IDs of the messages you
have processed with incoming messages, you can determine whether the message is a retry
attempt.

7. If you are subscribing an HTTPS endpoint, make sure that your endpoint has a server
certificate from a trusted Certificate Authority (CA). Amazon SNS will only send messages to
HTTPS endpoints that have a server certificate signed by a CA trusted by Amazon SNS.

8. Deploy the code that you have created to receive Amazon SNS messages. When you subscribe
the endpoint, the endpoint must be ready to receive at least the subscription confirmation
message.

Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic

To send messages to an HTTP or HTTPS endpoint through a topic, you must subscribe the endpoint
to the Amazon SNS topic. You specify the endpoint using its URL. To subscribe to a topic, you can
use the Amazon SNS console, the sns-subscribe command, or the Subscribe API action. Before
you start, make sure you have the URL for the endpoint that you want to subscribe and that your
endpoint is prepared to receive the confirmation and notification messages as described in Step 1.

To subscribe an HTTP or HTTPS endpoint to a topic using the Amazon SNS console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. Choose the Create subscription.

4. In the Protocol drop-down list, select HTTP or HTTPS.

5. In the Endpoint box, paste in the URL for the endpoint that you want the topic to send
messages to and then choose Create subscription.

6. The confirmation message is displayed. Choose Close.

Your new subscription's Subscription ID displays PendingConfirmation. When you confirm the
subscription, Subscription ID will display the subscription ID.

Subscribing an endpoint to a topic 365

https://docs.aws.amazon.com/cli/latest/reference/sns/subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

Step 3: Confirm your Amazon SNS subscription

To confirm an AWS Amazon SNS subscription, follow these steps to ensure that your endpoint can
successfully receive messages. This process involves setting up your endpoint to handle incoming
confirmation messages, retrieving the necessary confirmation URL, and confirming the subscription
through automated or manual means.

1. Subscription confirmation message. After you subscribe your endpoint to an Amazon SNS
topic, Amazon SNS sends a confirmation message to that endpoint. This message contains a
SubscribeURL, which you need to confirm the subscription.

2. Retrieve the SubscribeURL. Your endpoint should have code that listens for and
processes incoming messages. This code must extract the SubscribeURL from the
confirmation message. The confirmation message typically arrives as a JSON payload with the
SubscribeURL key.

3. Confirm the subscription. There are two ways to confirm the subscription:

• Automatic confirmation. Your endpoint code can automatically visit the SubscribeURL
to confirm the subscription. This approach requires your endpoint to make an HTTP GET
request to the URL provided.

• Manual confirmation. If automatic confirmation is not set up, you can manually visit the
SubscribeURL using a web browser. This step involves copying the URL from the message
and pasting it into your browser's address bar.

4. Verify subscription status. Once you confirm the subscription by visiting the SubscribeURL,
Amazon SNS sends a response that includes an XML document with an element called
SubscriptionArn. This element contains the Amazon Resource Name (ARN) for the
subscription, indicating that the subscription is active.

5. Use the Amazon SNS console. You can also verify the subscription status using the AWS
Management Console. Navigate to the Amazon SNS dashboard, and under the Subscriptions
section, find your subscription. A confirmed subscription will display its ARN, whereas an
unconfirmed subscription will show PendingConfirmation.

Step 4: Optional - Set the delivery policy for the Amazon SNS subscription

By default, if the initial delivery of the message fails, Amazon SNS attempts up to three
retries with a delay between failed attempts set at 20 seconds. As discussed in Step 1, your
endpoint should have code that can handle retried messages. By setting the delivery policy

Subscribing an endpoint to a topic 366

Amazon Simple Notification Service Developer Guide

on a topic or subscription, you can control the frequency and interval that Amazon SNS will
retry failed messages. You can also specify the content type for your HTTP/S notifications in
DeliveryPolicy. For more information, see Creating an HTTP/S delivery policy.

Step 5: Optional - Give users permissions to publish to the Amazon SNS topic

By default, the topic owner has permissions to publish the topic. To enable other users or
applications to publish to the topic, you should use AWS Identity and Access Management (IAM) to
give publish permission to the topic. For more information about giving permissions for Amazon
SNS actions to IAM users, see Using identity-based policies with Amazon SNS.

There are two ways to control access to a topic:

• Add a policy to an IAM user or group. The simplest way to give users permissions to topics is to
create a group and add the appropriate policy to the group and then add users to that group. It's
much easier to add and remove users from a group than to keep track of which policies you set
on individual users.

• Add a policy to the topic. If you want to give permissions to a topic to another AWS account, the
only way you can do that is by adding a policy that has as its principal the AWS account you want
to give permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions
for users by adding or removing the appropriate users to the groups). If you need to give
permissions to a user in another account, use the second method.

If you added the following policy to an IAM user or group, you would give that user or members of
that group permission to perform the sns:Publish action on the topic MyTopic.

{
 "Statement":[{
 "Sid":"AllowPublishToMyTopic",
 "Effect":"Allow",
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-2:123456789012:MyTopic"
 }]
}

The following example policy shows how to give another account permissions to a topic.

Subscribing an endpoint to a topic 367

Amazon Simple Notification Service Developer Guide

Note

When you give another AWS account access to a resource in your account, you are also
giving IAM users who have admin-level access (wildcard access) permissions to that
resource. All other IAM users in the other account are automatically denied access to your
resource. If you want to give specific IAM users in that AWS account access to your resource,
the account or an IAM user with admin-level access must delegate permissions for the
resource to those IAM users. For more information about cross-account delegation, see
Enabling Cross-Account Access in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give
account 111122223333 permission to perform the sns:Publish action on that topic.

{
 "Statement":[{
 "Sid":"Allow-publish-to-topic",
 "Effect":"Allow",
 "Principal":{
 "AWS":"111122223333"
 },
 "Action":"sns:Publish",
 "Resource":"arn:aws:sns:us-east-2:123456789012:MyTopic"
 }]
}

Step 6: Send Amazon SNS messages to the HTTP/HTTPS endpoint

You can send a message to a topic's subscriptions by publishing to the topic. To publish to a topic,
you can use the Amazon SNS console, the sns-publish CLI command, or the Publish API.

If you followed Step 1, the code that you deployed at your endpoint should process the
notification.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic,
sign in to the AWS Management Console and open the Amazon SNS console at https://
console.aws.amazon.com/sns/.

2. On the navigation panel, choose Topics and then choose a topic.

Subscribing an endpoint to a topic 368

https://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html
https://docs.aws.amazon.com/cli/latest/reference/sns/publish.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. Choose the Publish message button.

4. In the Subject box, enter a subject (for example, Testing publish to my endpoint).

5. In the Message box, enter some text (for example, Hello world!), and choose Publish
message.

The following message appears: Your message has been successfully published.

Verifying the signatures of Amazon SNS messages

To verify the authenticity of a message sent to your HTTP endpoint by Amazon SNS, you can verify
the message signature. There are two cases where we recommend verifying the authenticity of the
message. First, when Amazon SNS sends a message to your HTTP endpoint that you subscribed to
a topic. Second, when Amazon SNS sends you a confirmation message to your HTTP endpoint upon
the execution of the Subscribe or the Unsubscribe API actions.

You should do the following when verifying messages sent by Amazon SNS:

• Always use HTTPS when getting the certificate from Amazon SNS.

• Validate the authenticity of the certificate.

• Verify the certificate was received from Amazon SNS.

• When possible, use one of the supported AWS SDKs for Amazon SNS to validate and verify
messages.

• Validate that the Amazon SNS messages are received from your desired TopicArn.

Amazon SNS supports two message signature versions:

• SignatureVersion1: Amazon SNS creates the signature based on the SHA1 hash of the
message.

• SignatureVersion2: Amazon SNS creates the signature based on the SHA256 hash of the
message.

To configure the message signature version on Amazon SNS topics

By default, Amazon SNS topics use SignatureVersion 1. To choose the hashing algorithm on
your Amazon SNS topic, either SignatureVersion 1 (SHA1) or SignatureVersion 2 (SHA256),
you can use the SetTopicAttributes API action.

Verifying message signatures 369

Amazon Simple Notification Service Developer Guide

The following code example shows how to set the topic attribute SignatureVersion using the
AWS CLI:

aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-east-2:123456789012:MyTopic \
 --attribute-name SignatureVersion \
 --attribute-value 2

To verify the signature of an Amazon SNS message when using HTTP query-based requests

1. Extract the name-value pairs from the JSON document in the body of the HTTP POST request
that Amazon SNS sent to your endpoint. You'll be using the values of some of the name-value
pairs to create the string to sign. When you are verifying the signature of an Amazon SNS
message, it is critical that you convert the escaped control characters to their original character
representations in the Message and Subject values. These values must be in their original
forms when you use them as part of the string to sign. For information about how to parse
the JSON document, see Step 1: Make sure your endpoint is ready to process Amazon SNS
messages.

The SignatureVersion tells you the signature version used by Amazon SNS to generate the
signature of the message. From the signature version, you can determine the requirements
for how to generate the signature. For notifications, Amazon SNS currently supports signature
version 1 and 2. This section provides the steps for verifying a signature using these signature
versions.

2. Get the X509 certificate that Amazon SNS used to sign the message. The SigningCertURL
value points to the location of the X509 certificate used to create the digital signature for the
message. Retrieve the certificate from this location.

3. Extract the public key from the certificate. The public key from the certificate specified by
SigningCertURL is used to verify the authenticity and integrity of the message.

4. Determine the message type. The format of the string to sign depends on the message type,
which is specified by the Type value.

5. Create the string to sign. The string to sign is a newline character–delimited list of specific
name-value pairs from the message. Each name-value pair is represented with the name first
followed by a newline character, followed by the value, and ending with a newline character.
The name-value pairs must be listed in byte-sort order.

Depending on the message type, the string to sign must have the following name-value pairs.

Verifying message signatures 370

Amazon Simple Notification Service Developer Guide

Notification

Notification messages must contain the following name-value pairs:

Message
MessageId
Subject (if included in the message)
Timestamp
TopicArn
Type

The following example is a string to sign for a Notification.

Message
My Test Message
MessageId
4d4dc071-ddbf-465d-bba8-08f81c89da64
Subject
My subject
Timestamp
2019-01-31T04:37:04.321Z
TopicArn
arn:aws:sns:us-east-2:123456789012:s4-MySNSTopic-1G1WEFCOXTC0P
Type
Notification

SubscriptionConfirmation and UnsubscribeConfirmation

SubscriptionConfirmation and UnsubscribeConfirmation messages must contain
the following name-value pairs:

Message
MessageId
SubscribeURL
Timestamp
Token
TopicArn
Type

The following example is a string to sign for a SubscriptionConfirmation.

Verifying message signatures 371

Amazon Simple Notification Service Developer Guide

Message
My Test Message
MessageId
3d891288-136d-417f-bc05-901c108273ee
SubscribeURL
https://sns.us-east-2.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-east-2:123456789012:s4-
MySNSTopic-1G1WEFCOXTC0P&Token=233...
Timestamp
2019-01-31T19:25:13.719Z
Token
233...
TopicArn
arn:aws:sns:us-east-2:123456789012:s4-MySNSTopic-1G1WEFCOXTC0P
Type
SubscriptionConfirmation

6. Decode the Signature value from Base64 format. The message delivers the signature in the
Signature value, which is encoded as Base64. Before you compare the signature value with
the signature you have calculated, make sure that you decode the Signature value from
Base64 so that you compare the values using the same format.

7. Generate the derived hash value of the Amazon SNS message. Submit the Amazon SNS
message, in canonical format, to the same hash algorithm used to generate the signature.

a. If the SignatureVersion is 1, use SHA1 as the hash algorithm.

b. If the SignatureVersion is 2, use SHA256 as the hash algorithm.

8. Generate the asserted hash value of the Amazon SNS message. The asserted hash value is the
result of using the public key value (from step 3) to decrypt the signature delivered with the
Amazon SNS message.

9. Verify the authenticity and integrity of the Amazon SNS message. Compare the derived
hash value (from step 7) to the asserted hash value (from step 8). If the values are identical,
then the receiver is assured that the message has not been modified while in transit and the
message must have originated from Amazon SNS. If the values are not identical, it should not
be trusted by the receiver.

Parsing Amazon SNS message formats

Amazon SNS uses the following formats.

Parsing message formats 372

Amazon Simple Notification Service Developer Guide

Topics

• HTTP/HTTPS headers

• HTTP/HTTPS subscription confirmation JSON format

• HTTP/HTTPS notification JSON format

• HTTP/HTTPS unsubscribe confirmation JSON format

• SetSubscriptionAttributes delivery policy JSON format

• SetTopicAttributes delivery policy JSON format

HTTP/HTTPS headers

When Amazon SNS sends a subscription confirmation, notification, or unsubscribe confirmation
message to HTTP/HTTPS endpoints, it sends a POST message with a number of Amazon SNS-
specific header values. You can use header values for such tasks as identifying the message
type without having to parse the JSON message body to read the Type value. By default,
Amazon SNS sends all the notification to HTTP/S endpoints with Content-Type set to text/
plain; charset=UTF-8. To choose a Content-Type other than text/plain (default), see
headerContentType in Creating an HTTP/S delivery policy.

x-amz-sns-message-type

The type of message. The possible values are SubscriptionConfirmation, Notification,
and UnsubscribeConfirmation.

x-amz-sns-message-id

A Universally Unique Identifier (UUID), unique for each message published. For a notification
that Amazon SNS resends during a retry, the message ID of the original message is used.

x-amz-sns-topic-arn

The Amazon Resource Name (ARN) for the topic that this message was published to.

x-amz-sns-subscription-arn

The ARN for the subscription to this endpoint.

The following HTTP POST header is an example of a header for a Notification message to an
HTTP endpoint.

Parsing message formats 373

Amazon Simple Notification Service Developer Guide

POST / HTTP/1.1
x-amz-sns-message-type: Notification
x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55
Content-Length: 1336
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

HTTP/HTTPS subscription confirmation JSON format

After you subscribe an HTTP/HTTPS endpoint, Amazon SNS sends a subscription confirmation
message to the HTTP/HTTPS endpoint. This message contains a SubscribeURL value that
you must visit to confirm the subscription (alternatively, you can use the Token value with the
ConfirmSubscription).

Note

Amazon SNS doesn't send notifications to this endpoint until the subscription is confirmed

The subscription confirmation message is a POST message with a message body that contains a
JSON document with the following name-value pairs.

Type

The type of message. For a subscription confirmation, the type is
SubscriptionConfirmation.

MessageId

A Universally Unique Identifier (UUID), unique for each message published. For a message that
Amazon SNS resends during a retry, the message ID of the original message is used.

Token

A value you can use with the ConfirmSubscription action to confirm the subscription.
Alternatively, you can simply visit the SubscribeURL.

Parsing message formats 374

https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide

TopicArn

The Amazon Resource Name (ARN) for the topic that this endpoint is subscribed to.

Message

A string that describes the message. For subscription confirmation, this string looks like this:

You have chosen to subscribe to the topic arn:aws:sns:us-
east-2:123456789012:MyTopic.\nTo confirm the subscription, visit the SubscribeURL
 included in this message.

SubscribeURL

The URL that you must visit in order to confirm the subscription. Alternatively, you can instead
use the Token with the ConfirmSubscription action to confirm the subscription.

Timestamp

The time (GMT) when the subscription confirmation was sent.

SignatureVersion

Version of the Amazon SNS signature used.

• If the SignatureVersion is 1, Signature is a Base64-encoded SHA1withRSA signature of
the Message, MessageId, Type, Timestamp, and TopicArn values.

• If the SignatureVersion is 2, Signature is a Base64-encoded SHA256withRSA signature
of the Message, MessageId, Type, Timestamp, and TopicArn values.

Signature

Base64-encoded SHA1withRSA or SHA256withRSA signature of the Message, MessageId,
Type, Timestamp, and TopicArn values.

SigningCertURL

The URL to the certificate that was used to sign the message.

The following HTTP POST message is an example of a SubscriptionConfirmation message to
an HTTP endpoint.

POST / HTTP/1.1
x-amz-sns-message-type: SubscriptionConfirmation
x-amz-sns-message-id: 165545c9-2a5c-472c-8df2-7ff2be2b3b1b

Parsing message formats 375

https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide

x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
Content-Length: 1336
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "SubscriptionConfirmation",
 "MessageId" : "165545c9-2a5c-472c-8df2-7ff2be2b3b1b",
 "Token" : "2336412f37...",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to subscribe to the topic arn:aws:sns:us-
west-2:123456789012:MyTopic.\nTo confirm the subscription, visit the SubscribeURL
 included in this message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-
west-2:123456789012:MyTopic&Token=2336412f37...",
 "Timestamp" : "2012-04-26T20:45:04.751Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEpH
+DcEwjAPg8O9mY8dReBSwksfg2S7WKQcikcNKWLQjwu6A4VbeS0QHVCkhRS7fUQvi2egU3N858fiTDN6bkkOxYDVrY0Ad8L10Hs3zH81mtnPk5uvvolIC1CXGu43obcgFxeL3khZl8IKvO61GWB6jI9b5+gLPoBc1Q=",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-
f3ecfb7224c7233fe7bb5f59f96de52f.pem"
}

HTTP/HTTPS notification JSON format

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST
message sent to the endpoint has a message body that contains a JSON document with the
following name-value pairs.

Type

The type of message. For a notification, the type is Notification.

MessageId

A Universally Unique Identifier (UUID), unique for each message published. For a notification
that Amazon SNS resends during a retry, the message ID of the original message is used.

TopicArn

The Amazon Resource Name (ARN) for the topic that this message was published to.

Parsing message formats 376

Amazon Simple Notification Service Developer Guide

Subject

The Subject parameter specified when the notification was published to the topic.

Note

This is an optional parameter. If no Subject was specified, then this name-value pair
does not appear in this JSON document.

Message

The Message value specified when the notification was published to the topic.

Timestamp

The time (GMT) when the notification was published.

SignatureVersion

Version of the Amazon SNS signature used.

• If the SignatureVersion is 1, Signature is a Base64-encoded SHA1withRSA signature of
the Message, MessageId, Subject (if present), Type, Timestamp, and TopicArn values.

• If the SignatureVersion is 2, Signature is a Base64-encoded SHA256withRSA signature
of the Message, MessageId, Subject (if present), Type, Timestamp, and TopicArn values.

Signature

Base64-encoded SHA1withRSA or SHA256withRSA signature of the Message, MessageId,
Subject (if present), Type, Timestamp, and TopicArn values.

SigningCertURL

The URL to the certificate that was used to sign the message.

UnsubscribeURL

A URL that you can use to unsubscribe the endpoint from this topic. If you visit this URL,
Amazon SNS unsubscribes the endpoint and stops sending notifications to this endpoint.

The following HTTP POST message is an example of a Notification message to an HTTP
endpoint.

POST / HTTP/1.1

Parsing message formats 377

Amazon Simple Notification Service Developer Guide

x-amz-sns-message-type: Notification
x-amz-sns-message-id: 22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-
west-2:123456789012:MyTopic:c9135db0-26c4-47ec-8998-413945fb5a96
Content-Length: 773
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "Notification",
 "MessageId" : "22b80b92-fdea-4c2c-8f9d-bdfb0c7bf324",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Subject" : "My First Message",
 "Message" : "Hello world!",
 "Timestamp" : "2012-05-02T00:54:06.655Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEw6JRN...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-
f3ecfb7224c7233fe7bb5f59f96de52f.pem",
 "UnsubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-
west-2:123456789012:MyTopic:c9135db0-26c4-47ec-8998-413945fb5a96"
 }
}

HTTP/HTTPS unsubscribe confirmation JSON format

After an HTTP/HTTPS endpoint is unsubscribed from a topic, Amazon SNS sends an unsubscribe
confirmation message to the endpoint.

The unsubscribe confirmation message is a POST message with a message body that contains a
JSON document with the following name-value pairs.

Type

The type of message. For a unsubscribe confirmation, the type is UnsubscribeConfirmation.

MessageId

A Universally Unique Identifier (UUID), unique for each message published. For a message that
Amazon SNS resends during a retry, the message ID of the original message is used.

Parsing message formats 378

Amazon Simple Notification Service Developer Guide

Token

A value you can use with the ConfirmSubscription action to re-confirm the subscription.
Alternatively, you can simply visit the SubscribeURL.

TopicArn

The Amazon Resource Name (ARN) for the topic that this endpoint has been unsubscribed from.

Message

A string that describes the message. For unsubscribe confirmation, this string looks like this:

You have chosen to deactivate subscription arn:aws:sns:us-
east-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55.\nTo cancel this
 operation and restore the subscription, visit the SubscribeURL included in this
 message.

SubscribeURL

The URL that you must visit in order to re-confirm the subscription. Alternatively, you can
instead use the Token with the ConfirmSubscription action to re-confirm the subscription.

Timestamp

The time (GMT) when the unsubscribe confirmation was sent.

SignatureVersion

Version of the Amazon SNS signature used.

• If the SignatureVersion is 1, Signature is a Base64-encoded SHA1withRSA signature of
the Message, MessageId, Type, Timestamp, and TopicArn values.

• If the SignatureVersion is 2, Signature is a Base64-encoded SHA256withRSA signature
of the Message, MessageId, Type, Timestamp, and TopicArn values.

Signature

Base64-encoded SHA1withRSA or SHA256withRSA signature of the Message, MessageId,
Type, Timestamp, and TopicArn values.

SigningCertURL

The URL to the certificate that was used to sign the message.

Parsing message formats 379

https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide

The following HTTP POST message is an example of a UnsubscribeConfirmation message to
an HTTP endpoint.

POST / HTTP/1.1
x-amz-sns-message-type: UnsubscribeConfirmation
x-amz-sns-message-id: 47138184-6831-46b8-8f7c-afc488602d7d
x-amz-sns-topic-arn: arn:aws:sns:us-west-2:123456789012:MyTopic
x-amz-sns-subscription-arn: arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55
Content-Length: 1399
Content-Type: text/plain; charset=UTF-8
Host: myhost.example.com
Connection: Keep-Alive
User-Agent: Amazon Simple Notification Service Agent

{
 "Type" : "UnsubscribeConfirmation",
 "MessageId" : "47138184-6831-46b8-8f7c-afc488602d7d",
 "Token" : "2336412f37...",
 "TopicArn" : "arn:aws:sns:us-west-2:123456789012:MyTopic",
 "Message" : "You have chosen to deactivate subscription arn:aws:sns:us-
west-2:123456789012:MyTopic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55.\nTo cancel this
 operation and restore the subscription, visit the SubscribeURL included in this
 message.",
 "SubscribeURL" : "https://sns.us-west-2.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-
west-2:123456789012:MyTopic&Token=2336412f37fb6...",
 "Timestamp" : "2012-04-26T20:06:41.581Z",
 "SignatureVersion" : "1",
 "Signature" : "EXAMPLEHXgJm...",
 "SigningCertURL" : "https://sns.us-west-2.amazonaws.com/SimpleNotificationService-
f3ecfb7224c7233fe7bb5f59f96de52f.pem"
}

SetSubscriptionAttributes delivery policy JSON format

If you send a request to the SetSubscriptionAttributes action and set the AttributeName
parameter to a value of DeliveryPolicy, the value of the AttributeValue parameter must be
a valid JSON object. For example, the following example sets the delivery policy to 5 total retries.

http://sns.us-east-2.amazonaws.com/
?Action=SetSubscriptionAttributes

Parsing message formats 380

Amazon Simple Notification Service Developer Guide

&SubscriptionArn=arn%3Aaws%3Asns%3Aus-east-2%3A123456789012%3AMy-Topic
%3A80289ba6-0fd4-4079-afb4-ce8c8260f0ca
&AttributeName=DeliveryPolicy
&AttributeValue={"healthyRetryPolicy":{"numRetries":5}}
...

Use the following JSON format for the value of the AttributeValue parameter.

{
 "healthyRetryPolicy" : {
 "minDelayTarget" : int,
 "maxDelayTarget" : int,
 "numRetries" : int,
 "numMaxDelayRetries" : int,
 "backoffFunction" : "linear|arithmetic|geometric|exponential"
 },
 "throttlePolicy" : {
 "maxReceivesPerSecond" : int
 },
 "requestPolicy" : {
 "headerContentType" : "text/plain | application/json | application/xml"
 }
}

For more information about the SetSubscriptionAttribute action, go to
SetSubscriptionAttributes in the Amazon Simple Notification Service API Reference. For more
information on the supported HTTP content-type headers, see Creating an HTTP/S delivery policy.

SetTopicAttributes delivery policy JSON format

If you send a request to the SetTopicAttributes action and set the AttributeName parameter
to a value of DeliveryPolicy, the value of the AttributeValue parameter must be a valid
JSON object. For example, the following example sets the delivery policy to 5 total retries.

http://sns.us-east-2.amazonaws.com/
?Action=SetTopicAttributes
&TopicArn=arn%3Aaws%3Asns%3Aus-east-2%3A123456789012%3AMy-Topic
&AttributeName=DeliveryPolicy
&AttributeValue={"http":{"defaultHealthyRetryPolicy":{"numRetries":5}}}
...

Use the following JSON format for the value of the AttributeValue parameter.

Parsing message formats 381

https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

Amazon Simple Notification Service Developer Guide

{
 "http" : {
 "defaultHealthyRetryPolicy" : {
 "minDelayTarget": int,
 "maxDelayTarget": int,
 "numRetries": int,
 "numMaxDelayRetries": int,
 "backoffFunction": "linear|arithmetic|geometric|exponential"
 },
 "disableSubscriptionOverrides" : Boolean,
 "defaultThrottlePolicy" : {
 "maxReceivesPerSecond" : int
 },
 "defaultRequestPolicy" : {
 "headerContentType" : "text/plain | application/json | application/xml"
 }
 }
}

For more information about the SetTopicAttribute action, go to SetTopicAttributes in the
Amazon Simple Notification Service API Reference. For more information on the supported HTTP
content-type headers, see Creating an HTTP/S delivery policy.

Fanout Amazon SNS events to AWS Event Fork Pipelines

For event archiving and analytics, Amazon SNS now recommends using its native integration
with Amazon Data Firehose. You can subscribe Firehose delivery streams to SNS topics, which
allows you to send notifications to archiving and analytics endpoints such as Amazon Simple
Storage Service (Amazon S3) buckets, Amazon Redshift tables, Amazon OpenSearch Service
(OpenSearch Service), and more. Using Amazon SNS with Firehose delivery streams is a fully-
managed and codeless solution that doesn't require you to use AWS Lambda functions. For
more information, see Fanout to Firehose delivery streams.

You can use Amazon SNS to build event-driven applications which use subscriber services to
perform work automatically in response to events triggered by publisher services. This architectural
pattern can make services more reusable, interoperable, and scalable. However, it can be labor-
intensive to fork the processing of events into pipelines that address common event handling
requirements, such as event storage, backup, search, analytics, and replay.

Fanout events to AWS Event Fork Pipelines 382

https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon Simple Notification Service Developer Guide

To accelerate the development of your event-driven applications, you can subscribe event-handling
pipelines—powered by AWS Event Fork Pipelines—to Amazon SNS topics. AWS Event Fork
Pipelines is a suite of open-source nested applications, based on the AWS Serverless Application
Model (AWS SAM), which you can deploy directly from the AWS Event Fork Pipelines suite (choose
Show apps that create custom IAM roles or resource policies) into your AWS account.

For an AWS Event Fork Pipelines use case, see Deploying and testing the Amazon SNS event fork
pipelines sample application.

Topics

• How AWS Event Fork Pipelines works

• Deploying AWS Event Fork Pipelines

• Deploying and testing the Amazon SNS event fork pipelines sample application

• Subscribing AWS Event Fork Pipelines to an Amazon SNS topic

How AWS Event Fork Pipelines works

AWS Event Fork Pipelines is a serverless design pattern. However, it is also a suite of nested
serverless applications based on AWS SAM (which you can deploy directly from the AWS Serverless
Application Repository (AWS SAR) to your AWS account in order to enrich your event-driven
platforms). You can deploy these nested applications individually, as your architecture requires.

Topics

• The event storage and backup pipeline

• The event search and analytics pipeline

• The event replay pipeline

The following diagram shows an AWS Event Fork Pipelines application supplemented by three
nested applications. You can deploy any of the pipelines from the AWS Event Fork Pipelines suite
on the AWS SAR independently, as your architecture requires.

How AWS Event Fork Pipelines works 383

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-nested-applications.html
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://serverlessrepo.aws.amazon.com/applications?query=aws-event-fork-pipelines

Amazon Simple Notification Service Developer Guide

Each pipeline is subscribed to the same Amazon SNS topic, allowing itself to process events in
parallel as these events are published to the topic. Each pipeline is independent and can set its
own Subscription Filter Policy. This allows a pipeline to process only a subset of the events that it is
interested in (rather than all events published to the topic).

Note

Because you place the three AWS Event Fork Pipelines alongside your regular event
processing pipelines (possibly already subscribed to your Amazon SNS topic), you don’t
need to change any portion of your current message publisher to take advantage of AWS
Event Fork Pipelines in your existing workloads.

The event storage and backup pipeline

The following diagram shows the Event Storage and Backup Pipeline. You can subscribe this
pipeline to your Amazon SNS topic to automatically back up the events flowing through your
system.

How AWS Event Fork Pipelines works 384

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-event-storage-backup-pipeline

Amazon Simple Notification Service Developer Guide

This pipeline is comprised of an Amazon SQS queue that buffers the events delivered by the
Amazon SNS topic, an AWS Lambda function that automatically polls for these events in the queue
and pushes them into an Amazon Data Firehose stream, and an Amazon S3 bucket that durably
backs up the events loaded by the stream.

To fine-tune the behavior of your Firehose stream, you can configure it to buffer, transform, and
compress your events prior to loading them into the bucket. As events are loaded, you can use
Amazon Athena to query the bucket using standard SQL queries. You can also configure the
pipeline to reuse an existing Amazon S3 bucket or create a new one.

The event search and analytics pipeline

The following diagram shows the Event Search and Analytics Pipeline. You can subscribe this
pipeline to your Amazon SNS topic to index the events that flow through your system in a search
domain and then run analytics on them.

This pipeline is comprised of an Amazon SQS queue that buffers the events delivered by the
Amazon SNS topic, an AWS Lambda function that polls events from the queue and pushes them
into an Amazon Data Firehose stream, an Amazon OpenSearch Service domain that indexes the
events loaded by the Firehose stream, and an Amazon S3 bucket that stores the dead-letter events
that can’t be indexed in the search domain.

How AWS Event Fork Pipelines works 385

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-event-search-analytics-pipeline

Amazon Simple Notification Service Developer Guide

To fine-tune your Firehose stream in terms of event buffering, transformation, and compression,
you can configure this pipeline.

You can also configure whether the pipeline should reuse an existing OpenSearch domain in your
AWS account or create a new one for you. As events are indexed in the search domain, you can use
Kibana to run analytics on your events and update visual dashboards in real-time.

The event replay pipeline

The following diagram shows the Event Replay Pipeline. To record the events that have been
processed by your system for the past 14 days (for example when your platform needs to recover
from failure), you can subscribe this pipeline to your Amazon SNS topic and then reprocess the
events.

This pipeline is comprised of an Amazon SQS queue that buffers the events delivered by the
Amazon SNS topic, and an AWS Lambda function that polls events from the queue and redrives
them into your regular event processing pipeline, which is also subscribed to your topic.

How AWS Event Fork Pipelines works 386

https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-event-replay-pipeline

Amazon Simple Notification Service Developer Guide

Note

By default, the replay function is disabled, not redriving your events. If you need to
reprocess events, you must enable the Amazon SQS replay queue as an event source for the
AWS Lambda replay function.

Deploying AWS Event Fork Pipelines

The AWS Event Fork Pipelines suite (choose Show apps that create custom IAM roles or
resource policies) is available as a group of public applications in the AWS Serverless Application
Repository, from where you can deploy and test them manually using the AWS Lambda console.
For information about deploying pipelines using the AWS Lambda console, see Subscribing AWS
Event Fork Pipelines to an Amazon SNS topic.

In a production scenario, we recommend embedding AWS Event Fork Pipelines within your overall
application's AWS SAM template. The nested-application feature lets you do this by adding the
resource AWS::Serverless::Application to your AWS SAM template, referencing the AWS
SAR ApplicationId and the SemanticVersion of the nested application.

Deploying AWS Event Fork Pipelines 387

https://serverlessrepo.aws.amazon.com/applications?query=aws-event-fork-pipelines
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template.html#serverless-sam-template-application

Amazon Simple Notification Service Developer Guide

For example, you can use the Event Storage and Backup Pipeline as a nested application by adding
the following YAML snippet to the Resources section of your AWS SAM template.

Backup:
 Type: AWS::Serverless::Application
 Properties:
 Location:
 ApplicationId: arn:aws:serverlessrepo:us-east-2:123456789012:applications/fork-
event-storage-backup-pipeline
 SemanticVersion: 1.0.0
 Parameters:
 #The ARN of the Amazon SNS topic whose messages should be backed up to the Amazon
 S3 bucket.
 TopicArn: !Ref MySNSTopic

When you specify parameter values, you can use AWS CloudFormation intrinsic functions to
reference other resources in your template. For example, in the YAML snippet above, the TopicArn
parameter references the AWS::SNS::Topic resource MySNSTopic, defined elsewhere in
the AWS SAM template. For more information, see the Intrinsic Function Reference in the AWS
CloudFormation User Guide.

Note

The AWS Lambda console page for your AWS SAR application includes the Copy as SAM
Resource button, which copies the YAML required for nesting an AWS SAR application to
the clipboard.

Deploying and testing the Amazon SNS event fork pipelines sample
application

To accelerate the development of your event-driven applications, you can subscribe event-handling
pipelines—powered by AWS Event Fork Pipelines—to Amazon SNS topics. AWS Event Fork
Pipelines is a suite of open-source nested applications, based on the AWS Serverless Application
Model (AWS SAM), which you can deploy directly from the AWS Event Fork Pipelines suite (choose
Show apps that create custom IAM roles or resource policies) into your AWS account. For more
information, see How AWS Event Fork Pipelines works.

Deploying and testing the event fork pipelines sample application 388

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-nested-applications.html
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://serverlessrepo.aws.amazon.com/applications?query=aws-event-fork-pipelines

Amazon Simple Notification Service Developer Guide

This page shows how you can use the AWS Management Console to deploy and test the AWS Event
Fork Pipelines sample application.

Important

To avoid incurring unwanted costs after you finish deploying the AWS Event Fork Pipelines
sample application, delete its AWS CloudFormation stack. For more information, see
Deleting a Stack on the AWS CloudFormation Console in the AWS CloudFormation User
Guide.

Topics

• AWS Event Fork Pipelines use case example

• Step 1: Deploying the sample Amazon SNS application

• Step 2: Executing the SNS-linked sample application

• Step 3: Verifying Amazon SNS application and pipeline performance

• Step 4: Simulating an issue and replay events for recovery

AWS Event Fork Pipelines use case example

The following scenario describes an event-driven, serverless e-commerce application that uses
AWS Event Fork Pipelines. You can use this example e-commerce application in the AWS Serverless
Application Repository and then deploy it in your AWS account using the AWS Lambda console,
where you can test it and examine its source code in GitHub.

Deploying and testing the event fork pipelines sample application 389

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:077246666028:applications~fork-example-ecommerce-checkout-api

Amazon Simple Notification Service Developer Guide

This e-commerce application takes orders from buyers through a RESTful API hosted by API
Gateway and backed by the AWS Lambda function CheckoutApiBackendFunction. This
function publishes all received orders to an Amazon SNS topic named CheckoutEventsTopic
which, in turn, fans out the orders to four different pipelines.

The first pipeline is the regular checkout-processing pipeline designed and implemented by the
owner of the e-commerce application. This pipeline has the Amazon SQS queue CheckoutQueue
that buffers all received orders, an AWS Lambda function named CheckoutFunction that polls
the queue to process these orders, and the DynamoDB table CheckoutTable that securely saves
all placed orders.

Applying AWS Event Fork Pipelines

The components of the e-commerce application handle the core business logic. However, the e-
commerce application owner also needs to address the following:

• Compliance—secure, compressed backups encrypted at rest and sanitization of sensitive
information

• Resiliency—replay of most recent orders in case of the disruption of the fulfillment process

• Searchability—running analytics and generating metrics on placed orders

Deploying and testing the event fork pipelines sample application 390

Amazon Simple Notification Service Developer Guide

Instead of implementing this event processing logic, the application owner can subscribe AWS
Event Fork Pipelines to the CheckoutEventsTopic Amazon SNS topic

• The event storage and backup pipeline is configured to transform data to remove credit card
details, buffer data for 60 seconds, compress it using GZIP, and encrypt it using the default
customer managed key for Amazon S3. This key is managed by AWS and powered by the AWS
Key Management Service (AWS KMS).

For more information, see Choose Amazon S3 For Your Destination, Amazon Data Firehose Data
Transformation, and Configure Settings in the Amazon Data Firehose Developer Guide.

• The event search and analytics pipeline is configured with an index retry duration of 30 seconds,
a bucket for storing orders that fail to be indexed in the search domain, and a filter policy to
restrict the set of indexed orders.

For more information, see Choose OpenSearch Service for your Destination in the Amazon Data
Firehose Developer Guide.

• The event replay pipeline is configured with the Amazon SQS queue part of the regular order-
processing pipeline designed and implemented by the e-commerce application owner.

For more information, see Queue Name and URL in the Amazon Simple Queue Service Developer
Guide.

The following JSON filter policy is set in the configuration for the Event Search and Analytics
Pipeline. It matches only incoming orders in which the total amount is $100 or higher. For more
information, see Amazon SNS message filtering.

{
 "amount": [{ "numeric": [">=", 100] }]
}

Using the AWS Event Fork Pipelines pattern, the e-commerce application owner can avoid the
development overhead that often follows coding undifferentiating logic for event handling.
Instead, she can deploy AWS Event Fork Pipelines directly from the AWS Serverless Application
Repository into her AWS account.

Step 1: Deploying the sample Amazon SNS application

1. Sign in to the AWS Lambda console.

Deploying and testing the event fork pipelines sample application 391

https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-s3
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/create-configure.html
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html#create-destination-elasticsearch
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-general-identifiers.html#queue-name-url
https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

2. On the navigation panel, choose Functions and then choose Create function.

3. On the Create function page, do the following:

a. Choose Browse serverless app repository, Public applications, Show apps that create
custom IAM roles or resource policies.

b. Search for fork-example-ecommerce-checkout-api and then choose the application.

4. On the fork-example-ecommerce-checkout-api page, do the following:

a. In the Application settings section, enter an Application name (for example, fork-
example-ecommerce-my-app).

Note

• To find your resources easily later, keep the prefix fork-example-ecommerce.

• For each deployment, the application name must be unique. If you reuse an
application name, the deployment will update only the previously deployed
AWS CloudFormation stack (rather than create a new one).

b. (Optional) Enter one of the following LogLevel settings for the execution of your
application's Lambda function:

• DEBUG

• ERROR

• INFO (default)

• WARNING

5. Choose I acknowledge that this app creates custom IAM roles, resource policies and deploys
nested applications. and then, at the bottom of the page, choose Deploy.

On the Deployment status for fork-example-ecommerce-my-app page, Lambda displays the Your
application is being deployed status.

In the Resources section, AWS CloudFormation begins to create the stack and displays
the CREATE_IN_PROGRESS status for each resource. When the process is complete, AWS
CloudFormation displays the CREATE_COMPLETE status.

Deploying and testing the event fork pipelines sample application 392

Amazon Simple Notification Service Developer Guide

Note

It might take 20-30 minutes for all resources to be deployed.

When the deployment is complete, Lambda displays the Your application has been deployed
status.

Step 2: Executing the SNS-linked sample application

1. In the AWS Lambda console, on the navigation panel, choose Applications.

2. On the Applications page, in the search field, search for serverlessrepo-fork-example-
ecommerce-my-app and then choose the application.

3. In the Resources section, do the following:

a. To find the resource whose type is ApiGateway RestApi, sort the resources by Type, for
example ServerlessRestApi, and then expand the resource.

b. Two nested resources are displayed, of types ApiGateway Deployment and ApiGateway
Stage.

c. Copy the link Prod API endpoint and append /checkout to it, for example:

https://abcdefghij.execute-api.us-east-2.amazonaws.com/Prod/checkout

4. Copy the following JSON to a file named test_event.json.

{
 "id": 15311,
 "date": "2019-03-25T23:41:11-08:00",
 "status": "confirmed",
 "customer": {
 "id": 65144,
 "quantity": 2,
 "price": 25.00,
 "subtotal": 50.00
 }]
}

5. To send an HTTPS request to your API endpoint, pass the sample event payload as input by
executing a curl command, for example:

Deploying and testing the event fork pipelines sample application 393

Amazon Simple Notification Service Developer Guide

curl -d "$(cat test_event.json)" https://abcdefghij.execute-api.us-
east-2.amazonaws.com/Prod/checkout

The API returns the following empty response, indicating a successful execution:

{ }

Step 3: Verifying Amazon SNS application and pipeline performance

Step 1: Verifying the execution of the sample checkout pipeline

1. Sign in to the Amazon DynamoDB console.

2. On the navigation panel, choose Tables.

3. Search for serverlessrepo-fork-example and choose CheckoutTable.

4. On the table details page, choose Items and then choose the created item.

The stored attributes are displayed.

Step 2: Verifying the execution of the event storage and backup pipeline

1. Sign in to the Amazon S3 console.

2. On the navigation panel, choose Buckets.

3. Search for serverlessrepo-fork-example and then choose CheckoutBucket.

4. Navigate the directory hierarchy until you find a file with the extension .gz.

5. To download the file, choose Actions, Open.

6. The pipeline is configured with a Lambda function that sanitizes credit card information for
compliance reasons.

To verify that the stored JSON payload doesn't contain any credit card information,
decompress the file.

Step 3: Verifying the execution of the event search and analytics pipeline

1. Sign in to the OpenSearch Service console.

Deploying and testing the event fork pipelines sample application 394

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/aos/

Amazon Simple Notification Service Developer Guide

2. On the navigation panel, under My domains, choose the domain prefixed with serverl-
analyt.

3. The pipeline is configured with an Amazon SNS subscription filter policy that sets a numeric
matching condition.

To verify that the event is indexed because it refers to an order whose value is higher than USD
$100, on the serverl-analyt-abcdefgh1ijk page, choose Indices, checkout_events.

Step 4: Verifying the execution of the event replay pipeline

1. Sign in to the Amazon SQS console.

2. In the list of queues, search for serverlessrepo-fork-example and choose ReplayQueue.

3. Choose Send and receive messages.

4. In the Send and receive messages in fork-example-ecommerce-my-app...ReplayP-
ReplayQueue-123ABCD4E5F6 dialog box, choose Poll for messages.

5. To verify that the event is enqueued, choose More Details next to the message that appears in
the queue.

Step 4: Simulating an issue and replay events for recovery

Step 1: Enable the simulated issue and send a second API request

1. Sign in to the AWS Lambda console.

2. On the navigation panel, choose Functions.

3. Search for serverlessrepo-fork-example and choose CheckoutFunction.

4. On the fork-example-ecommerce-my-app-CheckoutFunction-ABCDEF... page, in the
Environment variables section, set the BUG_ENABLED variable to true and then choose Save.

5. Copy the following JSON to a file named test_event_2.json.

{
 "id": 9917,
 "date": "2019-03-26T21:11:10-08:00",
 "status": "confirmed",
 "customer": {
 "id": 56999,
"quantity": 1,

Deploying and testing the event fork pipelines sample application 395

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

 "price": 75.00,
 "subtotal": 75.00
 }]
 }

6. To send an HTTPS request to your API endpoint, pass the sample event payload as input by
executing a curl command, for example:

curl -d "$(cat test_event_2.json)" https://abcdefghij.execute-api.us-
east-2.amazonaws.com/Prod/checkout

The API returns the following empty response, indicating a successful execution:

{ }

Step 2: Verify simulated data corruption

1. Sign in to the Amazon DynamoDB console.

2. On the navigation panel, choose Tables.

3. Search for serverlessrepo-fork-example and choose CheckoutTable.

4. On the table details page, choose Items and then choose the created item.

The stored attributes are displayed, some marked as CORRUPTED!

Step 3: Disable the simulated issue

1. Sign in to the AWS Lambda console.

2. On the navigation panel, choose Functions.

3. Search for serverlessrepo-fork-example and choose CheckoutFunction.

4. On the fork-example-ecommerce-my-app-CheckoutFunction-ABCDEF... page, in the
Environment variables section, set the BUG_ENABLED variable to false and then choose Save.

Step 4: Enable replay to recover from the issue

1. In the AWS Lambda console, on the navigation panel, choose Functions.

2. Search for serverlessrepo-fork-example and choose ReplayFunction.

Deploying and testing the event fork pipelines sample application 396

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

3. Expand the Designer section, choose the SQS tile and then, in the SQS section, choose
Enabled.

Note

It takes approximately 1 minute for the Amazon SQS event source trigger to become
enabled.

4. Choose Save.

5. To view the recovered attributes, return to the Amazon DynamoDB console.

6. To disable replay, return to the AWS Lambda console and disable the Amazon SQS event
source trigger for ReplayFunction.

Subscribing AWS Event Fork Pipelines to an Amazon SNS topic

To accelerate the development of your event-driven applications, you can subscribe event-handling
pipelines—powered by AWS Event Fork Pipelines—to Amazon SNS topics. AWS Event Fork
Pipelines is a suite of open-source nested applications, based on the AWS Serverless Application
Model (AWS SAM), which you can deploy directly from the AWS Event Fork Pipelines suite (choose
Show apps that create custom IAM roles or resource policies) into your AWS account. For more
information, see How AWS Event Fork Pipelines works.

This section show how you can use the AWS Management Console to deploy a pipeline and then
subscribe AWS Event Fork Pipelines to an Amazon SNS topic. Before you begin, create an Amazon
SNS topic.

To delete the resources that comprise a pipeline, find the pipeline on the Applications page of on
the AWS Lambda console, expand the SAM template section, choose CloudFormation stack, and
then choose Other Actions, Delete Stack.

Topics

• Deploying and subscribing the Event Storage and Backup Pipeline to Amazon SNS

• Deploying and subscribing the Event Search and Analytics Pipeline to Amazon SNS

• Deploying the Event Replay Pipeline with Amazon SNS integration

Subscribing an event pipeline to a topic 397

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-nested-applications.html
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://serverlessrepo.aws.amazon.com/applications?query=aws-event-fork-pipelines

Amazon Simple Notification Service Developer Guide

Deploying and subscribing the Event Storage and Backup Pipeline to Amazon SNS

For event archiving and analytics, Amazon SNS now recommends using its native integration
with Amazon Data Firehose. You can subscribe Firehose delivery streams to SNS topics, which
allows you to send notifications to archiving and analytics endpoints such as Amazon Simple
Storage Service (Amazon S3) buckets, Amazon Redshift tables, Amazon OpenSearch Service
(OpenSearch Service), and more. Using Amazon SNS with Firehose delivery streams is a fully-
managed and codeless solution that doesn't require you to use AWS Lambda functions. For
more information, see Fanout to Firehose delivery streams.

This page shows how to deploy the Event Storage and Backup Pipeline and subscribe it to an
Amazon SNS topic. This process automatically turns the AWS SAM template associated with the
pipeline into an AWS CloudFormation stack, and then deploys the stack into your AWS account.
This process also creates and configures the set of resources that comprise the Event Storage and
Backup Pipeline, including the following:

• Amazon SQS queue

• Lambda function

• Firehose delivery stream

• Amazon S3 backup bucket

For more information about configuring a stream with an Amazon S3 bucket as a destination, see
S3DestinationConfiguration in the Amazon Data Firehose API Reference.

For more information about transforming events and about configuring event buffering, event
compression, and event encryption, see Creating an Amazon Data Firehose Delivery Stream in the
Amazon Data Firehose Developer Guide.

For more information about filtering events, see Amazon SNS subscription filter policies in this
guide.

1. Sign in to the AWS Lambda console.

2. On the navigation panel, choose Functions and then choose Create function.

3. On the Create function page, do the following:

Subscribing an event pipeline to a topic 398

https://docs.aws.amazon.com/firehose/latest/APIReference/API_S3DestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

a. Choose Browse serverless app repository, Public applications, Show apps that create
custom IAM roles or resource policies.

b. Search for fork-event-storage-backup-pipeline and then choose the application.

4. On the fork-event-storage-backup-pipeline page, do the following:

a. In the Application settings section, enter an Application name (for example, my-app-
backup).

Note

• For each deployment, the application name must be unique. If you reuse an
application name, the deployment will update only the previously deployed
AWS CloudFormation stack (rather than create a new one).

b. (Optional) For BucketArn, enter the ARN of the Amazon S3 bucket into which incoming
events are loaded. If you don't enter a value, a new Amazon S3 bucket is created in your
AWS account.

c. (Optional) For DataTransformationFunctionArn, enter the ARN of the Lambda function
through which the incoming events are transformed. If you don't enter a value, data
transformation is disabled.

d. (Optional) Enter one of the following LogLevel settings for the execution of your
application's Lambda function:

• DEBUG

• ERROR

• INFO (default)

• WARNING

e. For TopicArn, enter the ARN of the Amazon SNS topic to which this instance of the fork
pipeline is to be subscribed.

f. (Optional) For StreamBufferingIntervalInSeconds and StreamBufferingSizeInMBs, enter
the values for configuring the buffering of incoming events. If you don't enter any values,
300 seconds and 5 MB are used.

g. (Optional) Enter one of the following StreamCompressionFormat settings for
compressing incoming events:

Subscribing an event pipeline to a topic 399

Amazon Simple Notification Service Developer Guide

• GZIP

• SNAPPY

• UNCOMPRESSED (default)

• ZIP

h. (Optional) For StreamPrefix, enter the string prefix to name files stored in the Amazon S3
backup bucket. If you don't enter a value, no prefix is used.

i. (Optional) For SubscriptionFilterPolicy, enter the Amazon SNS subscription filter policy,
in JSON format, to be used for filtering incoming events. The filter policy decides which
events are indexed in the OpenSearch Service index. If you don't enter a value, no filtering
is used (all events are indexed).

j. (Optional) For SubscriptionFilterPolicyScope, enter the string MessageBody or
MessageAttributes to enable payload-based or attribute-based message filtering.

k. Choose I acknowledge that this app creates custom IAM roles, resource policies and
deploys nested applications. and then choose Deploy.

On the Deployment status for my-app page, Lambda displays the Your application is being
deployed status.

In the Resources section, AWS CloudFormation begins to create the stack and displays
the CREATE_IN_PROGRESS status for each resource. When the process is complete, AWS
CloudFormation displays the CREATE_COMPLETE status.

When the deployment is complete, Lambda displays the Your application has been deployed
status.

Messages published to your Amazon SNS topic are stored in the Amazon S3 backup bucket
provisioned by the Event Storage and Backup pipeline automatically.

Deploying and subscribing the Event Search and Analytics Pipeline to Amazon
SNS

For event archiving and analytics, Amazon SNS now recommends using its native integration
with Amazon Data Firehose. You can subscribe Firehose delivery streams to SNS topics, which
allows you to send notifications to archiving and analytics endpoints such as Amazon Simple
Storage Service (Amazon S3) buckets, Amazon Redshift tables, Amazon OpenSearch Service

Subscribing an event pipeline to a topic 400

Amazon Simple Notification Service Developer Guide

(OpenSearch Service), and more. Using Amazon SNS with Firehose delivery streams is a fully-
managed and codeless solution that doesn't require you to use AWS Lambda functions. For
more information, see Fanout to Firehose delivery streams.

This page shows how to deploy the Event Search and Analytics Pipeline and subscribe it to an
Amazon SNS topic. This process automatically turns the AWS SAM template associated with the
pipeline into an AWS CloudFormation stack, and then deploys the stack into your AWS account.
This process also creates and configures the set of resources that comprise the Event Search and
Analytics Pipeline, including the following:

• Amazon SQS queue

• Lambda function

• Firehose delivery stream

• Amazon OpenSearch Service domain

• Amazon S3 dead-letter bucket

For more information about configuring a stream with an index as a destination, see
ElasticsearchDestinationConfiguration in the Amazon Data Firehose API Reference.

For more information about transforming events and about configuring event buffering, event
compression, and event encryption, see Creating an Amazon Data Firehose Delivery Stream in the
Amazon Data Firehose Developer Guide.

For more information about filtering events, see Amazon SNS subscription filter policies in this
guide.

1. Sign in to the AWS Lambda console.

2. On the navigation panel, choose Functions and then choose Create function.

3. On the Create function page, do the following:

a. Choose Browse serverless app repository, Public applications, Show apps that create
custom IAM roles or resource policies.

b. Search for fork-event-search-analytics-pipeline and then choose the
application.

4. On the fork-event-search-analytics-pipeline page, do the following:

Subscribing an event pipeline to a topic 401

https://docs.aws.amazon.com/firehose/latest/APIReference/API_ElasticsearchDestinationConfiguration.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

a. In the Application settings section, enter an Application name (for example, my-app-
search).

Note

For each deployment, the application name must be unique. If you reuse an
application name, the deployment will update only the previously deployed AWS
CloudFormation stack (rather than create a new one).

b. (Optional) For DataTransformationFunctionArn, enter the ARN of the Lambda function
used for transforming incoming events. If you don't enter a value, data transformation is
disabled.

c. (Optional) Enter one of the following LogLevel settings for the execution of your
application's Lambda function:

• DEBUG

• ERROR

• INFO (default)

• WARNING

d. (Optional) For SearchDomainArn, enter the ARN of the OpenSearch Service domain, a
cluster that configures the needed compute and storage functionality. If you don't enter a
value, a new domain is created with the default configuration.

e. For TopicArn, enter the ARN of the Amazon SNS topic to which this instance of the fork
pipeline is to be subscribed.

f. For SearchIndexName, enter the name of the OpenSearch Service index for event search
and analytics.

Note

The following quotas apply to index names:

• Can't include uppercase letters

• Can't include the following characters: \ / * ? " < > | ` , #

• Can't begin with the following characters: - + _

• Can't be the following: . ..

Subscribing an event pipeline to a topic 402

Amazon Simple Notification Service Developer Guide

• Can't be longer than 80 characters

• Can't be longer than 255 bytes

• Can't contain a colon (from OpenSearch Service 7.0)

g. (Optional) Enter one of the following SearchIndexRotationPeriod settings for the
rotation period of the OpenSearch Service index:

• NoRotation (default)

• OneDay

• OneHour

• OneMonth

• OneWeek

Index rotation appends a timestamp to the index name, facilitating the expiration of old
data.

h. For SearchTypeName, enter the name of the OpenSearch Service type for organizing the
events in an index.

Note

• OpenSearch Service type names can contain any character (except null bytes)
but can't begin with _.

• For OpenSearch Service 6.x, there can be only one type per index. If you specify
a new type for an existing index that already has another type, Firehose returns
a runtime error.

i. (Optional) For StreamBufferingIntervalInSeconds and StreamBufferingSizeInMBs, enter
the values for configuring the buffering of incoming events. If you don't enter any values,
300 seconds and 5 MB are used.

j. (Optional) Enter one of the following StreamCompressionFormat settings for
compressing incoming events:

• GZIP

• SNAPPY

Subscribing an event pipeline to a topic 403

Amazon Simple Notification Service Developer Guide

• UNCOMPRESSED (default)

• ZIP

k. (Optional) For StreamPrefix, enter the string prefix to name files stored in the Amazon S3
dead-letter bucket. If you don't enter a value, no prefix is used.

l. (Optional) For StreamRetryDurationInSecons, enter the retry duration for cases when
Firehose can't index events in the OpenSearch Service index. If you don't enter a value,
then 300 seconds is used.

m. (Optional) For SubscriptionFilterPolicy, enter the Amazon SNS subscription filter policy,
in JSON format, to be used for filtering incoming events. The filter policy decides which
events are indexed in the OpenSearch Service index. If you don't enter a value, no filtering
is used (all events are indexed).

n. Choose I acknowledge that this app creates custom IAM roles, resource policies and
deploys nested applications. and then choose Deploy.

On the Deployment status for my-app-search page, Lambda displays the Your application is
being deployed status.

In the Resources section, AWS CloudFormation begins to create the stack and displays
the CREATE_IN_PROGRESS status for each resource. When the process is complete, AWS
CloudFormation displays the CREATE_COMPLETE status.

When the deployment is complete, Lambda displays the Your application has been deployed
status.

Messages published to your Amazon SNS topic are indexed in the OpenSearch Service index
provisioned by the Event Search and Analytics pipeline automatically. If the pipeline can't index an
event, it stores it in a Amazon S3 dead-letter bucket.

Deploying the Event Replay Pipeline with Amazon SNS integration

This page shows how to deploy the Event Replay Pipeline and subscribe it to an Amazon SNS topic.
This process automatically turns the AWS SAM template associated with the pipeline into an AWS
CloudFormation stack, and then deploys the stack into your AWS account. This process also creates
and configures the set of resources that comprise the Event Replay Pipeline, including an Amazon
SQS queue and a Lambda function.

For more information about filtering events, see Amazon SNS subscription filter policies in this
guide.

Subscribing an event pipeline to a topic 404

Amazon Simple Notification Service Developer Guide

1. Sign in to the AWS Lambda console.

2. On the navigation panel, choose Functions and then choose Create function.

3. On the Create function page, do the following:

a. Choose Browse serverless app repository, Public applications, Show apps that create
custom IAM roles or resource policies.

b. Search for fork-event-replay-pipeline and then choose the application.

4. On the fork-event-replay-pipeline page, do the following:

a. In the Application settings section, enter an Application name (for example, my-app-
replay).

Note

For each deployment, the application name must be unique. If you reuse an
application name, the deployment will update only the previously deployed AWS
CloudFormation stack (rather than create a new one).

b. (Optional) Enter one of the following LogLevel settings for the execution of your
application's Lambda function:

• DEBUG

• ERROR

• INFO (default)

• WARNING

c. (Optional) For ReplayQueueRetentionPeriodInSeconds, enter the amount of time, in
seconds, for which the Amazon SQS replay queue keeps the message. If you don't enter a
value, 1,209,600 seconds (14 days) is used.

d. For TopicArn, enter the ARN of the Amazon SNS topic to which this instance of the fork
pipeline is to be subscribed.

e. For DestinationQueueName, enter the name of the Amazon SQS queue to which the
Lambda replay function forwards messages.

f. (Optional) For SubscriptionFilterPolicy, enter the Amazon SNS subscription filter policy,
in JSON format, to be used for filtering incoming events. The filter policy decides which
events are buffered for replay. If you don't enter a value, no filtering is used (all events are
buffered for replay).

Subscribing an event pipeline to a topic 405

https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

g. Choose I acknowledge that this app creates custom IAM roles, resource policies and
deploys nested applications. and then choose Deploy.

On the Deployment status for my-app-replay page, Lambda displays the Your application is
being deployed status.

In the Resources section, AWS CloudFormation begins to create the stack and displays
the CREATE_IN_PROGRESS status for each resource. When the process is complete, AWS
CloudFormation displays the CREATE_COMPLETE status.

When the deployment is complete, Lambda displays the Your application has been deployed
status.

Messages published to your Amazon SNS topic are buffered for replay in the Amazon SQS queue
provisioned by the Event Replay Pipeline automatically.

Note

By default, replay is disabled. To enable replay, navigate to the function's page on the
Lambda console, expand the Designer section, choose the SQS tile and then, in the SQS
section, choose Enabled.

Using Amazon EventBridge Scheduler with Amazon SNS

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. With EventBridge Scheduler, you can create schedules
using Cron and rate expressions for recurring patterns, or configure one-time invocations. You can
set up flexible time windows for delivery, define retry limits, and set the maximum retention time
for failed API invocations.

This page explains how to use EventBridge Scheduler to publish a message from an Amazon SNS
topic on a schedule.

Topics

• Setting-up the execution role

• Create a schedule

Using EventBridge Scheduler 406

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html

Amazon Simple Notification Service Developer Guide

• Related resources

Setting-up the execution role

When you create a new schedule, EventBridge Scheduler must have permission to invoke its target
API operation on your behalf. You grant these permissions to EventBridge Scheduler using an
execution role. The permission policy you attach to your schedule's execution role defines the
required permissions. These permissions depend on the target API you want EventBridge Scheduler
to invoke.

When you use the EventBridge Scheduler console to create a schedule, as in the following
procedure, EventBridge Scheduler automatically sets up an execution role based on your selected
target. If you want to create a schedule using one of the EventBridge Scheduler SDKs, the AWS
CLI, or AWS CloudFormation, you must have an existing execution role that grants the permissions
EventBridge Scheduler requires to invoke a target. For more information about manually setting-
up an execution role for your schedule, see Setting-up an execution role in the EventBridge
Scheduler User Guide.

Create a schedule

To create a schedule by using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example, My first
schedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. • Choose your schedule options.

Setting-up the execution role 407

https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

Amazon Simple Notification Service Developer Guide

Occurrence Do this...

One-time schedule

A one-time schedule
invokes a target only once
at the date and time that
you specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose
the timezone.

Create a schedule 408

Amazon Simple Notification Service Developer Guide

Occurrence Do this...

Recurring schedule

A recurring schedule
invokes a target at a rate
that you specify using a
cron expression or rate
expression.

a. For Schedule type, do
one of the following:

• To use a cron
expression to define
the schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate
expression to define
the schedule, choose
Rate-based schedule
and enter the rate
expression.

For more informati
on about cron and
rate expressions,
see Schedule types
on EventBridge
Scheduler in the
Amazon EventBridge
Scheduler User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within

Create a schedule 409

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon Simple Notification Service Developer Guide

Occurrence Do this...

15 minutes after the
start of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, choose the AWS API operation that EventBridge Scheduler invokes:

a. Choose Amazon SNS Publish.

b. In the Publish section, select an SNS topic or choose Create new SNS topic.

c. (Optional) Enter a JSON payload. If you don't enter a payload, EventBridge Scheduler uses
an empty event to invoke the function.

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

• For Maximum age of event, enter the maximum hour(s) and min(s) that EventBridge
Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

Create a schedule 410

Amazon Simple Notification Service Developer Guide

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account
from where you're creating
the schedule

a. Choose Specify an
Amazon SQS queue in
other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,

Create a schedule 411

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html

Amazon Simple Notification Service Developer Guide

EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

Related resources

For more information about EventBridge Scheduler, see the following:

• EventBridge Scheduler User Guide

• EventBridge Scheduler API Reference

• EventBridge Scheduler Pricing

Related resources 412

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/APIReference/Welcome.html
https://aws.amazon.com/eventbridge/pricing/#Scheduler

Amazon Simple Notification Service Developer Guide

Using Amazon SNS for application-to-person messaging

Amazon SNS application-to-person (A2P) messaging lets you to deliver notifications and alerts
directly to your customers' mobile devices through SMS (Short Message Service). Using this feature,
you can send push notifications to mobile apps, text messages to mobile phone numbers, and
plain-text emails to email addresses. Additionally, you have the flexibility to distribute messages
by using topics to reach multiple recipients, or publish messages directly to individual mobile
endpoints for personalized communication.

The following topics explain how to use Amazon SNS for user notifications with subscribers such as
mobile applications, mobile phone numbers, and email addresses:

Topics

• Mobile text messaging with Amazon SNS

• Sending mobile push notifications with Amazon SNS

• Amazon SNS email subscription setup and management

Mobile text messaging with Amazon SNS

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains

Mobile text messaging 413

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html

Amazon Simple Notification Service Developer Guide

the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

Amazon SNS mobile text messaging (SMS) is designed to facilitate message delivery to various
platforms, such as web, mobile, and business applications that support SMS. Users can send
messages to one or multiple phone numbers by subscribing them to a topic, simplifying the
distribution process.

Amazon SNS messages are delivered by AWS End User Messaging SMS, which ensures reliable
message transmission. Within Amazon SNS APIs, you can set various properties such as message
types (promotional or transactional), monthly spending limits, opt-out lists, and message delivery
optimization.

AWS End User Messaging SMS handles the transmission of messages to the destination phone
number through its global SMS supply network. It manages the routing, delivery status, and any
required compliance with regional regulations. To access additional SMS features such as granular
permissions, phone pools, configurations sets, SMS simulator, and country rule, see the AWS End
User Messaging SMS User Guide.

The following key features help you send Amazon SNS SMS messages that are scalable and easily
extensible:

Customize message preferences

Customize SMS deliveries for your AWS account by setting up SMS preferences based on your
budget and use case. For example, you can choose whether your messages prioritize cost
efficiency or reliable delivery.

Mobile text messaging 414

https://docs.aws.amazon.com/sms-voice/latest/userguide/configurations.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/configurations.html

Amazon Simple Notification Service Developer Guide

Set spending quotas

Tailor your SMS deliveries by specifying spending quotas or for individual message deliveries
and monthly spending quotas for your AWS account. Where required by local laws and
regulations (such as the US and Canada), SMS recipients can opt-out, which means that they
choose to stop receiving SMS messages from your AWS account. After a recipient opts-out of
receiving messages, you can, with limitations, opt-in the phone number again so that you can
resume sending messages.

Send SMS messages globally

Amazon SNS supports SMS messaging in multiple regions, allowing you to send messages to
over 240 countries and regions.

How does Amazon SNS deliver my SMS messages?

When you request Amazon SNS to send SMS on your behalf, the messages are dispatched
using AWS End User Messaging SMS. The integration between Amazon SNS and AWS End User
Messaging SMS offers the following benefits:

IAM and resource policies

You can leverage IAM and resource policies to control and distribute access to your SMS
resources across other AWS services and regions.

AWS End User Messaging SMS configurations

All origination ID related configurations (creation, configuration updating, provisioning new
origination IDs, changing registration templates) use AWS End User Messaging SMS.

AWS End User Messaging SMS billing

All SMS billing is done though AWS End User Messaging SMS. You can consolidate your AWS
spend for your SMS workloads, while procuring and managing your SMS resources in one
central location.

How does Amazon SNS deliver my SMS messages? 415

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/configurations.html
https://aws.amazon.com/sns/sms-pricing/

Amazon Simple Notification Service Developer Guide

Getting started with Amazon SNS SMS

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

This topic guides you through managing your SMS sandbox and configuring IAM and resource-
based policies to grant Amazon SNS the necessary permissions for accessing and utilizing the AWS
End User Messaging SMS APIs.

Topics

• Getting started with Amazon SNS SMS access management

• Prerequisites

• Using the Amazon SNS SMS sandbox

Getting started with Amazon SNS SMS access management

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

To enable SMS messaging in Amazon SNS, you need to grant Amazon SNS the necessary
permissions to access your SMS resources and call the AWS End User Messaging SMS APIs on your
behalf. There are two primary mechanisms that control this access:

1. An IAM policy that grants access to AWS End User Messaging SMS APIs

2. Resource-based policies to grant permission for AWS End User Messaging SMS resources

Getting started 416

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html

Amazon Simple Notification Service Developer Guide

By default, SMS resources such as origination IDs and opt-out lists have resource policies that
grant Amazon SNS permission.

Topics

• SMS IAM policies

• Managing custom Amazon SNS IAM policies

• Resource-based policies

SMS IAM policies

SMS AWS Identity and Access Management (IAM) policies refer to the policies that grant Amazon
SNS the necessary permissions to access and use AWS End User Messaging SMS APIs. These policies
define the actions that Amazon SNS is allowed to perform when interacting with AWS End User
Messaging SMS resources, such as sending SMS messages.

1. If you are not using an Admin role, attach an IAM policy that includes the sms-voice APIs.

If you are in the sandbox, you can start sending SMS messages to verified destination phone
numbers without setting additional resource policies.

2. If you requested a new origination identity, select the appropriate policy in the console. This
grants Amazon SNS and AWS End User Messaging SMS access to the resource.

3. If you want to use opt-outs, the default opt-out list doesn’t have a default resource policy.
You must manually configure a resource policy in the AWS End User Messaging SMS to use the
Amazon SNS APIs.

Use the following IAM policy to access all SMS related APIs in SNS:

Note

sms-voice:SendTextMessage and opt-out APIs are not present in the following
example.

{
 "Effect": "Allow",

Getting started 417

Amazon Simple Notification Service Developer Guide

 "Principal": { "Service": "sns.amazonaws.com" },
 "Action": [
 "sns:*",
 "sms-voice:CreateVerifiedDestinationPhoneNumber",
 "sms-voice:DeleteVerifiedDestinationPhoneNumber",
 "sms-voice:GetAccountTier",
 "sms-voice:DescribePhoneNumbers",
 "sms-voice:DescribeDestinationPhoneNumbers",
 "sms-voice:VerifyDestinationPhoneNumber",
 "sms-voice:DescribePhoneNumbers",
 "sms-voice:DescribeSpendLimits",
 "sms-voice:DescribeConfigurationSets",
 "sms-voice:SetTextMessageSpendLimitOverride",
 "sms-voice:UpdateRouteType",
 "sms-voice:UpdateSenderId"
]
 "Resource": "*",
 "Condition": { "StringEquals": { "aws:SourceAccount": "<owner account>" } }
}

Use the following IAM policy to access all SMS (direct publish) related functionality in SNS:

{
 "Effect": "Allow",
 "Principal": { "Service": "sns.amazonaws.com" },
 "Action": [
 "sns:CreateSMSSandboxPhoneNumber",
 "sns:DeleteSMSSandboxPhoneNumber",
 "sns:GetSMSSandboxPhoneNumber",
 "sns:ListSMSSandboxPhoneNumber",
 "sns:VerifySMSSandboxPhoneNumber",
 "sns:ListOriginationNumbers",
 "sns:CheckIfPhoneNumberIsOptedOut",
 "sns:GetSMSAttributes",
 "sns:SetSMSAttributes",
 "sns:Publish",
 "sms-voice:CreateVerifiedDestinationPhoneNumber",
 "sms-voice:DeleteVerifiedDestinationPhoneNumber",
 "sms-voice:GetAccountTier",
 "sms-voice:DescribePhoneNumbers",
 "sms-voice:DescribeDestinationPhoneNumbers",
 "sms-voice:VerifyDestinationPhoneNumber",
 "sms-voice:DescribePhoneNumbers",

Getting started 418

Amazon Simple Notification Service Developer Guide

 "sms-voice:DescribeSpendLimits",
 "sms-voice:DescribeConfigurationSets",
 "sms-voice:SetTextMessageSpendLimitOverride",
 "sms-voice:UpdateRouteType",
 "sms-voice:UpdateSenderId"
]
 "Resource": "*"
}

Managing custom Amazon SNS IAM policies

Custom IAM policies allow you to specify permissions for individual IAM users, groups, or roles,
granting or restricting access to specific AWS resources and actions. When managing Amazon
SNS resources, custom IAM policies allow you to tailor access permissions according to your
organization's security and operational requirements.

Use the following steps to manage custom IAM policies for Amazon SNS:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. From the navigation pane, choose Policies.

3. To create a new custom IAM policy, choose Create policy and choose SNS. To edit an existing
policy, select the policy from the list and choose Edit policy.

4. In the policy editor, define the permissions for accessing Amazon SNS resources. You can
specify actions, resources, and conditions based on your specific requirements.

5. To grant permissions for Amazon SNS actions, include relevant Amazon SNS actions such as
sns:Publish, sns:Subscribe, and sns:DeleteTopic in your IAM policy. Define the ARN
(Amazon Resource Name) of the Amazon SNS topics to which the permissions apply.

6. Specify the IAM users, groups, or roles to which the policy should be attached. You can attach
the policy directly to IAM users or groups, or associate it with IAM roles used by AWS services
or applications.

7. Review the IAM policy configuration to ensure it aligns with your access control requirements.
Once verified, save the policy changes.

8. Attach the custom IAM policy to the relevant IAM users, groups, or roles within your AWS
account. This grants them the permissions defined in the policy for managing Amazon SNS
resources.

Getting started 419

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Simple Notification Service Developer Guide

Resource-based policies

Amazon SNS resource-based policies are used to control access to SMS messaging resources and
manage permissions for sending messages on your behalf. These policies define who can perform
actions on the SMS messaging resources, such as sending messages or managing origination
identities.

By configuring resource-based policies, you can specify which AWS identities or accounts have
permissions to access and interact with the SMS messaging functionality of Amazon SNS. This
helps ensure security and compliance by restricting access to authorized users or systems while
allowing them to utilize the SMS messaging capabilities provided by Amazon SNS.

Origination identities

When you send SMS messages using Amazon SNS, you can identify yourself to your recipients
using an origination identity. Use the following resource-based policy to send SMS messages using
an origination identity:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sms-voice:SendTextMessage",
 "Resource": "arn:aws:sms-voice:us-east-1:555555555555:phone-number/
phone-11aa2b3333c44444d55e6ffff77gggg8",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111111111111"
 }
 }
 }
]
}

Prerequisites

Amazon SNS recommends updating your IAM policy to include the following actions to ensure
comprehensive control and visibility over your Amazon SNS resources:

Getting started 420

Amazon Simple Notification Service Developer Guide

• AmazonSNSFullAccess

• AmazonSNSReadOnly

Using the Amazon SNS SMS sandbox

Newly created Amazon SNS SMS accounts are automatically placed into the SMS sandbox to ensure
the security of both AWS customers and recipients by mitigating the risk of fraud and abuse. This
environment serves as a secure space for testing and development purposes. While operating
within the SMS sandbox, you have access to all Amazon SNS features but are subject to certain
limitations:

• You can only send SMS messages to verified destination phone numbers.

• You can have up to 10 verified destination phone numbers.

• You can delete destination phone numbers only after a minimum of 24 hours have passed since
verification, or the last verification attempt.

Once your account transitions out of the sandbox, these restrictions are removed, and you can send
SMS messages to any recipient.

First steps

New Amazon SNS SMS accounts are placed into an SMS sandbox. Use the following steps to create
and manage phone numbers in your sandbox, create origination numbers and sender IDs, and
register your company.

1. Add a destination phone number to the SMS sandbox. For details on adding, managing and
moving phone numbers out of the Amazon SNS SMS sandbox, see Adding and verifying phone
numbers in the Amazon SNS SMS sandbox.

2. Create an origination identity that your recipients see on their devices when you send them
an SMS message. To learn more about origination identities, including the different types you
can use, see the Origination identities for Amazon SNS SMS messages documentation.

3. Register your company. Some countries require you to register your company's identity to be
able to purchase phone numbers or sender IDs and review the messages you send to recipients
in their country. For information on which countries require registration, see Supported
countries and regions for SMS messaging with AWS End User Messaging SMS in the AWS End
User Messaging SMS User Guide.

Getting started 421

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html

Amazon Simple Notification Service Developer Guide

4. Send your messages to a topic or mobile phone. For more information, see Sending SMS
messages using Amazon SNS.

Topics

• Adding and verifying phone numbers in the Amazon SNS SMS sandbox

• Deleting phone numbers from the Amazon SNS SMS sandbox

• Moving out of the Amazon SNS SMS sandbox

Adding and verifying phone numbers in the Amazon SNS SMS sandbox

To begin sending SMS messages while your AWS account is in the SMS sandbox, you first need to
do the following:

1. Create an origination ID. As with accounts that aren't in the SMS sandbox, an origination ID is
required before you can send SMS messages to recipients in some countries or regions. For more
information, see Choosing a phone number or sender ID in the AWS End User Messaging SMS
User Guide.

2. Add the destination phone numbers to the Amazon SNS sandbox.

3. Verify the phone numbers.

To add and verify destination phone numbers

1. Sign in to the Amazon SNS console.

2. In the console menu, choose a region that supports SMS messaging.

3. In the navigation pane, choose Text messaging (SMS).

4. On the Mobile text messaging (SMS) page, under Sandbox destination phone numbers,
choose Add phone number.

5. Under Destination details, enter the country code and phone number, specify what language
to use for the verification message, and then choose Add phone number.

Amazon SNS sends a one-time password (OTP) to the destination phone number. If the
destination phone number doesn't receive the OTP within 15 minutes, choose Resend
verification code. You can send the OTP to the same destination phone number up to five
times every 24 hours.

Getting started 422

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-number-types.html
https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

6. In the Verification code box, enter the OTP sent to the destination phone number, and then
choose Verify phone number.

The destination phone number and its verification status appear in the Sandbox destination
phone numbers section. If the verification status is Pending, verification was unsuccessful.
This can happen, for example, if you didn't enter the country code with the phone number. You
can delete pending or verified destination phone numbers only after 24 hours or more have
passed since verification or the last verification attempt.

7. Repeat these steps in each Region where you want to use this destination phone number.

Troubleshooting non-receipt of an OTP text

Troubleshoot common problems that may prevent a phone number from receiving OTP texts.

• Amazon SNS SMS spending limit: If your AWS account has exceeded the spending limit for
sending SMS messages, further messages, including OTP texts, might not be delivered until the
limit is increased or the billing issue is resolved.

• Phone number not opted in for SMS notifications: In some countries or regions, recipients must
opt in to receive SMS messages from short codes, which are commonly used for OTP texts. If the
recipient's phone number is not opted in, they will not receive the OTP text.

• Carrier restrictions or filtering: Some mobile carriers may have restrictions or filtering
mechanisms in place that prevent delivery of certain types of SMS messages, including OTP
texts. This could be due to security policies or anti-spam measures implemented by the carrier.

• Invalid or incorrect phone number: If the phone number provided by the recipient is incorrect
or invalid, the OTP text will not be delivered.

• Network issues: Temporary network issues or outages could prevent the delivery of SMS
messages, including OTP texts, to the recipient's phone.

• Delayed delivery: In some cases, SMS messages may experience delays in delivery due to
network congestion or other factors. The OTP text may eventually be delivered, but it could be
delayed beyond the expected timeframe.

• Account suspension or termination: If there are issues with your AWS account, such as non-
payment or violation of AWS terms of service, Amazon SNS messaging capabilities, including
OTP texts, may be suspended or terminated.

Getting started 423

Amazon Simple Notification Service Developer Guide

Deleting phone numbers from the Amazon SNS SMS sandbox

You can delete both pending and verified destination phone numbers from the SMS sandbox.

Important

You can only delete a phone number 24 hours after verifying the phone number, or 24
hours after your last verification attempt.

To delete destination phone numbers from the SMS sandbox

1. Sign in to the Amazon SNS console.

2. In the console menu, choose a region that supports SMS messaging where you added a
destination phone number.

3. In the navigation pane, select Text messaging (SMS).

4. On the Mobile text messaging (SMS) page, navigate to the Sandbox destination phone
numbers section.

5. Choose the specific phone number you want to delete, and then choose Delete phone
number.

6. To confirm that you want to delete the phone number, enter delete me, and then choose
Delete.

Ensure that 24 hours or more have passed since you verified or attempted to verify the
destination phone number before proceeding with the deletion.

7. Repeat these steps in each Region where you added the destination phone number and no
longer plan to use it.

Moving out of the Amazon SNS SMS sandbox

Moving your AWS account out of the SMS sandbox requires that you first add, verify, and test
destination phone numbers. After doing this, create a case with AWS Support.

To request that your AWS account is moved out of the SMS sandbox

1. Verify phone numbers

a. While your AWS account is in the SMS sandbox, open the Amazon SNS console.

Getting started 424

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

b. In the navigation pane, under Mobile, choose Text messaging (SMS).

c. In the Sandbox destination phone numbers section, add and verify one or more
destination phone numbers. This verification ensures you can successfully send and
receive messages.

2. Test SMS publishing

• Confirm that you are able to send and receive messages to at least one verified phone
number. For more detailed instructions on how to publish SMS messages, see Publishing
SMS messages to a mobile phone using Amazon SNS.

3. Initiate sandbox edit

• On the Amazon SNS console's Mobile text messaging (SMS) page, under Account
information, choose Exit SMS sandbox. This action redirects you to the Amazon Support
Center and automatically creates a support case with the Service quota increase option
selected.

4. Fill out the form

• In the support form under Service quota increase, do the following:

i. Choose choose SNS Text Messaging as the service.

ii. Provide the website URL or app name from which you intend to send SMS messages.

iii. Specify the type of messages you will send: One Time Password, Promotional, or
Transactional.

iv. Choose the AWS Region from which you will send SMS messages.

v. List the countries or regions where you plan to send SMS messages.

vi. Describe how your customers opt-in to receive messages.

vii. Include any message templates you intend to use.

5. Specify quota and Region

• Under Requests, do the following:

i. Choose the AWS Region where you want to move your AWS account.

ii. Choose General Limits for Resource Type.

iii. Choose Exit SMS Sandbox for Quota.

Getting started 425

https://support.console.aws.amazon.com/support/home?#/case/create?issueType=service-limit-increase
https://support.console.aws.amazon.com/support/home?#/case/create?issueType=service-limit-increase

Amazon Simple Notification Service Developer Guide

iv. (Optional) To request additional increases or other adjustments, choose Add another
request and specify the necessary details.

v. For New quota value, enter the limit in USD you are requesting.

6. Additional details

a. In the Case description, provide any additional details relevant to your request.

b. Under Contact options, choose your preferred contact language.

7. Submit the request

• Choose Submit to send your request to Support.

The Support team provides an initial response to your request within 24 hours.

To prevent our systems from being used to send unsolicited or malicious content, we consider each
request carefully. If we can, we will grant your request within this 24-hour period. However, if we
need additional information from you, it might take longer to resolve your request.

If your use case doesn't align with our policies, we might be unable to grant your request.

Origination identities for Amazon SNS SMS messages

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

Origination identities for SMS messages are identifiers used to represent the sender of an SMS
message. You can identify yourself to your recipients using the following types of originating
identities:

• Origination numbers – A numeric string that identifies an SMS message sender's phone number.
There are several types of origination numbers, including long codes (standard phone numbers
that typically have 10 or more digits), 10 digit long codes (10DLC), toll free numbers (TFN) and
short codes (phone numbers that contain between four and seven digits). Support for origination

Origination identities 426

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html

Amazon Simple Notification Service Developer Guide

numbers is not available in countries where local laws require the use of sender IDs. When you
send an SMS message using an origination number, the recipient's device shows the origination
number as the sender's phone number. You can specify different origination numbers by use
case.

Tip

To view a list of all existing origination numbers in your AWS account, in the navigation
pane of the Amazon SNS console, choose Origination numbers.

Support for origination numbers is not available in countries where local laws require the use of
sender IDs instead of origination numbers.

For additional information, see Phone numbers in the AWS End User Messaging SMS User Guide.

• Sender IDs – An alphabetic name that identifies the sender of an SMS message. When you send
an SMS message using a sender ID, and the recipient is in an area where sender ID authentication
is supported, your sender ID appears on the recipient’s device instead of your phone number.
A sender ID provides SMS recipients with more information about the sender than a phone
number, long code, or short code provides.

Sender IDs are supported in several countries and regions around the world. In some places, if
you're a business that sends SMS messages to individual customers, you must use a sender ID
that's pre-registered with a regulatory agency or industry group. For a complete list of countries
and regions that support or require sender IDs, see Supported countries and regions for SMS
messaging with AWS End User Messaging SMS in the AWS End User Messaging SMS User Guide.

There's no additional charge for using sender IDs. However, support and requirements for sender
ID authentication varies by country. Several major markets (including Canada, China, and the
United States) don't support using sender IDs. Some areas require that companies who send SMS
messages to individual customers must use a sender ID that's pre-registered with a regulatory
agency or industry group.

For additional information, see Sender IDs in the AWS End User Messaging SMS User Guide.

Origination identities 427

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/sender-id.html

Amazon Simple Notification Service Developer Guide

Configuring SMS messaging in Amazon SNS

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

You can use the configurations in Amazon SNS SMS to set SMS preferences to suit your
requirements, such as adjusting spending quotas and setting-up delivery status logging. This topic
also provides details on how to publish SMS messages to topics using the Amazon SNS console and
AWS SDK, efficiently handle quotas, and retrieve detailed statistics on SMS activity.

Topics

• Sending SMS messages using Amazon SNS

• Setting SMS messaging preferences in Amazon SNS

• Managing Amazon SNS phone numbers and subscriptions

• Amazon SNS SMS activity monitoring

• Requesting support for Amazon SNS SMS messaging

Sending SMS messages using Amazon SNS

This section describes how to send SMS messages using Amazon SNS, including publishing to a
topic, subscribing phone numbers to topics, setting attributes on messages, and publishing directly
to mobile phones.

Topics

• Publishing SMS messages to an Amazon SNS topic

• Publishing SMS messages to a mobile phone using Amazon SNS

Publishing SMS messages to an Amazon SNS topic

You can publish a single SMS message to many phone numbers at once by subscribing those phone
numbers to an Amazon SNS topic. An SNS topic is a communication channel to which you can

Configurations 428

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html

Amazon Simple Notification Service Developer Guide

add subscribers and then publish messages to all of those subscribers. A subscriber receives all
messages published to the topic until you cancel the subscription, or until the subscriber opts out
of receiving SMS messages from your AWS account.

Topics

• Sending a message to a topic using the AWS console

• Sending a message to a topic using the AWS SDKs

Sending a message to a topic using the AWS console

To create a topic

Complete the following steps if you don't already have a topic to which you want to send SMS
messages.

1. Sign in to the Amazon SNS console.

2. In the console menu, choose a region that supports SMS messaging.

3. In the navigation pane, choose Topics.

4. On the Topics page, choose Create topic.

5. On the Create topic page, under Details, do the following:

a. For Type, choose Standard.

b. For Name, enter a topic name.

c. (Optional) For Display name, enter a custom prefix for your SMS messages. When you
send a message to the topic, Amazon SNS prepends the display name followed by a right
angle bracket (>) and a space. Display names are not case sensitive, and Amazon SNS
converts display names to uppercase characters. For example, if the display name of a
topic is MyTopic and the message is Hello World!, the message appears as:

MYTOPIC> Hello World!

6. Choose Create topic. The topic's name and Amazon Resource Name (ARN) appear on the
Topics page.

Configurations 429

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

To create an SMS subscription

You can use subscriptions to send an SMS message to multiple recipients by publishing the
message only once to your topic.

Note

When you start using Amazon SNS to send SMS messages, your AWS account is in the
SMS sandbox. The SMS sandbox provides a safe environment for you to try Amazon SNS
features without risking your reputation as an SMS sender. While your account is in the SMS
sandbox, you can use all of the features of Amazon SNS, but you can send SMS messages
only to verified destination phone numbers. For more information, see Using the Amazon
SNS SMS sandbox.

1. Sign in to the Amazon SNS console.

2. In the navigation pane, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, under Details, do the following:

a. For Topic ARN, enter or choose the Amazon Resource Name (ARN) of the topic to which
you want to send SMS messages.

b. For Protocol, choose SMS.

c. For Endpoint, enter the phone number that you want to subscribe to your topic.

5. Choose Create subscription. The subscription information appears on the Subscriptions page.

To add more phone numbers, repeat these steps. You can also add other types of
subscriptions, such as email.

To send a message

When you publish a message to a topic, Amazon SNS attempts to deliver that message to every
phone number that is subscribed to the topic.

1. In the Amazon SNS console, on the Topics page, choose the name of the topic to which you
want to send SMS messages.

2. On the topic details page, choose Publish message.

Configurations 430

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. On the Publish message to topic page, under Message details, do the following:

a. For Subject, keep the field blank unless your topic contains email subscriptions and you
want to publish to both email and SMS subscriptions. Amazon SNS uses the Subject that
you enter as the email subject line.

b. (Optional) For Time to Live (TTL), enter a number of seconds that Amazon SNS has to
send your SMS message to any mobile application endpoint subscribers.

4. Under Message body, do the following:

a. For Message structure, choose Identical payload for all delivery protocols to send the
same message to all protocol types subscribed to your topic. Or, choose Custom payload
for each delivery protocol to customize the message for subscribers of different protocol
types. For example, you can enter a default message for phone number subscribers and a
custom message for email subscribers.

b. For Message body to send to the endpoint, enter your message, or your custom messages
per delivery protocol.

If your topic has a display name, Amazon SNS adds it to the message, which increases the
message length. The display name length is the number of characters in the name plus
two characters for the right angle bracket (>) and the space that Amazon SNS adds.

For information about the size quotas for SMS messages, see Publishing SMS messages to
a mobile phone using Amazon SNS.

5. (Optional) For Message attributes, add message metadata such as timestamps, signatures,
and IDs.

6. Choose Publish message. Amazon SNS sends the SMS message and displays a success
message.

Sending a message to a topic using the AWS SDKs

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code example shows how to:

• Create an Amazon SNS topic.

• Subscribe phone numbers to the topic.

Configurations 431

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html

Amazon Simple Notification Service Developer Guide

• Publish SMS messages to the topic so that all subscribed phone numbers receive the message at
once.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a topic and return its ARN.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicName>

 Where:
 topicName - The name of the topic to create (for example,
 mytopic).

 """;

Configurations 432

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicName = args[0];
 System.out.println("Creating a topic with name: " + topicName);
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnVal = createSNSTopic(snsClient, topicName);
 System.out.println("The topic ARN is" + arnVal);
 snsClient.close();
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

Subscribe an endpoint to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

Configurations 433

Amazon Simple Notification Service Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeTextSMS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn> <phoneNumber>

 Where:
 topicArn - The ARN of the topic to subscribe.
 phoneNumber - A mobile phone number that receives
 notifications (for example, +1XXX5550100).
 """;

 if (args.length < 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subTextSNS(snsClient, topicArn, phoneNumber);
 snsClient.close();
 }

 public static void subTextSNS(SnsClient snsClient, String topicArn, String
 phoneNumber) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("sms")
 .endpoint(phoneNumber)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)

Configurations 434

Amazon Simple Notification Service Developer Guide

 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN: " + result.subscriptionArn() +
 "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Set attributes on the message, such as the ID of the sender, the maximum price, and its type.
Message attributes are optional.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SetSMSAttributes {
 public static void main(String[] args) {
 HashMap<String, String> attributes = new HashMap<>(1);
 attributes.put("DefaultSMSType", "Transactional");
 attributes.put("UsageReportS3Bucket", "janbucket");

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

Configurations 435

Amazon Simple Notification Service Developer Guide

 setSNSAttributes(snsClient, attributes);
 snsClient.close();
 }

 public static void setSNSAttributes(SnsClient snsClient, HashMap<String,
 String> attributes) {
 try {
 SetSmsAttributesRequest request = SetSmsAttributesRequest.builder()
 .attributes(attributes)
 .build();

 SetSmsAttributesResponse result =
 snsClient.setSMSAttributes(request);
 System.out.println("Set default Attributes to " + attributes + ".
 Status was "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Publish a message to a topic. The message is sent to every subscriber.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTextSMS {

Configurations 436

Amazon Simple Notification Service Developer Guide

 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <phoneNumber>

 Where:
 message - The message text to send.
 phoneNumber - The mobile phone number to which a message is
 sent (for example, +1XXX5550100).\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTextSMS(snsClient, message, phoneNumber);
 snsClient.close();
 }

 public static void pubTextSMS(SnsClient snsClient, String message, String
 phoneNumber) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .phoneNumber(phoneNumber)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Configurations 437

Amazon Simple Notification Service Developer Guide

Publishing SMS messages to a mobile phone using Amazon SNS

You can use Amazon SNS to send SMS messages directly to a mobile phone without subscribing
the phone number to an Amazon SNS topic.

Note

Subscribing phone numbers to a topic is useful if you want to send one message to
multiple phone numbers at once. For instructions on publishing an SMS message to a topic,
see Publishing SMS messages to an Amazon SNS topic.

When you send a message, you can control whether the message is optimized for cost or reliable
delivery. You can also specify a sender ID or origination number. If you send the message
programmatically using the Amazon SNS API or the AWS SDKs, you can specify a maximum price
for the message delivery.

Each SMS message can contain up to 140 bytes, and the character quota depends on the encoding
scheme. For example, an SMS message can contain:

• 160 GSM characters

• 140 ASCII characters

• 70 UCS-2 characters

If you publish a message that exceeds the size quota, Amazon SNS sends it as multiple messages,
each fitting within the size quota. Messages are not cut off in the middle of a word, but instead on
whole-word boundaries. The total size quota for a single SMS publish action is 1,600 bytes.

When you send an SMS message, you specify the phone number using the E.164 format, a
standard phone numbering structure used for international telecommunication. Phone numbers
that follow this format can have a maximum of 15 digits along with the prefix of a plus sign (+) and
the country code. For example, a US phone number in E.164 format appears as +1XXX5550100.

Topics

• Sending a message (console)

Configurations 438

Amazon Simple Notification Service Developer Guide

• Sending a message (AWS SDKs)

Sending a message (console)

1. Sign in to the Amazon SNS console.

2. In the console menu, choose a region that supports SMS messaging.

3. In the navigation pane, choose Text messaging (SMS).

4. On the Mobile text messaging (SMS) page, choose Publish text message.

5. On the Publish SMS message page, for Message type, choose one of the following:

• Promotional – Non-critical messages, such as marketing messages.

• Transactional – Critical messages that support customer transactions, such as one-time
passcodes for multi-factor authentication.

Note

This message-level setting overrides your account-level default message type. You
can set an account-level default message type from the Text messaging preferences
section of the Mobile text messaging (SMS) page.

For pricing information for promotional and transactional messages, see Worldwide SMS
Pricing.

6. For Destination phone number, enter the phone number to which you want to send the
message.

7. For Message, enter the message to send.

8. (Optional) Under Origination identities, specify how to identify yourself to your recipients:

• To specify a Sender ID, type a custom ID that contains 3-11 alphanumeric characters,
including at least one letter and no spaces. The sender ID is displayed as the message sender
on the receiving device. For example, you can use your business brand to make the message
source easier to recognize.

Support for sender IDs varies by country and/or region. For example, messages delivered
to U.S. phone numbers will not display the sender ID. For the countries and regions that

Configurations 439

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://aws.amazon.com/sns/sms-pricing/
https://aws.amazon.com/sns/sms-pricing/

Amazon Simple Notification Service Developer Guide

support sender IDs, see Supported countries and regions for SMS messaging with AWS End
User Messaging SMS in the AWS End User Messaging SMS User Guide.

If you do not specify a sender ID, one of the following is displayed as the originating
identity:

• In countries that support long codes, the long code is shown.

• In countries where only sender IDs are supported, NOTICE is shown.

This message-level sender ID overrides your default sender ID, which you set on the Text
messaging preferences page.

• To specify an Origination number, enter a string of 5-14 numbers to display as the sender's
phone number on the receiver's device. This string must match an origination number that
is configured in your AWS account for the destination country. The origination number can
be a 10DLC number, toll-free number, person-to-person long code, or short codes. For more
information, see Origination identities for Amazon SNS SMS messages.

If you don't specify an origination number, Amazon SNS selects an origination number to
use for the SMS text message, based on your AWS account configuration.

9. If you're sending SMS messages to recipients in India, expand Country-specific attributes, and
specify the following attributes:

• Entity ID – The entity ID or principal entity (PE) ID for sending SMS messages to recipients in
India. This ID is a unique string of 1–50 characters that the Telecom Regulatory Authority of
India (TRAI) provides to identify the entity that you registered with the TRAI.

• Template ID – The template ID for sending SMS messages to recipients in India. This ID
is a unique, TRAI-provided string of 1–50 characters that identifies the template that you
registered with the TRAI. The template ID must be associated with the sender ID that you
specified for the message.

For more information on sending SMS messages to recipients in India, India sender ID
registration process in the AWS End User Messaging SMS User Guide.

10. Choose Publish message.

Configurations 440

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/registrations-sms-senderid-india.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/registrations-sms-senderid-india.html

Amazon Simple Notification Service Developer Guide

Tip

To send SMS messages from an origination number, you can also choose Origination
numbers in the Amazon SNS console navigation panel. Choose an origination number that
includes SMS in the Capabilities column, and then choose Publish text message.

Sending a message (AWS SDKs)

To send an SMS message using one of the AWS SDKs, use the API operation in that SDK that
corresponds to the Publish request in the Amazon SNS API. With this request, you can send an
SMS message directly to a phone number. You can also use the MessageAttributes parameter
to set values for the following attribute names:

AWS.SNS.SMS.SenderID

A custom ID that contains 3–11 alphanumeric characters or hyphen (-) characters, including at
least one letter and no spaces. The sender ID appears as the message sender on the receiving
device. For example, you can use your business brand to help make the message source easier
to recognize.

Support for sender IDs varies by country or region. For example, messages delivered to US
phone numbers don't display the sender ID. For a list of the countries or regions that support
sender IDs, see Supported countries and regions for SMS messaging with AWS End User
Messaging SMS in the AWS End User Messaging SMS User Guide.

If you don't specify a sender ID, a long code appears as the sender ID in supported countries or
regions. For countries or regions that require an alphabetic sender ID, NOTICE appears as the
sender ID.

This message-level attribute overrides the account-level attribute DefaultSenderID, which
you can set using the SetSMSAttributes request.

AWS.MM.SMS.OriginationNumber

A custom string of 5–14 numbers, which can include an optional leading plus sign (+). This
string of numbers appears as the sender's phone number on the receiving device. The string
must match an origination number that's configured in your AWS account for the destination
country. The origination number can be a 10DLC number, toll-free number, person-to-person

Configurations 441

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-request-long-code.html

Amazon Simple Notification Service Developer Guide

(P2P) long code, or short code. For more information, see Phone numbers in the AWS End User
Messaging SMS User Guide.

If you don't specify an origination number, Amazon SNS chooses an origination number based
on your AWS account configuration.

AWS.SNS.SMS.MaxPrice

The maximum price in USD that you're willing to spend to send the SMS message. If Amazon
SNS determines that sending the message would incur a cost that exceeds your maximum price,
it doesn't send the message.

This attribute has no effect if your month-to-date SMS costs have already exceeded the quota
set for the MonthlySpendLimit attribute. You can set the MonthlySpendLimit attribute
using the SetSMSAttributes request.

If you're sending the message to an Amazon SNS topic, the maximum price applies to each
message delivery to each phone number that is subscribed to the topic.

AWS.SNS.SMS.SMSType

The type of message that you're sending:

• Promotional (default) – Non-critical messages, such as marketing messages.

• Transactional – Critical messages that support customer transactions, such as one-time
passcodes for multi-factor authentication.

This message-level attribute overrides the account-level attribute DefaultSMSType, which you
can set using the SetSMSAttributes request.

AWS.MM.SMS.EntityId

This attribute is required only for sending SMS messages to recipients in India.

This is your entity ID or principal entity (PE) ID for sending SMS messages to recipients in India.
This ID is a unique string of 1–50 characters that the Telecom Regulatory Authority of India
(TRAI) provides to identify the entity that you registered with the TRAI.

AWS.MM.SMS.TemplateId

This attribute is required only for sending SMS messages to recipients in India.

This is your template for sending SMS messages to recipients in India. This ID is a unique,
TRAI-provided string of 1–50 characters that identifies the template that you registered with

Configurations 442

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers.html

Amazon Simple Notification Service Developer Guide

the TRAI. The template ID must be associated with the sender ID that you specified for the
message.

Sending a message

The following code examples show how to publish SMS messages using Amazon SNS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace SNSMessageExample
{
 using System;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 public class SNSMessage
 {
 private AmazonSimpleNotificationServiceClient snsClient;

 /// <summary>
 /// Initializes a new instance of the <see cref="SNSMessage"/> class.
 /// Constructs a new SNSMessage object initializing the Amazon Simple
 /// Notification Service (Amazon SNS) client using the supplied
 /// Region endpoint.
 /// </summary>
 /// <param name="regionEndpoint">The Amazon Region endpoint to use in
 /// sending test messages with this object.</param>
 public SNSMessage(RegionEndpoint regionEndpoint)
 {
 snsClient = new
 AmazonSimpleNotificationServiceClient(regionEndpoint);
 }

Configurations 443

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// <summary>
 /// Sends the SMS message passed in the text parameter to the phone
 number
 /// in phoneNum.
 /// </summary>
 /// <param name="phoneNum">The ten-digit phone number to which the text
 /// message will be sent.</param>
 /// <param name="text">The text of the message to send.</param>
 /// <returns>Async task.</returns>
 public async Task SendTextMessageAsync(string phoneNum, string text)
 {
 if (string.IsNullOrEmpty(phoneNum) || string.IsNullOrEmpty(text))
 {
 return;
 }

 // Now actually send the message.
 var request = new PublishRequest
 {
 Message = text,
 PhoneNumber = phoneNum,
 };

 try
 {
 var response = await snsClient.PublishAsync(request);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending message: {ex}");
 }
 }
 }
}

• For API details, see Publish in AWS SDK for .NET API Reference.

Configurations 444

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish

Amazon Simple Notification Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * Publish SMS: use Amazon Simple Notification Service (Amazon SNS) to send an
 SMS text message to a phone number.
 * Note: This requires additional AWS configuration prior to running example.
 *
 * NOTE: When you start using Amazon SNS to send SMS messages, your AWS account
 is in the SMS sandbox and you can only
 * use verified destination phone numbers. See https://docs.aws.amazon.com/sns/
latest/dg/sns-sms-sandbox.html.
 * NOTE: If destination is in the US, you also have an additional restriction
 that you have use a dedicated
 * origination ID (phone number). You can request an origination number using
 Amazon Pinpoint for a fee.
 * See https://aws.amazon.com/blogs/compute/provisioning-and-using-10dlc-
origination-numbers-with-amazon-sns/
 * for more information.
 *
 * <phone_number_value> input parameter uses E.164 format.
 * For example, in United States, this input value should be of the form:
 +12223334444
 */

//! Send an SMS text message to a phone number.
/*!
 \param message: The message to publish.
 \param phoneNumber: The phone number of the recipient in E.164 format.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::publishSms(const Aws::String &message,
 const Aws::String &phoneNumber,

Configurations 445

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::PublishRequest request;
 request.SetMessage(message);
 request.SetPhoneNumber(phoneNumber);

 const Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Message published successfully with message id, '"
 << outcome.GetResult().GetMessageId() << "'."
 << std::endl;
 }
 else {
 std::cerr << "Error while publishing message "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see Publish in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

Configurations 446

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTextSMS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <phoneNumber>

 Where:
 message - The message text to send.
 phoneNumber - The mobile phone number to which a message is
 sent (for example, +1XXX5550100).\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTextSMS(snsClient, message, phoneNumber);
 snsClient.close();
 }

 public static void pubTextSMS(SnsClient snsClient, String message, String
 phoneNumber) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .phoneNumber(phoneNumber)
 .build();

Configurations 447

Amazon Simple Notification Service Developer Guide

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see Publish in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun pubTextSMS(
 messageVal: String?,
 phoneNumberVal: String?,
) {
 val request =
 PublishRequest {
 message = messageVal
 phoneNumber = phoneNumberVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

Configurations 448

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Sends a text message (SMS message) directly to a phone number using Amazon
 SNS.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$message = 'This message is sent from a Amazon SNS code sample.';
$phone = '+1XXX5550100';

try {
 $result = $SnSclient->publish([
 'Message' => $message,
 'PhoneNumber' => $phone,
]);
 var_dump($result);

Configurations 449

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Publish in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def publish_text_message(self, phone_number, message):
 """
 Publishes a text message directly to a phone number without need for a
 subscription.

 :param phone_number: The phone number that receives the message. This
 must be
 in E.164 format. For example, a United States phone
 number might be +12065550101.
 :param message: The message to send.
 :return: The ID of the message.

Configurations 450

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#publish-to-a-text-message-sms-message
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 """
 try:
 response = self.sns_resource.meta.client.publish(
 PhoneNumber=phone_number, Message=message
)
 message_id = response["MessageId"]
 logger.info("Published message to %s.", phone_number)
 except ClientError:
 logger.exception("Couldn't publish message to %s.", phone_number)
 raise
 else:
 return message_id

• For API details, see Publish in AWS SDK for Python (Boto3) API Reference.

Setting SMS messaging preferences in Amazon SNS

Use Amazon SNS to specify preferences for SMS messaging. For example, you can specify whether
to optimize deliveries for cost or reliability, your monthly spending limit, how deliveries are logged,
and whether to subscribe to daily SMS usage reports.

These preferences take effect for every SMS message that you send from your account, but you can
override some of them when you send an individual message. For more information, see Publishing
SMS messages to a mobile phone using Amazon SNS.

Topics

• Setting SMS messaging preferences using the AWS Management Console

• Setting preferences (AWS SDKs)

• Setting SMS messaging preferences for country-specific delivery

Setting SMS messaging preferences using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. Choose a region that supports SMS messaging.

3. On the navigation panel, choose Mobile and then Text messaging (SMS).

Configurations 451

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

4. On the Mobile text messaging (SMS) page, in the Text messaging preferences section,
choose Edit.

5. On the Edit text messaging preferences page, in the Details section, do the following:

a. For Default message type, choose one of the following:

• Promotional – Non-critical messages (for example, marketing). Amazon SNS optimizes
message delivery to incur the lowest cost.

• Transactional (default) – Critical messages that support customer transactions, such as
one-time passcodes for multi-factor authentication. Amazon SNS optimizes message
delivery to achieve the highest reliability.

For pricing information for promotional and transactional messages, see Global SMS
Pricing.

b. (Optional) For Account spend limit, enter the amount (in USD) that you want to spend on
SMS messages each calendar month.

Important

• By default, the spend quota is set to 1.00 USD. If you want to raise the service
quota, submit a request.

• If the amount set in the console exceeds your service quota, Amazon SNS stops
publishing SMS messages.

• Because Amazon SNS is a distributed system, it stops sending SMS messages
within minutes of the spend quota being exceeded. During this interval, if you
continue to send SMS messages, you might incur costs that exceed your quota.

6. (Optional) For Default sender ID, enter a custom ID, such as your business brand, which is
displayed as the sender of the receiving device.

Note

Support for sender IDs varies by country.

7. (Optional) Enter the name of the Amazon S3 bucket name for usage reports.

Configurations 452

https://aws.amazon.com/sns/sms-pricing/
https://aws.amazon.com/sns/sms-pricing/
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sns

Amazon Simple Notification Service Developer Guide

Note

The Amazon S3 bucket policy must grant write access to Amazon SNS.

8. Choose Save changes.

Setting preferences (AWS SDKs)

To set your SMS preferences using one of the AWS SDKs, use the action in that SDK that
corresponds to the SetSMSAttributes request in the Amazon SNS API. With this request, you
assign values to the different SMS attributes, such as your monthly spend quota and your default
SMS type (promotional or transactional). For all SMS attributes, see SetSMSAttributes in the
Amazon Simple Notification Service API Reference.

The following code examples show how to use SetSMSAttributes.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

How to use Amazon SNS to set the DefaultSMSType attribute.

//! Set the default settings for sending SMS messages.
/*!
 \param smsType: The type of SMS message that you will send by default.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::setSMSType(const Aws::String &smsType,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

Configurations 453

https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Aws::SNS::Model::SetSMSAttributesRequest request;
 request.AddAttributes("DefaultSMSType", smsType);

 const Aws::SNS::Model::SetSMSAttributesOutcome outcome =
 snsClient.SetSMSAttributes(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "SMS Type set successfully " << std::endl;
 }
 else {
 std::cerr << "Error while setting SMS Type: '"
 << outcome.GetError().GetMessage()
 << "'" << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see SetSMSAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To set SMS message attributes

The following set-sms-attributes example sets the default sender ID for SMS messages
to MyName.

aws sns set-sms-attributes \
 --attributes DefaultSenderID=MyName

This command produces no output.

• For API details, see SetSMSAttributes in AWS CLI Command Reference.

Configurations 454

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/SetSMSAttributes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-sms-attributes.html

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SetSMSAttributes {
 public static void main(String[] args) {
 HashMap<String, String> attributes = new HashMap<>(1);
 attributes.put("DefaultSMSType", "Transactional");
 attributes.put("UsageReportS3Bucket", "janbucket");

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 setSNSAttributes(snsClient, attributes);
 snsClient.close();
 }

 public static void setSNSAttributes(SnsClient snsClient, HashMap<String,
 String> attributes) {
 try {

Configurations 455

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 SetSmsAttributesRequest request = SetSmsAttributesRequest.builder()
 .attributes(attributes)
 .build();

 SetSmsAttributesResponse result =
 snsClient.setSMSAttributes(request);
 System.out.println("Set default Attributes to " + attributes + ".
 Status was "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SetSMSAttributes in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

Configurations 456

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetSMSAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import { SetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {"Transactional" | "Promotional"} defaultSmsType
 */
export const setSmsType = async (defaultSmsType = "Transactional") => {
 const response = await snsClient.send(
 new SetSMSAttributesCommand({
 attributes: {
 // Promotional – (Default) Noncritical messages, such as marketing
 messages.
 // Transactional – Critical messages that support customer transactions,
 // such as one-time passcodes for multi-factor authentication.
 DefaultSMSType: defaultSmsType,
 },
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '1885b977-2d7e-535e-8214-e44be727e265',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SetSMSAttributes in AWS SDK for JavaScript API Reference.

Configurations 457

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-setattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SetSMSAttributesCommand

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->SetSMSAttributes([
 'attributes' => [
 'DefaultSMSType' => 'Transactional',
],
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see SetSMSAttributes in AWS SDK for PHP API Reference.

Setting SMS messaging preferences for country-specific delivery

You can manage and control your SMS traffic by sending messages only to specific destination
countries. This ensures that your messages are sent only to approved countries, avoiding unwanted
SMS charges. The following instructions use Amazon Pinpoint's Protect configuration to specify the
countries you want to allow or block.

Configurations 458

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#set-sms-attributes
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/SetSMSAttributes

Amazon Simple Notification Service Developer Guide

1. Open the AWS SMS console at https://console.aws.amazon.com/sms-voice/.

2. In the navigation pane, under Overview, in the Quick start section, choose Create a protect
configuration.

3. Under Protect configuration details, enter a business-friendly name for your protect
configuration (for example, Allow-Only-AU).

4. Under SMS country rules, select the Region/Country checkbox to block sending messages to
all supported countries.

5. Deselect the checkboxes for the countries where you want to send messages. For example, to
allow messages only to Australia, deselect the checkbox for Australia.

6. In the Protect configuration associations section, under Association type, select Account
default. This will ensure that the AWS End User Messaging SMS Protect configuration
affects all messages sent through Amazon SNS, Amazon Cognito, and the Amazon Pinpoint
SendMessages API call.

7. Choose Create protect configuration to save your settings.

The following confirmation message is displayed:

Success Protect configuration protect-abc0123456789 has been created.

8. Sign in to the Amazon SNS console.

9. Publish a message to one of the blocked countries, such as India.

The message will not be delivered. You can verify this in the delivery failure logs using
CloudWatch. Search for log group sns/region/AccountID/DirectPublishToPhoneNumber/
Failure for a response similar to the following example:

{
"notification": {
"messageId": "bd59a509-XXXX-XXXX-82f8-fbdb8cb68217",
"timestamp": "YYYY-MM-DD XX:XX:XX.XXXX“
},
"delivery": {
"destination": "+91XXXXXXXXXX",
"smsType": "Transactional",
"providerResponse": "Cannot deliver message to the specified destination country",
"dwellTimeMs": 85
},
"status": "FAILURE"

Configurations 459

https://console.aws.amazon.com/sms-voice/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/send-messages-sms.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

}

Managing Amazon SNS phone numbers and subscriptions

Amazon SNS provides several options for managing who receives SMS messages from your
account. With a limited frequency, you can opt in phone numbers that have opted out of receiving
SMS messages from your account. To stop sending messages to SMS subscriptions, you can remove
subscriptions or the topics that publish to them.

Topics

• Opting out of receiving SMS messages

• Managing phone numbers and subscriptions using the Amazon SNS console

Opting out of receiving SMS messages

Where required by local laws and regulations (such as the US and Canada), SMS recipients can use
their devices to opt-out by replying to the message with any of the following:

• ARRET (French)

• CANCEL

• END

• OPT-OUT

• OPTOUT

• QUIT

• REMOVE

• STOP

• TD

• UNSUBSCRIBE

To opt-out, the recipient must reply to the same origination number that Amazon SNS used to
deliver the message. After opting-out, the recipient will no longer receive SMS messages delivered
from your AWS account unless you opt-in the phone number.

Configurations 460

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers.html

Amazon Simple Notification Service Developer Guide

If the phone number is subscribed to an Amazon SNS topic, opting-out does not remove the
subscription, but SMS messages will fail to deliver to that subscription unless you opt-in the phone
number.

Managing phone numbers and subscriptions using the Amazon SNS console

You can use the Amazon SNS console to control which phone numbers receive SMS messages from
your account.

Opting-in a phone number that has been opted-out the Amazon SNS console

You can view which phone numbers have been opted-out of receiving SMS messages from your
account, and you can opt-in these phone numbers to resume sending messages to them.

You can opt-in a phone number only once every 30 days.

1. Sign in to the Amazon SNS console.

2. In the console menu, set the region selector to a region that supports SMS messaging.

3. On the navigation panel, choose Text messaging (SMS).

4. On the Mobile text messaging (SMS) page, in the Opted-out phone numbers section, opted-
out phone numbers are displayed.

5. Select the check box for the phone number that you want to opt-in, and choose Opt in. The
phone number is no longer opted-out and will receive SMS messages that you send to it.

Deleting an SMS subscription the Amazon SNS console

Delete an SMS subscription to stop sending SMS messages to that phone number when you
publish to your topics.

1. On the navigation panel, choose Subscriptions.

2. Select the check boxes for the subscriptions that you want to delete. Then choose Actions, and
choose Delete Subscriptions.

3. In the Delete window, choose Delete. Amazon SNS deletes the subscription and displays a
success message.

Deleting a topic the Amazon SNS console

Delete a topic when you no longer want to publish messages to its subscribed endpoints.

Configurations 461

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

1. On the navigation panel, choose Topics.

2. Select the check boxes for the topics that you want to delete. Then choose Actions, and
choose Delete Topics.

3. In the Delete window, choose Delete. Amazon SNS deletes the topic and displays a success
message.

Managing phone numbers and subscriptions using the AWS SDK

You can use the AWS SDKs to make programmatic requests to Amazon SNS and manage which
phone numbers can receive SMS messages from your account.

To use an AWS SDK, you must configure it with your credentials. For more information, see Shared
config and credentials files in the AWS SDKs and Tools Reference Guide.

Viewing all opted-out phone numbers using the AWS SDK

To view all opted-out phone numbers, submit a ListPhoneNumbersOptedOut request with the
Amazon SNS API.

The following code examples show how to use ListPhoneNumbersOptedOut.

CLI

AWS CLI

To list SMS message opt-outs

The following list-phone-numbers-opted-out example lists the phone numbers opted
out of receiving SMS messages.

aws sns list-phone-numbers-opted-out

Output:

{
 "phoneNumbers": [
 "+15555550100"
]
}

Configurations 462

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html

Amazon Simple Notification Service Developer Guide

• For API details, see ListPhoneNumbersOptedOut in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.ListPhoneNumbersOptedOutRequest;
import
 software.amazon.awssdk.services.sns.model.ListPhoneNumbersOptedOutResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListOptOut {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listOpts(snsClient);
 snsClient.close();
 }

 public static void listOpts(SnsClient snsClient) {
 try {
 ListPhoneNumbersOptedOutRequest request =
 ListPhoneNumbersOptedOutRequest.builder().build();

Configurations 463

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-phone-numbers-opted-out.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 ListPhoneNumbersOptedOutResponse result =
 snsClient.listPhoneNumbersOptedOut(request);
 System.out.println("Status is " +
 result.sdkHttpResponse().statusCode() + "\n\nPhone Numbers: \n\n"
 + result.phoneNumbers());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListPhoneNumbersOptedOut in AWS SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Returns a list of phone numbers that are opted out of receiving SMS messages
 from your AWS SNS account.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([

Configurations 464

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListPhoneNumbersOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->listPhoneNumbersOptedOut();
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see ListPhoneNumbersOptedOut in AWS SDK for PHP API Reference.

Checking whether a phone number is opted-out using the AWS SDK

To check whether a phone number is opted-out, submit a CheckIfPhoneNumberIsOptedOut
request with the Amazon SNS API.

The following code examples show how to use CheckIfPhoneNumberIsOptedOut.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>

Configurations 465

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#list-opted-out-phone-numbers
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/ListPhoneNumbersOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// This example shows how to use the Amazon Simple Notification Service
 /// (Amazon SNS) to check whether a phone number has been opted out.
 /// </summary>
 public class IsPhoneNumOptedOut
 {
 public static async Task Main()
 {
 string phoneNumber = "+15551112222";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await CheckIfOptedOutAsync(client, phoneNumber);
 }

 /// <summary>
 /// Checks to see if the supplied phone number has been opted out.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS Client object used
 /// to check if the phone number has been opted out.</param>
 /// <param name="phoneNumber">A string representing the phone number
 /// to check.</param>
 public static async Task
 CheckIfOptedOutAsync(IAmazonSimpleNotificationService client, string
 phoneNumber)
 {
 var request = new CheckIfPhoneNumberIsOptedOutRequest
 {
 PhoneNumber = phoneNumber,
 };

 try
 {
 var response = await
 client.CheckIfPhoneNumberIsOptedOutAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 string optOutStatus = response.IsOptedOut ? "opted out" :
 "not opted out.";
 Console.WriteLine($"The phone number: {phoneNumber} is
 {optOutStatus}");
 }
 }

Configurations 466

Amazon Simple Notification Service Developer Guide

 catch (AuthorizationErrorException ex)
 {
 Console.WriteLine($"{ex.Message}");
 }
 }
 }

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for .NET API Reference.

CLI

AWS CLI

To check SMS message opt-out for a phone number

The following check-if-phone-number-is-opted-out example checks whether the
specified phone number is opted out of receiving SMS messages from the current AWS
account.

aws sns check-if-phone-number-is-opted-out \
 --phone-number +1555550100

Output:

{
 "isOptedOut": false
}

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Configurations 467

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/check-if-phone-number-is-opted-out.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import
 software.amazon.awssdk.services.sns.model.CheckIfPhoneNumberIsOptedOutRequest;
import
 software.amazon.awssdk.services.sns.model.CheckIfPhoneNumberIsOptedOutResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CheckOptOut {
 public static void main(String[] args) {

 final String usage = """

 Usage: <phoneNumber>

 Where:
 phoneNumber - The mobile phone number to look up (for example,
 +1XXX5550100).

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String phoneNumber = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 checkPhone(snsClient, phoneNumber);
 snsClient.close();
 }

Configurations 468

Amazon Simple Notification Service Developer Guide

 public static void checkPhone(SnsClient snsClient, String phoneNumber) {
 try {
 CheckIfPhoneNumberIsOptedOutRequest request =
 CheckIfPhoneNumberIsOptedOutRequest.builder()
 .phoneNumber(phoneNumber)
 .build();

 CheckIfPhoneNumberIsOptedOutResponse result =
 snsClient.checkIfPhoneNumberIsOptedOut(request);
 System.out.println(
 result.isOptedOut() + "Phone Number " + phoneNumber + " has
 Opted Out of receiving sns messages." +
 "\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for Java 2.x API
Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

Configurations 469

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { CheckIfPhoneNumberIsOptedOutCommand } from "@aws-sdk/client-sns";

import { snsClient } from "../libs/snsClient.js";

export const checkIfPhoneNumberIsOptedOut = async (
 phoneNumber = "5555555555",
) => {
 const command = new CheckIfPhoneNumberIsOptedOutCommand({
 phoneNumber,
 });

 const response = await snsClient.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '3341c28a-cdc8-5b39-a3ee-9fb0ee125732',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // isOptedOut: false
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for JavaScript API
Reference.

Configurations 470

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-checkifphonenumberisoptedout
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CheckIfPhoneNumberIsOptedOutCommand

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Indicates whether the phone number owner has opted out of receiving SMS
 messages from your AWS SNS account.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$phone = '+1XXX5550100';

try {
 $result = $SnSclient->checkIfPhoneNumberIsOptedOut([
 'phoneNumber' => $phone,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

Configurations 471

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for PHP API Reference.

Opting-in a phone number that has been opted-out using the Amazon SNS API

To opt-in a phone number, submit an OptInPhoneNumber request with the Amazon SNS API.

You can opt-in a phone number only once every 30 days.

Deleting an SMS subscription using the AWS SDK

To delete an SMS subscription from an Amazon SNS topic, get the subscription ARN by submitting
a ListSubscriptions request with the Amazon SNS API, and then pass the ARN to an
Unsubscribe request.

The following code examples show how to use Unsubscribe.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Unsubscribe from a topic by a subscription ARN.

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()

Configurations 472

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#check-if-a-phone-number-has-opted-out
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see Unsubscribe in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete a subscription to an Amazon Simple Notification Service (Amazon SNS)
 topic.
/*!
 \param subscriptionARN: The Amazon Resource Name (ARN) for an Amazon SNS topic
 subscription.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::unsubscribe(const Aws::String &subscriptionARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::UnsubscribeRequest request;
 request.SetSubscriptionArn(subscriptionARN);

 const Aws::SNS::Model::UnsubscribeOutcome outcome =
 snsClient.Unsubscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Unsubscribed successfully " << std::endl;
 }
 else {

Configurations 473

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 std::cerr << "Error while unsubscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see Unsubscribe in AWS SDK for C++ API Reference.

CLI

AWS CLI

To unsubscribe from a topic

The following unsubscribe example deletes the specified subscription from a topic.

aws sns unsubscribe \
 --subscription-arn arn:aws:sns:us-west-2:0123456789012:my-
topic:8a21d249-4329-4871-acc6-7be709c6ea7f

This command produces no output.

• For API details, see Unsubscribe in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.UnsubscribeRequest;

Configurations 474

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Unsubscribe
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/unsubscribe.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.services.sns.model.UnsubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class Unsubscribe {
 public static void main(String[] args) {
 final String usage = """

 Usage: <subscriptionArn>

 Where:
 subscriptionArn - The ARN of the subscription to delete.
 """;

 if (args.length < 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String subscriptionArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 unSub(snsClient, subscriptionArn);
 snsClient.close();
 }

 public static void unSub(SnsClient snsClient, String subscriptionArn) {
 try {
 UnsubscribeRequest request = UnsubscribeRequest.builder()
 .subscriptionArn(subscriptionArn)
 .build();

 UnsubscribeResponse result = snsClient.unsubscribe(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode()

Configurations 475

Amazon Simple Notification Service Developer Guide

 + "\n\nSubscription was removed for " +
 request.subscriptionArn());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see Unsubscribe in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { UnsubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} subscriptionArn - The ARN of the subscription to cancel.
 */

Configurations 476

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

const unsubscribe = async (
 subscriptionArn = "arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic:xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx",
) => {
 const response = await snsClient.send(
 new UnsubscribeCommand({
 SubscriptionArn: subscriptionArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0178259a-9204-507c-b620-78a7570a44c6',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Unsubscribe in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun unSub(subscriptionArnVal: String) {
 val request =
 UnsubscribeRequest {
 subscriptionArn = subscriptionArnVal

Configurations 477

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-unsubscribing
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.unsubscribe(request)
 println("Subscription was removed for ${request.subscriptionArn}")
 }
}

• For API details, see Unsubscribe in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Deletes a subscription to an Amazon SNS topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$subscription = 'arn:aws:sns:us-east-1:111122223333:MySubscription';

Configurations 478

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

try {
 $result = $SnSclient->unsubscribe([
 'SubscriptionArn' => $subscription,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Unsubscribe in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def delete_subscription(subscription):
 """
 Unsubscribes and deletes a subscription.
 """

Configurations 479

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-subscribing-unsubscribing-topics.html#unsubscribe-from-a-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 try:
 subscription.delete()
 logger.info("Deleted subscription %s.", subscription.arn)
 except ClientError:
 logger.exception("Couldn't delete subscription %s.",
 subscription.arn)
 raise

• For API details, see Unsubscribe in AWS SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->unsubscribe(iv_subscriptionarn = iv_subscription_arn).
 MESSAGE 'Subscription deleted.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Subscription does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snsinvalidparameterex.
 MESSAGE 'Subscription with "PendingConfirmation" status cannot be
 deleted/unsubscribed. Confirm subscription before performing unsubscribe
 operation.' TYPE 'E'.
 ENDTRY.

• For API details, see Unsubscribe in AWS SDK for SAP ABAP API reference.

Deleting a topic using the AWS SDK

To delete a topic and all of its subscriptions, get the topic ARN by submitting a ListTopics
request with the Amazon SNS API, and then pass the ARN to the DeleteTopic request.

Configurations 480

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

The following code examples show how to use DeleteTopic.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a topic by its topic ARN.

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTopic in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Configurations 481

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

//! Delete an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::deleteTopic(const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::DeleteTopicRequest request;
 request.SetTopicArn(topicARN);

 const Aws::SNS::Model::DeleteTopicOutcome outcome =
 snsClient.DeleteTopic(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the Amazon SNS topic " << topicARN <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting topic " << topicARN << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteTopic in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an SNS topic

The following delete-topic example deletes the specified SNS topic.

aws sns delete-topic \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic"

Configurations 482

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/DeleteTopic

Amazon Simple Notification Service Developer Guide

This command produces no output.

• For API details, see DeleteTopic in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(ctx context.Context, topicArn string) error {
 _, err := actor.SnsClient.DeleteTopic(ctx, &sns.DeleteTopicInput{
 TopicArn: aws.String(topicArn)})
 if err != nil {
 log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err)
 }
 return err

Configurations 483

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/delete-topic.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

}

• For API details, see DeleteTopic in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to delete.
 """;

 if (args.length != 1) {

Configurations 484

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println("Deleting a topic with name: " + topicArn);
 deleteSNSTopic(snsClient, topicArn);
 snsClient.close();
 }

 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteTopic in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Configurations 485

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { DeleteTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to delete.
 */
export const deleteTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new DeleteTopicCommand({ TopicArn: topicArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a10e2886-5a8f-5114-af36-75bd39498332',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteTopic in AWS SDK for JavaScript API Reference.

Configurations 486

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-deletetopic
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteSNSTopic(topicArnVal: String) {
 val request =
 DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println("$topicArnVal was successfully deleted.")
 }
}

• For API details, see DeleteTopic in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

Configurations 487

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

/**
 * Deletes an SNS topic and all its subscriptions.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->deleteTopic([
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see DeleteTopic in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:

Configurations 488

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def delete_topic(topic):
 """
 Deletes a topic. All subscriptions to the topic are also deleted.
 """
 try:
 topic.delete()
 logger.info("Deleted topic %s.", topic.arn)
 except ClientError:
 logger.exception("Couldn't delete topic %s.", topic.arn)
 raise

• For API details, see DeleteTopic in AWS SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->deletetopic(iv_topicarn = iv_topic_arn).
 MESSAGE 'SNS topic deleted.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

Configurations 489

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see DeleteTopic in AWS SDK for SAP ABAP API reference.

Amazon SNS SMS activity monitoring

By monitoring your SMS activity, you can keep track of destination phone numbers, successful
or failed deliveries, reasons for failure, costs, and other information. Amazon SNS helps by
summarizing statistics in the console, sending information to Amazon CloudWatch, and sending
daily SMS usage reports to an Amazon S3 bucket that you specify.

Topics

• Viewing Amazon SNS SMS delivery statistics

• Amazon SNS SMS delivery monitoring with Amazon CloudWatch metrics and logs

• Subscribing to Amazon SNS daily SMS usage reports

Viewing Amazon SNS SMS delivery statistics

You can use the Amazon SNS console to view statistics about your recent SMS deliveries.

1. Sign in to the Amazon SNS console.

2. In the console menu, set the region selector to a region that supports SMS messaging.

3. On the navigation panel, choose Text messaging (SMS).

4. On the Text messaging (SMS) page, in the Account stats section, view the charts for your
transactional and promotional SMS message deliveries. Each chart shows the following data
for the preceding 15 days:

• Delivery rate (percentage of successful deliveries)

• Sent (number of delivery attempts)

• Failed (number of delivery failures)

On this page, you can also choose the Usage button to go to the Amazon S3 bucket where you
store your daily usage reports. For more information, see Subscribing to Amazon SNS daily SMS
usage reports.

Configurations 490

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html

Amazon Simple Notification Service Developer Guide

Amazon SNS SMS delivery monitoring with Amazon CloudWatch metrics and logs

You can use Amazon CloudWatch and Amazon CloudWatch Logs to monitor your SMS message
deliveries.

Topics

• Viewing Amazon CloudWatch metrics

• Viewing CloudWatch Logs

• Example log for successful SMS delivery

• Example log for failed SMS delivery

• SMS delivery failure reasons

Viewing Amazon CloudWatch metrics

Amazon SNS automatically collects metrics about your SMS message deliveries and pushes them to
Amazon CloudWatch. You can use CloudWatch to monitor these metrics and create alarms to alert
you when a metric crosses a threshold. For example, you can monitor CloudWatch metrics to learn
your SMS delivery rate and your month-to-date SMS charges.

For information about monitoring CloudWatch metrics, setting CloudWatch alarms, and the types
of metrics available, see Monitoring Amazon SNS topics using CloudWatch.

Viewing CloudWatch Logs

You can collect information about successful and unsuccessful SMS message deliveries by enabling
Amazon SNS to write to Amazon CloudWatch Logs. For each SMS message that you send, Amazon
SNS writes a log that includes the message price, the success or failure status, the reason for failure
(if the message failed), the message dwell time, and other information.

To enable and view CloudWatch Logs for your SMS messages

1. Sign in to the Amazon SNS console.

2. In the console menu, set the region selector to a region that supports SMS messaging.

3. On the navigation panel, choose Text messaging (SMS).

4. On the Mobile text messaging (SMS) page, in the Text messaging preferences section,
choose Edit.

5. On the next page, expand the Delivery status logging section.

Configurations 491

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

6. For Success sample rate, specify the percentage of successful SMS deliveries for which
Amazon SNS will write logs in CloudWatch Logs. For example:

• To write logs only for failed deliveries, set this value to 0.

• To write logs for 10% of your successful deliveries, set it to 10.

If you don't specify a percentage, Amazon SNS writes logs for all successful deliveries.

7. To provide the required permissions, do one of the following:

• To create a new service role, choose Create new service role and then Create new roles. On
the next page, choose Allow to give Amazon SNS write access to your account's resources.

• To use an existing service role, choose Use existing service role and then paste the ARN
name in the IAM role for successful and failed deliveries box.

The service role you specify must allow write access to your account's resources. For more
information on creating IAM roles, see Creating a role for an AWS service in the IAM User
Guide.

8. Choose Save changes.

9. Back on the Mobile text messaging (SMS) page, go to the Delivery status logs section to view
any available logs.

Note

Depending on the destination phone number's carrier, it can take up to 72 hours for
delivery logs to appear in the Amazon SNS console.

Example log for successful SMS delivery

The delivery status log for a successful SMS delivery will resemble the following example:

{
 "notification": {
 "messageId": "34d9b400-c6dd-5444-820d-fbeb0f1f54cf",
 "timestamp": "2016-06-28 00:40:34.558"
 },
 "delivery": {
 "phoneCarrier": "My Phone Carrier",

Configurations 492

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

Amazon Simple Notification Service Developer Guide

 "mnc": 270,
 "numberOfMessageParts": 1,
 "destination": "+1XXX5550100",
 "priceInUSD": 0.00645,
 "smsType": "Transactional",
 "mcc": 310,
 "providerResponse": "Message has been accepted by phone carrier",
 "dwellTimeMs": 599,
 "dwellTimeMsUntilDeviceAck": 1344
 },
 "status": "SUCCESS"
}

Example log for failed SMS delivery

The delivery status log for a failed SMS delivery will resemble the following example:

{
 "notification": {
 "messageId": "1077257a-92f3-5ca3-bc97-6a915b310625",
 "timestamp": "2016-06-28 00:40:34.559"
 },
 "delivery": {
 "mnc": 0,
 "numberOfMessageParts": 1,
 "destination": "+1XXX5550100",
 "priceInUSD": 0.00645,
 "smsType": "Transactional",
 "mcc": 0,
 "providerResponse": "Unknown error attempting to reach phone",
 "dwellTimeMs": 1420,
 "dwellTimeMsUntilDeviceAck": 1692
 },
 "status": "FAILURE"
}

SMS delivery failure reasons

The reason for a failure is provided with the providerResponse attribute. SMS messages might
fail to deliver for the following reasons:

• Blocked as spam by phone carrier

• Destination is on a blocked list

Configurations 493

Amazon Simple Notification Service Developer Guide

• Invalid phone number

• Message body is invalid

• Phone carrier has blocked this message

• Phone carrier is currently unreachable/unavailable

• Phone has blocked SMS

• Phone is on a blocked list

• Phone is currently unreachable/unavailable

• Phone number is opted out

• This delivery would exceed max price

• Unknown error attempting to reach phone

Subscribing to Amazon SNS daily SMS usage reports

You can monitor your SMS deliveries by subscribing to daily usage reports from Amazon SNS. For
each day that you send at least one SMS message, Amazon SNS delivers a usage report as a CSV
file to the specified Amazon S3 bucket. It takes 24 hours for the SMS usage report to be available
in the Amazon S3 bucket.

Topics

• Daily usage report information

• Subscribing to daily usage reports

Daily usage report information

The usage report includes the following information for each SMS message that you send from
your account.

Note that the report does not include messages that are sent to recipients who have opted out.

• Time of publication for message (in UTC)

• Message ID

• Destination phone number

• Message type

• Delivery status

• Message price (in USD)

Configurations 494

Amazon Simple Notification Service Developer Guide

• Part number (a message is split into multiple parts if it is too long for a single message)

• Total number of parts

Note

If Amazon SNS did not receive the part number, we set its value to zero.

Subscribing to daily usage reports

To subscribe to daily usage reports, you must create an Amazon S3 bucket with the appropriate
permissions.

To create an Amazon S3 bucket for your daily usage reports

1. From the AWS account that sends SMS messages, sign in to the Amazon S3 console.

2. Choose Create Bucket.

3. For Bucket Name, we recommend that you enter a name that is unique for your account and
your organization. For example, use the pattern <my-bucket-prefix>-<account_id>-
<org-id>.

For information about conventions and restrictions for bucket names, see Rules for Bucket
Naming in the Amazon Simple Storage Service User Guide.

4. Choose Create.

5. In the All Buckets table, choose the bucket.

6. In the Permissions tab, choose Bucket policy.

7. In the Bucket Policy Editor window, provide a policy that allows the Amazon SNS service
principal to write to your bucket. For an example, see Example bucket policy.

If you use the example policy, remember to replace my-s3-bucket with the bucket name that
you chose in Step 3.

8. Choose Save.

To subscribe to daily usage reports

1. Sign in to the Amazon SNS console.

Configurations 495

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide

2. On the navigation panel, choose Text messaging (SMS).

3. On the Text messaging (SMS) page, in the Text messaging preferences section, choose Edit.

4. On the Edit text messaging preferences page, in the Details section, specify the Amazon S3
bucket name for usage reports.

5. Choose Save changes.

Example bucket policy

The following policy allows the Amazon SNS service principal to perform the s3:PutObject,
s3:GetBucketLocation, and s3:ListBucket actions.

AWS provides tools for all services with service principals that have been given access to resources
in your account. When the principal in an Amazon S3 bucket policy statement is an confused
deputy problem. To limit which region and account from which the bucket can receive daily usage
reports, use aws:SourceArn as shown in the example below. If you do not wish to limit which
regions can generate these reports, use aws:SourceAccount to limit based on which account is
generating the reports. If you don't know the ARN of the resource, use aws:SourceAccount.

Use the following example that includes confused deputy protection when you create an Amazon
S3 bucket to receive daily SMS usage reports from Amazon SNS.

{
 "Version": "2008-10-17",
 "Statement": [{
 "Sid": "AllowPutObject",
 "Effect": "Allow",

Configurations 496

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Simple Notification Service Developer Guide

 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sns:region:account_id:*"
 }
 }
 },
 {
 "Sid": "AllowGetBucketLocation",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "s3:GetBucketLocation",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sns:region:account_id:*"
 }
 }
 },
 {
 "Sid": "AllowListBucket",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnLike": {

Configurations 497

Amazon Simple Notification Service Developer Guide

 "aws:SourceArn": "arn:aws:sns:region:account_id:*"
 }
 }
 }
]
}

Note

You can publish usage reports to Amazon S3 buckets that are owned by the AWS account
that's specified in the Condition element in the Amazon S3 policy. To publish usage
reports to an Amazon S3 bucket that another AWS account owns, see How can I copy
Amazon S3 objects from another AWS account?.

Example daily usage report

After you subscribe to daily usage reports, each day, Amazon SNS puts a CSV file with usage data in
the following location:

<my-s3-bucket>/SMSUsageReports/<region>/YYYY/MM/DD/00x.csv.gz

Each file can contain up to 50,000 records. If the records for a day exceed this quota, Amazon SNS
will add multiple files. The following shows an example report:

PublishTimeUTC,MessageId,DestinationPhoneNumber,MessageType,DeliveryStatus,PriceInUSD,PartNumber,TotalParts
2016-05-10T03:00:29.476Z,96a298ac-1458-4825-
a7eb-7330e0720b72,1XXX5550100,Promotional,Message has been accepted by phone
 carrier,0.90084,0,1
2016-05-10T03:00:29.561Z,1e29d394-
d7f4-4dc9-996e-26412032c344,1XXX5550100,Promotional,Message has been accepted by phone
 carrier,0.34322,0,1
2016-05-10T03:00:30.769Z,98ba941c-afc7-4c51-
ba2c-56c6570a6c08,1XXX5550100,Transactional,Message has been accepted by phone
 carrier,0.27815,0,1

Configurations 498

https://aws.amazon.com/premiumsupport/knowledge-center/copy-s3-objects-account/
https://aws.amazon.com/premiumsupport/knowledge-center/copy-s3-objects-account/

Amazon Simple Notification Service Developer Guide

Requesting support for Amazon SNS SMS messaging

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

Certain SMS options with Amazon SNS aren't available for your AWS account until you contact
Support. Create a case in the AWS Support Center to request any of the following:

• An increase to your monthly SMS spending threshold

By default, the monthly spending threshold is $1.00 (USD). Your spending threshold determines
the volume of messages that you can send with Amazon SNS. You can request a spending
threshold that meets the expected monthly message volume for your SMS use case.

• A move from the SMS sandbox so that you can send SMS messages without restrictions. For
more information, see Moving out of the Amazon SNS SMS sandbox.

• A dedicated origination number

• A dedicated sender ID. A sender ID is a custom ID that is shown as the sender on the recipient's
device. For example, you can use your business brand to make the message source easier
to recognize. Support for sender IDs varies by country or region. For more information, see
Supported countries and regions for SMS messaging with AWS End User Messaging SMS in the
AWS End User Messaging SMS User Guide.

Topics

• Requesting increases to your monthly Amazon SNS SMS spending quota

Requesting increases to your monthly Amazon SNS SMS spending quota

Amazon SNS provides spending quotas to help you manage the maximum per-month cost incurred
by sending SMS using your account. The spending quota limits your risk in case of malicious attack,
and prevents your upstream application from sending more messages than expected. You can
configure Amazon SNS to stop publishing SMS messages when it determines that sending an SMS
message will incur a cost that exceeds your spending quota for the current month.

Configurations 499

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/sender-id.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-sms-by-country.html

Amazon Simple Notification Service Developer Guide

To ensure your operations are not impacted, we recommend requesting a spending quota high
enough to support your production workloads. For more information, see Step 1: Open an Amazon
SNS SMS case. Once you have received the quota, you can manage your risk by applying the full
quota, or a smaller value, as described in Step 2: Update your SMS settings. By applying a smaller
value, you can control your monthly spending with the option to scale up if necessary.

Important

Because Amazon SNS is a distributed system, it stops sending SMS messages within
minutes if the spending quota is exceeded. During this period, if you continue to send SMS
messages, you might incur costs that exceed your quota.

We set the spending quota for all new accounts at $1.00 (USD) per month. This quota is intended
to let you test the message-sending capabilities of Amazon SNS. To request an increase to the SMS
spending quota for your account, open a quota increase case in the AWS Support Center.

Topics

• Step 1: Open an Amazon SNS SMS case

• Step 2: Update your SMS settings on the Amazon SNS console

Step 1: Open an Amazon SNS SMS case

You can request an increase to your monthly spending quota by opening a quota increase case in
the AWS Support Center.

Note

Some of the fields on the request form are marked as "optional." However, Support requires
all of the information that's mentioned in the following steps in order to process your
request. If you don't provide all of the required information, you may experience delays in
processing your request.

1. Sign in to the AWS Management Console at https://console.aws.amazon.com/.

2. On the Support menu, choose Support Center.

3. On the Your support cases pane, choose Create case.

Configurations 500

https://console.aws.amazon.com/

Amazon Simple Notification Service Developer Guide

4. Choose the Looking for service limit increases? link, then complete the following:

• For Limit type, choose SNS Text Messaging.

• (Optional) For Provide a link to the site or app which will be sending SMS messages,
provide information about the website, application, or service that will send SMS messages.

• (Optional) For What type of messages do you plan to send, choose the type of message
that you plan to send using your long code:

• One Time Password – Messages that provide passwords that your customers use to
authenticate with your website or application.

• Promotional – Noncritical messages that promote your business or service, such as special
offers or announcements.

• Transactional – Important informational messages that support customer transactions,
such as order confirmations or account alerts. Transactional messages must not contain
promotional or marketing content.

• (Optional) For Which AWS Region will you be sending messages from, choose the region
that you'll be sending messages from.

• (Optional) For Which countries do you plan to send messages to, enter the country or
region that you want to purchase short codes in.

• (Optional) In the How do your customers opt to receive messages from you, provide details
about your opt-in process.

• (Optional) In the Please provide the message template that you plan to use to send
messages to your customers field, include the template that you will be using.

5. Under Requests, complete the following sections:

• For the Region, choose the Region from which you'll be sending messages.

Note

The Region is required in the Requests section. Even if you provided this information
in the Case details section you must also include it here.

• For Resource Type, choose General Limits.

• For Limit, choose Account Spend Threshold Increase.

Configurations 501

Amazon Simple Notification Service Developer Guide

6. For New limit value, enter the maximum amount (in USD) that you can spend on SMS each
calendar month.

7. Under Case description, for Use case description, provide the following details:

• The website or app of the company or service that's sending SMS messages.

• The service that's provided by your website or app, and how your SMS messages contribute
to that service.

• How users sign up to voluntarily receive your SMS messages on your website, app, or other
location.

If your requested spending quota (the value you specified for New quota value) exceeds
$10,000 (USD), provide the following additional details for each country that you're
messaging:

• Whether you're using a sender ID or short code. If you're using a sender ID, provide:

• The sender ID.

• Whether the sender ID is registered with wireless carriers in the country.

• The maximum expected transactions-per-second (TPS) for your messaging.

• The average message size.

• The template for the messages that you send to the country.

• (Optional) Character encoding needs, if any.

8. (Optional) If you want to submit any further requests, choose Add another request. If
you include multiple requests, provide the required information for each. For the required
information, see the other sections within Requesting support for Amazon SNS SMS
messaging.

9. Under Contact options, for Preferred contact language, choose the language in which you
want to receive communications for this case.

10. When you finish, choose Submit.

The Support team provides an initial response to your request within 24 hours.

To prevent our systems from being used to send unsolicited or malicious content, we consider each
request carefully. If we can, we will grant your request within this 24-hour period. However, if we
need additional information from you, it might take longer to resolve your request.
Configurations 502

Amazon Simple Notification Service Developer Guide

If your use case doesn't align with our policies, we might be unable to grant your request.

Step 2: Update your SMS settings on the Amazon SNS console

After we notify you that your monthly spending quota has been increased, you have to adjust the
spending quota for your account on the Amazon SNS console.

Important

You must complete the following steps or your SMS spend limit will not be increased.

To adjust your spending quota on the console

1. Sign in to the Amazon SNS console.

2. Open the left navigation menu, expand Mobile, and then choose Text messaging (SMS).

3. On the Mobile text messaging (SMS) page, in the Text messaging preferences section,
choose Edit.

4. On the Edit text messaging preferences page, in the Details section, enter your new SMS
spend limit in the Account spend limit field.

Note

You might receive a warning that the entered value is larger than the default spend
limit. You can ignore this.

5. Choose Save changes.

Note

If you get an "Invalid Parameter" error, check the contact from AWS Support and
confirm that you entered the correct new SMS spend limit. If you still experience a
problem, open a case in the AWS Support Center.

When you create your case in the Support Center, be sure to include all the required information
for the type of request that you're submitting. Otherwise, Support must contact you to obtain
this information before proceeding. By submitting a detailed case, you help ensure that your

Configurations 503

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

case is fulfilled without delays. For the required details for specific types of SMS requests, see the
following topics.

For more information on sender IDs, see the following documentation in the AWS End User
Messaging SMS User Guide:

AWS End User Messaging SMS Topic Description

Requesting a spending quota increase Your spending quota determines how much
money you can spend sending SMS messages
through AWS End User Messaging SMS each
month.

Open a case in support center for a sender ID If you plan to send messages to recipients a
country where sender IDs are required, you
can request a sender ID by creating a new case
in the Support Center.

Sending mobile push notifications with Amazon SNS

You can use Amazon SNS to send push notification messages directly to apps on mobile devices.
Push notification messages sent to a mobile endpoint can appear in the mobile app as message
alerts, badge updates, or sound alerts.

Topics

• How Amazon SNS user notifications work

Sending mobile push notifications 504

https://docs.aws.amazon.com/sms-voice/latest/userguide/awssupport-spend-threshold.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/awssupport-sender-id.html

Amazon Simple Notification Service Developer Guide

• Setting up push notifications with Amazon SNS

• Setting up a mobile app in Amazon SNS

• Using Amazon SNS for mobile push notifications

• Amazon SNS mobile app attributes

• Amazon SNS application event notifications for mobile applications

• Mobile push API actions

• Common Amazon SNS mobile push API errors

• Using the Amazon SNS time to live message attribute for mobile push notifications

• Amazon SNS mobile application supported Regions

• Best practices for managing Amazon SNS mobile push notifications

How Amazon SNS user notifications work

You send push notification messages to both mobile devices and desktops using one of the
following supported push notification services:

• Amazon Device Messaging (ADM)

• Apple Push Notification Service (APNs) for both iOS and Mac OS X

• Baidu Cloud Push (Baidu)

• Firebase Cloud Messaging (FCM)

• Microsoft Push Notification Service for Windows Phone (MPNS)

• Windows Push Notification Services (WNS)

Push notification services, such as APNs and FCM, maintain a connection with each app and
associated mobile device registered to use their service. When an app and mobile device register,
the push notification service returns a device token. Amazon SNS uses the device token to create a
mobile endpoint, to which it can send direct push notification messages. In order for Amazon SNS
to communicate with the different push notification services, you submit your push notification
service credentials to Amazon SNS to be used on your behalf. For more information, see Setting up
push notifications with Amazon SNS.

In addition to sending direct push notification messages, you can also use Amazon SNS to send
messages to mobile endpoints subscribed to a topic. The concept is the same as subscribing other
endpoint types, such as Amazon SQS, HTTP/S, email, and SMS, to a topic, as described in What

How Amazon SNS user notifications work 505

Amazon Simple Notification Service Developer Guide

is Amazon SNS?. The difference is that Amazon SNS communicates using the push notification
services in order for the subscribed mobile endpoints to receive push notification messages sent to
the topic.

Setting up push notifications with Amazon SNS

1. Obtain the credentials and device token for the mobile platforms that you want to support.

2. Use the credentials to create a platform application object (PlatformApplicationArn)
using Amazon SNS. For more information, see Creating an Amazon SNS platform application.

3. Use the returned credentials to request a device token for your mobile app and device from
the push notification service. The token you receive represents your mobile app and device.

4. Use the device token and the PlatformApplicationArn to create a platform endpoint
object (EndpointArn) using Amazon SNS. For more information, see Setting up an Amazon
SNS platform endpoint for mobile notifications.

5. Use the EndpointArn to publish a message to an app on a mobile device. For more
information, see Direct Amazon SNS mobile device messaging and the Publish API in the
Amazon Simple Notification Service API Reference.

Setting up a mobile app in Amazon SNS

This topic describes how to set up mobile applications in the AWS Management Console using the
information described in Prerequisites for Amazon SNS user notifications.

Topics

• Prerequisites for Amazon SNS user notifications

• Creating an Amazon SNS platform application

• Setting up an Amazon SNS platform endpoint for mobile notifications

• Integrating device tokens with Amazon SNS for mobile notifications

• Amazon SNS Apple push notification authentication methods

• Amazon SNS integration with Firebase Cloud Messaging authentication setup

• Amazon SNS management of Firebase Cloud Messaging endpoints

Prerequisites for Amazon SNS user notifications

To begin using Amazon SNS mobile push notifications, you'll need the following:

Setting up push notifications with Amazon SNS 506

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html

Amazon Simple Notification Service Developer Guide

• A set of credentials for connecting to one of the supported push notification services: ADM,
APNs, Baidu, FCM, MPNS, or WNS.

• A device token or registration ID for the mobile app and device.

• Amazon SNS configured to send push notification messages to the mobile endpoints.

• A mobile app that is registered and configured to use one of the supported push notification
services.

Registering your application with a push notification service requires several steps. Amazon SNS
needs some of the information you provide to the push notification service in order to send direct
push notification messages to the mobile endpoint. Generally speaking, you need the required
credentials for connecting to the push notification service, a device token or registration ID
(representing your mobile device and mobile app) received from the push notification service, and
the mobile app registered with the push notification service.

The exact form the credentials take differs between mobile platforms, but in every case, these
credentials must be submitted while making a connection to the platform. One set of credentials is
issued for each mobile app, and it must be used to send a message to any instance of that app.

The specific names will vary depending on which push notification service is being used. For
example, when using APNs as the push notification service, you need a device token. Alternatively,
when using FCM, the device token equivalent is called a registration ID. The device token or
registration ID is a string that is sent to the application by the operating system of the mobile
device. It uniquely identifies an instance of a mobile app running on a particular mobile device and
can be thought of as unique identifiers of this app-device pair.

Amazon SNS stores the credentials (plus a few other settings) as a platform application resource.
The device tokens (again with some extra settings) are represented as objects called platform
endpoints. Each platform endpoint belongs to one specific platform application, and every
platform endpoint can be communicated with using the credentials that are stored in its
corresponding platform application.

The following sections include the prerequisites for each of the supported push notification
services. Once you've obtained the prerequisite information, you can send a push notification
message using the AWS Management Console or the Amazon SNS mobile push APIs. For more
information, see Setting up push notifications with Amazon SNS.

Setting up a mobile app 507

Amazon Simple Notification Service Developer Guide

Creating an Amazon SNS platform application

For Amazon SNS to send notification messages to mobile endpoints, whether directly or via
subscriptions to a topic, you must first create a platform application. After you've registered the
app with AWS, you need to create an endpoint for the app and mobile device. Amazon SNS uses
this endpoint to send notification messages to the app and device.

To create a platform application

1. Sign in to the Amazon SNS console.

2. In the navigation pane, choose Push notifications.

3. In the Platform applications section, choose Create platform application.

For a list of AWS Regions where you can create mobile applications, see Amazon SNS mobile
application supported Regions.

4. Enter a name to represent your app. App names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods. Names must also be 1–
256 characters long.

5. For Push notification platform, choose the platform that the app is registered with, and then
enter the appropriate credentials.

Note

If you're using one of the Apple Push Notification Service (APNs) platforms, you can
choose between token or certificate-based authentication, then choose Choose file to
upload the .p8 or .p12 file (exported from Keychain Access) to Amazon SNS.

6. Choose Create platform application.

This registers the app with Amazon SNS, which creates a platform application object for the
selected platform and then returns a corresponding PlatformApplicationArn.

Setting up an Amazon SNS platform endpoint for mobile notifications

When an app and mobile device register with a push notification service (such as APNs or Firebase
Cloud Messaging), the push notification service returns a device token. Amazon SNS uses this
device token to create a platform endpoint, which acts as a target for sending direct push
notification messages to the app on the device. The platform endpoint serves as a bridge, routing

Setting up a mobile app 508

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

messages sent by Amazon SNS to the push notification service for delivery to the corresponding
mobile device. For more information, see Prerequisites for Amazon SNS user notifications and
Setting up push notifications with Amazon SNS.

Topics

• Understanding device tokens and platform endpoints

• Create a platform endpoint

• Pseudo code

• AWS SDK example

• Troubleshooting

Understanding device tokens and platform endpoints

A device token uniquely identifies a mobile device registered with a push notification service (for
example, APNs, Firebase Cloud Messaging). When an app registers with the push notification
service, it generates a device token specific to that app and device. Amazon SNS uses this device
token to create a platform endpoint within the corresponding platform application.

The platform endpoint allows Amazon SNS to send push notification messages to the device
through the push notification service, maintaining the connection between your app and the user's
device.

Create a platform endpoint

To push notifications to an app with Amazon SNS, that app's device token must first be registered
with Amazon SNS by calling the create platform endpoint action. This action takes the Amazon
Resource Name (ARN) of the platform application and the device token as parameters and returns
the ARN of the created platform endpoint.

The CreatePlatformEndpoint action does the following:

• If the platform endpoint already exists, do not create it again. Return to the caller the ARN of the
existing platform endpoint.

• If the platform endpoint with the same device token but different settings already exists, do not
create it again. Throw an exception to the caller.

• If the platform endpoint does not exist, create it. Return to the caller the ARN of the newly-
created platform endpoint.

Setting up a mobile app 509

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html

Amazon Simple Notification Service Developer Guide

You should not call the create platform endpoint action immediately every time an app starts,
because this approach does not always provide a working endpoint. This can happen, for example,
when an app is uninstalled and reinstalled on the same device and the endpoint for it already exists
but is disabled. A successful registration process should accomplish the following:

1. Ensure a platform endpoint exists for this app-device combination.

2. Ensure the device token in the platform endpoint is the latest valid device token.

3. Ensure the platform endpoint is enabled and ready to use.

Pseudo code

The following pseudo code describes a recommended practice for creating a working, current,
enabled platform endpoint in a wide variety of starting conditions. This approach works whether
this is a first time the app is being registered or not, whether the platform endpoint for this app
already exists, and whether the platform endpoint is enabled, has the correct device token, and so
on. It is safe to call it multiple times in a row, as it will not create duplicate platform endpoints or
change an existing platform endpoint if it is already up to date and enabled.

retrieve the latest device token from the mobile operating system
if (the platform endpoint ARN is not stored)
 # this is a first-time registration
 call create platform endpoint
 store the returned platform endpoint ARN
endif

call get endpoint attributes on the platform endpoint ARN

if (while getting the attributes a not-found exception is thrown)
 # the platform endpoint was deleted
 call create platform endpoint with the latest device token
 store the returned platform endpoint ARN
else
 if (the device token in the endpoint does not match the latest one) or
 (GetEndpointAttributes shows the endpoint as disabled)
 call set endpoint attributes to set the latest device token and then enable the
 platform endpoint
 endif
endif

Setting up a mobile app 510

Amazon Simple Notification Service Developer Guide

This approach can be used any time the app wants to register or re-register itself. It can also be
used when notifying Amazon SNS of a device token change. In this case, you can just call the action
with the latest device token value. Some points to note about this approach are:

• There are two cases where it may call the create platform endpoint action. It may be called at the
very beginning, where the app does not know its own platform endpoint ARN, as happens during
a first-time registration. It is also called if the initial GetEndpointAttributes action call fails
with a not-found exception, as would happen if the application knows its endpoint ARN but it
was deleted.

• The GetEndpointAttributes action is called to verify the platform endpoint's state even if
the platform endpoint was just created. This happens when the platform endpoint already exists
but is disabled. In this case, the create platform endpoint action succeeds but does not enable
the platform endpoint, so you must double-check the state of the platform endpoint before
returning success.

AWS SDK example

The following code shows how to implement the previous pseudo code using the Amazon SNS
clients that are provided by the AWS SDKs.

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

CLI

AWS CLI

To create a platform application endpoint

The following create-platform-endpoint example creates an endpoint for the specified
platform application using the specified token.

aws sns create-platform-endpoint \
 --platform-application-arn arn:aws:sns:us-west-2:123456789012:app/GCM/
MyApplication \
 --token EXAMPLE12345...

Output:

{

Setting up a mobile app 511

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html

Amazon Simple Notification Service Developer Guide

 "EndpointArn": "arn:aws:sns:us-west-2:1234567890:endpoint/GCM/
MyApplication/12345678-abcd-9012-efgh-345678901234"
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreatePlatformEndpointRequest;
import software.amazon.awssdk.services.sns.model.CreatePlatformEndpointResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * In addition, create a platform application using the AWS Management Console.
 * See this doc topic:
 *
 * https://docs.aws.amazon.com/sns/latest/dg/mobile-push-send-register.html
 *
 * Without the values created by following the previous link, this code examples
 * does not work.
 */

public class RegistrationExample {
 public static void main(String[] args) {
 final String usage = """

Setting up a mobile app 512

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Usage: <token> <platformApplicationArn>

 Where:
 token - The device token or registration ID of the mobile device.
 This is a unique
 identifier provided by the device platform (e.g., Apple Push
 Notification Service (APNS) for iOS devices, Firebase Cloud Messaging (FCM)
 for Android devices) when the mobile app is registered to receive
 push notifications.

 platformApplicationArn - The ARN value of platform application.
 You can get this value from the AWS Management Console.\s

 """;

 if (args.length != 2) {
 System.out.println(usage);
 return;
 }

 String token = args[0];
 String platformApplicationArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 createEndpoint(snsClient, token, platformApplicationArn);
 }
 public static void createEndpoint(SnsClient snsClient, String token, String
 platformApplicationArn) {
 System.out.println("Creating platform endpoint with token " + token);
 try {
 CreatePlatformEndpointRequest endpointRequest =
 CreatePlatformEndpointRequest.builder()
 .token(token)
 .platformApplicationArn(platformApplicationArn)
 .build();

 CreatePlatformEndpointResponse response =
 snsClient.createPlatformEndpoint(endpointRequest);
 System.out.println("The ARN of the endpoint is " +
 response.endpointArn());

Setting up a mobile app 513

Amazon Simple Notification Service Developer Guide

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }
}

For more information, see Mobile push API actions.

Troubleshooting

Repeatedly calling create platform endpoint with an outdated device token

Especially for FCM endpoints, you may think it is best to store the first device token the application
is issued and then call the create platform endpoint with that device token every time on
application start-up. This may seem correct since it frees the app from having to manage the state
of the device token and Amazon SNS will automatically update the device token to its latest value.
However, this solution has a number of serious issues:

• Amazon SNS relies on feedback from FCM to update expired device tokens to new device tokens.
FCM retains information about old device tokens for some time, but not indefinitely. Once FCM
forgets about the connection between the old device token and the new device token, Amazon
SNS will no longer be able to update the device token stored in the platform endpoint to its
correct value; it will just disable the platform endpoint instead.

• The platform application will contain multiple platform endpoints corresponding to the same
device token.

• Amazon SNS imposes a quota on the number of platform endpoints that can be created starting
with the same device token. Eventually, the creation of new endpoints will fail with an invalid
parameter exception and the following error message: "This endpoint is already registered with a
different token."

For more information on managing FCM endpoints, see Amazon SNS management of Firebase
Cloud Messaging endpoints.

Re-enabling a platform endpoint associated with an invalid device token

When a mobile platform (such as APNs or FCM) informs Amazon SNS that the device token used
in the publish request was invalid, Amazon SNS disables the platform endpoint associated with
that device token. Amazon SNS will then reject subsequent publishes to that device token. While

Setting up a mobile app 514

Amazon Simple Notification Service Developer Guide

you may think it is best to simply re-enable the platform endpoint and keep publishing, in most
situations doing this will not work: the messages that are published do not get delivered and the
platform endpoint becomes disabled again soon afterward.

This is because the device token associated with the platform endpoint is genuinely invalid.
Deliveries to it cannot succeed because it no longer corresponds to any installed app. The next
time it is published to, the mobile platform will again inform Amazon SNS that the device token is
invalid, and Amazon SNS will again disable the platform endpoint.

To re-enable a disabled platform endpoint, it needs to be associated with a valid device token (with
a set endpoint attributes action call) and then enabled. Only then will deliveries to that platform
endpoint become successful. The only time re-enabling a platform endpoint without updating its
device token will work is when a device token associated with that endpoint used to be invalid but
then became valid again. This can happen, for example, when an app was uninstalled and then re-
installed on the same mobile device and receives the same device token. The approach presented
above does this, making sure to only re-enable a platform endpoint after verifying that the device
token associated with it is the most current one available.

Integrating device tokens with Amazon SNS for mobile notifications

When you first register an app and mobile device with a notification service, such as Apple Push
Notification Service (APNs) and Firebase Cloud Messaging (FCM), device tokens or registration IDs
are returned from the notification service. When you add the device tokens or registration IDs to
Amazon SNS, they are used with the PlatformApplicationArn API to create an endpoint for
the app and device. When Amazon SNS creates the endpoint, an EndpointArn is returned. The
EndpointArn is how Amazon SNS knows which app and mobile device to send the notification
message to.

You can add device tokens and registration IDs to Amazon SNS using the following methods:

• Manually add a single token to AWS using the AWS Management Console

• Upload several tokens using the CreatePlatformEndpoint API

• Register tokens from devices that will install your apps in the future

To manually add a device token or registration ID

1. Sign in to the Amazon SNS console.

2. In the navigation pane, choose Push Notifications.

Setting up a mobile app 515

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. In the Platform applications section, select your application, and then choose Edit. If you
haven't already created a platform application, create one now. For instructions on how to do
this, see Creating an Amazon SNS platform application.

4. Choose Add Endpoints.

5. In the Endpoint Token box, enter either the token ID or registration ID, depending on which
notification service. For example, with ADM and FCM you enter the registration ID.

6. (Optional) In the User Data box, enter arbitrary information to associate with the endpoint.
Amazon SNS does not use this data. The data must be in UTF-8 format and less than 2KB.

7. Choose Add Endpoints.

With the created endpoint, you can either send messages directly to a mobile device or send
messages to mobile devices that are subscribed to a topic.

To upload several tokens using the CreatePlatformEndpoint API

The following steps show how to use the sample Java app (bulkupload package) provided by
AWS to upload several tokens (device tokens or registration IDs) to Amazon SNS. You can use this
sample app to help you get started with uploading your existing tokens.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do I
Get Security Credentials? in the AWS General Reference.

1. Download and unzip the snsmobilepush.zip file.

2. Create a new Java project in Eclipse.

3. Import the SNSSamples folder to the top-level directory of the newly created Java Project. In
Eclipse, right-choose the name of the Java Project and then choose Import, expand General,
choose File System, choose Next, browse to the SNSSamples folder, choose OK, and then
choose Finish.

4. Download a copy of the OpenCSV library and add it to the Build Path of the bulkupload
package.

5. Open the BulkUpload.properties file contained in the bulkupload package.

Setting up a mobile app 516

http://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
samples/snsmobilepush.zip
http://sourceforge.net/projects/opencsv/

Amazon Simple Notification Service Developer Guide

6. Add the following to BulkUpload.properties:

• The ApplicationArn to which you want to add endpoints.

• The absolute path for the location of your CSV file containing the tokens.

• The names for CSV files (such as goodTokens.csv and badTokens.csv) to be created for
logging the tokens that Amazon SNS parses correctly and those that fail.

• (Optional) The characters to specify the delimiter and quote in the CSV file containing the
tokens.

• (Optional) The number of threads to use to concurrently create endpoints. The default is 1
thread.

Your completed BulkUpload.properties should look similar to the following:

applicationarn:arn:aws:sns:us-west-2:111122223333:app/FCM/fcmpushapp
csvfilename:C:\\mytokendirectory\\mytokens.csv
goodfilename:C:\\mylogfiles\\goodtokens.csv
badfilename:C:\\mylogfiles\\badtokens.csv
delimiterchar:'
quotechar:"
numofthreads:5

7. Run the BatchCreatePlatformEndpointSample.java application to upload the tokens to
Amazon SNS.

In this example, the endpoints that were created for the tokens that were uploaded
successfully to Amazon SNS would be logged to goodTokens.csv, while the malformed
tokens would be logged to badTokens.csv. In addition, you should see STD OUT logs written
to the console of Eclipse, containing content similar to the following:

<1>[SUCCESS] The endpoint was created with Arn arn:aws:sns:us-
west-2:111122223333:app/FCM/fcmpushapp/165j2214-051z-3176-b586-138o3d420071
<2>[ERROR: MALFORMED CSV FILE] Null token found in /mytokendirectory/mytokens.csv

To register tokens from devices that will install your apps in the future

You can use one of the following two options:

Setting up a mobile app 517

Amazon Simple Notification Service Developer Guide

• Use the Amazon Cognito service: Your mobile app will need credentials to create endpoints
associated with your Amazon SNS platform application. We recommend that you use temporary
credentials that expire after a period of time. For most scenarios, we recommend that you use
Amazon Cognito to create temporary security credentials. For more information, see the Amazon
Cognito Developer Guide . If you would like to be notified when an app registers with Amazon
SNS, you can register to receive an Amazon SNS event that will provide the new endpoint ARN.
You can also use the ListEndpointByPlatformApplication API to obtain the full list of
endpoints registered with Amazon SNS.

• Use a proxy server: If your application infrastructure is already set up for your mobile apps to
call in and register on each installation, you can continue to use this setup. Your server will act as
a proxy and pass the device token to Amazon SNS mobile push notifications, along with any user
data you would like to store. For this purpose, the proxy server will connect to Amazon SNS using
your AWS credentials and use the CreatePlatformEndpoint API call to upload the token
information. The newly created endpoint Amazon Resource Name (ARN) will be returned, which
your server can store for making subsequent publish calls to Amazon SNS.

Amazon SNS Apple push notification authentication methods

You can authorize Amazon SNS to send push notifications to your iOS or macOS app by providing
information that identifies you as the developer of the app. To authenticate, provide either a key
or a certificate when creating a platform application, both of which you can get from your Apple
Developer account.

Token signing key

A private signing key that Amazon SNS uses to sign Apple Push Notification Service (APNs)
authentication tokens.

If you provide a signing key, Amazon SNS uses a token to authenticate with APNs for every
push notification that you send. With your signing key, you can send push notifications to APNs
production and sandbox environments.

Your signing key doesn't expire, and you can use the same signing key for multiple apps. For
more information, see Communicate with APNs using authentication tokens in the Developer
Account Help section of the Apple website.

Setting up a mobile app 518

https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_token-based_connection_to_apns

Amazon Simple Notification Service Developer Guide

Certificate

A TLS certificate that Amazon SNS uses to authenticate with APNs when you send push
notifications. You obtain the certificate from your Apple Developer account.

Certificates expire after one year. When this happens, you must create a new certificate
and provide it to Amazon SNS. For more information, see Establishing a Certificate-Based
Connection to APNs on the Apple Developer website.

To manage APNs settings using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. Under Mobile, choose Push notifications.

3. Select the Application for which you would like to edit the APNs settings, and then choose
Edit.

4. On the Edit page, for Authentication type, choose either Token or Certificate.

5. Load the appropriate credentials for the certificate or token signing key. You can get this
information from your Apple Developer account.

6. Depending on the authentication type that you choose, do one of the following:

• If you choose Token, provide the following information from your Apple Developer
account. Amazon SNS requires this information to construct authentication tokens.

• Signing key – The authentication token signing key from your Apple Developer account,
which you download as a .p8 file. Apple lets you download your signing key only once.

• Signing key ID – The ID that's assigned to your signing key. Amazon SNS requires
this information to construct authentication tokens. To find this value in your Apple
Developer account, choose Certificates, IDs & Profiles, and then choose your key in the
Keys section.

• Team identifier – The ID that's assigned to your Apple Developer account team. You can
find this value on the Membership page.

• Bundle identifier – The ID that's assigned to your app. To find this value, choose
Certificates, IDs & Profiles, choose App IDs in the Identifiers section, and then choose
your app.

• If you choose Certificate, provide the following information:

Setting up a mobile app 519

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_certificate-based_connection_to_apns
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_certificate-based_connection_to_apns
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

• SSL certificate – The .p12 file for your TLS certificate. You can export this file from
Keychain Access after you download and install your certificate from your Apple
Developer account.

• Certificate password – If you assigned a password to your certificate, specify it here.

• Load certificate – Choose Load certificate to upload your certificate.

7. When you finish, choose Save changes.

Amazon SNS integration with Firebase Cloud Messaging authentication setup

This topic describes how to obtain the required FCM API (HTTP v1) credentials from Google to use
with the AWS API, AWS CLI and the AWS Management Console.

Topics

• Prerequisite

• Managing FCM settings using the CLI

• Managing FCM settings using the console

• Managing FCM settings (console)

Important

June 20, 2023 – Google deprecated their Firebase Cloud Messaging (FCM) legacy HTTP
API. Amazon SNS now supports delivery to all device types using FCM HTTP v1 API. We
recommend that you migrate your existing mobile push applications to the latest FCM
HTTP v1 API on or before June 1, 2024 to avoid disruption.
January 18, 2024 – Amazon SNS introduced support for FCM HTTP v1 API for mobile push
notification delivery to Android devices.
March 26, 2024 – Amazon SNS supports FCM HTTP v1 API for Apple devices and Webpush
destinations. We recommend that you migrate your existing mobile push applications to
the latest FCM HTTP v1 API on or before June 1, 2024 to avoid application disruption.

You can authorize Amazon SNS to send push notifications to your applications by providing
information that identifies you as the developer of the app. To authenticate, provide either an API
key or a token when creating a platform application. You can get the following information from
your Firebase application console:

Setting up a mobile app 520

https://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
https://firebase.google.com/?gad=1&gclid=CjwKCAiA0syqBhBxEiwAeNx9N27M7zxHjlS74_gp4mAS4QTMQH5J35sTO29od-yauuq259zzX_I2DRoCrbsQAvD_BwE&gclsrc=aw.ds

Amazon Simple Notification Service Developer Guide

API Key

The API key is a credential used when calling Firebase’s Legacy API. The FCM Legacy APIs will
be removed by Google June 20, 2024. If you are currently using an API key as your platform
credential, you can update the platform credential by selecting Token as the option, and
uploading the associated JSON file for your Firebase application.

Token

A short lived access token is used when calling the HTTP v1 API. This is Firebase’s suggested API
for sending push notifications. In order to generate access tokens, Firebase provides developers
a set of credentials in the form of a private key file (also referred to as a service.json file).

Prerequisite

You must obtain your FCM service.json credentials before you can begin managing FCM settings in
Amazon SNS. To obtain your service.json credentials, see Migrate from legacy FCM APIs to HTTP v1
in the Google Firebase documentation.

Managing FCM settings using the CLI

You can create FCM push notifications using the AWS API. The number and size of Amazon SNS
resources in an AWS account are limited. For more information, see Amazon Simple Notification
Service endpoints and quotas in the AWS General Reference Guide.

To create an FCM push notification together with an Amazon SNS topic (AWS API)

When using key credentials, the PlatformCredential is API key. When using token
credentials, the PlatformCredential is a JSON formatted private key file:

• CreatePlatformApplication

To retrieve an FCM credential type for an existing Amazon SNS topic (AWS API)

Retrieves the credential type "AuthenticationMethod": "Token", or
"AuthenticationMethod": "Key":

• GetPlatformApplicationAttributes

To set an FCM attribute for an existing Amazon SNS topic (AWS API)

Setting up a mobile app 521

https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html

Amazon Simple Notification Service Developer Guide

Sets the FCM attribute:

• SetPlatformApplicationAttributes

Managing FCM settings using the console

You can create FCM push notifications using the AWS Command Line Interface (CLI). The number
and size of Amazon SNS resources in an AWS account are limited. For more information, see
Amazon Simple Notification Service endpoints and quotas.

To create an FCM push notification together with an Amazon SNS topic (AWS CLI)

When using key credentials, the PlatformCredential is API key. When using token
credentials, the PlatformCredential is a JSON formatted private key file. When using the AWS
CLI, the file must be in string format and special characters must be ignored. To format the file
correctly,Amazon SNS recommends using the following command: SERVICE_JSON=`jq @json
<<< cat service.json`:

• create-platform-application

To retrieve an FCM credential type for an existing Amazon SNS topic (AWS CLI)

Retrieves the credential type "AuthenticationMethod": "Token", or
"AuthenticationMethod": "Key":

• get-platform-application-attributes

To set an FCM attribute for an existing Amazon SNS topic (AWS CLI)

Sets the FCM attribute:

• set-platform-application-attributes

Managing FCM settings (console)

Use the following steps to enter the credentials that your application uses to connect to FCM.

1. Sign in to the Amazon SNS console.

2. Under Mobile, choose Push notifications.

Setting up a mobile app 522

https://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/cli/latest/reference/sns/create-platform-application.html
https://docs.aws.amazon.com/cli/latest/reference/sns/get-platform-application-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/sns/set-platform-application-attributes.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. Select an existing FCM application and choose Edit. If you haven't already created a platform
application, see Creating an Amazon SNS platform application.

4. On the Edit page, for Firebase Cloud Messaging Credentials, choose either Token or Key. You
can get the following information from your Firebase application console.

• If you choose Token, upload a valid private key file. The contents of this file are used to
generate short-lived access tokens when sending notifications.

• If you choose Key, enter the Google API key.

5. When you finish, choose Save changes.

Related topics

• Using Google Firebase Cloud Messaging v1 payloads in Amazon SNS

Amazon SNS management of Firebase Cloud Messaging endpoints

Topics

• Managing and maintaining device tokens

• Detecting invalid tokens

• Removing stale tokens

Managing and maintaining device tokens

You can ensure deliverability of your mobile application's push notifications by following these
steps:

1. Store all device tokens, corresponding Amazon SNS endpoint ARNs, and timestamps on your
application server.

2. Remove all stale tokens and delete the corresponding Amazon SNS endpoint ARNs.

Upon your app's initial start-up, you'll receive a device token (also referred to as registration token)
for the device. This device token is minted by the device’s operating system, and is tied to your FCM
application. Once you receive this device token, you can register it with Amazon SNS as a platform
endpoint. We recommend that you store the device token, the Amazon SNS platform endpoint
ARN, and the timestamp by saving the them to your application server, or another persistent

Setting up a mobile app 523

https://firebase.google.com/?gad=1&gclid=CjwKCAiA0syqBhBxEiwAeNx9N27M7zxHjlS74_gp4mAS4QTMQH5J35sTO29od-yauuq259zzX_I2DRoCrbsQAvD_BwE&gclsrc=aw.ds

Amazon Simple Notification Service Developer Guide

store. To set-up your FCM application to retrieve and store device tokens, see Retrieve and store
registration tokens in Google's Firebase documentation.

It's important that you maintain up-to-date tokens. Your user’s device tokens can change under the
following conditions:

1. The mobile application is restored on a new device.

2. The user uninstalls or updates the application.

3. The user clears application data.

When your device token changes, we recommended that you update the corresponding Amazon
SNS endpoint with the new token. This allows Amazon SNS to continue communication to the
registered device. You can do this by implementing the following pseudo code within your mobile
application. It describes a recommended practice for creating and maintaining enabled platform
endpoints. This approach can be executed each time the mobile applications starts, or as a
scheduled job in the background.

Pseudo code

Use the following FCM pseudo code to manage and maintain device tokens.

retrieve the latest token from the mobile OS
if (endpoint arn not stored)
 # first time registration
 call CreatePlatformEndpoint
 store returned endpoint arn
endif

call GetEndpointAttributes on the endpoint arn

if (getting attributes encountered NotFound exception)
 #endpoint was deleted
 call CreatePlatformEndpoint
 store returned endpoint arn
else
 if (token in endpoint does not match latest) or
 (GetEndpointAttributes shows endpoint as disabled)
 call SetEndpointAttributes to set the
 latest token and enable the endpoint
 endif

Setting up a mobile app 524

https://firebase.google.com/docs/cloud-messaging/manage-tokens#retrieve-and-store-registration-tokens
https://firebase.google.com/docs/cloud-messaging/manage-tokens#retrieve-and-store-registration-tokens

Amazon Simple Notification Service Developer Guide

endif

To learn more about token update requirements, see Update Tokens on a Regular Basis in Google's
Firebase documentation.

Detecting invalid tokens

When a message is dispatched to an FCM v1 endpoint with an invalid device token, Amazon SNS
will receive one of the following exceptions:

• UNREGISTERED (HTTP 404) – When Amazon SNS receives this exception, you will
receive a delivery failure event with a FailureType of InvalidPlatformToken, and a
FailureMessage of Platform token associated with the endpoint is not valid. Amazon SNS will
disable your platform endpoint when a delivery fails with this exception.

• INVALID_ARGUMENT (HTTP 400) – When Amazon SNS receives this exception, it means that the
device token or the message payload is invalid. For more information, see ErrorCode in Google's
Firebase documentation.

Since INVALID_ARGUMENT can be returned in either of these cases, Amazon SNS will return a
FailureType of InvalidNotification, and a FailureMessage of Notification body is invalid.
When you receive this error, verify that your payload is correct. If it is correct, verify that the device
token is up-to-date. Amazon SNS will not disable your platform endpoint when a delivery fails with
this exception.

Another case where you will experience an InvalidPlatformToken delivery failure event is when
the registered device token doesn't belong to the application attempting to send that message. In
this case, Google will return a SENDER_ID_MISMATCH error. Amazon SNS will disable your platform
endpoint when a delivery fails with this exception.

All observed error codes received from the FCM v1 API are available to you in CloudWatch when
you set up delivery status logging for your application.

To receive delivery events for your application, see Available application events.

Removing stale tokens

Tokens are considered stale once message deliveries to the endpoint device start failing. Amazon
SNS sets these stale tokens as disabled endpoints for your platform application. When you publish
to a disabled endpoint, Amazon SNS will return a EventDeliveryFailure event with the

Setting up a mobile app 525

https://firebase.google.com/docs/cloud-messaging/manage-tokens#update-tokens-on-a-regular-basis
https://firebase.google.com/docs/reference/fcm/rest/v1/ErrorCode

Amazon Simple Notification Service Developer Guide

FailureType of EndpointDisabled, and a FailureMessage of Endpoint is disabled. To receive
delivery events for your application, see Available application events.

When you receive this error from Amazon SNS, you need to remove or update the stale token in
your platform application.

Using Amazon SNS for mobile push notifications

This section describes how to send mobile push notifications.

Topics

• Publishing to a topic

• Direct Amazon SNS mobile device messaging

• Publishing Amazon SNS notifications with platform-specific payloads

Publishing to a topic

You can also use Amazon SNS to send messages to mobile endpoints subscribed to a topic. The
concept is the same as subscribing other endpoint types, such as Amazon SQS, HTTP/S, email,
and SMS, to a topic, as described in What is Amazon SNS?. The difference is that Amazon SNS
communicates through notification services like Apple Push Notification Service (APNS) and
Google Firebase Cloud Messaging (FCM). Through the notifications service, the subscribed mobile
endpoints receive notifications sent to the topic.

Direct Amazon SNS mobile device messaging

You can send Amazon SNS push notification messages directly to an endpoint which represents an
application on a mobile device.

To send a direct message

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Push notifications.

3. On the Mobile push notifications page, in the Platform applications section, choose the
name of the application, for example MyApp.

4. On the MyApp page, in the Endpoints section, choose an endpoint and then choose Publish
message.

Using Amazon SNS for mobile push notifications 526

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

5. On the Publish message to endpoint page, enter the message that will appear in the
application on the mobile device and then choose Publish message.

Amazon SNS sends the notification message to the platform notification service which, in turn,
sends the message to the application.

Publishing Amazon SNS notifications with platform-specific payloads

You can use the AWS Management Console or Amazon SNS APIs to send custom messages with
platform-specific payloads to mobile devices. For information about using the Amazon SNS APIs,
see Mobile push API actions and the SNSMobilePush.java file in snsmobilepush.zip.

Topics

• Sending JSON-formatted messages

• Sending platform-specific messages

• Sending messages to an application on multiple platforms

• Sending messages to APNs as alert or background notifications

• Using Google Firebase Cloud Messaging v1 payloads in Amazon SNS

Sending JSON-formatted messages

When you send platform-specific payloads, the data must be formatted as JSON key-value pair
strings, with the quotation marks escaped.

The following examples show a custom message for the FCM platform.

{
"GCM": "{\"fcmV1Message\": {\"message\": {\"notification\": {\"title\": \"Hello\",
 \"body\": \"This is a test.\"}, \"data\": {\"dataKey\": \"example\"}}}}"
}

Sending platform-specific messages

In addition to sending custom data as key-value pairs, you can send platform-specific key-value
pairs.

The following example shows the inclusion of the FCM parameters time_to_live and
collapse_key after the custom data key-value pairs in the FCM data parameter.

Using Amazon SNS for mobile push notifications 527

samples/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide

{
"GCM": "{\"fcmV1Message\": {\"message\": {\"notification\": {\"title\": \"TitleTest\",
 \"body\": \"Sample message for Android or iOS endpoints.\"}, \"data\":{\"time_to_live
\": 3600,\"collapse_key\":\"deals\"}}}}"
}

For a list of the key-value pairs supported by each of the push notification services supported in
Amazon SNS, see the following:

Important

Amazon SNS now supports Firebase Cloud Messaging (FCM) HTTP v1 API for sending
mobile push notifications to Android devices.
March 26, 2024 – Amazon SNS supports FCM HTTP v1 API for Apple devices and Webpush
destinations. We recommend that you migrate your existing mobile push applications to
the latest FCM HTTP v1 API on or before June 1, 2024 to avoid application disruption.

• Payload Key Reference in the APNs documentation

• Firebase Cloud Messaging HTTP Protocol in the FCM documentation

• Send a Message in the ADM documentation

Sending messages to an application on multiple platforms

To send a message to an application installed on devices for multiple platforms, such as FCM and
APNs, you must first subscribe the mobile endpoints to a topic in Amazon SNS and then publish
the message to the topic.

The following example shows a message to send to subscribed mobile endpoints on APNs, FCM,
and ADM:

{
 "default": "This is the default message which must be present when publishing a
 message to a topic. The default message will only be used if a message is not present
 for
one of the notification platforms.",
 "APNS": "{\"aps\":{\"alert\": \"Check out these awesome deals!\",\"url\":
\"www.amazon.com\"} }",

Using Amazon SNS for mobile push notifications 528

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/PayloadKeyReference.html#/apple_ref/doc/uid/TP40008194-CH17-SW1
https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages
https://developer.amazon.com/sdk/adm/sending-message.html

Amazon Simple Notification Service Developer Guide

 "GCM": "{\"data\":{\"message\":\"Check out these awesome deals!\",\"url\":
\"www.amazon.com\"}}",
 "ADM": "{\"data\":{\"message\":\"Check out these awesome deals!\",\"url\":
\"www.amazon.com\"}}"
}

Sending messages to APNs as alert or background notifications

Amazon SNS can send messages to APNs as alert or background notifications (for more
information, see Pushing Background Updates to Your App in the APNs documentation).

• An alert APNs notification informs the user by displaying an alert message, playing a sound, or
adding a badge to your application’s icon.

• A background APNs notification wakes up or instructs your application to act upon the content
of the notification, without informing the user.

Specifying custom APNs header values

We recommend specifying custom values for the AWS.SNS.MOBILE.APNS.PUSH_TYPE reserved
message attribute using the Amazon SNS Publish API action, AWS SDKs, or the AWS CLI. The
following CLI example sets content-available to 1 and apns-push-type to background for
the specified topic.

aws sns publish \
--endpoint-url https://sns.us-east-1.amazonaws.com \
--target-arn arn:aws:sns:us-east-1:123456789012:endpoint/APNS_PLATFORM/MYAPP/1234a567-
bc89-012d-3e45-6fg7h890123i \
--message '{"APNS_PLATFORM":"{\"aps\":{\"content-available\":1}}"}' \
--message-attributes '{ \
 "AWS.SNS.MOBILE.APNS.TOPIC":
{"DataType":"String","StringValue":"com.amazon.mobile.messaging.myapp"}, \
 "AWS.SNS.MOBILE.APNS.PUSH_TYPE":{"DataType":"String","StringValue":"background"}, \
 "AWS.SNS.MOBILE.APNS.PRIORITY":{"DataType":"String","StringValue":"5"}}' \
--message-structure json

Note

Ensure that the JSON structure is valid. Add a comma after each key-value pair, except the
last one.

Using Amazon SNS for mobile push notifications 529

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/pushing_background_updates_to_your_app

Amazon Simple Notification Service Developer Guide

Inferring the APNs push type header from the payload

If you don't set the apns-push-type APNs header, Amazon SNS sets header to alert or
background depending on the content-available key in the aps dictionary of your JSON-
formatted APNs payload configuration.

Note

Amazon SNS is able to infer only alert or background headers, although the apns-
push-type header can be set to other values.

• apns-push-type is set to alert

• If the aps dictionary contains content-available set to 1 and one or more keys that trigger
user interactions.

• If the aps dictionary contains content-available set to 0 or if the content-available
key is absent.

• If the value of the content-available key isn’t an integer or a Boolean.

• apns-push-type is set to background

• If the aps dictionary only contains content-available set to 1 and no other keys that
trigger user interactions.

Important

If Amazon SNS sends a raw configuration object for APNs as a background-only
notification, you must include content-available set to 1 in the aps dictionary.
Although you can include custom keys, the aps dictionary must not contain any keys
that trigger user interactions (for example, alerts, badges, or sounds).

The following is an example raw configuration object.

{
 "APNS": "{\"aps\":{\"content-available\":1},\"Foo1\":\"Bar\",\"Foo2\":123}"
}

Using Amazon SNS for mobile push notifications 530

Amazon Simple Notification Service Developer Guide

In this example, Amazon SNS sets the apns-push-type APNs header for the message to
background. When Amazon SNS detects that the apn dictionary contains the content-
available key set to 1—and doesn't contain any other keys that can trigger user interactions—it
sets the header to background.

Using Google Firebase Cloud Messaging v1 payloads in Amazon SNS

Amazon SNS supports using FCM HTTP v1 API to send notifications to Android, iOS, and Webpush
destinations. This topic provides examples of the payload structure when publishing mobile push
notifications using the CLI, or the Amazon SNS API.

You can include the following message types in your payload when sending an FCM notification:

• Data message – A data message is handled by your client app and contains custom key-value
pairs. When constructing a data message, you must include the data key with a JSON object as
the value, and then enter your custom key-value pairs.

• Notification message or display message – A notification message contains a predefined set of
keys handled by the FCM SDK. These keys vary depending on the device type to which you are
delivering. For more information on platform-specific notification keys, see the following:

• Android notification keys

• APNS notification keys

• Webpush notification keys

For more information about FCM message types, see Message types in the in Google's Firebase
documentation.

Contents

• Using the FCM v1 payload structure to send messages

• Using the legacy payload structure to send messages to the FCM v1 API

• FCM delivery failure events

Using the FCM v1 payload structure to send messages

If you are creating an FCM application for the first time, or wish to take advantage of FCM v1
features, you can opt-in to send an FCM v1 formatted payload. To do this, you must include the
top-level key fcmV1Message. For more information about constructing FCM v1 payloads, see

Using Amazon SNS for mobile push notifications 531

https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages
https://developer.apple.com/documentation/usernotifications/generating-a-remote-notification
https://developer.mozilla.org/en-US/docs/Web/API/Notification
https://firebase.google.com/docs/cloud-messaging/concept-options#notifications_and_data_messages

Amazon Simple Notification Service Developer Guide

Migrate from legacy FCM APIs to HTTP v1 and Customizing a message across platforms in Google's
Firebase documentation.

FCM v1 example payload sent to Amazon SNS:

Note

The GCM key value used in the following example must be encoded as a String when
publishing a notification using Amazon SNS.

{
 "GCM": "{
 \"fcmV1Message\": {
 \"validate_only\": false,
 \"message\": {
 \"notification\": {
 \"title\": \"string\",
 \"body\": \"string\"
 },
 \"data\": {
 \"dataGen\": \"priority message\"
 },
 \"android\": {
 \"priority\": \"high\",
 \"notification\": {
 \"body_loc_args\": [\"string\"],
 \"title_loc_args\": [\"string\"],
 \"sound\": \"string\",
 \"title_loc_key\": \"string\",
 \"title\": \"string\",
 \"body\": \"string\",
 \"click_action\": \"clicky_clacky\",
 \"body_loc_key\": \"string\"
 },
 \"data\": {
 \"dataAndroid\": \"priority message\"
 },
 \"ttl\": \"10023.32s\"
 },
 \"apns\": {
 \"payload\": {

Using Amazon SNS for mobile push notifications 532

https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://firebase.google.com/docs/cloud-messaging/concept-options#customizing-a-message-across-platforms

Amazon Simple Notification Service Developer Guide

 \"aps\": {
 \"alert\": {
 \"subtitle\": \"string\",
 \"title-loc-args\": [\"string\"],
 \"title-loc-key\": \"string\",
 \"loc-args\": [\"string\"],
 \"loc-key\": \"string\",
 \"title\": \"string\",
 \"body\": \"string\"
 },
 \"category\": \"Click\",
 \"content-available\": 0,
 \"sound\": \"string\",
 \"badge\": 5
 }
 }
 },
 \"webpush\": {
 \"notification\": {
 \"badge\": \"5\",
 \"title\": \"string\",
 \"body\": \"string\"
 },
 \"data\": {
 \"dataWeb\": \"priority message\"
 }
 }
 }
 }
 }"
}

When sending a JSON payload, be sure to include the message-structure attribute in your
request, and set it to json.

CLI example:

aws sns publish --topic $TOPIC_ARN --message '{"GCM": "{\"fcmV1Message\": {\"message\":
{\"notification\":{\"title\":\"string\",\"body\":\"string\"},\"android\":{\"priority
\":\"high\",\"notification\":{\"title\":\"string\",\"body\":\"string\"},\"data\":
{\"customAndroidDataKey\":\"custom key value\"},\"ttl\":\"0s\"},\"apns\":{\"payload
\":{\"aps\":{\"alert\":{\"title\":\"string\", \"body\":\"string\"},\"content-
available\":1,\"badge\":5}}},\"webpush\":{\"notification\":{\"badge\":\"URL\",\"body

Using Amazon SNS for mobile push notifications 533

Amazon Simple Notification Service Developer Guide

\":\"Test\"},\"data\":{\"customWebpushDataKey\":\"priority message\"}},\"data\":
{\"customGeneralDataKey\":\"priority message\"}}}}", "default": "{\"notification\":
 {\"title\": \"test\"}"}' --region $REGION --message-structure json

For more information on sending FCM v1 formatted payloads, see the following in Google's
Firebase documentation:

• Migrate from legacy FCM APIs to HTTP v1

• About FCM messages

• REST Resource: projects.messages

Using the legacy payload structure to send messages to the FCM v1 API

When migrating to FCM v1, you don't have to change the payload structure that you were using
for your legacy credentials. Amazon SNS transforms your payload into the new FCM v1 payload
structure, and sends to Google.

Input message payload format:

{
 "GCM": "{\"notification\": {\"title\": \"string\", \"body\": \"string\",
 \"android_channel_id\": \"string\", \"body_loc_args\": [\"string\"], \"body_loc_key\":
 \"string\", \"click_action\": \"string\", \"color\": \"string\", \"icon\": \"string
\", \"sound\": \"string\", \"tag\": \"string\", \"title_loc_args\": [\"string\"],
 \"title_loc_key\": \"string\"}, \"data\": {\"message\": \"priority message\"}}"
}

Message sent to Google:

{
 "message": {
 "token": "***",
 "notification": {
 "title": "string",
 "body": "string"
 },
 "android": {
 "priority": "high",
 "notification": {
 "body_loc_args": [
 "string"

Using Amazon SNS for mobile push notifications 534

https://firebase.google.com/docs/cloud-messaging/migrate-v1
https://firebase.google.com/docs/cloud-messaging/concept-options#customizing_a_message_across_platforms
https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages

Amazon Simple Notification Service Developer Guide

],
 "title_loc_args": [
 "string"
],
 "color": "string",
 "sound": "string",
 "icon": "string",
 "tag": "string",
 "title_loc_key": "string",
 "title": "string",
 "body": "string",
 "click_action": "string",
 "channel_id": "string",
 "body_loc_key": "string"
 },
 "data": {
 "message": "priority message"
 }
 },
 "apns": {
 "payload": {
 "aps": {
 "alert": {
 "title-loc-args": [
 "string"
],
 "title-loc-key": "string",
 "loc-args": [
 "string"
],
 "loc-key": "string",
 "title": "string",
 "body": "string"
 },
 "category": "string",
 "sound": "string"
 }
 }
 },
 "webpush": {
 "notification": {
 "icon": "string",
 "tag": "string",
 "body": "string",

Using Amazon SNS for mobile push notifications 535

Amazon Simple Notification Service Developer Guide

 "title": "string"
 },
 "data": {
 "message": "priority message"
 }
 },
 "data": {
 "message": "priority message"
 }
 }
}

Potential risks

• Legacy to v1 mapping doesn't support the Apple Push Notification Service (APNS) headers or
the fcm_options keys. If you'd like to use these fields, send an FCM v1 payload.

• In some cases, message headers are required by FCM v1 to send silent notifications to your
APNs devices. If you are currently sending silent notifications to your APNs devices, they will
not work with the legacy approach. Instead, we recommend using the FCM v1 payload to avoid
unexpected issues. To find a list of APNs headers and what they are used for, see Communicating
with APNs in the Apple Developer Guide.

• If you are using the TTL Amazon SNS attribute when sending your notification, it will only
be updated in the android field. If you'd like to set the TTL APNS attribute, use the FCM v1
payload.

• The android, apns, and webpush keys will be mapped and populated with all relevant keys
provided. For example, if you provide title, which is a key shared among all three platforms,
the FCM v1 mapping will populate all three platforms with the title you provided.

• Some shared keys among platforms expect different value types. For example, the badge key
passed to apns expects an integer value, while the badge key passed to webpush expects a
String value. In cases where you provide the badge key, the FCM v1 mapping will only populate
the key for which you provided a valid value.

FCM delivery failure events

The following table provides the Amazon SNS failure type that corresponds to the error/status
codes received from Google for FCM v1 notification requests. All observed error codes received
from the FCM v1 API are available to you in CloudWatch when you set-up delivery status logging
for your application.

Using Amazon SNS for mobile push notifications 536

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html

Amazon Simple Notification Service Developer Guide

FCM error/status
code

Amazon SNS failure
type

Failure message Cause and mitigatio
n

UNREGISTERED InvalidPl
atformToken

Platform token
associated with the
endpoint is not valid.

The device token
attached to your
endpoint is stale
or invalid. Amazon
SNS disabled your
endpoint. Update
the Amazon SNS
endpoint to the
newest device token.

INVALID_A
RGUMENT

InvalidNo
tification

Notification body is
invalid.

The device token or
message payload
may be invalid. Verify
that your message
payload is valid. If
the message payload
is valid, update
the Amazon SNS
endpoint to the
newest device token.

SENDER_ID
_MISMATCH

InvalidPl
atformToken

Platform token
associated with the
endpoint is not valid.

The platform
application associate
d with the device
token doesn't have
permission to send
to the device token.
Verify that you are
using the correct
FCM credentials in
your Amazon SNS
platform application.

Using Amazon SNS for mobile push notifications 537

Amazon Simple Notification Service Developer Guide

FCM error/status
code

Amazon SNS failure
type

Failure message Cause and mitigatio
n

UNAVAILABLE Dependenc
yUnavailable

Dependency is not
available.

FCM couldn't process
the request in
time. All the retries
executed by Amazon
SNS have failed.
You can store these
messages in a dead-
letter queue (DLQ)
and redrive them
later.

INTERNAL Unexpecte
dFailure

Unexpected failure;
please contact
Amazon. Failure
phrase [Internal
 Error].

The FCM server
encountered an
error while trying
to process your
request. All the
retries executed by
Amazon SNS have
failed. You can store
these messages in
a dead-letter queue
(DLQ) and redrive
them later.

THIRD_PAR
TY_AUTH_ERROR

InvalidCr
edentials

Platform application
credentials are not
valid.

A message targeted
to an iOS device or
a Webpush device
could not be sent.
Verify that your
development and
production credentia
ls are valid.

Using Amazon SNS for mobile push notifications 538

Amazon Simple Notification Service Developer Guide

FCM error/status
code

Amazon SNS failure
type

Failure message Cause and mitigatio
n

QUOTA_EXCEEDED Throttled Request throttled by
[gcm].

A message rate
quota, device
message rate quota,
or topic message
rate quota has
been exceeded. For
information on how
to resolve this issue,
see ErrorCode in the
in Google's Firebase
documentation.

PERMISSIO
N_DENIED

InvalidNo
tification

Notification body is
invalid.

In the case of
a PERMISSIO
N_DENIED
exception, the
caller (your FCM
application) doesn't
have permission to
execute the specified
operation in the
payload. Navigate to
your FCM console,
and verify your
credentials have the
required API actions
enabled.

Amazon SNS mobile app attributes

Amazon Simple Notification Service (Amazon SNS) provides support to log the delivery status of
push notification messages. After you configure application attributes, log entries will be sent to

Mobile app attributes 539

https://firebase.google.com/docs/reference/fcm/rest/v1/ErrorCode

Amazon Simple Notification Service Developer Guide

CloudWatch Logs for messages sent from Amazon SNS to mobile endpoints. Logging message
delivery status helps provide better operational insight, such as the following:

• Know whether a push notification message was delivered from Amazon SNS to the push
notification service.

• Identify the response sent from the push notification service to Amazon SNS.

• Determine the message dwell time (the time between the publish timestamp and just before
handing off to a push notification service).

To configure application attributes for message delivery status, you can use the AWS Management
Console, AWS software development kits (SDKs), or query API.

Topics

• Configuring message delivery status attributes using the AWS Management Console

• Amazon SNS message delivery status CloudWatch log examples

• Configuring message delivery status attributes with the AWS SDKs

• Platform response codes

Configuring message delivery status attributes using the AWS Management
Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, point to Mobile, and then choose Push notifications.

3. From the Platform applications section, choose the application that contains the endpoints
for which you want receive CloudWatch Logs.

4. Choose Application Actions and then choose Delivery Status.

5. On the Delivery Status dialog box, choose Create IAM Roles.

You will then be redirected to the IAM console.

6. Choose Allow to give Amazon SNS write access to use CloudWatch Logs on your behalf.

7. Now, back on the Delivery Status dialog box, enter a number in the Percentage of Success to
Sample (0-100) field for the percentage of successful messages sent for which you want to
receive CloudWatch Logs.

Mobile app attributes 540

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

Note

After you configure application attributes for message delivery status, all failed
message deliveries generate CloudWatch Logs.

8. Finally, choose Save Configuration. You will now be able to view and parse the CloudWatch
Logs containing the message delivery status. For more information about using CloudWatch,
see the CloudWatch Documentation.

Amazon SNS message delivery status CloudWatch log examples

After you configure message delivery status attributes for an application endpoint, CloudWatch
Logs will be generated. Example logs, in JSON format, are shown as follows:

SUCCESS

{
 "status": "SUCCESS",
 "notification": {
 "timestamp": "2015-01-26 23:07:39.54",
 "messageId": "9655abe4-6ed6-5734-89f7-e6a6a42de02a"
 },
 "delivery": {
 "statusCode": 200,
 "dwellTimeMs": 65,
 "token": "Examplei7fFachkJ1xjlqT64RaBkcGHochmf1VQAr9k-
IBJtKjp7fedYPzEwT_Pq3Tu0lroqro1cwWJUvgkcPPYcaXCpPWmG3Bqn-
wiqIEzp5zZ7y_jsM0PKPxKhddCzx6paEsyay9Zn3D4wNUJb8m6HXrBf9dqaEw",
 "attempts": 1,
 "providerResponse": "{\"multicast_id\":5138139752481671853,\"success
\":1,\"failure\":0,\"canonical_ids\":0,\"results\":[{\"message_id\":
\"0:1422313659698010%d6ba8edff9fd7ecd\"}]}",
 "destination": "arn:aws:sns:us-east-2:111122223333:endpoint/FCM/FCMPushApp/
c23e42de-3699-3639-84dd-65f84474629d"
 }
}

FAILURE

{

Mobile app attributes 541

https://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide

 "status": "FAILURE",
 "notification": {
 "timestamp": "2015-01-26 23:29:35.678",
 "messageId": "c3ad79b0-8996-550a-8bfa-24f05989898f"
 },
 "delivery": {
 "statusCode": 8,
 "dwellTimeMs": 1451,
 "token": "examp1e29z6j5c4df46f80189c4c83fjcgf7f6257e98542d2jt3395kj73",
 "attempts": 1,
 "providerResponse": "NotificationErrorResponse(command=8, status=InvalidToken,
 id=1, cause=null)",
 "destination": "arn:aws:sns:us-east-2:111122223333:endpoint/APNS_SANDBOX/
APNSPushApp/986cb8a1-4f6b-34b1-9a1b-d9e9cb553944"
 }
}

For a list of push notification service response codes, see Platform response codes.

Configuring message delivery status attributes with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message delivery status attributes with
Amazon SNS.

The following Java example shows how to use the SetPlatformApplicationAttributes
API to configure application attributes for message delivery status of push notification
messages. You can use the following attributes for message delivery status:
SuccessFeedbackRoleArn, FailureFeedbackRoleArn, and SuccessFeedbackSampleRate.
The SuccessFeedbackRoleArn and FailureFeedbackRoleArn attributes are
used to give Amazon SNS write access to use CloudWatch Logs on your behalf. The
SuccessFeedbackSampleRate attribute is for specifying the sample rate percentage (0-100) of
successfully delivered messages. After you configure the FailureFeedbackRoleArn attribute,
then all failed message deliveries generate CloudWatch Logs.

SetPlatformApplicationAttributesRequest setPlatformApplicationAttributesRequest = new
 SetPlatformApplicationAttributesRequest();
Map<String, String> attributes = new HashMap<>();
attributes.put("SuccessFeedbackRoleArn", "arn:aws:iam::111122223333:role/SNS_CWlogs");
attributes.put("FailureFeedbackRoleArn", "arn:aws:iam::111122223333:role/SNS_CWlogs");
attributes.put("SuccessFeedbackSampleRate", "5");
setPlatformApplicationAttributesRequest.withAttributes(attributes);

Mobile app attributes 542

https://aws.amazon.com/tools/

Amazon Simple Notification Service Developer Guide

setPlatformApplicationAttributesRequest.setPlatformApplicationArn("arn:aws:sns:us-
west-2:111122223333:app/FCM/FCMPushApp");
sns.setPlatformApplicationAttributes(setPlatformApplicationAttributesRequest);

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

Platform response codes

The following is a list of links for the push notification service response codes:

Push notification service Response codes

Amazon Device Messaging (ADM) See Response Format in the ADM documenta
tion.

Apple Push Notification Service (APNs) See HTTP/2 Response from APNs in
Communicating with APNs in the Local and
Remote Notification Programming Guide.

Firebase Cloud Messaging (FCM) See Downstream Message Error Response
Codes in the Firebase Cloud Messaging
documentation.

Microsoft Push Notification Service for
Windows Phone (MPNS)

See Push Notification Service Response Codes
for Windows Phone 8 in the Windows 8
Development documentation.

Windows Push Notification Services (WNS) See "Response codes" in Push Notification
Service Request and Response Headers
(Windows Runtime Apps) in the Windows 8
Development documentation.

Amazon SNS application event notifications for mobile applications

Amazon SNS provides support to trigger notifications when certain application events occur. You
can then take some programmatic action on that event. Your application must include support
for a push notification service such as Apple Push Notification Service (APNs), Firebase Cloud
Messaging (FCM), and Windows Push Notification Services (WNS). You set application event
notifications using the Amazon SNS console, AWS CLI, or the AWS SDKs.

Mobile app events 543

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
https://developer.amazon.com/docs/adm/send-message.html#response-format
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/CommunicatingwithAPNs.html#/apple_ref/doc/uid/TP40008194-CH11-SW1
https://firebase.google.com/docs/cloud-messaging/http-server-ref#error-codes
https://firebase.google.com/docs/cloud-messaging/http-server-ref#error-codes
https://msdn.microsoft.com/en-us/library/windows/apps/ff941100%28v=vs.105%29.aspx#BKMK_PushNotificationServiceResponseCodes
https://msdn.microsoft.com/en-us/library/windows/apps/ff941100%28v=vs.105%29.aspx#BKMK_PushNotificationServiceResponseCodes
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx

Amazon Simple Notification Service Developer Guide

Topics

• Available application events

• Sending mobile push notifications

Available application events

Application event notifications track when individual platform endpoints are created, deleted,
and updated, as well as delivery failures. The following are the attribute names for the application
events.

Attribute name Notification trigger

EventEndp
ointCreated

A new platform endpoint is added to your application.

EventEndp
ointDeleted

Any platform endpoint associated with your application is deleted.

EventEndp
ointUpdated

Any of the attributes of the platform endpoints associated with your
application are changed.

EventDeli
veryFailure

A delivery to any of the platform endpoints associated with your
application encounters a permanent failure.

Note

To track delivery failures on the platform application side,
subscribe to message delivery status events for the applicati
on. For more information, see Using Amazon SNS Application
Attributes for Message Delivery Status.

You can associate any attribute with an application which can then receive these event
notifications.

Mobile app events 544

https://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html
https://docs.aws.amazon.com/sns/latest/dg/sns-msg-status.html

Amazon Simple Notification Service Developer Guide

Sending mobile push notifications

To send application event notifications, you specify a topic to receive the notifications for each
type of event. As Amazon SNS sends the notifications, the topic can route them to endpoints that
will take programmatic action.

Important

High-volume applications will create a large number of application event notifications
(for example, tens of thousands), which will overwhelm endpoints meant for human use,
such as email addresses, phone numbers, and mobile applications. Consider the following
guidelines when you send application event notifications to a topic:

• Each topic that receives notifications should contain only subscriptions for programmatic
endpoints, such as HTTP or HTTPS endpoints, Amazon SQS queues, or AWS Lambda
functions.

• To reduce the amount of processing that is triggered by the notifications, limit each
topic's subscriptions to a small number (for example, five or fewer).

You can send application event notifications using the Amazon SNS console, the AWS Command
Line Interface (AWS CLI), or the AWS SDKs.

AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Mobile, Push notifications.

3. On the Mobile push notifications page, in the Platform applications section, choose an
application and then choose Edit.

4. Expand the Event notifications section.

5. Choose Actions, Configure events.

6. Enter the ARNs for topics to be used for the following events:

• Endpoint Created

• Endpoint Deleted

• Endpoint Updated

• Delivery Failure

Mobile app events 545

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

7. Choose Save changes.

AWS CLI

Run the set-platform-application-attributes command.

The following example sets the same Amazon SNS topic for all four application events:

aws sns set-platform-application-attributes
--platform-application-arn arn:aws:sns:us-east-1:12345EXAMPLE:app/FCM/
MyFCMPlatformApplication
--attributes EventEndpointCreated="arn:aws:sns:us-
east-1:12345EXAMPLE:MyFCMPlatformApplicationEvents",
EventEndpointDeleted="arn:aws:sns:us-
east-1:12345EXAMPLE:MyFCMPlatformApplicationEvents",
EventEndpointUpdated="arn:aws:sns:us-
east-1:12345EXAMPLE:MyFCMPlatformApplicationEvents",
EventDeliveryFailure="arn:aws:sns:us-
east-1:12345EXAMPLE:MyFCMPlatformApplicationEvents"

AWS SDKs

Set application event notifications by submitting a SetPlatformApplicationAttributes
request with the Amazon SNS API using an AWS SDK.

For a complete list of AWS SDK developer guides and code examples, including help getting started
and information about previous versions, see Using Amazon SNS with an AWS SDK.

Mobile push API actions

To use the Amazon SNS mobile push APIs, you must first meet the prerequisites for the push
notification service, such as Apple Push Notification Service (APNs) and Firebase Cloud Messaging
(FCM). For more information about the prerequisites, see Prerequisites for Amazon SNS user
notifications.

To send a push notification message to a mobile app and device using the APIs, you must first
use the CreatePlatformApplication action, which returns a PlatformApplicationArn
attribute. The PlatformApplicationArn attribute is then used by CreatePlatformEndpoint,
which returns an EndpointArn attribute. You can then use the EndpointArn attribute with
the Publish action to send a notification message to a mobile app and device, or you could use

Mobile push API actions 546

https://docs.aws.amazon.com/cli/latest/reference/sns/set-platform-application-attributes.html

Amazon Simple Notification Service Developer Guide

the EndpointArn attribute with the Subscribe action for subscription to a topic. For more
information, see Setting up push notifications with Amazon SNS.

The Amazon SNS mobile push APIs are as follows:

CreatePlatformApplication

Creates a platform application object for one of the supported push notification services,
such as APNs and FCM, to which devices and mobile apps may register. Returns a
PlatformApplicationArn attribute, which is used by the CreatePlatformEndpoint
action.

CreatePlatformEndpoint

Creates an endpoint for a device and mobile app on one of the supported push notification
services. CreatePlatformEndpoint uses the PlatformApplicationArn attribute returned
from the CreatePlatformApplication action. The EndpointArn attribute, which is
returned when using CreatePlatformEndpoint, is then used with the Publish action to
send a notification message to a mobile app and device.

CreateTopic

Creates a topic to which messages can be published.

DeleteEndpoint

Deletes the endpoint for a device and mobile app on one of the supported push notification
services.

DeletePlatformApplication

Deletes a platform application object.

DeleteTopic

Deletes a topic and all its subscriptions.

GetEndpointAttributes

Retrieves the endpoint attributes for a device and mobile app.

GetPlatformApplicationAttributes

Retrieves the attributes of the platform application object.

Mobile push API actions 547

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html

Amazon Simple Notification Service Developer Guide

ListEndpointsByPlatformApplication

Lists the endpoints and endpoint attributes for devices and mobile apps in a supported push
notification service.

ListPlatformApplications

Lists the platform application objects for the supported push notification services.

Publish

Sends a notification message to all of a topic's subscribed endpoints.

SetEndpointAttributes

Sets the attributes for an endpoint for a device and mobile app.

SetPlatformApplicationAttributes

Sets the attributes of the platform application object.

Subscribe

Prepares to subscribe an endpoint by sending the endpoint a confirmation message. To actually
create a subscription, the endpoint owner must call the ConfirmSubscription action with the
token from the confirmation message.

Unsubscribe

Deletes a subscription.

Common Amazon SNS mobile push API errors

Errors that are returned by the Amazon SNS APIs for mobile push are listed in the following table.
For more information about the Amazon SNS APIs for mobile push, see Mobile push API actions.

Error Description HTTPS status code API Action

Application Name is
null string

The required applicati
on name is set to
null.

400 CreatePla
tformAppl
ication

Common mobile push API errors 548

https://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

Platform Name is null
string

The required
platform name is set
to null.

400 CreatePla
tformAppl
ication

Platform Name is
invalid

An invalid or out-
of-range value was
supplied for the
platform name.

400 CreatePla
tformAppl
ication

APNs — Principal is
not a valid certificate

An invalid certificate
was supplied for the
APNs principal, which
is the SSL certificate.
For more informati
on, see CreatePla
tformApplication in
the Amazon Simple
Notification Service
API Reference.

400 CreatePla
tformAppl
ication

APNs — Principal is a
valid cert but not in
a .pem format

A valid certifica
te that is not in
the .pem format was
supplied for the APNs
principal, which is the
SSL certificate.

400 CreatePla
tformAppl
ication

APNs — Principal is
an expired certificate

An expired certificate
was supplied for the
APNs principal, which
is the SSL certificate.

400 CreatePla
tformAppl
ication

Common mobile push API errors 549

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

APNs — Principal is
not an Apple issued
certificate

A non-Apple issued
certificate was
supplied for the APNs
principal, which is the
SSL certificate.

400 CreatePla
tformAppl
ication

APNs — Principal is
not provided

The APNs principal
, which is the SSL
certificate, was not
provided.

400 CreatePla
tformAppl
ication

APNs — Credential is
not provided

The APNs credentia
l, which is the
private key, was not
provided. For more
information, see
CreatePlatformAppl
ication in the Amazon
Simple Notification
Service API Reference
.

400 CreatePla
tformAppl
ication

APNs — Credentia
l are not in a
valid .pem format

The APNs credentia
l, which is the private
key, is not in a
valid .pem format.

400 CreatePla
tformAppl
ication

Common mobile push API errors 550

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

FCM — serverAPIKey
is not provided

The FCM credential,
which is the API key,
was not provided.
For more informati
on, see CreatePla
tformApplication in
the Amazon Simple
Notification Service
API Reference.

400 CreatePla
tformAppl
ication

FCM — serverAPIKey
is empty

The FCM credential,
which is the API key,
is empty.

400 CreatePla
tformAppl
ication

FCM — serverAPIKey
is a null string

The FCM credential,
which is the API key,
is null.

400 CreatePla
tformAppl
ication

FCM — serverAPIKey
is invalid

The FCM credential,
which is the API key,
is invalid.

400 CreatePla
tformAppl
ication

ADM — clientsecret is
not provided

The required
client secret is not
provided.

400 CreatePla
tformAppl
ication

ADM — clientsecret is
a null string

The required string
for the client secret is
null.

400 CreatePla
tformAppl
ication

ADM — client_secret
is empty string

The required string
for the client secret is
empty.

400 CreatePla
tformAppl
ication

Common mobile push API errors 551

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

ADM — client_secret
is not valid

The required string
for the client secret is
not valid.

400 CreatePla
tformAppl
ication

ADM — client_id is
empty string

The required string
for the client ID is
empty.

400 CreatePla
tformAppl
ication

ADM — clientId is not
provided

The required string
for the client ID is not
provided.

400 CreatePla
tformAppl
ication

ADM — clientid is a
null string

The required string
for the client ID is
null.

400 CreatePla
tformAppl
ication

ADM — client_id is
not valid

The required string
for the client ID is not
valid.

400 CreatePla
tformAppl
ication

EventEndpointCreat
ed has invalid ARN
format

EventEndpointCreat
ed has invalid ARN
format.

400 CreatePla
tformAppl
ication

EventEndpointDelet
ed has invalid ARN
format

EventEndpointDelet
ed has invalid ARN
format.

400 CreatePla
tformAppl
ication

EventEndpointUpdat
ed has invalid ARN
format

EventEndpointUpdat
ed has invalid ARN
format.

400 CreatePla
tformAppl
ication

EventDeliveryAttem
ptFailure has invalid
ARN format

EventDeliveryAttem
ptFailure has invalid
ARN format.

400 CreatePla
tformAppl
ication

Common mobile push API errors 552

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

EventDeliveryFailu
re has invalid ARN
format

EventDeliveryFailu
re has invalid ARN
format.

400 CreatePla
tformAppl
ication

EventEndpointCreat
ed is not an existing
Topic

EventEndpointCreat
ed is not an existing
topic.

400 CreatePla
tformAppl
ication

EventEndpointDelet
ed is not an existing
Topic

EventEndpointDelet
ed is not an existing
topic.

400 CreatePla
tformAppl
ication

EventEndpointUpdat
ed is not an existing
Topic

EventEndpointUpdat
ed is not an existing
topic.

400 CreatePla
tformAppl
ication

EventDeliveryAttem
ptFailure is not an
existing Topic

EventDeliveryAttem
ptFailure is not an
existing topic.

400 CreatePla
tformAppl
ication

EventDeliveryFailu
re is not an existing
Topic

EventDeliveryFailu
re is not an existing
topic.

400 CreatePla
tformAppl
ication

Platform ARN is
invalid

Platform ARN is
invalid.

400 SetPlatfo
rmAttributes

Platform ARN is valid
but does not belong
to the user

Platform ARN is valid
but does not belong
to the user.

400 SetPlatfo
rmAttributes

Common mobile push API errors 553

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

APNs — Principal is
not a valid certificate

An invalid certificate
was supplied for the
APNs principal, which
is the SSL certificate.
For more informati
on, see CreatePla
tformApplication in
the Amazon Simple
Notification Service
API Reference.

400 SetPlatfo
rmAttributes

APNs — Principal is a
valid cert but not in
a .pem format

A valid certifica
te that is not in
the .pem format was
supplied for the APNs
principal, which is the
SSL certificate.

400 SetPlatfo
rmAttributes

APNs — Principal is
an expired certificate

An expired certificate
was supplied for the
APNs principal, which
is the SSL certificate.

400 SetPlatfo
rmAttributes

APNs — Principal is
not an Apple issued
certificate

A non-Apple issued
certificate was
supplied for the APNs
principal, which is the
SSL certificate.

400 SetPlatfo
rmAttributes

APNs — Principal is
not provided

The APNs principal
, which is the SSL
certificate, was not
provided.

400 SetPlatfo
rmAttributes

Common mobile push API errors 554

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

APNs — Credential is
not provided

The APNs credentia
l, which is the
private key, was not
provided. For more
information, see
CreatePlatformAppl
ication in the Amazon
Simple Notification
Service API Reference
.

400 SetPlatfo
rmAttributes

APNs — Credentia
l are not in a
valid .pem format

The APNs credentia
l, which is the private
key, is not in a
valid .pem format.

400 SetPlatfo
rmAttributes

FCM — serverAPIKey
is not provided

The FCM credential,
which is the API key,
was not provided.
For more informati
on, see CreatePla
tformApplication in
the Amazon Simple
Notification Service
API Reference.

400 SetPlatfo
rmAttributes

FCM — serverAPIKey
is a null string

The FCM credential,
which is the API key,
is null.

400 SetPlatfo
rmAttributes

ADM — clientId is not
provided

The required string
for the client ID is not
provided.

400 SetPlatfo
rmAttributes

Common mobile push API errors 555

https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

ADM — clientid is a
null string

The required string
for the client ID is
null.

400 SetPlatfo
rmAttributes

ADM — clientsecret is
not provided

The required
client secret is not
provided.

400 SetPlatfo
rmAttributes

ADM — clientsecret is
a null string

The required string
for the client secret is
null.

400 SetPlatfo
rmAttributes

EventEndpointUpdat
ed has invalid ARN
format

EventEndpointUpdat
ed has invalid ARN
format.

400 SetPlatfo
rmAttributes

EventEndpointDelet
ed has invalid ARN
format

EventEndpointDelet
ed has invalid ARN
format.

400 SetPlatfo
rmAttributes

EventEndpointUpdat
ed has invalid ARN
format

EventEndpointUpdat
ed has invalid ARN
format.

400 SetPlatfo
rmAttributes

EventDeliveryAttem
ptFailure has invalid
ARN format

EventDeliveryAttem
ptFailure has invalid
ARN format.

400 SetPlatfo
rmAttributes

EventDeliveryFailu
re has invalid ARN
format

EventDeliveryFailu
re has invalid ARN
format.

400 SetPlatfo
rmAttributes

EventEndpointCreat
ed is not an existing
Topic

EventEndpointCreat
ed is not an existing
topic.

400 SetPlatfo
rmAttributes

Common mobile push API errors 556

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

EventEndpointDelet
ed is not an existing
Topic

EventEndpointDelet
ed is not an existing
topic.

400 SetPlatfo
rmAttributes

EventEndpointUpdat
ed is not an existing
Topic

EventEndpointUpdat
ed is not an existing
topic.

400 SetPlatfo
rmAttributes

EventDeliveryAttem
ptFailure is not an
existing Topic

EventDeliveryAttem
ptFailure is not an
existing topic.

400 SetPlatfo
rmAttributes

EventDeliveryFailu
re is not an existing
Topic

EventDeliveryFailu
re is not an existing
topic.

400 SetPlatfo
rmAttributes

Platform ARN is
invalid

The platform ARN is
invalid.

400 GetPlatfo
rmApplica
tionAttributes

Platform ARN is valid
but does not belong
to the user

The platform ARN is
valid, but does not
belong to the user.

403 GetPlatfo
rmApplica
tionAttributes

Token specified is
invalid

The specified token is
invalid.

400 ListPlatf
ormApplic
ations

Platform ARN is
invalid

The platform ARN is
invalid.

400 ListEndpo
intsByPla
tformAppl
ication

Common mobile push API errors 557

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

Platform ARN is valid
but does not belong
to the user

The platform ARN is
valid, but does not
belong to the user.

404 ListEndpo
intsByPla
tformAppl
ication

Token specified is
invalid

The specified token is
invalid.

400 ListEndpo
intsByPla
tformAppl
ication

Platform ARN is
invalid

The platform ARN is
invalid.

400 DeletePla
tformAppl
ication

Platform ARN is valid
but does not belong
to the user

The platform ARN is
valid, but does not
belong to the user.

403 DeletePla
tformAppl
ication

Platform ARN is
invalid

The platform ARN is
invalid.

400 CreatePla
tformEndpoint

Platform ARN is valid
but does not belong
to the user

The platform ARN is
valid, but does not
belong to the user.

404 CreatePla
tformEndpoint

Token is not specified The token is not
specified.

400 CreatePla
tformEndpoint

Token is not of
correct length

The token is not the
correct length.

400 CreatePla
tformEndpoint

Customer User data is
too large

The customer user
data cannot be more
than 2048 bytes long
in UTF-8 encoding.

400 CreatePla
tformEndpoint

Common mobile push API errors 558

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

Endpoint ARN is
invalid

The endpoint ARN is
invalid.

400 DeleteEndpoint

Endpoint ARN is valid
but does not belong
to the user

The endpoint ARN is
valid, but does not
belong to the user.

403 DeleteEndpoint

Endpoint ARN is
invalid

The endpoint ARN is
invalid.

400 SetEndpoi
ntAttributes

Endpoint ARN is valid
but does not belong
to the user

The endpoint ARN is
valid, but does not
belong to the user.

403 SetEndpoi
ntAttributes

Token is not specified The token is not
specified.

400 SetEndpoi
ntAttributes

Token is not of
correct length

The token is not the
correct length.

400 SetEndpoi
ntAttributes

Customer User data is
too large

The customer user
data cannot be more
than 2048 bytes long
in UTF-8 encoding.

400 SetEndpoi
ntAttributes

Endpoint ARN is
invalid

The endpoint ARN is
invalid.

400 GetEndpoi
ntAttributes

Endpoint ARN is valid
but does not belong
to the user

The endpoint ARN is
valid, but does not
belong to the user.

403 GetEndpoi
ntAttributes

Target ARN is invalid The target ARN is
invalid.

400 Publish

Common mobile push API errors 559

Amazon Simple Notification Service Developer Guide

Error Description HTTPS status code API Action

Target ARN is valid
but does not belong
to the user

The target ARN is
valid, but does not
belong to the user.

403 Publish

Message format is
invalid

The message format
is invalid.

400 Publish

Message size is larger
than supported by
protocol/end-service

The message size is
larger than supported
by the protocol/end-
service.

400 Publish

Using the Amazon SNS time to live message attribute for mobile push
notifications

Amazon Simple Notification Service (Amazon SNS) provides support for setting a Time To Live
(TTL) message attribute for mobile push notifications messages. This is in addition to the existing
capability of setting TTL within the Amazon SNS message body for the mobile push notification
services that support this, such as Amazon Device Messaging (ADM) and Firebase Cloud Messaging
(FCM) when sending to Android.

The TTL message attribute is used to specify expiration metadata about a message. This allows you
to specify the amount of time that the push notification service, such as Apple Push Notification
Service (APNs) or FCM, has to deliver the message to the endpoint. If for some reason (such as the
mobile device has been turned off) the message is not deliverable within the specified TTL, then
the message will be dropped and no further attempts to deliver it will be made. To specify TTL
within message attributes, you can use the AWS Management Console, AWS software development
kits (SDKs), or query API.

Topics

• TTL message attributes for push notification services

• Precedence order for determining TTL

• Specifying TTL using the AWS Management Console

Mobile push TTL 560

Amazon Simple Notification Service Developer Guide

TTL message attributes for push notification services

The following is a list of the TTL message attributes for push notification services that you can use
to set when using the AWS SDKs or query API:

Push notification service TTL message attribute

Amazon Device Messaging (ADM) AWS.SNS.MOBILE.ADM.TTL

Apple Push Notification Service (APNs) AWS.SNS.MOBILE.APNS.TTL

Apple Push Notification Service Sandbox
(APNs_SANDBOX)

AWS.SNS.MOBILE.APNS_SANDBOX.TTL

Baidu Cloud Push (Baidu) AWS.SNS.MOBILE.BAIDU.TTL

Firebase Cloud Messaging (FCM when sending
to Android)

AWS.SNS.MOBILE.FCM.TTL

Windows Push Notification Services (WNS) AWS.SNS.MOBILE.WNS.TTL

Each of the push notification services handle TTL differently. Amazon SNS provides an abstract
view of TTL over all the push notification services, which makes it easier to specify TTL. When you
use the AWS Management Console to specify TTL (in seconds), you only have to enter the TTL
value once and Amazon SNS will then calculate the TTL for each of the selected push notification
services when publishing the message.

TTL is relative to the publish time. Before handing off a push notification message to a specific
push notification service, Amazon SNS computes the dwell time (the time between the publish
timestamp and just before handing off to a push notification service) for the push notification and
passes the remaining TTL to the specific push notification service. If TTL is shorter than the dwell
time, Amazon SNS won't attempt to publish.

If you specify a TTL for a push notification message, then the TTL value must be a positive integer,
unless the value of 0 has a specific meaning for the push notification service—such as with
APNs and FCM (when sending to Android). If the TTL value is set to 0 and the push notification
service does not have a specific meaning for 0, then Amazon SNS will drop the message. For more
information about the TTL parameter set to 0 when using APNs, see Table A-3 Item identifiers for
remote notifications in the Binary Provider API documentation.

Mobile push TTL 561

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/BinaryProviderAPI.html

Amazon Simple Notification Service Developer Guide

Precedence order for determining TTL

The precedence that Amazon SNS uses to determine the TTL for a push notification message is
based on the following order, where the lowest number has the highest priority:

1. Message attribute TTL

2. Message body TTL

3. Push notification service default TTL (varies per service)

4. Amazon SNS default TTL (4 weeks)

If you set different TTL values (one in message attributes and another in the message body) for
the same message, then Amazon SNS will modify the TTL in the message body to match the TTL
specified in the message attribute.

Specifying TTL using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Mobile, Push notifications.

3. On the Mobile push notifications page, in the Platform applications section, choose an
application.

4. On the MyApplication page, in the Endpoints section, choose an application endpoint and
then choose Publish message.

5. In the Message details section, enter the TTL (the number of seconds that the push
notification service has to deliver the message to the endpoint).

6. Choose Publish message.

Amazon SNS mobile application supported Regions

Currently, you can create mobile applications in the following Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

Supported Regions 562

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

• Asia Pacific (Hong Kong)

• Asia Pacific (Jakarta)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• Middle East (UAE)

• South America (São Paulo)

• AWS GovCloud (US-West)

Best practices for managing Amazon SNS mobile push notifications

This section describes best practices that might help you improve your customer engagement.

Endpoint management

Delivery issues might occur in situations were device tokens change due to a user’s action on the
device (for example, an app is re-installed on the device), or certificate updates affecting devices
running on a particular iOS version. It is a recommended best practice by Apple to register with
APNs each time your app launches.

Since the device token won’t change each time an app is opened by a user, the idempotent
CreatePlatformEndpoint API can be used. However, this can introduce duplicates for the same

Best practices for mobile push notifications 563

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/establishing_a_certificate-based_connection_to_apns
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/HandlingRemoteNotifications.html#:~:text=Registering%20to%20Receive%20Remote%20Notifications
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html

Amazon Simple Notification Service Developer Guide

device in cases where the token itself is invalid, or if the endpoint is valid but disabled (for example,
a mismatch of production and sandbox environments).

A device token management mechanism such as the one in the pseudo code can be used.

For information on managing and maintaining FCM v1 device tokens, see Amazon SNS
management of Firebase Cloud Messaging endpoints.

Delivery status logging

To monitor push notification delivery status, we recommended you enable delivery status logging
for your Amazon SNS platform application. This helps you troubleshoot delivery failures because
the logs contain provider response codes returned from the push platform service. For details on
enabling delivery status logging, see How do I access Amazon SNS topic delivery logs for push
notifications?.

Event notifications

For managing endpoints in an event driven fashion, you can make use of the event notifications
functionality. This allows the configured Amazon SNS topic to fanout events to the subscribers
such as a Lambda function, for platform application events of endpoint creation, deletion, updates,
and delivery failures.

Amazon SNS email subscription setup and management

You can subscribe an email address to an Amazon SNS topic using the AWS Management Console,
AWS SDK for Java, or AWS SDK for .NET.

Notes

• Customization of the email message body is not supported. The email delivery feature is
intended to provide internal system alerts, not marketing messages.

• Directly subscribing email endpoints is supported for standard topics only.

• Email delivery throughput is throttled. For more information, see Amazon SNS quotas.

Email subscription setup and management 564

https://aws.amazon.com/premiumsupport/knowledge-center/troubleshoot-failed-sns-deliveries/
https://aws.amazon.com/premiumsupport/knowledge-center/troubleshoot-failed-sns-deliveries/
https://docs.aws.amazon.com/general/latest/gr/sns.html#limits_sns

Amazon Simple Notification Service Developer Guide

Important

To prevent mailing list recipients from unsubscribing all recipients from Amazon SNS topic
emails, see Set up an email subscription that requires authentication to unsubscribe from
AWS Support.

Subscribing an email address to an Amazon SNS topic using the AWS
Management Console

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Subscriptions.

3. On the Subscriptions page, choose Create subscription.

4. On the Create subscription page, in the Details section, do the following:

a. For Topic ARN, choose the Amazon Resource Name (ARN) of a topic.

b. For Protocol, choose Email.

c. For Endpoint, enter the email address.

d. (Optional) To configure a filter policy, expand the Subscription filter policy section. For
more information, see Amazon SNS subscription filter policies.

e. (Optional) To enable payload-based filtering, configure Filter Policy Scope to
MessageBody. For more information, see Amazon SNS subscription filter policy scope.

f. (Optional) To configure a dead-letter queue for the subscription, expand the Redrive
policy (dead-letter queue) section. For more information, see Amazon SNS dead-letter
queues.

g. Choose Create subscription.

The console creates the subscription and opens the subscription's Details page.

You must confirm the subscription before the email address can start to receive messages.

To confirm a subscription

1. Check your email inbox and choose Confirm subscription in the email from Amazon SNS.

AWS Management Console 565

https://aws.amazon.com/premiumsupport/knowledge-center/prevent-unsubscribe-all-sns-topic/
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

2. Amazon SNS opens your web browser and displays a subscription confirmation with your
subscription ID.

Subscribing an email address to an Amazon SNS topic using an AWS
SDK

To use an AWS SDK, you must configure it with your credentials. For more information, see The
shared config and credentials files in the AWS SDKs and Tools Reference Guide.

The following code examples show how to use Subscribe.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

 /// <summary>
 /// Creates a new subscription to a topic.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object, used
 /// to create an Amazon SNS subscription.</param>
 /// <param name="topicArn">The ARN of the topic to subscribe to.</param>
 /// <returns>A SubscribeResponse object which includes the subscription
 /// ARN for the new subscription.</returns>
 public static async Task<SubscribeResponse> TopicSubscribeAsync(
 IAmazonSimpleNotificationService client,
 string topicArn)
 {
 SubscribeRequest request = new SubscribeRequest()
 {
 TopicArn = topicArn,
 ReturnSubscriptionArn = true,
 Protocol = "email",

AWS SDKs 566

https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://docs.aws.amazon.com/sdkref/latest/guide/creds-config-files.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 Endpoint = "recipient@example.com",
 };

 var response = await client.SubscribeAsync(request);

 return response;
 }

Subscribe a queue to a topic with optional filters.

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {
 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

• For API details, see Subscribe in AWS SDK for .NET API Reference.

AWS SDKs 567

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to an email address.
/*!
 \param topicARN: An SNS topic Amazon Resource Name (ARN).
 \param emailAddress: An email address.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::subscribeEmail(const Aws::String &topicARN,
 const Aws::String &emailAddress,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("email");
 request.SetEndpoint(emailAddress);

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()

AWS SDKs 568

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 << std::endl;
 }

 return outcome.IsSuccess();
}

Subscribe a mobile application to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to a mobile app.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param endpointARN: The ARN for a mobile app or device endpoint.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::SNS::subscribeApp(const Aws::String &topicARN,
 const Aws::String &endpointARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("application");
 request.SetEndpoint(endpointARN);

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

AWS SDKs 569

Amazon Simple Notification Service Developer Guide

 return outcome.IsSuccess();
}

Subscribe a Lambda function to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to an AWS Lambda function.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param lambdaFunctionARN: The ARN for an AWS Lambda function.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::subscribeLambda(const Aws::String &topicARN,
 const Aws::String &lambdaFunctionARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("lambda");
 request.SetEndpoint(lambdaFunctionARN);

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();

AWS SDKs 570

Amazon Simple Notification Service Developer Guide

}

Subscribe an SQS queue to a topic.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);

 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;
 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

AWS SDKs 571

Amazon Simple Notification Service Developer Guide

Subscribe with a filter to a topic.

 static const Aws::String TONE_ATTRIBUTE("tone");
 static const Aws::Vector<Aws::String> TONES = {"cheerful", "funny",
 "serious",
 "sincere"};

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);
 if (isFifoTopic) {
 if (first) {
 std::cout << "Subscriptions to a FIFO topic can have
 filters."
 << std::endl;
 std::cout
 << "If you add a filter to this subscription, then
 only the filtered messages "
 << "will be received in the queue." << std::endl;
 std::cout << "For information about message filtering, "
 << "see https://docs.aws.amazon.com/sns/latest/dg/
sns-message-filtering.html"
 << std::endl;
 std::cout << "For this example, you can filter messages by a
 \""
 << TONE_ATTRIBUTE << "\" attribute." << std::endl;
 }

 std::ostringstream ostringstream;
 ostringstream << "Filter messages for \"" << queueName
 << "\"'s subscription to the topic \""
 << topicName << "\"? (y/n)";

 // Add filter if user answers yes.

AWS SDKs 572

Amazon Simple Notification Service Developer Guide

 if (askYesNoQuestion(ostringstream.str())) {
 Aws::String jsonPolicy = getFilterPolicyFromUser();
 if (!jsonPolicy.empty()) {
 filteringMessages = true;

 std::cout << "This is the filter policy for this
 subscription."
 << std::endl;
 std::cout << jsonPolicy << std::endl;

 request.AddAttributes("FilterPolicy", jsonPolicy);
 }
 else {
 std::cout
 << "Because you did not select any attributes, no
 filter "
 << "will be added to this subscription." <<
 std::endl;
 }
 }
 } // if (isFifoTopic)
 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;
 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,

AWS SDKs 573

Amazon Simple Notification Service Developer Guide

 sqsClient);

 return false;
 }

//! Routine that lets the user select attributes for a subscription filter
 policy.
/*!
 \sa getFilterPolicyFromUser()
 \return Aws::String: The filter policy as JSON.
 */
Aws::String AwsDoc::TopicsAndQueues::getFilterPolicyFromUser() {
 std::cout
 << "You can filter messages by one or more of the following \""
 << TONE_ATTRIBUTE << "\" attributes." << std::endl;

 std::vector<Aws::String> filterSelections;
 int selection;
 do {
 for (size_t j = 0; j < TONES.size(); ++j) {
 std::cout << " " << (j + 1) << ". " << TONES[j]
 << std::endl;
 }
 selection = askQuestionForIntRange(
 "Enter a number (or enter zero to stop adding more). ",
 0, static_cast<int>(TONES.size()));

 if (selection != 0) {
 const Aws::String &selectedTone(TONES[selection - 1]);
 // Add the tone to the selection if it is not already added.
 if (std::find(filterSelections.begin(),
 filterSelections.end(),
 selectedTone)
 == filterSelections.end()) {
 filterSelections.push_back(selectedTone);
 }
 }
 } while (selection != 0);

 Aws::String result;
 if (!filterSelections.empty()) {
 std::ostringstream jsonPolicyStream;
 jsonPolicyStream << "{ \"" << TONE_ATTRIBUTE << "\": [";

AWS SDKs 574

Amazon Simple Notification Service Developer Guide

 for (size_t j = 0; j < filterSelections.size(); ++j) {
 jsonPolicyStream << "\"" << filterSelections[j] << "\"";
 if (j < filterSelections.size() - 1) {
 jsonPolicyStream << ",";
 }
 }
 jsonPolicyStream << "] }";

 result = jsonPolicyStream.str();
 }

 return result;
}

• For API details, see Subscribe in AWS SDK for C++ API Reference.

CLI

AWS CLI

To subscribe to a topic

The following subscribe command subscribes an email address to the specified topic.

aws sns subscribe \
 --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic \
 --protocol email \
 --notification-endpoint my-email@example.com

Output:

{
 "SubscriptionArn": "pending confirmation"
}

• For API details, see Subscribe in AWS CLI Command Reference.

AWS SDKs 575

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Subscribe
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/subscribe.html

Amazon Simple Notification Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe a queue to a topic with optional filters.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// SubscribeQueue subscribes an Amazon Simple Queue Service (Amazon SQS) queue to
 an
// Amazon SNS topic. When filterMap is not nil, it is used to specify a filter
 policy
// so that messages are only sent to the queue when the message has the specified
 attributes.
func (actor SnsActions) SubscribeQueue(ctx context.Context, topicArn string,
 queueArn string, filterMap map[string][]string) (string, error) {
 var subscriptionArn string
 var attributes map[string]string
 if filterMap != nil {

AWS SDKs 576

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

 filterBytes, err := json.Marshal(filterMap)
 if err != nil {
 log.Printf("Couldn't create filter policy, here's why: %v\n", err)
 return "", err
 }
 attributes = map[string]string{"FilterPolicy": string(filterBytes)}
 }
 output, err := actor.SnsClient.Subscribe(ctx, &sns.SubscribeInput{
 Protocol: aws.String("sqs"),
 TopicArn: aws.String(topicArn),
 Attributes: attributes,
 Endpoint: aws.String(queueArn),
 ReturnSubscriptionArn: true,
 })
 if err != nil {
 log.Printf("Couldn't susbscribe queue %v to topic %v. Here's why: %v\n",
 queueArn, topicArn, err)
 } else {
 subscriptionArn = *output.SubscriptionArn
 }

 return subscriptionArn, err
}

• For API details, see Subscribe in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;

AWS SDKs 577

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeEmail {
 public static void main(String[] args) {
 final String usage = """
 Usage: <topicArn> <email>

 Where:
 topicArn - The ARN of the topic to subscribe.
 email - The email address to use.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String email = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subEmail(snsClient, topicArn, email);
 snsClient.close();
 }

 public static void subEmail(SnsClient snsClient, String topicArn, String
 email) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("email")
 .endpoint(email)

AWS SDKs 578

Amazon Simple Notification Service Developer Guide

 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN: " + result.subscriptionArn() +
 "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Subscribe an HTTP endpoint to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeHTTPS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn> <url>

 Where:
 topicArn - The ARN of the topic to subscribe.

AWS SDKs 579

Amazon Simple Notification Service Developer Guide

 url - The HTTPS endpoint that you want to receive
 notifications.
 """;

 if (args.length < 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String url = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subHTTPS(snsClient, topicArn, url);
 snsClient.close();
 }

 public static void subHTTPS(SnsClient snsClient, String topicArn, String url)
 {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("https")
 .endpoint(url)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN is " + result.subscriptionArn()
 + "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Subscribe a Lambda function to a topic.

AWS SDKs 580

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeLambda {

 public static void main(String[] args) {

 final String usage = """

 Usage: <topicArn> <lambdaArn>

 Where:
 topicArn - The ARN of the topic to subscribe.
 lambdaArn - The ARN of an AWS Lambda function.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String lambdaArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnValue = subLambda(snsClient, topicArn, lambdaArn);
 System.out.println("Subscription ARN: " + arnValue);
 snsClient.close();
 }

AWS SDKs 581

Amazon Simple Notification Service Developer Guide

 public static String subLambda(SnsClient snsClient, String topicArn, String
 lambdaArn) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("lambda")
 .endpoint(lambdaArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 return result.subscriptionArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see Subscribe in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.

AWS SDKs 582

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm
 a subscription.
 * @param {string} emailAddress - The email address that is subscribed to the
 topic.
 */
export const subscribeEmail = async (
 topicArn = "TOPIC_ARN",
 emailAddress = "usern@me.com",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "email",
 TopicArn: topicArn,
 Endpoint: emailAddress,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
};

Subscribe a mobile application to a topic.

AWS SDKs 583

Amazon Simple Notification Service Developer Guide

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing
 to.
 * @param {string} endpoint - The Endpoint ARN of an application. This endpoint
 is created
 * when an application registers for notifications.
 */
export const subscribeApp = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "application",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

Subscribe a Lambda function to a topic.

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**

AWS SDKs 584

Amazon Simple Notification Service Developer Guide

 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing
 to.
 * @param {string} endpoint - The Endpoint ARN of and AWS Lambda function.
 */
export const subscribeLambda = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "lambda",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

Subscribe an SQS queue to a topic.

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

const client = new SNSClient({});

export const subscribeQueue = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",
) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,

AWS SDKs 585

Amazon Simple Notification Service Developer Guide

 Protocol: "sqs",
 Endpoint: queueArn,
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

Subscribe with a filter to a topic.

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

const client = new SNSClient({});

export const subscribeQueueFiltered = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",
) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,
 Protocol: "sqs",
 Endpoint: queueArn,
 Attributes: {
 // This subscription will only receive messages with the 'event' attribute
 set to 'order_placed'.
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 event: ["order_placed"],
 }),

AWS SDKs 586

Amazon Simple Notification Service Developer Guide

 },
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Subscribe in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

suspend fun subEmail(
 topicArnVal: String,
 email: String,
): String {
 val request =

AWS SDKs 587

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-subscribing-email
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 SubscribeRequest {
 protocol = "email"
 endpoint = email
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 return result.subscriptionArn.toString()
 }
}

Subscribe a Lambda function to a topic.

suspend fun subLambda(
 topicArnVal: String?,
 lambdaArn: String?,
) {
 val request =
 SubscribeRequest {
 protocol = "lambda"
 endpoint = lambdaArn
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println(" The subscription Arn is ${result.subscriptionArn}")
 }
}

• For API details, see Subscribe in AWS SDK for Kotlin API reference.

AWS SDKs 588

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Prepares to subscribe an endpoint by sending the endpoint a confirmation
 message.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$protocol = 'email';
$endpoint = 'sample@example.com';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->subscribe([
 'Protocol' => $protocol,
 'Endpoint' => $endpoint,
 'ReturnSubscriptionArn' => true,
 'TopicArn' => $topic,

AWS SDKs 589

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

Subscribe an HTTP endpoint to a topic.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Prepares to subscribe an endpoint by sending the endpoint a confirmation
 message.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$protocol = 'https';
$endpoint = 'https://';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->subscribe([
 'Protocol' => $protocol,
 'Endpoint' => $endpoint,
 'ReturnSubscriptionArn' => true,
 'TopicArn' => $topic,
]);

AWS SDKs 590

Amazon Simple Notification Service Developer Guide

 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see Subscribe in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def subscribe(topic, protocol, endpoint):
 """
 Subscribes an endpoint to the topic. Some endpoint types, such as email,
 must be confirmed before their subscriptions are active. When a
 subscription
 is not confirmed, its Amazon Resource Number (ARN) is set to
 'PendingConfirmation'.

 :param topic: The topic to subscribe to.

AWS SDKs 591

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 :param protocol: The protocol of the endpoint, such as 'sms' or 'email'.
 :param endpoint: The endpoint that receives messages, such as a phone
 number
 (in E.164 format) for SMS messages, or an email address
 for
 email messages.
 :return: The newly added subscription.
 """
 try:
 subscription = topic.subscribe(
 Protocol=protocol, Endpoint=endpoint, ReturnSubscriptionArn=True
)
 logger.info("Subscribed %s %s to topic %s.", protocol, endpoint,
 topic.arn)
 except ClientError:
 logger.exception(
 "Couldn't subscribe %s %s to topic %s.", protocol, endpoint,
 topic.arn
)
 raise
 else:
 return subscription

• For API details, see Subscribe in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

require 'aws-sdk-sns'
require 'logger'

AWS SDKs 592

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Represents a service for creating subscriptions in Amazon Simple Notification
 Service (SNS)
class SubscriptionService
 # Initializes the SubscriptionService with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Attempts to create a subscription to a topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param protocol [String] The subscription protocol (e.g., email)
 # @param endpoint [String] The endpoint that receives the notifications (email
 address)
 # @return [Boolean] true if subscription was successfully created, false
 otherwise
 def create_subscription(topic_arn, protocol, endpoint)
 @sns_client.subscribe(topic_arn: topic_arn, protocol: protocol, endpoint:
 endpoint)
 @logger.info('Subscription created successfully.')
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while creating the subscription: #{e.message}")
 false
 end
end

Main execution if the script is run directly
if $PROGRAM_NAME == __FILE__
 protocol = 'email'
 endpoint = 'EMAIL_ADDRESS' # Should be replaced with a real email address
 topic_arn = 'TOPIC_ARN' # Should be replaced with a real topic ARN

 sns_client = Aws::SNS::Client.new
 subscription_service = SubscriptionService.new(sns_client)

 @logger.info('Creating the subscription.')
 unless subscription_service.create_subscription(topic_arn, protocol, endpoint)
 @logger.error('Subscription creation failed. Stopping program.')
 exit 1
 end

AWS SDKs 593

Amazon Simple Notification Service Developer Guide

end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see Subscribe in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

async fn subscribe_and_publish(
 client: &Client,
 topic_arn: &str,
 email_address: &str,
) -> Result<(), Error> {
 println!("Receiving on topic with ARN: `{}`", topic_arn);

 let rsp = client
 .subscribe()
 .topic_arn(topic_arn)
 .protocol("email")
 .endpoint(email_address)
 .send()
 .await?;

 println!("Added a subscription: {:?}", rsp);

 let rsp = client
 .publish()
 .topic_arn(topic_arn)
 .message("hello sns!")
 .send()
 .await?;

AWS SDKs 594

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-create-subscription.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples

Amazon Simple Notification Service Developer Guide

 println!("Published message: {:?}", rsp);

 Ok(())
}

• For API details, see Subscribe in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

 TRY.
 oo_result = lo_sns->subscribe("oo_result is
 returned for testing purposes."
 iv_topicarn = iv_topic_arn
 iv_protocol = 'email'
 iv_endpoint = iv_email_address
 iv_returnsubscriptionarn = abap_true
).
 MESSAGE 'Email address subscribed to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snssubscriptionlmte00.
 MESSAGE 'Unable to create subscriptions. You have reached the maximum
 number of subscriptions allowed.' TYPE 'E'.
 ENDTRY.

• For API details, see Subscribe in AWS SDK for SAP ABAP API reference.

AWS SDKs 595

https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

Amazon SNS best practices

The following are recommended best practices for using Amazon SNS:

Topics

• Amazon SNS security best practices

• Amazon SNS SMS best practices

Amazon SNS security best practices

AWS provides many security features for Amazon SNS. Review these security features in the
context of your own security policy.

Note

The guidance for these security features applies to common use cases and
implementations. We recommend that you review these best practices in the context of
your specific use case, architecture, and threat model.

Preventative best practices

The following are preventative security best practices for Amazon SNS.

Topics

• Ensure topics aren't publicly accessible

• Implement least-privilege access

• Use IAM roles for applications and AWS services which require Amazon SNS access

• Implement server-side encryption

• Enforce encryption of data in transit

• Consider using VPC endpoints to access Amazon SNS

• Ensure subscriptions are not configured to deliver to raw http endpoints

Best practices 596

Amazon Simple Notification Service Developer Guide

Ensure topics aren't publicly accessible

Unless you explicitly require anyone on the internet to be able to read or write to your Amazon
SNS topic, you should ensure that your topic isn't publicly accessible (accessible by everyone in the
world or by any authenticated AWS user).

• Avoid creating policies with Principal set to "".

• Avoid using a wildcard (*). Instead, name a specific user or users.

Implement least-privilege access

When you grant permissions, you decide who receives them, which topics the permissions are for,
and specific API actions that you want to allow for these topics. Implementing the principle of least
privilege is important to reducing security risks. It also helps to reduce the negative effect of errors
or malicious intent.

Follow the standard security advice of granting least privilege. That is, grant only the permissions
required to perform a specific task. You can implement least privilege by using a combination of
security policies pertaining to user access.

Amazon SNS uses the publisher-subscriber model, requiring three types of user account access:

• Administrators – Access to creating, modifying, and deleting topics. Administrators also control
topic policies.

• Publishers – Access to sending messages to topics.

• Subscribers – Access to subscribing to topics.

For more information, see the following sections:

• Identity and access management in Amazon SNS

• Amazon SNS API permissions: Actions and resources reference

Preventative best practices 597

Amazon Simple Notification Service Developer Guide

Use IAM roles for applications and AWS services which require Amazon SNS
access

For applications or AWS services, such as Amazon EC2, to access Amazon SNS topics, they must
use valid AWS credentials in their AWS API requests. Because these credentials aren't rotated
automatically, you shouldn't store AWS credentials directly in the application or EC2 instance.

You should use an IAM role to manage temporary credentials for applications or services that need
to access Amazon SNS. When you use a role, you don't need to distribute long-term credentials
(such as a username, password, and access keys) to an EC2 instance or AWS service, such as AWS
Lambda. Instead, the role supplies temporary permissions that applications can use when they
make calls to other AWS resources.

For more information, see IAM Roles and Common Scenarios for Roles: Users, Applications, and
Services in the IAM User Guide.

Implement server-side encryption

To mitigate data leakage issues, use encryption at rest to encrypt your messages using a key stored
in a different location from the location that stores your messages. Server-side encryption (SSE)
provides data encryption at rest. Amazon SNS encrypts your data at the message level when it
stores it, and decrypts the messages for you when you access them. SSE uses keys managed in AWS
Key Management Service. When you authenticate your request and have access permissions, there
is no difference between accessing encrypted and unencrypted topics.

For more information, see Securing Amazon SNS data with server-side encryption and Managing
Amazon SNS encryption keys and costs.

Enforce encryption of data in transit

It's possible, but not recommended, to publish messages that are not encrypted during transit by
using HTTP. However, when a topic is encrypted at rest using AWS KMS, it is required to use HTTPS
for publishing messages to ensure encryption both at rest and in transit. While the topic does not
automatically reject HTTP messages, using HTTPS is necessary to maintain the security standards.

AWS recommends that you use HTTPS instead of HTTP. When you use HTTPS, messages are
automatically encrypted during transit, even if the SNS topic itself isn't encrypted. Without HTTPS,
a network-based attacker can eavesdrop on network traffic or manipulate it using an attack such as
man-in-the-middle.

Preventative best practices 598

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html

Amazon Simple Notification Service Developer Guide

To enforce only encrypted connections over HTTPS, add the aws:SecureTransport condition
in the IAM policy that's attached to unencrypted SNS topics. This forces message publishers to use
HTTPS instead of HTTP. You can use the following example policy as a guide:

{
 "Id": "ExamplePolicy",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPublishThroughSSLOnly",
 "Action": "SNS:Publish",
 "Effect": "Deny",
 "Resource": [
 "arn:aws:sns:us-east-1:1234567890:test-topic"
],
 "Condition": {
 "Bool": {
 "aws:SecureTransport": "false"
 }
 },
 "Principal": "*"
 }
]
}

Consider using VPC endpoints to access Amazon SNS

If you have topics that you must be able to interact with, but these topics must absolutely not
be exposed to the internet, use VPC endpoints to limit topic access to only the hosts within a
particular VPC. You can use topic policies to control access to topics from specific Amazon VPC
endpoints or from specific VPCs.

Amazon SNS VPC endpoints provide two ways to control access to your messages:

• You can control the requests, users, or groups that are allowed through a specific VPC endpoint.

• You can control which VPCs or VPC endpoints have access to your topic using a topic policy.

For more information, see Creating the endpoint and Creating an Amazon VPC endpoint policy for
Amazon SNS.

Preventative best practices 599

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean

Amazon Simple Notification Service Developer Guide

Ensure subscriptions are not configured to deliver to raw http endpoints

Avoid configuring subscriptions to deliver to a raw http endpoints. Always have subscriptions
delivering to an endpoint domain name. For example, a subscription configured to deliver to an
endpoint, http://1.2.3.4/my-path, should be changed to http://my.domain.name/my-
path.

Amazon SNS SMS best practices

Important

The Amazon SNS SMS Developer Guide has been updated. Amazon SNS has integrated
with AWS End User Messaging SMS for the delivery of SMS messages. This guide contains
the latest information on how to create, configure, and manage your Amazon SNS SMS
messages.

Mobile phone users tend to have a very low tolerance for unsolicited SMS messages. Response
rates for unsolicited SMS campaigns will almost always be low, and therefore the return on your
investment will be poor.

Additionally, mobile phone carriers continuously audit bulk SMS senders. They throttle or block
messages from numbers that they determine to be sending unsolicited messages.

Sending unsolicited content is also a violation of the AWS acceptable use policy. The Amazon SNS
team routinely audits SMS campaigns, and might throttle or block your ability to send messages if
it appears that you're sending unsolicited messages.

Finally, in many countries, regions, and jurisdictions, there are severe penalties for sending
unsolicited SMS messages. For example, in the United States, the Telephone Consumer Protection
Act (TCPA) states that consumers are entitled to $500–$1,500 in damages (paid by the sender) for
each unsolicited message that they receive.

This section describes several best practices that might help you improve your customer
engagement and avoid costly penalties. However, note that this section doesn't contain legal
advice. Always consult an attorney to obtain legal advice.

Topics

SMS best practices 600

https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-service.html
https://aws.amazon.com/aup/#No_E-Mail_or_Other_Message_Abuse

Amazon Simple Notification Service Developer Guide

• Comply with laws, regulations, and carrier requirements

• Obtain permission

• Don't send to old lists

• Audit your customer lists

• Keep records

• Make your messages clear, honest, and concise

• Respond appropriately

• Adjust your sending based on engagement

• Send at appropriate times

• Avoid cross-channel fatigue

• Use dedicated short codes

• Verify your destination phone numbers

• Design with redundancy in mind

• SMS limits and restrictions

• Managing opt out keywords

• CreatePool

• PutKeyword

• Managing number settings

• SMS character limits in Amazon SNS

Comply with laws, regulations, and carrier requirements

You can face significant fines and penalties if you violate the laws and regulations of the places
where your customers reside. For this reason, it's vital to understand the laws related to SMS
messaging in each country or region where you do business.

The following list includes links to key laws that apply to SMS communications in major markets
around the world.

• United States: The Telephone Consumer Protection Act of 1991, also known as TCPA, applies
to certain types of SMS messages. For more information, see the rules and regulations at the
Federal Communications Commission website.

Comply with laws, regulations, and carrier requirements 601

https://www.fcc.gov/document/telephone-consumer-protection-act-1991

Amazon Simple Notification Service Developer Guide

• United Kingdom: The Privacy and Electronic Communications (EC Directive) Regulations 2003,
also known as PECR, applies to certain types of SMS messages. For more information, see What
are PECR? at the website of the UK Information Commissioner's Office.

• European Union: The Privacy and Electronic Communications Directive 2002, sometimes known
as the ePrivacy Directive, applies to some types of SMS messages. For more information, see the
full text of the law at the Europa.eu website.

• Canada: The Fighting Internet and Wireless Spam Act, more commonly known as Canada's Anti-
Spam Law or CASL, applies to certain types of SMS messages. For more information, see the full
text of the law at the website of the Parliament of Canada.

• Japan: The Act on Regulation of Transmission of Specific Electronic Mail may apply to certain
types of SMS messages. For more information, see Japan's countermeasures against spam at the
website of the Japanese Ministry of Internal Affairs and Communications.

As a sender, these laws may apply to you even if your company or organization isn't based in one
of these countries. Some of the laws in this list were originally created to address unsolicited email
or telephone calls, but have been interpreted or expanded to apply to SMS messages as well.
Other countries and regions may have their own laws related to the transmission of SMS messages.
Consult an attorney in each country or region where your customers are located to obtain legal
advice.

In many countries, the local carriers ultimately have the authority to determine what kind of traffic
flows over their networks. This means that the carriers might impose restrictions on SMS content
that exceed the minimum requirements of local laws.

Obtain permission

Never send messages to recipients who haven't explicitly asked to receive the specific types of
messages that you plan to send. Don't share opt-in lists, even among organizations within the
same company.

If recipients can sign up to receive your messages by using an online form, add systems that
prevent automated scripts from subscribing people without their knowledge. You should also limit
the number of times a user can submit a phone number in a single session.

When you receive an SMS opt-in request, send the recipient a message that asks them to confirm
that they want to receive messages from you. Don't send that recipient any additional messages
until they confirm their subscription. A subscription confirmation message might resemble the
following example:

Obtain permission 602

https://ico.org.uk/for-organisations/direct-marketing/guide-to-pecr/what-are-pecr/
https://ico.org.uk/for-organisations/direct-marketing/guide-to-pecr/what-are-pecr/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002L0058
http://www.parl.ca/DocumentViewer/en/40-3/bill/C-28/first-reading
http://www.parl.ca/DocumentViewer/en/40-3/bill/C-28/first-reading
https://www.japaneselawtranslation.go.jp/en/laws/view/3767/en

Amazon Simple Notification Service Developer Guide

Text YES to join ExampleCorp alerts. 2 msgs/month. Msg & data rates may
apply. Reply HELP for help, STOP to cancel.

Maintain records that include the date, time, and source of each opt-in request and confirmation.
This might be useful if a carrier or regulatory agency requests it, and can also help you perform
routine audits of your customer list.

Opt-in workflow

In some cases (like US Toll-Free or Short Code registration) mobile carriers require you to provide
mockups or screen shot of your entire opt-in workflow. The mockups or screen shot must closely
resemble the opt-in workflow that your recipients will complete.

Your mockups or screen shot should include all of the required disclosures listed below to maintain
the highest level of compliance.

Required disclosures

• A description of the messaging use case that you will send through your program.

• The phrase “Message and data rates may apply.”

• An indication of how often recipients will get messages from you. For example, a recurring
messaging program might say “one message per week.” A one-time password or multi-factor
authentication use case might say “message frequency varies” or “one message per login
attempt.”

• Links to your Terms and Conditions and Privacy Policy documents.

Common rejection reasons for non compliant opt-ins

• If the provided company name does not match what is provided in the mockup or screen shot.
Any non obvious relations should be explained in the opt-in workflow description.

• If it appears that a message will be sent to the recipient, but no consent is explicitly gathered
before doing so. Explicit consent is a requirement of all messaging.

• If it appears that receiving a text message is required to sign up for a service. This is not
compliant if the workflow doesn’t provide any alternative to receiving an opt-in message in
another form like email or a voice call.

• If the opt-in language is presented entirely in the Terms of Service. The disclosures should
always be presented to the recipient at time of opt-in rather than housed inside a linked policy
document.

Obtain permission 603

Amazon Simple Notification Service Developer Guide

• If a customer provided consent to receive one type of message from you and you send them
other types of text messages. For example they consent to receive one-time passwords but are
also sent polling and survey messages.

• If the required disclosures (listed above) are not presented to the recipients.

The following example complies with the mobile carriers’ requirements for a multi-factor
authentication use case.

Obtain permission 604

Amazon Simple Notification Service Developer Guide

Mockup of a multi-factor authentication use case

It contains finalized text and images, and it shows the entire opt-in flow, complete with
annotations. In the opt-in flow, the customer has to take distinct, intentional actions to provide
their consent to receive text messages and contains all of the required disclosures.

Obtain permission 605

Amazon Simple Notification Service Developer Guide

Other opt-in workflow types

Mobile carriers will also accept opt-in workflows outside of applications and websites like verbal or
written opt-in if it complies with what is outlined above. A compliant opt-in workflow and verbal
or written script will gather explicit consent from the recipient to receive a specific message type.
Examples of this include the verbal script a support agent uses to gather consent before recording
into a service database or a phone number listed on a promotional flyer. To provide a mockup of
these opt-in workflow types you can provide a screenshot of your opt-in script, marketing material
or database where numbers are collected. Mobile carriers may have additional questions around
these use cases if an opt-in is not clear or the use case exceed certain volumes.

Don't send to old lists

People change phone numbers often. A phone number that you gathered consent to contact two
years ago might belong to somebody else today. Don't use an old list of phone numbers for a new
messaging program; if you do, you're likely to have some messages fail because the number is no
longer in service, and some people who opt out because they don't remember giving you their
consent in the first place.

Audit your customer lists

If you send recurring SMS campaigns, audit your customer lists on a regular basis. Auditing your
customer lists ensures that the only customers who receive your messages are those who are
interested in receiving them.

When you audit your list, send each opted-in customer a message that reminds them that they're
subscribed, and provides them with information about unsubscribing. A reminder message might
resemble the following example:

You're subscribed to ExampleCorp alerts. Msg & data rates may apply. Reply
HELP for help, STOP to unsubscribe.

Keep records

Keep records that show when each customer requested to receive SMS messages from you, and
which messages you sent to each customer. Many countries and regions around the world require
SMS senders to maintain these records in a way that can be easily retrieved. Mobile carriers might
also request this information from you at any time. The exact information that you have to provide

Don't send to old lists 606

Amazon Simple Notification Service Developer Guide

varies by country or region. For more information about record-keeping requirements, review the
regulations about commercial SMS messaging in each country or region where your customers are
located.

Occasionally, a carrier or regulatory agency asks us to provide proof that a customer opted to
receive messages from you. In these situations, Support contacts you with a list of the information
that the carrier or agency requires. If you can't provide the necessary information, we may pause
your ability to send additional SMS messages.

Make your messages clear, honest, and concise

SMS is a unique medium. The 160-character-per-message limit means that your messages have to
be concise. Techniques that you might use in other communication channels, such as email, might
not apply to the SMS channel, and might even seem dishonest or deceptive when used with SMS
messages. If the content in your messages doesn't align with best practices, recipients might ignore
your messages; in the worst case, the mobile carriers might identify your messages as spam and
block future messages from your phone number.

This section provides some tips and ideas for creating an effective SMS message body.

Identify yourself as the sender

Your recipients should be able to immediately tell that a message is from you. Senders who follow
this best practice include an identifying name ("program name") at the beginning of each message.

Don't do this:

Your account has been accessed from a new device. Reply Y to confirm.

Try this instead:

ExampleCorp Financial Alerts: You have logged in to your account from a
new device. Reply Y to confirm, or STOP to opt-out.

Don't try to make your message look like a person-to-person message

Some marketers are tempted to add a personal touch to their SMS messages by making their
messages appear to come from an individual. However, this technique might make your message
seem like a phishing attempt.

Make your messages clear, honest, and concise 607

Amazon Simple Notification Service Developer Guide

Don't do this:

Hi, this is Jane. Did you know that you can save up to 50% at
Example.com? Click here for more info: https://www.example.com.

Try this instead:

ExampleCorp Offers: Save 25-50% on sale items at Example.com. Click here
to browse the sale: https://www.example.com. Text STOP to opt-out.

Be careful when talking about money

Scammers often prey upon people's desire to save and receive money. Don't make offers seem
too good to be true. Don't use the lure of money to deceive people. Don't use currency symbols to
indicate money.

Don't do this:

Save big $$$ on your next car repair by going to https://
www.example.com.

Try this instead:

ExampleCorp Offers: Your ExampleCorp insurance policy gets you discounts
at 2300+ repair shops nationwide. More info at https://www.example.com.
Text STOP to opt-out.

Use only the necessary characters

Brands are often inclined to protect their trademarks by including trademark symbols such as
™ or ® in their messages. However, these symbols are not part of the standard set of characters
(known as the GSM alphabet) that can be included in a 160-character SMS message. When you
send a message that contains one of these characters, your message is automatically sent using
a different character encoding system, which only supports 70 characters per message part. As a
result, your message could be broken into several parts. Because you're billed for each message
part that you send, it could cost you more than you expect to spend to send the entire message.
Additionally, your recipients might receive several sequential messages from you, rather than one
single message. For more information about SMS character encoding, see SMS character limits in
Amazon SNS.

Make your messages clear, honest, and concise 608

Amazon Simple Notification Service Developer Guide

Don't do this:

ExampleCorp Alerts: Save 20% when you buy a new ExampleCorp Widget® at
example.com and use the promo code WIDGET.

Try this instead:

ExampleCorp Alerts: Save 20% when you buy a new ExampleCorp Widget(R) at
example.com and use the promo code WIDGET.

Note

The two preceding examples are almost identical, but the first example contains a
Registered Trademark symbol (®), which is not part of the GSM alphabet. As a result,
the first example is sent as two message parts, while the second example is sent as one
message part.

Use valid, safe links

If your message includes links, double-check the links to make sure that they work. Test your links
on a device outside your corporate network to ensure that links resolve properly. Because of the
160-character limit of SMS messages, very long URLs could be split across multiple messages.
You should use redirect domains to provide shortened URLs. However, you shouldn't use free link-
shortening services such as tinyurl.com or bitly.com, because carriers tend to filter messages that
include links on these domains. However, you can use paid link-shortening services as long as your
links point to a domain that is dedicated to the exclusive use of your company or organization.

Don't do this:

Go to https://tinyurl.com/4585y8mr today for a special offer!

Try this instead:

ExampleCorp Offers: Today only, get an exclusive deal on an ExampleCorp
Widget. See https://a.co/cFKmaRG for more info. Text STOP to opt-out.

Make your messages clear, honest, and concise 609

Amazon Simple Notification Service Developer Guide

Limit the number of abbreviations that you use

The 160-character limitation of the SMS channel leads some senders to believe that they need
to use abbreviations extensively in their messages. However, the overuse of abbreviations can
seem unprofessional to many readers, and could cause some users to report your message as
spam. It's completely possible to write a coherent message without using an excessive number of
abbreviations.

Don't do this:

Get a gr8 deal on ExampleCorp widgets when u buy a 4-pack 2day.

Try this instead:

ExampleCorp Alerts: Today only—an exclusive deal on ExampleCorp Widgets
at example.com. Text STOP to opt-out.

Respond appropriately

When a recipient replies to your messages, make sure that you respond with useful information.
For example, when a customer responds to one of your messages with the keyword "HELP", send
them information about the program that they're subscribed to, the number of messages you'll
send each month, and the ways that they can contact you for more information. A HELP response
might resemble the following example:

HELP: ExampleCorp alerts: email help@example.com or call 425-555-0199. 2
msgs/month. Msg & data rates may apply. Reply STOP to cancel.

When a customer replies with the keyword "STOP", let them know that they won't receive any
further messages. A STOP response might resemble the following example:

You're unsubscribed from ExampleCorp alerts. No more messages will be sent.
Reply HELP, email help@example.com, or call 425-555-0199 for more info.

Adjust your sending based on engagement

Your customers' priorities can change over time. If customers no longer find your messages to be
useful, they might opt out of your messages entirely, or even report your messages as unsolicited.

Respond appropriately 610

Amazon Simple Notification Service Developer Guide

For these reasons, it's important that you adjust your sending practices based on customer
engagement.

For customers who rarely engage with your messages, you should adjust the frequency of your
messages. For example, if you send weekly messages to engaged customers, you could create a
separate monthly digest for customers who are less engaged.

Finally, remove customers who are completely unengaged from your customer lists. This step
prevents customers from becoming frustrated with your messages. It also saves you money and
helps protect your reputation as a sender.

Send at appropriate times

Only send messages during normal daytime business hours. If you send messages at dinner time or
in the middle of the night, there's a good chance that your customers will unsubscribe from your
lists in order to avoid being disturbed. Furthermore, it doesn't make sense to send SMS messages
when your customers can't respond to them immediately.

If you send campaigns or journeys to very large audiences, double-check the throughput rates for
your origination numbers. Divide the number of recipients by your throughput rate to determine
how long it will take to send messages to all of your recipients.

Avoid cross-channel fatigue

In your campaigns, if you use multiple communication channels (such as email, SMS, and push
messages), don't send the same message in every channel. When you send the same message
at the same time in more than one channel, your customers will probably perceive your sending
behavior to be annoying rather than helpful.

Use dedicated short codes

If you use short codes, maintain a separate short code for each brand and each type of message.
For example, if your company has two brands, use a separate short code for each one. Similarly, if
you send both transactional and promotional messages, use a separate short code for each type
of message. To learn more about requesting short codes, see Requesting short codes for SMS
messaging with AWS End User Messaging SMS in the AWS End User Messaging SMS User Guide.

Send at appropriate times 611

https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-request-short-code.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-request-short-code.html

Amazon Simple Notification Service Developer Guide

Verify your destination phone numbers

When you send SMS messages through Amazon SNS, you're billed for each message part you
send. The price you pay per message part varies on the recipient's country or region. For more
information about SMS pricing, see AWS Worldwide SMS Pricing.

When Amazon SNS accepts a request to send an SMS message (as the result of a call to the
SendMessages API, or as the result of a campaign or journey being launched), you're charged for
sending that message. This statement is true even if the intended recipient doesn't actually receive
the message. For example, if the recipient's phone number is no longer in service, or if the number
that you sent the message to wasn't a valid mobile phone number, you're still billed for sending the
message.

Amazon SNS accepts valid requests to send SMS messages and attempts to deliver them. For this
reason, you should validate that the phone numbers that you send messages to are valid mobile
numbers. You can use AWS End User Messaging SMS to send a test message to determine if a
phone number is valid and what type of number it is (such as mobile, landline, or VoIP). For more
information, see Send a test message with the SMS simulator in the AWS End User Messaging SMS
User Guide.

Design with redundancy in mind

For mission-critical messaging programs, we recommend that you configure Amazon SNS in more
than one AWS Region. Amazon SNS is available in several AWS Regions. For a complete list of
Regions where Amazon SNS is available, see the AWS General Reference.

The phone numbers that you use for SMS messages—including short codes, long codes, toll-free
numbers, and 10DLC numbers—can't be replicated across AWS Regions. As a result, in order to
use Amazon SNS in multiple Regions, you must request separate phone numbers in each Region
where you want to use Amazon SNS. For example, if you use a short code to send text messages to
recipients in the United States, you need to request separate short codes in each AWS Region that
you plan to use.

In some countries, you can also use multiple types of phone numbers for added redundancy. For
example, in the United States, you can request short codes, 10DLC numbers, and toll-free numbers.
Each of these phone number types takes a different route to the recipient. Having multiple phone
number types available—either in the same AWS Region or spread across multiple AWS Regions—
provides an additional layer of redundancy, which can help improve resiliency.

Verify your destination phone numbers 612

https://aws.amazon.com/sns/sms-pricing
https://docs.aws.amazon.com/pinpoint/latest/apireference/apps-application-id-messages.html#SendMessages
https://docs.aws.amazon.com/sms-voice/latest/userguide/getting-started-tutorial.html#getting-started-tutorial-step3
https://docs.aws.amazon.com/general/latest/gr/sns.html

Amazon Simple Notification Service Developer Guide

SMS limits and restrictions

For SMS limits and restrictions, see SMS and MMS limits and restrictions in the AWS End User
Messaging SMS User Guide.

Managing opt out keywords

SMS recipients can use their devices to opt out of messages by replying with a keyword. For more
information, see Opting out of receiving SMS messages.

CreatePool

Use the CreatePool API action to create a new pool and associate a specified origination identity
to the pool. For more information, see CreatePool in AWS End User Messaging SMS API Reference.

PutKeyword

Use the PutKeyword API action to create or update a keyword configuration on an origination
phone number or pool. For more information, see PutKeyword in AWS End User Messaging SMS API
Reference.

Managing number settings

To manage settings for the dedicated short codes and long codes that you requested from AWS
Support and assigned to your account, see Change a phone number's capabilities with the AWS CLI
in AWS End User Messaging SMS.

SMS character limits in Amazon SNS

A single SMS message can contain up to 140 bytes of information. The number of characters you
can include in a single SMS message depends on the type of characters the message contains.

If your message only uses characters in the GSM 03.38 character set, also known as the GSM 7-
bit alphabet, it can contain up to 160 characters. If your message contains any characters that
are outside the GSM 03.38 character set, it can have up to 70 characters. When you send an SMS
message, Amazon SNS automatically determines the most efficient encoding to use.

When a message contains more than the maximum number of characters, the message is split
into multiple parts. When messages are split into multiple parts, each part contains additional
information about the message part that precedes it. When the recipient's device receives message

SMS limits and restrictions 613

https://docs.aws.amazon.com/sms-voice/latest/userguide/sms-limitations.html
https://docs.aws.amazon.com/pinpoint/latest/apireference_smsvoicev2/API_CreatePool.html
https://docs.aws.amazon.com/pinpoint/latest/apireference_smsvoicev2/API_PutKeyword.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/phone-numbers-change-capabilitiy.html

Amazon Simple Notification Service Developer Guide

parts that are separated in this way, it uses this additional information to ensure that all of the
message parts are displayed in the correct order. Depending on the recipient's mobile carrier
and device, multiple messages might be displayed as a single message, or as a sequence of
separate messages. As a result the number of characters in each message part is reduced to 153
(for messages that only contain GSM 03.38 characters) or 67 (for messages that contain other
characters). You can estimate how many message parts your message contains before you send
it by using SMS length calculator tools, several of which are available online. The maximum
supported size of any message is 1600 GSM characters or 630 non-GSM characters. For more
information about throughput and message size, see SMS character limits in Amazon Pinpoint in
the Amazon Pinpoint User Guide.

To view the number of message parts for each message that you send, you should first enable
Event stream settings. When you do, Amazon SNS produces an _SMS.SUCCESS event when the
message is delivered to the recipient's mobile provider. The _SMS.SUCCESS event record contains
an attribute called attributes.number_of_message_parts. This attribute specifies the
number of message parts that the message contained.

Important

When you send a message that contains more than one message parts, you're charged for
the number of message parts contained in the message.

GSM 03.38 character set

The following table lists all of the characters that are present in the GSM 03.38 character set. If you
send a message that only includes the characters shown in the following table, then the message
can contain up to 160 characters.

GSM 03.38 standard characters

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

SMS character limits 614

https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-limitations-mps.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/settings-event-streams.html

Amazon Simple Notification Service Developer Guide

GSM 03.38 standard characters

à Å å Ä ä Ç É é è ì Ñ ñ ò

Ø ø Ö ö ù Ü ü Æ æ ß 0 1 2

3 4 5 6 7 8 9 & * @ : , ¤

$ = ! > # - ¡ ¿ (< % . +

£ ? ") § ; ' / _ ¥ Δ Φ Γ

Λ Ω Π Ψ Σ Θ Ξ

The GSM 03.38 character set includes several symbols in addition to those shown in the preceding
table. However, each of these characters is counted as two characters because it also includes an
invisible escape character:

• ^

• {

• }

• \

• [

•]

• ~

• |

• €

Finally, the GSM 03.38 character set also includes the following non-printed characters:

• A space character.

• A line feed control, which signifies the end of one line of text and the beginning of another.

• A carriage return control, which moves to the beginning of a line of text (usually following a line
feed character).

• An escape control, which is automatically added to the characters in the preceding list.

SMS character limits 615

Amazon Simple Notification Service Developer Guide

Example messages

This section contains several example SMS messages. For each example, this section shows the
total number of characters, as well as the number of message parts for the message.

Example 1: A long message that only contains characters in the GSM 03.38 alphabet

The following message only contains characters that are in the GSM 03.38 alphabet.

Hello Carlos. Your Example Corp. bill of $100 is now available. Autopay is
scheduled for next Thursday, April 9. To view the details of your bill, go
to https://example.com/bill1.

The preceding message contains 180 characters, so it has to be split into multiple message parts.
When a message is split into multiple message parts, each part can contain 153 GSM 03.38
characters. As a result, this message is sent as 2 message parts.

Example 2: A message that contains multi-byte characters

The following message contains several Chinese characters, all of which are outside of the GSM
03.38 alphabet.

###·####1994#7#########

The preceding message contains 71 characters. However, because almost all of the characters in
the message are outside of the GSM 03.38 alphabet, it's sent as two message parts. Each of these
message parts can contain a maximum of 67 characters.

Example 3: A message that contains a single non-GSM character

The following message contains a single character that isn't part of the GSM 03.38 alphabet. In
this example, the character is a closing single quote (’), which is a different character from a regular
apostrophe ('). Word processing applications such as Microsoft Word often automatically replace
apostrophes with closing single quotes. If you draft your SMS messages in Microsoft Word and
paste them into Amazon SNS, you should remove these special characters and replace them with
apostrophes.

John: Your appointment with Dr. Salazar’s office is scheduled for next
Thursday at 4:30pm. Reply YES to confirm, NO to reschedule.

The preceding message contains 130 characters. However, because it contains the closing single
quote character, which isn't part of the GSM 03.38 alphabet, it's sent as two message parts.

SMS character limits 616

Amazon Simple Notification Service Developer Guide

If you replace the closing single quote character in this message with an apostrophe (which is part
of the GSM 03.38 alphabet), then the message is sent as a single message part.

SMS character limits 617

Amazon Simple Notification Service Developer Guide

Code examples for Amazon SNS using AWS SDKs

The following code examples show how to use Amazon SNS with an AWS software development
kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Amazon SNS

The following code examples show how to get started using Amazon SNS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SNSActions;

public static class HelloSNS
{
 static async Task Main(string[] args)

618

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

 {
 var snsClient = new AmazonSimpleNotificationServiceClient();

 Console.WriteLine($"Hello Amazon SNS! Following are some of your
 topics:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get a list of topics.
 var response = await snsClient.ListTopicsAsync(
 new ListTopicsRequest());

 foreach (var topic in response.Topics)
 {
 Console.WriteLine($"\tTopic ARN: {topic.TopicArn}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListTopics in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS sns)

Set this project's name.

619

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns/hello_sns#code-examples

Amazon Simple Notification Service Developer Guide

project("hello_sns")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_sns.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_sns.cpp source file.

#include <aws/core/Aws.h>
#include <aws/sns/SNSClient.h>
#include <aws/sns/model/ListTopicsRequest.h>

620

Amazon Simple Notification Service Developer Guide

#include <iostream>

/*
 * A "Hello SNS" starter application which initializes an Amazon Simple
 Notification
 * Service (Amazon SNS) client and lists the SNS topics in the current account.
 *
 * main function
 *
 * Usage: 'hello_sns'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfig);

 Aws::Vector<Aws::SNS::Model::Topic> allTopics;
 Aws::String nextToken; // Next token is used to handle a paginated
 response.
 do {
 Aws::SNS::Model::ListTopicsRequest request;

 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 const Aws::SNS::Model::ListTopicsOutcome outcome =
 snsClient.ListTopics(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::SNS::Model::Topic> &paginatedTopics =
 outcome.GetResult().GetTopics();
 if (!paginatedTopics.empty()) {
 allTopics.insert(allTopics.cend(), paginatedTopics.cbegin(),

621

Amazon Simple Notification Service Developer Guide

 paginatedTopics.cend());
 }
 }
 else {
 std::cerr << "Error listing topics " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return 1;
 }

 nextToken = outcome.GetResult().GetNextToken();
 } while (!nextToken.empty());

 std::cout << "Hello Amazon SNS! You have " << allTopics.size() << "
 topic"
 << (allTopics.size() == 1 ? "" : "s") << " in your account."
 << std::endl;

 if (!allTopics.empty()) {
 std::cout << "Here are your topic ARNs." << std::endl;
 for (const Aws::SNS::Model::Topic &topic: allTopics) {
 std::cout << " * " << topic.GetTopicArn() << std::endl;
 }
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return 0;
}

• For API details, see ListTopics in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

622

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sns#code-examples

Amazon Simple Notification Service Developer Guide

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 snsClient := sns.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the topics for your account.")
 var topics []types.Topic
 paginator := sns.NewListTopicsPaginator(snsClient, &sns.ListTopicsInput{})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get topics. Here's why: %v\n", err)
 break
 } else {
 topics = append(topics, output.Topics...)
 }
 }
 if len(topics) == 0 {
 fmt.Println("You don't have any topics!")
 } else {

623

Amazon Simple Notification Service Developer Guide

 for _, topic := range topics {
 fmt.Printf("\t%v\n", *topic.TopicArn)
 }
 }
}

• For API details, see ListTopics in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns;

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.paginators.ListTopicsIterable;

public class HelloSNS {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listSNSTopics(snsClient);
 snsClient.close();
 }

 public static void listSNSTopics(SnsClient snsClient) {
 try {
 ListTopicsIterable listTopics = snsClient.listTopicsPaginator();
 listTopics.stream()
 .flatMap(r -> r.topics().stream())

624

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 .forEach(content -> System.out.println(" Topic ARN: " +
 content.topicArn()));

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListTopics in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Initialize an SNS client and and list topics in your account.

import { SNSClient, paginateListTopics } from "@aws-sdk/client-sns";

export const helloSns = async () => {
 // The configuration object (`{}`) is required. If the region and credentials
 // are omitted, the SDK uses your local configuration if it exists.
 const client = new SNSClient({});

 // You can also use `ListTopicsCommand`, but to use that command you must
 // handle the pagination yourself. You can do that by sending the
 `ListTopicsCommand`
 // with the `NextToken` parameter from the previous request.
 const paginatedTopics = paginateListTopics({ client }, {});
 const topics = [];

 for await (const page of paginatedTopics) {
 if (page.Topics?.length) {
 topics.push(...page.Topics);

625

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 }
 }

 const suffix = topics.length === 1 ? "" : "s";

 console.log(
 `Hello, Amazon SNS! You have ${topics.length} topic${suffix} in your
 account.`,
);
 console.log(topics.map((t) => ` * ${t.TopicArn}`).join("\n"));
};

• For API details, see ListTopics in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.sns.SnsClient
import aws.sdk.kotlin.services.sns.model.ListTopicsRequest
import aws.sdk.kotlin.services.sns.paginators.listTopicsPaginated
import kotlinx.coroutines.flow.transform

/**
Before running this Kotlin code example, set up your development environment,
including your credentials.

For more information, see the following documentation topic:
https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html
 */
suspend fun main() {
 listTopicsPag()
}

suspend fun listTopicsPag() {

626

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/ListTopicsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient
 .listTopicsPaginated(ListTopicsRequest { })
 .transform { it.topics?.forEach { topic -> emit(topic) } }
 .collect { topic ->
 println("The topic ARN is ${topic.topicArn}")
 }
 }
}

• For API details, see ListTopics in AWS SDK for Kotlin API reference.

Code examples

• Basic examples for Amazon SNS using AWS SDKs

• Hello Amazon SNS

• Actions for Amazon SNS using AWS SDKs

• Use CheckIfPhoneNumberIsOptedOut with an AWS SDK or CLI

• Use ConfirmSubscription with an AWS SDK or CLI

• Use CreateTopic with an AWS SDK or CLI

• Use DeleteTopic with an AWS SDK or CLI

• Use GetSMSAttributes with an AWS SDK or CLI

• Use GetTopicAttributes with an AWS SDK or CLI

• Use ListPhoneNumbersOptedOut with an AWS SDK or CLI

• Use ListSubscriptions with an AWS SDK or CLI

• Use ListTopics with an AWS SDK or CLI

• Use Publish with an AWS SDK or CLI

• Use SetSMSAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributesRedrivePolicy with an AWS SDK

• Use SetTopicAttributes with an AWS SDK or CLI

• Use Subscribe with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use Unsubscribe with an AWS SDK or CLI
627

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

• Scenarios for Amazon SNS using AWS SDKs

• Build an application to submit data to a DynamoDB table

• Build a publish and subscription application that translates messages

• Create a platform endpoint for Amazon SNS push notifications using an AWS SDK

• Create a photo asset management application that lets users manage photos using labels

• Create an Amazon Textract explorer application

• Create and publish to a FIFO Amazon SNS topic using an AWS SDK

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Publish SMS messages to an Amazon SNS topic using an AWS SDK

• Publish a large message to Amazon SNS with Amazon S3 using an AWS SDK

• Publish an Amazon SNS SMS text message using an AWS SDK

• Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK

• Use API Gateway to invoke a Lambda function

• Use scheduled events to invoke a Lambda function

• Serverless examples for Amazon SNS using AWS SDKs

• Invoke a Lambda function from an Amazon SNS trigger

Basic examples for Amazon SNS using AWS SDKs

The following code examples show how to use the basics of Amazon Simple Notification Service
with AWS SDKs.

Examples

• Hello Amazon SNS

• Actions for Amazon SNS using AWS SDKs

• Use CheckIfPhoneNumberIsOptedOut with an AWS SDK or CLI

• Use ConfirmSubscription with an AWS SDK or CLI

• Use CreateTopic with an AWS SDK or CLI

• Use DeleteTopic with an AWS SDK or CLI

• Use GetSMSAttributes with an AWS SDK or CLI

• Use GetTopicAttributes with an AWS SDK or CLI

• Use ListPhoneNumbersOptedOut with an AWS SDK or CLI

Basics 628

Amazon Simple Notification Service Developer Guide

• Use ListSubscriptions with an AWS SDK or CLI

• Use ListTopics with an AWS SDK or CLI

• Use Publish with an AWS SDK or CLI

• Use SetSMSAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributesRedrivePolicy with an AWS SDK

• Use SetTopicAttributes with an AWS SDK or CLI

• Use Subscribe with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use Unsubscribe with an AWS SDK or CLI

Hello Amazon SNS

The following code examples show how to get started using Amazon SNS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SNSActions;

public static class HelloSNS
{
 static async Task Main(string[] args)
 {
 var snsClient = new AmazonSimpleNotificationServiceClient();

Hello Amazon SNS 629

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

 Console.WriteLine($"Hello Amazon SNS! Following are some of your
 topics:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get a list of topics.
 var response = await snsClient.ListTopicsAsync(
 new ListTopicsRequest());

 foreach (var topic in response.Topics)
 {
 Console.WriteLine($"\tTopic ARN: {topic.TopicArn}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListTopics in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS sns)

Set this project's name.
project("hello_sns")

Set the C++ standard to use to build this target.

Hello Amazon SNS 630

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns/hello_sns#code-examples

Amazon Simple Notification Service Developer Guide

At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_sns.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_sns.cpp source file.

#include <aws/core/Aws.h>
#include <aws/sns/SNSClient.h>
#include <aws/sns/model/ListTopicsRequest.h>
#include <iostream>

/*

Hello Amazon SNS 631

Amazon Simple Notification Service Developer Guide

 * A "Hello SNS" starter application which initializes an Amazon Simple
 Notification
 * Service (Amazon SNS) client and lists the SNS topics in the current account.
 *
 * main function
 *
 * Usage: 'hello_sns'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfig);

 Aws::Vector<Aws::SNS::Model::Topic> allTopics;
 Aws::String nextToken; // Next token is used to handle a paginated
 response.
 do {
 Aws::SNS::Model::ListTopicsRequest request;

 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 const Aws::SNS::Model::ListTopicsOutcome outcome =
 snsClient.ListTopics(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::SNS::Model::Topic> &paginatedTopics =
 outcome.GetResult().GetTopics();
 if (!paginatedTopics.empty()) {
 allTopics.insert(allTopics.cend(), paginatedTopics.cbegin(),
 paginatedTopics.cend());
 }
 }

Hello Amazon SNS 632

Amazon Simple Notification Service Developer Guide

 else {
 std::cerr << "Error listing topics " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return 1;
 }

 nextToken = outcome.GetResult().GetNextToken();
 } while (!nextToken.empty());

 std::cout << "Hello Amazon SNS! You have " << allTopics.size() << "
 topic"
 << (allTopics.size() == 1 ? "" : "s") << " in your account."
 << std::endl;

 if (!allTopics.empty()) {
 std::cout << "Here are your topic ARNs." << std::endl;
 for (const Aws::SNS::Model::Topic &topic: allTopics) {
 std::cout << " * " << topic.GetTopicArn() << std::endl;
 }
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return 0;
}

• For API details, see ListTopics in AWS SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Hello Amazon SNS 633

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sns#code-examples

Amazon Simple Notification Service Developer Guide

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 snsClient := sns.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the topics for your account.")
 var topics []types.Topic
 paginator := sns.NewListTopicsPaginator(snsClient, &sns.ListTopicsInput{})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get topics. Here's why: %v\n", err)
 break
 } else {
 topics = append(topics, output.Topics...)
 }
 }
 if len(topics) == 0 {
 fmt.Println("You don't have any topics!")
 } else {
 for _, topic := range topics {
 fmt.Printf("\t%v\n", *topic.TopicArn)

Hello Amazon SNS 634

Amazon Simple Notification Service Developer Guide

 }
 }
}

• For API details, see ListTopics in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns;

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.paginators.ListTopicsIterable;

public class HelloSNS {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listSNSTopics(snsClient);
 snsClient.close();
 }

 public static void listSNSTopics(SnsClient snsClient) {
 try {
 ListTopicsIterable listTopics = snsClient.listTopicsPaginator();
 listTopics.stream()
 .flatMap(r -> r.topics().stream())
 .forEach(content -> System.out.println(" Topic ARN: " +
 content.topicArn()));

Hello Amazon SNS 635

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListTopics in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Initialize an SNS client and and list topics in your account.

import { SNSClient, paginateListTopics } from "@aws-sdk/client-sns";

export const helloSns = async () => {
 // The configuration object (`{}`) is required. If the region and credentials
 // are omitted, the SDK uses your local configuration if it exists.
 const client = new SNSClient({});

 // You can also use `ListTopicsCommand`, but to use that command you must
 // handle the pagination yourself. You can do that by sending the
 `ListTopicsCommand`
 // with the `NextToken` parameter from the previous request.
 const paginatedTopics = paginateListTopics({ client }, {});
 const topics = [];

 for await (const page of paginatedTopics) {
 if (page.Topics?.length) {
 topics.push(...page.Topics);
 }
 }

Hello Amazon SNS 636

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 const suffix = topics.length === 1 ? "" : "s";

 console.log(
 `Hello, Amazon SNS! You have ${topics.length} topic${suffix} in your
 account.`,
);
 console.log(topics.map((t) => ` * ${t.TopicArn}`).join("\n"));
};

• For API details, see ListTopics in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.sns.SnsClient
import aws.sdk.kotlin.services.sns.model.ListTopicsRequest
import aws.sdk.kotlin.services.sns.paginators.listTopicsPaginated
import kotlinx.coroutines.flow.transform

/**
Before running this Kotlin code example, set up your development environment,
including your credentials.

For more information, see the following documentation topic:
https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html
 */
suspend fun main() {
 listTopicsPag()
}

suspend fun listTopicsPag() {
 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient

Hello Amazon SNS 637

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/ListTopicsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 .listTopicsPaginated(ListTopicsRequest { })
 .transform { it.topics?.forEach { topic -> emit(topic) } }
 .collect { topic ->
 println("The topic ARN is ${topic.topicArn}")
 }
 }
}

• For API details, see ListTopics in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions for Amazon SNS using AWS SDKs

The following code examples demonstrate how to perform individual Amazon SNS actions with
AWS SDKs. Each example includes a link to GitHub, where you can find instructions for setting up
and running the code.

These excerpts call the Amazon SNS API and are code excerpts from larger programs that must be
run in context. You can see actions in context in Scenarios for Amazon SNS using AWS SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Simple Notification Service API Reference.

Examples

• Use CheckIfPhoneNumberIsOptedOut with an AWS SDK or CLI

• Use ConfirmSubscription with an AWS SDK or CLI

• Use CreateTopic with an AWS SDK or CLI

• Use DeleteTopic with an AWS SDK or CLI

• Use GetSMSAttributes with an AWS SDK or CLI

• Use GetTopicAttributes with an AWS SDK or CLI

• Use ListPhoneNumbersOptedOut with an AWS SDK or CLI

• Use ListSubscriptions with an AWS SDK or CLI

• Use ListTopics with an AWS SDK or CLI

Actions 638

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/sns/latest/api/welcome.html

Amazon Simple Notification Service Developer Guide

• Use Publish with an AWS SDK or CLI

• Use SetSMSAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributes with an AWS SDK or CLI

• Use SetSubscriptionAttributesRedrivePolicy with an AWS SDK

• Use SetTopicAttributes with an AWS SDK or CLI

• Use Subscribe with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use Unsubscribe with an AWS SDK or CLI

Use CheckIfPhoneNumberIsOptedOut with an AWS SDK or CLI

The following code examples show how to use CheckIfPhoneNumberIsOptedOut.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example shows how to use the Amazon Simple Notification Service
 /// (Amazon SNS) to check whether a phone number has been opted out.
 /// </summary>
 public class IsPhoneNumOptedOut
 {
 public static async Task Main()
 {
 string phoneNumber = "+15551112222";

Actions 639

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await CheckIfOptedOutAsync(client, phoneNumber);
 }

 /// <summary>
 /// Checks to see if the supplied phone number has been opted out.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS Client object used
 /// to check if the phone number has been opted out.</param>
 /// <param name="phoneNumber">A string representing the phone number
 /// to check.</param>
 public static async Task
 CheckIfOptedOutAsync(IAmazonSimpleNotificationService client, string
 phoneNumber)
 {
 var request = new CheckIfPhoneNumberIsOptedOutRequest
 {
 PhoneNumber = phoneNumber,
 };

 try
 {
 var response = await
 client.CheckIfPhoneNumberIsOptedOutAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 string optOutStatus = response.IsOptedOut ? "opted out" :
 "not opted out.";
 Console.WriteLine($"The phone number: {phoneNumber} is
 {optOutStatus}");
 }
 }
 catch (AuthorizationErrorException ex)
 {
 Console.WriteLine($"{ex.Message}");
 }
 }
 }

Actions 640

Amazon Simple Notification Service Developer Guide

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for .NET API Reference.

CLI

AWS CLI

To check SMS message opt-out for a phone number

The following check-if-phone-number-is-opted-out example checks whether the
specified phone number is opted out of receiving SMS messages from the current AWS
account.

aws sns check-if-phone-number-is-opted-out \
 --phone-number +1555550100

Output:

{
 "isOptedOut": false
}

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import
 software.amazon.awssdk.services.sns.model.CheckIfPhoneNumberIsOptedOutRequest;
import
 software.amazon.awssdk.services.sns.model.CheckIfPhoneNumberIsOptedOutResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

Actions 641

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/check-if-phone-number-is-opted-out.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CheckOptOut {
 public static void main(String[] args) {

 final String usage = """

 Usage: <phoneNumber>

 Where:
 phoneNumber - The mobile phone number to look up (for example,
 +1XXX5550100).

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String phoneNumber = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 checkPhone(snsClient, phoneNumber);
 snsClient.close();
 }

 public static void checkPhone(SnsClient snsClient, String phoneNumber) {
 try {
 CheckIfPhoneNumberIsOptedOutRequest request =
 CheckIfPhoneNumberIsOptedOutRequest.builder()
 .phoneNumber(phoneNumber)
 .build();

Actions 642

Amazon Simple Notification Service Developer Guide

 CheckIfPhoneNumberIsOptedOutResponse result =
 snsClient.checkIfPhoneNumberIsOptedOut(request);
 System.out.println(
 result.isOptedOut() + "Phone Number " + phoneNumber + " has
 Opted Out of receiving sns messages." +
 "\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for Java 2.x API
Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

Actions 643

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import { CheckIfPhoneNumberIsOptedOutCommand } from "@aws-sdk/client-sns";

import { snsClient } from "../libs/snsClient.js";

export const checkIfPhoneNumberIsOptedOut = async (
 phoneNumber = "5555555555",
) => {
 const command = new CheckIfPhoneNumberIsOptedOutCommand({
 phoneNumber,
 });

 const response = await snsClient.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '3341c28a-cdc8-5b39-a3ee-9fb0ee125732',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // isOptedOut: false
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for JavaScript API
Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 644

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-checkifphonenumberisoptedout
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CheckIfPhoneNumberIsOptedOutCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Indicates whether the phone number owner has opted out of receiving SMS
 messages from your AWS SNS account.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$phone = '+1XXX5550100';

try {
 $result = $SnSclient->checkIfPhoneNumberIsOptedOut([
 'phoneNumber' => $phone,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see CheckIfPhoneNumberIsOptedOut in AWS SDK for PHP API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 645

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#check-if-a-phone-number-has-opted-out
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/CheckIfPhoneNumberIsOptedOut

Amazon Simple Notification Service Developer Guide

Use ConfirmSubscription with an AWS SDK or CLI

The following code examples show how to use ConfirmSubscription.

CLI

AWS CLI

To confirm a subscription

The following confirm-subscription command completes the confirmation process
started when you subscribed to an SNS topic named my-topic. The --token parameter
comes from the confirmation message sent to the notification endpoint specified in the
subscribe call.

aws sns confirm-subscription \
 --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic \
 --
token 2336412f37fb687f5d51e6e241d7700ae02f7124d8268910b858cb4db727ceeb2474bb937929d3bdd7ce5d0cce19325d036bc858d3c217426bcafa9c501a2cace93b83f1dd3797627467553dc438a8c974119496fc3eff026eaa5d14472ded6f9a5c43aec62d83ef5f49109da7176391

Output:

{
 "SubscriptionArn": "arn:aws:sns:us-west-2:123456789012:my-
topic:8a21d249-4329-4871-acc6-7be709c6ea7f"
}

• For API details, see ConfirmSubscription in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;

Actions 646

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/confirm-subscription.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.ConfirmSubscriptionRequest;
import software.amazon.awssdk.services.sns.model.ConfirmSubscriptionResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ConfirmSubscription {
 public static void main(String[] args) {
 final String usage = """

 Usage: <subscriptionToken> <topicArn>

 Where:
 subscriptionToken - A short-lived token sent to an endpoint
 during the Subscribe action.
 topicArn - The ARN of the topic.\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String subscriptionToken = args[0];
 String topicArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 confirmSub(snsClient, subscriptionToken, topicArn);
 snsClient.close();
 }

 public static void confirmSub(SnsClient snsClient, String subscriptionToken,
 String topicArn) {
 try {

Actions 647

Amazon Simple Notification Service Developer Guide

 ConfirmSubscriptionRequest request =
 ConfirmSubscriptionRequest.builder()
 .token(subscriptionToken)
 .topicArn(topicArn)
 .build();

 ConfirmSubscriptionResponse result =
 snsClient.confirmSubscription(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode() + "\n\nSubscription Arn: \n\n"
 + result.subscriptionArn());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ConfirmSubscription in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Actions 648

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ConfirmSubscription
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Import the SDK and client modules and call the API.

import { ConfirmSubscriptionCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} token - This token is sent the subscriber. Only subscribers
 * that are not AWS services (HTTP/S, email) need to be
 confirmed.
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm
 a subscription.
 */
export const confirmSubscription = async (
 token = "TOKEN",
 topicArn = "TOPIC_ARN",
) => {
 const response = await snsClient.send(
 // A subscription only needs to be confirmed if the endpoint type is
 // HTTP/S, email, or in another AWS account.
 new ConfirmSubscriptionCommand({
 Token: token,
 TopicArn: topicArn,
 // If this is true, the subscriber cannot unsubscribe while
 unauthenticated.
 AuthenticateOnUnsubscribe: "false",
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '4bb5bce9-805a-5517-8333-e1d2cface90b',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

Actions 649

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ConfirmSubscription in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Verifies an endpoint owner's intent to receive messages by
 * validating the token sent to the endpoint by an earlier Subscribe action.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$subscription_token = 'arn:aws:sns:us-east-1:111122223333:MyTopic:123456-
abcd-12ab-1234-12ba3dc1234a';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->confirmSubscription([
 'Token' => $subscription_token,

Actions 650

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-getattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/ConfirmSubscriptionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see ConfirmSubscription in AWS SDK for PHP API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateTopic with an AWS SDK or CLI

The following code examples show how to use CreateTopic.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and publish to a FIFO topic

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a topic with a specific name.

 using System;
 using System.Threading.Tasks;

Actions 651

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/ConfirmSubscription
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example shows how to use Amazon Simple Notification Service
 /// (Amazon SNS) to add a new Amazon SNS topic.
 /// </summary>
 public class CreateSNSTopic
 {
 public static async Task Main()
 {
 string topicName = "ExampleSNSTopic";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 var topicArn = await CreateSNSTopicAsync(client, topicName);
 Console.WriteLine($"New topic ARN: {topicArn}");
 }

 /// <summary>
 /// Creates a new SNS topic using the supplied topic name.
 /// </summary>
 /// <param name="client">The initialized SNS client object used to
 /// create the new topic.</param>
 /// <param name="topicName">A string representing the topic name.</param>
 /// <returns>The Amazon Resource Name (ARN) of the created topic.</
returns>
 public static async Task<string>
 CreateSNSTopicAsync(IAmazonSimpleNotificationService client, string topicName)
 {
 var request = new CreateTopicRequest
 {
 Name = topicName,
 };

 var response = await client.CreateTopicAsync(request);

 return response.TopicArn;
 }
 }

Actions 652

Amazon Simple Notification Service Developer Guide

Create a new topic with a name and specific FIFO and de-duplication attributes.

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

Actions 653

Amazon Simple Notification Service Developer Guide

• For API details, see CreateTopic in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Create an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param topicName: An Amazon SNS topic name.
 \param topicARNResult: String to return the Amazon Resource Name (ARN) for the
 topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::createTopic(const Aws::String &topicName,
 Aws::String &topicARNResult,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::CreateTopicRequest request;
 request.SetName(topicName);

 const Aws::SNS::Model::CreateTopicOutcome outcome =
 snsClient.CreateTopic(request);

 if (outcome.IsSuccess()) {
 topicARNResult = outcome.GetResult().GetTopicArn();
 std::cout << "Successfully created an Amazon SNS topic " << topicName
 << " with topic ARN '" << topicARNResult
 << "'." << std::endl;

 }
 else {

Actions 654

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 std::cerr << "Error creating topic " << topicName << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 topicARNResult.clear();
 }

 return outcome.IsSuccess();
}

• For API details, see CreateTopic in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create an SNS topic

The following create-topic example creates an SNS topic named my-topic.

aws sns create-topic \
 --name my-topic

Output:

{
 "ResponseMetadata": {
 "RequestId": "1469e8d7-1642-564e-b85d-a19b4b341f83"
 },
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic"
}

For more information, see Using the AWS Command Line Interface with Amazon SQS and
Amazon SNS in the AWS Command Line Interface User Guide.

• For API details, see CreateTopic in AWS CLI Command Reference.

Actions 655

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/cli/latest/userguide/cli-sqs-queue-sns-topic.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-sqs-queue-sns-topic.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/create-topic.html

Amazon Simple Notification Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// CreateTopic creates an Amazon SNS topic with the specified name. You can
 optionally
// specify that the topic is created as a FIFO topic and whether it uses content-
based
// deduplication instead of ID-based deduplication.
func (actor SnsActions) CreateTopic(ctx context.Context, topicName string,
 isFifoTopic bool, contentBasedDeduplication bool) (string, error) {
 var topicArn string
 topicAttributes := map[string]string{}
 if isFifoTopic {
 topicAttributes["FifoTopic"] = "true"
 }

Actions 656

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

 if contentBasedDeduplication {
 topicAttributes["ContentBasedDeduplication"] = "true"
 }
 topic, err := actor.SnsClient.CreateTopic(ctx, &sns.CreateTopicInput{
 Name: aws.String(topicName),
 Attributes: topicAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create topic %v. Here's why: %v\n", topicName, err)
 } else {
 topicArn = *topic.TopicArn
 }

 return topicArn, err
}

• For API details, see CreateTopic in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 657

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicName>

 Where:
 topicName - The name of the topic to create (for example,
 mytopic).

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicName = args[0];
 System.out.println("Creating a topic with name: " + topicName);
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnVal = createSNSTopic(snsClient, topicName);
 System.out.println("The topic ARN is" + arnVal);
 snsClient.close();
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Actions 658

Amazon Simple Notification Service Developer Guide

 }
 return "";
 }
}

• For API details, see CreateTopic in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { CreateTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicName - The name of the topic to create.
 */
export const createTopic = async (topicName = "TOPIC_NAME") => {
 const response = await snsClient.send(
 new CreateTopicCommand({ Name: topicName }),
);
 console.log(response);

Actions 659

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '087b8ad2-4593-50c4-a496-d7e90b82cf3e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:TOPIC_NAME'
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateTopic in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createSNSTopic(topicName: String): String {
 val request =
 CreateTopicRequest {
 name = topicName
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.createTopic(request)
 return result.topicArn.toString()
 }
}

Actions 660

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-createtopic
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see CreateTopic in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Create a Simple Notification Service topics in your AWS account at the
 requested region.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topicname = 'myTopic';

try {
 $result = $SnSclient->createTopic([
 'Name' => $topicname,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails

Actions 661

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see CreateTopic in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def create_topic(self, name):
 """
 Creates a notification topic.

 :param name: The name of the topic to create.
 :return: The newly created topic.
 """
 try:
 topic = self.sns_resource.create_topic(Name=name)
 logger.info("Created topic %s with ARN %s.", name, topic.arn)
 except ClientError:
 logger.exception("Couldn't create topic %s.", name)
 raise

Actions 662

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-managing-topics.html#create-a-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 else:
 return topic

• For API details, see CreateTopic in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This class demonstrates how to create an Amazon Simple Notification Service
 (SNS) topic.
class SNSTopicCreator
 # Initializes an SNS client.
 #
 # Utilizes the default AWS configuration for region and credentials.
 def initialize
 @sns_client = Aws::SNS::Client.new
 end

 # Attempts to create an SNS topic with the specified name.
 #
 # @param topic_name [String] The name of the SNS topic to create.
 # @return [Boolean] true if the topic was successfully created, false
 otherwise.
 def create_topic(topic_name)
 @sns_client.create_topic(name: topic_name)
 puts "The topic '#{topic_name}' was successfully created."
 true
 rescue Aws::SNS::Errors::ServiceError => e
 # Handles SNS service errors gracefully.
 puts "Error while creating the topic named '#{topic_name}': #{e.message}"
 false
 end
end

Actions 663

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_name = 'YourTopicName' # Replace with your topic name
 sns_topic_creator = SNSTopicCreator.new

 puts "Creating the topic '#{topic_name}'..."
 unless sns_topic_creator.create_topic(topic_name)
 puts 'The topic was not created. Stopping program.'
 exit 1
 end
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see CreateTopic in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn make_topic(client: &Client, topic_name: &str) -> Result<(), Error> {
 let resp = client.create_topic().name(topic_name).send().await?;

 println!(
 "Created topic with ARN: {}",
 resp.topic_arn().unwrap_or_default()
);

 Ok(())
}

• For API details, see CreateTopic in AWS SDK for Rust API reference.

Actions 664

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-create-topic.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/CreateTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples
https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.create_topic

Amazon Simple Notification Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->createtopic(iv_name = iv_topic_name). " oo_result
 is returned for testing purposes. "
 MESSAGE 'SNS topic created' TYPE 'I'.
 CATCH /aws1/cx_snstopiclimitexcdex.
 MESSAGE 'Unable to create more topics. You have reached the maximum
 number of topics allowed.' TYPE 'E'.
 ENDTRY.

• For API details, see CreateTopic in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteTopic with an AWS SDK or CLI

The following code examples show how to use DeleteTopic.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Publish messages to queues

Actions 665

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a topic by its topic ARN.

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteTopic in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 666

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

//! Delete an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::deleteTopic(const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::DeleteTopicRequest request;
 request.SetTopicArn(topicARN);

 const Aws::SNS::Model::DeleteTopicOutcome outcome =
 snsClient.DeleteTopic(request);

 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted the Amazon SNS topic " << topicARN <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting topic " << topicARN << ":" <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteTopic in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete an SNS topic

The following delete-topic example deletes the specified SNS topic.

aws sns delete-topic \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic"

Actions 667

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/DeleteTopic

Amazon Simple Notification Service Developer Guide

This command produces no output.

• For API details, see DeleteTopic in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(ctx context.Context, topicArn string) error {
 _, err := actor.SnsClient.DeleteTopic(ctx, &sns.DeleteTopicInput{
 TopicArn: aws.String(topicArn)})
 if err != nil {
 log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err)
 }
 return err

Actions 668

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/delete-topic.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

}

• For API details, see DeleteTopic in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to delete.
 """;

 if (args.length != 1) {

Actions 669

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println("Deleting a topic with name: " + topicArn);
 deleteSNSTopic(snsClient, topicArn);
 snsClient.close();
 }

 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteTopic in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 670

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { DeleteTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to delete.
 */
export const deleteTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new DeleteTopicCommand({ TopicArn: topicArn }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'a10e2886-5a8f-5114-af36-75bd39498332',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteTopic in AWS SDK for JavaScript API Reference.

Actions 671

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-deletetopic
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteSNSTopic(topicArnVal: String) {
 val request =
 DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println("$topicArnVal was successfully deleted.")
 }
}

• For API details, see DeleteTopic in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

Actions 672

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

/**
 * Deletes an SNS topic and all its subscriptions.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->deleteTopic([
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see DeleteTopic in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:

Actions 673

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def delete_topic(topic):
 """
 Deletes a topic. All subscriptions to the topic are also deleted.
 """
 try:
 topic.delete()
 logger.info("Deleted topic %s.", topic.arn)
 except ClientError:
 logger.exception("Couldn't delete topic %s.", topic.arn)
 raise

• For API details, see DeleteTopic in AWS SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->deletetopic(iv_topicarn = iv_topic_arn).
 MESSAGE 'SNS topic deleted.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

Actions 674

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/DeleteTopic
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see DeleteTopic in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetSMSAttributes with an AWS SDK or CLI

The following code examples show how to use GetSMSAttributes.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Retrieve the default settings for sending SMS messages from your AWS account
 by using
//! Amazon Simple Notification Service (Amazon SNS).
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::SNS::getSMSType(const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::GetSMSAttributesRequest request;
 //Set the request to only retrieve the DefaultSMSType setting.
 //Without the following line, GetSMSAttributes would retrieve all settings.
 request.AddAttributes("DefaultSMSType");

 const Aws::SNS::Model::GetSMSAttributesOutcome outcome =
 snsClient.GetSMSAttributes(

Actions 675

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 request);

 if (outcome.IsSuccess()) {
 const Aws::Map<Aws::String, Aws::String> attributes =
 outcome.GetResult().GetAttributes();
 if (!attributes.empty()) {
 for (auto const &att: attributes) {
 std::cout << att.first << ": " << att.second << std::endl;
 }
 }
 else {
 std::cout
 << "AwsDoc::SNS::getSMSType - an empty map of attributes was
 retrieved."
 << std::endl;
 }
 }
 else {
 std::cerr << "Error while getting SMS Type: '"
 << outcome.GetError().GetMessage()
 << "'" << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see GetSMSAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list the default SMS message attributes

The following get-sms-attributes example lists the default attributes for sending SMS
messages.

aws sns get-sms-attributes

Output:

Actions 676

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/GetSMSAttributes

Amazon Simple Notification Service Developer Guide

{
 "attributes": {
 "DefaultSenderID": "MyName"
 }
}

• For API details, see GetSMSAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import
 software.amazon.awssdk.services.sns.model.GetSubscriptionAttributesRequest;
import
 software.amazon.awssdk.services.sns.model.GetSubscriptionAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.Iterator;
import java.util.Map;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetSMSAtrributes {
 public static void main(String[] args) {
 final String usage = """

Actions 677

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/get-sms-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic from which to retrieve
 attributes.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 getSNSAttrutes(snsClient, topicArn);
 snsClient.close();
 }

 public static void getSNSAttrutes(SnsClient snsClient, String topicArn) {
 try {
 GetSubscriptionAttributesRequest request =
 GetSubscriptionAttributesRequest.builder()
 .subscriptionArn(topicArn)
 .build();

 // Get the Subscription attributes
 GetSubscriptionAttributesResponse res =
 snsClient.getSubscriptionAttributes(request);
 Map<String, String> map = res.attributes();

 // Iterate through the map
 Iterator iter = map.entrySet().iterator();
 while (iter.hasNext()) {
 Map.Entry entry = (Map.Entry) iter.next();
 System.out.println("[Key] : " + entry.getKey() + " [Value] : " +
 entry.getValue());
 }

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Actions 678

Amazon Simple Notification Service Developer Guide

 }

 System.out.println("\n\nStatus was good");
 }
}

• For API details, see GetSMSAttributes in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { GetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const getSmsAttributes = async () => {
 const response = await snsClient.send(
 // If you have not modified the account-level mobile settings of SNS,
 // the DefaultSMSType is undefined. For this example, it was set to
 // Transactional.
 new GetSMSAttributesCommand({ attributes: ["DefaultSMSType"] }),
);

Actions 679

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/GetSMSAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '67ad8386-4169-58f1-bdb9-debd281d48d5',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // attributes: { DefaultSMSType: 'Transactional' }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetSMSAttributes in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Get the type of SMS Message sent by default from the AWS SNS service.
 *
 * This code expects that you have AWS credentials set up per:

Actions 680

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-subscribing-unubscribing-topics.html#sns-confirm-subscription-email
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/GetSMSAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->getSMSAttributes([
 'attributes' => ['DefaultSMSType'],
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see GetSMSAttributes in AWS SDK for PHP API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetTopicAttributes with an AWS SDK or CLI

The following code examples show how to use GetTopicAttributes.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 681

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#get-sms-attributes
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/GetSMSAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;

 /// <summary>
 /// This example shows how to retrieve the attributes of an Amazon Simple
 /// Notification Service (Amazon SNS) topic.
 /// </summary>
 public class GetTopicAttributes
 {
 public static async Task Main()
 {
 string topicArn = "arn:aws:sns:us-
west-2:000000000000:ExampleSNSTopic";
 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 var attributes = await GetTopicAttributesAsync(client, topicArn);
 DisplayTopicAttributes(attributes);
 }

 /// <summary>
 /// Given the ARN of the Amazon SNS topic, this method retrieves the
 topic
 /// attributes.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used
 /// to retrieve the attributes for the Amazon SNS topic.</param>
 /// <param name="topicArn">The ARN of the topic for which to retrieve
 /// the attributes.</param>
 /// <returns>A Dictionary of topic attributes.</returns>
 public static async Task<Dictionary<string, string>>
 GetTopicAttributesAsync(
 IAmazonSimpleNotificationService client,
 string topicArn)
 {
 var response = await client.GetTopicAttributesAsync(topicArn);

 return response.Attributes;
 }

 /// <summary>

Actions 682

Amazon Simple Notification Service Developer Guide

 /// This method displays the attributes for an Amazon SNS topic.
 /// </summary>
 /// <param name="topicAttributes">A Dictionary containing the
 /// attributes for an Amazon SNS topic.</param>
 public static void DisplayTopicAttributes(Dictionary<string, string>
 topicAttributes)
 {
 foreach (KeyValuePair<string, string> entry in topicAttributes)
 {
 Console.WriteLine($"{entry.Key}: {entry.Value}\n");
 }
 }
 }

• For API details, see GetTopicAttributes in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Retrieve the properties of an Amazon Simple Notification Service (Amazon SNS)
 topic.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::getTopicAttributes(const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);
 Aws::SNS::Model::GetTopicAttributesRequest request;
 request.SetTopicArn(topicARN);

Actions 683

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/GetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 const Aws::SNS::Model::GetTopicAttributesOutcome outcome =
 snsClient.GetTopicAttributes(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "Topic Attributes:" << std::endl;
 for (auto const &attribute: outcome.GetResult().GetAttributes()) {
 std::cout << " * " << attribute.first << " : " << attribute.second
 << std::endl;
 }
 }
 else {
 std::cerr << "Error while getting Topic attributes "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see GetTopicAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To retrieve the attributes of a topic

The following get-topic-attributes example displays the attributes for the specified
topic.

aws sns get-topic-attributes \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic"

Output:

{
 "Attributes": {
 "SubscriptionsConfirmed": "1",
 "DisplayName": "my-topic",
 "SubscriptionsDeleted": "0",

Actions 684

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/GetTopicAttributes

Amazon Simple Notification Service Developer Guide

 "EffectiveDeliveryPolicy": "{\"http\":{\"defaultHealthyRetryPolicy
\":{\"minDelayTarget\":20,\"maxDelayTarget\":20,\"numRetries\":3,
\"numMaxDelayRetries\":0,\"numNoDelayRetries\":0,\"numMinDelayRetries\":0,
\"backoffFunction\":\"linear\"},\"disableSubscriptionOverrides\":false}}",
 "Owner": "123456789012",
 "Policy": "{\"Version\":\"2008-10-17\",\"Id\":\"__default_policy_ID
\",\"Statement\":[{\"Sid\":\"__default_statement_ID\",\"Effect\":
\"Allow\",\"Principal\":{\"AWS\":\"*\"},\"Action\":[\"SNS:Subscribe\",
\"SNS:ListSubscriptionsByTopic\",\"SNS:DeleteTopic\",\"SNS:GetTopicAttributes
\",\"SNS:Publish\",\"SNS:RemovePermission\",\"SNS:AddPermission\",
\"SNS:SetTopicAttributes\"],\"Resource\":\"arn:aws:sns:us-west-2:123456789012:my-
topic\",\"Condition\":{\"StringEquals\":{\"AWS:SourceOwner\":
\"0123456789012\"}}}]}",
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic",
 "SubscriptionsPending": "0"
 }
}

• For API details, see GetTopicAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.GetTopicAttributesRequest;
import software.amazon.awssdk.services.sns.model.GetTopicAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions 685

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/get-topic-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetTopicAttributes {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to look up.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println("Getting attributes for a topic with name: " +
 topicArn);
 getSNSTopicAttributes(snsClient, topicArn);
 snsClient.close();
 }

 public static void getSNSTopicAttributes(SnsClient snsClient, String
 topicArn) {
 try {
 GetTopicAttributesRequest request =
 GetTopicAttributesRequest.builder()
 .topicArn(topicArn)
 .build();

 GetTopicAttributesResponse result =
 snsClient.getTopicAttributes(request);
 System.out.println("\n\nStatus is " +
 result.sdkHttpResponse().statusCode() + "\n\nAttributes: \n\n"
 + result.attributes());

 } catch (SnsException e) {

Actions 686

Amazon Simple Notification Service Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see GetTopicAttributes in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { GetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic to retrieve attributes for.
 */
export const getTopicAttributes = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new GetTopicAttributesCommand({
 TopicArn: topicArn,

Actions 687

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/GetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '36b6a24e-5473-5d4e-ac32-ff72d9a73d94',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Attributes: {
 // Policy: '{...}',
 // Owner: 'xxxxxxxxxxxx',
 // SubscriptionsPending: '1',
 // TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic',
 // TracingConfig: 'PassThrough',
 // EffectiveDeliveryPolicy: '{"http":{"defaultHealthyRetryPolicy":
{"minDelayTarget":20,"maxDelayTarget":20,"numRetries":3,"numMaxDelayRetries":0,"numNoDelayRetries":0,"numMinDelayRetries":0,"backoffFunction":"linear"},"disableSubscriptionOverrides":false,"defaultRequestPolicy":
{"headerContentType":"text/plain; charset=UTF-8"}}}',
 // SubscriptionsConfirmed: '0',
 // DisplayName: '',
 // SubscriptionsDeleted: '1'
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetTopicAttributes in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Import the SDK and client modules and call the API.

Actions 688

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsgetttopicattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/GetTopicAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var getTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .getTopicAttributes({ TopicArn: "TOPIC_ARN" })
 .promise();

// Handle promise's fulfilled/rejected states
getTopicAttribsPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetTopicAttributes in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun getSNSTopicAttributes(topicArnVal: String) {
 val request =
 GetTopicAttributesRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->

Actions 689

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsgetttopicattributes
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sns-2010-03-31/GetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 val result = snsClient.getTopicAttributes(request)
 println("${result.attributes}")
 }
}

• For API details, see GetTopicAttributes in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->getTopicAttributes([
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see GetTopicAttributes in AWS SDK for PHP API Reference.

Actions 690

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/GetTopicAttributes

Amazon Simple Notification Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->gettopicattributes(iv_topicarn = iv_topic_arn). "
 oo_result is returned for testing purposes. "
 DATA(lt_attributes) = oo_result->get_attributes().
 MESSAGE 'Retrieved attributes/properties of a topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see GetTopicAttributes in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListPhoneNumbersOptedOut with an AWS SDK or CLI

The following code examples show how to use ListPhoneNumbersOptedOut.

CLI

AWS CLI

To list SMS message opt-outs

The following list-phone-numbers-opted-out example lists the phone numbers opted
out of receiving SMS messages.

aws sns list-phone-numbers-opted-out

Actions 691

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

Output:

{
 "phoneNumbers": [
 "+15555550100"
]
}

• For API details, see ListPhoneNumbersOptedOut in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.ListPhoneNumbersOptedOutRequest;
import
 software.amazon.awssdk.services.sns.model.ListPhoneNumbersOptedOutResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListOptOut {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

Actions 692

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-phone-numbers-opted-out.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 listOpts(snsClient);
 snsClient.close();
 }

 public static void listOpts(SnsClient snsClient) {
 try {
 ListPhoneNumbersOptedOutRequest request =
 ListPhoneNumbersOptedOutRequest.builder().build();
 ListPhoneNumbersOptedOutResponse result =
 snsClient.listPhoneNumbersOptedOut(request);
 System.out.println("Status is " +
 result.sdkHttpResponse().statusCode() + "\n\nPhone Numbers: \n\n"
 + result.phoneNumbers());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListPhoneNumbersOptedOut in AWS SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**

Actions 693

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListPhoneNumbersOptedOut
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * Returns a list of phone numbers that are opted out of receiving SMS messages
 from your AWS SNS account.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->listPhoneNumbersOptedOut();
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see ListPhoneNumbersOptedOut in AWS SDK for PHP API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListSubscriptions with an AWS SDK or CLI

The following code examples show how to use ListSubscriptions.

Actions 694

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#list-opted-out-phone-numbers
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/ListPhoneNumbersOptedOut

Amazon Simple Notification Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example will retrieve a list of the existing Amazon Simple
 /// Notification Service (Amazon SNS) subscriptions.
 /// </summary>
 public class ListSubscriptions
 {
 public static async Task Main()
 {
 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 Console.WriteLine("Enter a topic ARN to list subscriptions for a
 specific topic, " +
 "or press Enter to list subscriptions for all
 topics.");
 var topicArn = Console.ReadLine();
 Console.WriteLine();

 var subscriptions = await GetSubscriptionsListAsync(client,
 topicArn);

 DisplaySubscriptionList(subscriptions);
 }

 /// <summary>

Actions 695

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// Gets a list of the existing Amazon SNS subscriptions, optionally by
 specifying a topic ARN.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used
 /// to obtain the list of subscriptions.</param>
 /// <param name="topicArn">The optional ARN of a specific topic. Defaults
 to null.</param>
 /// <returns>A list containing information about each subscription.</
returns>
 public static async Task<List<Subscription>>
 GetSubscriptionsListAsync(IAmazonSimpleNotificationService client, string
 topicArn = null)
 {
 var results = new List<Subscription>();

 if (!string.IsNullOrEmpty(topicArn))
 {
 var paginateByTopic = client.Paginators.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest()
 {
 TopicArn = topicArn,
 });

 // Get the entire list using the paginator.
 await foreach (var subscription in paginateByTopic.Subscriptions)
 {
 results.Add(subscription);
 }
 }
 else
 {
 var paginateAllSubscriptions =
 client.Paginators.ListSubscriptions(new ListSubscriptionsRequest());

 // Get the entire list using the paginator.
 await foreach (var subscription in
 paginateAllSubscriptions.Subscriptions)
 {
 results.Add(subscription);
 }
 }

 return results;
 }

Actions 696

Amazon Simple Notification Service Developer Guide

 /// <summary>
 /// Display a list of Amazon SNS subscription information.
 /// </summary>
 /// <param name="subscriptionList">A list containing details for existing
 /// Amazon SNS subscriptions.</param>
 public static void DisplaySubscriptionList(List<Subscription>
 subscriptionList)
 {
 foreach (var subscription in subscriptionList)
 {
 Console.WriteLine($"Owner: {subscription.Owner}");
 Console.WriteLine($"Subscription ARN:
 {subscription.SubscriptionArn}");
 Console.WriteLine($"Topic ARN: {subscription.TopicArn}");
 Console.WriteLine($"Endpoint: {subscription.Endpoint}");
 Console.WriteLine($"Protocol: {subscription.Protocol}");
 Console.WriteLine();
 }
 }
 }

• For API details, see ListSubscriptions in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Retrieve a list of Amazon Simple Notification Service (Amazon SNS)
 subscriptions.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

Actions 697

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

bool AwsDoc::SNS::listSubscriptions(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::String nextToken; // Next token is used to handle a paginated response.
 bool result = true;
 Aws::Vector<Aws::SNS::Model::Subscription> subscriptions;
 do {
 Aws::SNS::Model::ListSubscriptionsRequest request;

 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 const Aws::SNS::Model::ListSubscriptionsOutcome outcome =
 snsClient.ListSubscriptions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::SNS::Model::Subscription> &newSubscriptions =
 outcome.GetResult().GetSubscriptions();
 subscriptions.insert(subscriptions.cend(), newSubscriptions.begin(),
 newSubscriptions.end());
 }
 else {
 std::cerr << "Error listing subscriptions "
 << outcome.GetError().GetMessage()
 <<
 std::endl;
 result = false;
 break;
 }

 nextToken = outcome.GetResult().GetNextToken();
 } while (!nextToken.empty());

 if (result) {
 if (subscriptions.empty()) {
 std::cout << "No subscriptions found" << std::endl;
 }
 else {
 std::cout << "Subscriptions list:" << std::endl;
 for (auto const &subscription: subscriptions) {

Actions 698

Amazon Simple Notification Service Developer Guide

 std::cout << " * " << subscription.GetSubscriptionArn() <<
 std::endl;
 }
 }
 }
 return result;
}

• For API details, see ListSubscriptions in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list your SNS subscriptions

The following list-subscriptions example displays a list of the SNS subscriptions in
your AWS account.

aws sns list-subscriptions

Output:

{
 "Subscriptions": [
 {
 "Owner": "123456789012",
 "Endpoint": "my-email@example.com",
 "Protocol": "email",
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic",
 "SubscriptionArn": "arn:aws:sns:us-west-2:123456789012:my-
topic:8a21d249-4329-4871-acc6-7be709c6ea7f"
 }
]
}

• For API details, see ListSubscriptions in AWS CLI Command Reference.

Actions 699

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/ListSubscriptions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-subscriptions.html

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.ListSubscriptionsRequest;
import software.amazon.awssdk.services.sns.model.ListSubscriptionsResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListSubscriptions {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listSNSSubscriptions(snsClient);
 snsClient.close();
 }

 public static void listSNSSubscriptions(SnsClient snsClient) {
 try {
 ListSubscriptionsRequest request = ListSubscriptionsRequest.builder()
 .build();

 ListSubscriptionsResponse result =
 snsClient.listSubscriptions(request);

Actions 700

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 System.out.println(result.subscriptions());

 } catch (SnsException e) {

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListSubscriptions in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { ListSubscriptionsByTopicCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to list
 subscriptions.

Actions 701

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 */
export const listSubscriptionsByTopic = async (topicArn = "TOPIC_ARN") => {
 const response = await snsClient.send(
 new ListSubscriptionsByTopicCommand({ TopicArn: topicArn }),
);

 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0934fedf-0c4b-572e-9ed2-a3e38fadb0c8',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Subscriptions: [
 // {
 // SubscriptionArn: 'PendingConfirmation',
 // Owner: '901487484989',
 // Protocol: 'email',
 // Endpoint: 'corepyle@amazon.com',
 // TopicArn: 'arn:aws:sns:us-east-1:901487484989:mytopic'
 // }
 //]
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListSubscriptions in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 702

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsgetttopicattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/ListSubscriptionsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

suspend fun listSNSSubscriptions() {
 SnsClient { region = "us-east-1" }.use { snsClient ->
 val response = snsClient.listSubscriptions(ListSubscriptionsRequest {})
 response.subscriptions?.forEach { sub ->
 println("Sub ARN is ${sub.subscriptionArn}")
 println("Sub protocol is ${sub.protocol}")
 }
 }
}

• For API details, see ListSubscriptions in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Returns a list of Amazon SNS subscriptions in the requested region.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'

Actions 703

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

]);

try {
 $result = $SnSclient->listSubscriptions();
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see ListSubscriptions in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def list_subscriptions(self, topic=None):
 """
 Lists subscriptions for the current account, optionally limited to a
 specific topic.

 :param topic: When specified, only subscriptions to this topic are
 returned.
 :return: An iterator that yields the subscriptions.

Actions 704

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 """
 try:
 if topic is None:
 subs_iter = self.sns_resource.subscriptions.all()
 else:
 subs_iter = topic.subscriptions.all()
 logger.info("Got subscriptions.")
 except ClientError:
 logger.exception("Couldn't get subscriptions.")
 raise
 else:
 return subs_iter

• For API details, see ListSubscriptions in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This class demonstrates how to list subscriptions to an Amazon Simple
 Notification Service (SNS) topic
class SnsSubscriptionLister
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Lists subscriptions for a given SNS topic
 # @param topic_arn [String] The ARN of the SNS topic
 # @return [Types::ListSubscriptionsResponse] subscriptions: The response object
 def list_subscriptions(topic_arn)
 @logger.info("Listing subscriptions for topic: #{topic_arn}")
 subscriptions = @sns_client.list_subscriptions_by_topic(topic_arn: topic_arn)
 subscriptions.subscriptions.each do |subscription|

Actions 705

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 @logger.info("Subscription endpoint: #{subscription.endpoint}")
 end
 subscriptions
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error listing subscriptions: #{e.message}")
 raise
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 sns_client = Aws::SNS::Client.new
 topic_arn = 'SNS_TOPIC_ARN' # Replace with your SNS topic ARN
 lister = SnsSubscriptionLister.new(sns_client)

 begin
 lister.list_subscriptions(topic_arn)
 rescue StandardError => e
 puts "Failed to list subscriptions: #{e.message}"
 exit 1
 end
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see ListSubscriptions in AWS SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->listsubscriptions(). " oo_result is
 returned for testing purposes. "
 DATA(lt_subscriptions) = oo_result->get_subscriptions().

Actions 706

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-show-subscriptions.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/ListSubscriptions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 MESSAGE 'Retrieved list of subscribers.' TYPE 'I'.
 CATCH /aws1/cx_rt_generic.
 MESSAGE 'Unable to list subscribers.' TYPE 'E'.
 ENDTRY.

• For API details, see ListSubscriptions in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListTopics with an AWS SDK or CLI

The following code examples show how to use ListTopics.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// Lists the Amazon Simple Notification Service (Amazon SNS)
 /// topics for the current account.
 /// </summary>
 public class ListSNSTopics
 {
 public static async Task Main()
 {

Actions 707

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await GetTopicListAsync(client);
 }

 /// <summary>
 /// Retrieves the list of Amazon SNS topics in groups of up to 100
 /// topics.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object used
 /// to retrieve the list of topics.</param>
 public static async Task
 GetTopicListAsync(IAmazonSimpleNotificationService client)
 {
 // If there are more than 100 Amazon SNS topics, the call to
 // ListTopicsAsync will return a value to pass to the
 // method to retrieve the next 100 (or less) topics.
 string nextToken = string.Empty;

 do
 {
 var response = await client.ListTopicsAsync(nextToken);
 DisplayTopicsList(response.Topics);
 nextToken = response.NextToken;
 }
 while (!string.IsNullOrEmpty(nextToken));
 }

 /// <summary>
 /// Displays the list of Amazon SNS Topic ARNs.
 /// </summary>
 /// <param name="topicList">The list of Topic ARNs.</param>
 public static void DisplayTopicsList(List<Topic> topicList)
 {
 foreach (var topic in topicList)
 {
 Console.WriteLine($"{topic.TopicArn}");
 }
 }
 }

Actions 708

Amazon Simple Notification Service Developer Guide

• For API details, see ListTopics in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Retrieve a list of Amazon Simple Notification Service (Amazon SNS) topics.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::SNS::listTopics(const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::String nextToken; // Next token is used to handle a paginated response.
 bool result = true;
 do {
 Aws::SNS::Model::ListTopicsRequest request;

 if (!nextToken.empty()) {
 request.SetNextToken(nextToken);
 }

 const Aws::SNS::Model::ListTopicsOutcome outcome = snsClient.ListTopics(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "Topics list:" << std::endl;
 for (auto const &topic: outcome.GetResult().GetTopics()) {
 std::cout << " * " << topic.GetTopicArn() << std::endl;
 }
 }
 else {

Actions 709

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 std::cerr << "Error listing topics " <<
 outcome.GetError().GetMessage() <<
 std::endl;
 result = false;
 break;
 }

 nextToken = outcome.GetResult().GetNextToken();
 } while (!nextToken.empty());

 return result;
}

• For API details, see ListTopics in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list your SNS topics

The following list-topics example lists all of SNS topics in your AWS account.

aws sns list-topics

Output:

{
 "Topics": [
 {
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:my-topic"
 }
]
}

• For API details, see ListTopics in AWS CLI Command Reference.

Actions 710

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/ListTopics
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/list-topics.html

Amazon Simple Notification Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 snsClient := sns.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the topics for your account.")
 var topics []types.Topic
 paginator := sns.NewListTopicsPaginator(snsClient, &sns.ListTopicsInput{})
 for paginator.HasMorePages() {

Actions 711

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sns#code-examples

Amazon Simple Notification Service Developer Guide

 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get topics. Here's why: %v\n", err)
 break
 } else {
 topics = append(topics, output.Topics...)
 }
 }
 if len(topics) == 0 {
 fmt.Println("You don't have any topics!")
 } else {
 for _, topic := range topics {
 fmt.Printf("\t%v\n", *topic.TopicArn)
 }
 }
}

• For API details, see ListTopics in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.ListTopicsRequest;
import software.amazon.awssdk.services.sns.model.ListTopicsResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Actions 712

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListTopics {
 public static void main(String[] args) {
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listSNSTopics(snsClient);
 snsClient.close();
 }

 public static void listSNSTopics(SnsClient snsClient) {
 try {
 ListTopicsRequest request = ListTopicsRequest.builder()
 .build();

 ListTopicsResponse result = snsClient.listTopics(request);
 System.out.println(
 "Status was " + result.sdkHttpResponse().statusCode() + "\n
\nTopics\n\n" + result.topics());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListTopics in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 713

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { ListTopicsCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

export const listTopics = async () => {
 const response = await snsClient.send(new ListTopicsCommand({}));
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '936bc5ad-83ca-53c2-b0b7-9891167b909e',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Topics: [{ TopicArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic' }]
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListTopics in AWS SDK for JavaScript API Reference.

Actions 714

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topics-listtopics
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/ListTopicsCommand

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listSNSTopics() {
 SnsClient { region = "us-east-1" }.use { snsClient ->
 val response = snsClient.listTopics(ListTopicsRequest { })
 response.topics?.forEach { topic ->
 println("The topic ARN is ${topic.topicArn}")
 }
 }
}

• For API details, see ListTopics in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**

Actions 715

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 * Returns a list of the requester's topics from your AWS SNS account in the
 region specified.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->listTopics();
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see ListTopics in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.

Actions 716

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 """
 self.sns_resource = sns_resource

 def list_topics(self):
 """
 Lists topics for the current account.

 :return: An iterator that yields the topics.
 """
 try:
 topics_iter = self.sns_resource.topics.all()
 logger.info("Got topics.")
 except ClientError:
 logger.exception("Couldn't get topics.")
 raise
 else:
 return topics_iter

• For API details, see ListTopics in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'aws-sdk-sns' # v2: require 'aws-sdk'

def list_topics?(sns_client)
 sns_client.topics.each do |topic|
 puts topic.arn
 rescue StandardError => e
 puts "Error while listing the topics: #{e.message}"
 end

Actions 717

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

end

def run_me
 region = 'REGION'
 sns_client = Aws::SNS::Resource.new(region: region)

 puts 'Listing the topics.'

 return if list_topics?(sns_client)

 puts 'The bucket was not created. Stopping program.'
 exit 1
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see ListTopics in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_topics(client: &Client) -> Result<(), Error> {
 let resp = client.list_topics().send().await?;

 println!("Topic ARNs:");

 for topic in resp.topics() {
 println!("{}", topic.topic_arn().unwrap_or_default());
 }

Actions 718

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-show-topics.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/ListTopics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Ok(())
}

• For API details, see ListTopics in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->listtopics(). " oo_result is returned for
 testing purposes. "
 DATA(lt_topics) = oo_result->get_topics().
 MESSAGE 'Retrieved list of topics.' TYPE 'I'.
 CATCH /aws1/cx_rt_generic.
 MESSAGE 'Unable to list topics.' TYPE 'E'.
 ENDTRY.

• For API details, see ListTopics in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Publish with an AWS SDK or CLI

The following code examples show how to use Publish.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and publish to a FIFO topic

Actions 719

https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.list_topics
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

• Publish an SMS text message

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Publish a message to a topic.

 using System;
 using System.Threading.Tasks;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 /// <summary>
 /// This example publishes a message to an Amazon Simple Notification
 /// Service (Amazon SNS) topic.
 /// </summary>
 public class PublishToSNSTopic
 {
 public static async Task Main()
 {
 string topicArn = "arn:aws:sns:us-
east-2:000000000000:ExampleSNSTopic";
 string messageText = "This is an example message to publish to the
 ExampleSNSTopic.";

 IAmazonSimpleNotificationService client = new
 AmazonSimpleNotificationServiceClient();

 await PublishToTopicAsync(client, topicArn, messageText);
 }

 /// <summary>
 /// Publishes a message to an Amazon SNS topic.

Actions 720

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// </summary>
 /// <param name="client">The initialized client object used to publish
 /// to the Amazon SNS topic.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="messageText">The text of the message.</param>
 public static async Task PublishToTopicAsync(
 IAmazonSimpleNotificationService client,
 string topicArn,
 string messageText)
 {
 var request = new PublishRequest
 {
 TopicArn = topicArn,
 Message = messageText,
 };

 var response = await client.PublishAsync(request);

 Console.WriteLine($"Successfully published message ID:
 {response.MessageId}");
 }
 }

Publish a message to a topic with group, duplication, and attribute options.

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;
 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is
 a sample message");

Actions 721

Amazon Simple Notification Service Developer Guide

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must
 set a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID
 for this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this
 message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID
 for this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];
 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(

Actions 722

Amazon Simple Notification Service Developer Guide

 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?",
 false);
 }
 }

Apply the user's selections to the publish action.

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</
param>
 /// <param name="attributeValue">The optional attribute value for the
 message.</param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

Actions 723

Amazon Simple Notification Service Developer Guide

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await
 _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

• For API details, see Publish in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Send a message to an Amazon Simple Notification Service (Amazon SNS) topic.
/*!
 \param message: The message to publish.
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::publishToTopic(const Aws::String &message,
 const Aws::String &topicARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

Actions 724

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Aws::SNS::Model::PublishRequest request;
 request.SetMessage(message);
 request.SetTopicArn(topicARN);

 const Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Message published successfully with id '"
 << outcome.GetResult().GetMessageId() << "'." << std::endl;
 }
 else {
 std::cerr << "Error while publishing message "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Publish a message with an attribute.

 static const Aws::String TONE_ATTRIBUTE("tone");
 static const Aws::Vector<Aws::String> TONES = {"cheerful", "funny",
 "serious",
 "sincere"};

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::PublishRequest request;
 request.SetTopicArn(topicARN);
 Aws::String message = askQuestion("Enter a message text to publish. ");
 request.SetMessage(message);

 if (filteringMessages && askYesNoQuestion(
 "Add an attribute to this message? (y/n) ")) {
 for (size_t i = 0; i < TONES.size(); ++i) {
 std::cout << " " << (i + 1) << ". " << TONES[i] << std::endl;

Actions 725

Amazon Simple Notification Service Developer Guide

 }
 int selection = askQuestionForIntRange(
 "Enter a number for an attribute. ",
 1, static_cast<int>(TONES.size()));
 Aws::SNS::Model::MessageAttributeValue messageAttributeValue;
 messageAttributeValue.SetDataType("String");
 messageAttributeValue.SetStringValue(TONES[selection - 1]);
 request.AddMessageAttributes(TONE_ATTRIBUTE, messageAttributeValue);
 }

 Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Your message was successfully published." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Publish. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

• For API details, see Publish in AWS SDK for C++ API Reference.

CLI

AWS CLI

Example 1: To publish a message to a topic

The following publish example publishes the specified message to the specified SNS topic.
The message comes from a text file, which enables you to include line breaks.

aws sns publish \
 --topic-arn "arn:aws:sns:us-west-2:123456789012:my-topic" \

Actions 726

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish

Amazon Simple Notification Service Developer Guide

 --message file://message.txt

Contents of message.txt:

Hello World
Second Line

Output:

{
 "MessageId": "123a45b6-7890-12c3-45d6-111122223333"
}

Example 2: To publish an SMS message to a phone number

The following publish example publishes the message Hello world! to the phone
number +1-555-555-0100.

aws sns publish \
 --message "Hello world!" \
 --phone-number +1-555-555-0100

Output:

{
 "MessageId": "123a45b6-7890-12c3-45d6-333322221111"
}

• For API details, see Publish in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 727

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/publish.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

// Publish publishes a message to an Amazon SNS topic. The message is then sent
 to all
// subscribers. When the topic is a FIFO topic, the message must also contain a
 group ID
// and, when ID-based deduplication is used, a deduplication ID. An optional key-
value
// filter attribute can be specified so that the message can be filtered
 according to
// a filter policy.
func (actor SnsActions) Publish(ctx context.Context, topicArn string, message
 string, groupId string, dedupId string, filterKey string, filterValue string)
 error {
 publishInput := sns.PublishInput{TopicArn: aws.String(topicArn), Message:
 aws.String(message)}
 if groupId != "" {
 publishInput.MessageGroupId = aws.String(groupId)
 }
 if dedupId != "" {
 publishInput.MessageDeduplicationId = aws.String(dedupId)
 }
 if filterKey != "" && filterValue != "" {
 publishInput.MessageAttributes = map[string]types.MessageAttributeValue{

Actions 728

Amazon Simple Notification Service Developer Guide

 filterKey: {DataType: aws.String("String"), StringValue:
 aws.String(filterValue)},
 }
 }
 _, err := actor.SnsClient.Publish(ctx, &publishInput)
 if err != nil {
 log.Printf("Couldn't publish message to topic %v. Here's why: %v", topicArn,
 err)
 }
 return err
}

• For API details, see Publish in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTopic {

Actions 729

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <topicArn>

 Where:
 message - The message text to send.
 topicArn - The ARN of the topic to publish.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String topicArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTopic(snsClient, message, topicArn);
 snsClient.close();
 }

 public static void pubTopic(SnsClient snsClient, String message, String
 topicArn) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .topicArn(topicArn)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status is " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Actions 730

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { PublishCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string | Record<string, any>} message - The message to send. Can be a
 plain string or an object
 * if you are using the `json`
 `MessageStructure`.
 * @param {string} topicArn - The ARN of the topic to which you would like to
 publish.
 */
export const publish = async (
 message = "Hello from SNS!",
 topicArn = "TOPIC_ARN",
) => {

Actions 731

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 const response = await snsClient.send(
 new PublishCommand({
 Message: message,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'e7f77526-e295-5325-9ee4-281a43ad1f05',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // MessageId: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

Publish a message to a topic with group, duplication, and attribute options.

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,

Actions 732

Amazon Simple Notification Service Developer Guide

 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

Actions 733

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Publish in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun pubTopic(
 topicArnVal: String,
 messageVal: String,
) {
 val request =
 PublishRequest {
 message = messageVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

• For API details, see Publish in AWS SDK for Kotlin API reference.

Actions 734

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-publishing-messages.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Sends a message to an Amazon SNS topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$message = 'This message is sent from a Amazon SNS code sample.';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->publish([
 'Message' => $message,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());

Actions 735

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Publish in AWS SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This example shows publishing a message with a single MessageAttribute
declared inline.

Publish-SNSMessage -TopicArn "arn:aws:sns:us-west-2:123456789012:my-topic" -
Message "Hello" -MessageAttribute
 @{'City'=[Amazon.SimpleNotificationService.Model.MessageAttributeValue]@{DataType='String';
 StringValue ='AnyCity'}}

Example 2: This example shows publishing a message with multiple MessageAttributes
declared in advance.

$cityAttributeValue = New-Object
 Amazon.SimpleNotificationService.Model.MessageAttributeValue
$cityAttributeValue.DataType = "String"
$cityAttributeValue.StringValue = "AnyCity"

$populationAttributeValue = New-Object
 Amazon.SimpleNotificationService.Model.MessageAttributeValue
$populationAttributeValue.DataType = "Number"
$populationAttributeValue.StringValue = "1250800"

$messageAttributes = New-Object System.Collections.Hashtable
$messageAttributes.Add("City", $cityAttributeValue)
$messageAttributes.Add("Population", $populationAttributeValue)

Publish-SNSMessage -TopicArn "arn:aws:sns:us-west-2:123456789012:my-topic" -
Message "Hello" -MessageAttribute $messageAttributes

• For API details, see Publish in AWS Tools for PowerShell Cmdlet Reference.

Actions 736

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-subscribing-unsubscribing-topics.html#publish-a-message-to-an-sns-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Notification Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Publish a message with attributes so that a subscription can filter based on attributes.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def publish_message(topic, message, attributes):
 """
 Publishes a message, with attributes, to a topic. Subscriptions can be
 filtered
 based on message attributes so that a subscription receives messages only
 when specified attributes are present.

 :param topic: The topic to publish to.
 :param message: The message to publish.
 :param attributes: The key-value attributes to attach to the message.
 Values
 must be either `str` or `bytes`.
 :return: The ID of the message.
 """
 try:
 att_dict = {}
 for key, value in attributes.items():
 if isinstance(value, str):
 att_dict[key] = {"DataType": "String", "StringValue": value}
 elif isinstance(value, bytes):

Actions 737

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 att_dict[key] = {"DataType": "Binary", "BinaryValue": value}
 response = topic.publish(Message=message, MessageAttributes=att_dict)
 message_id = response["MessageId"]
 logger.info(
 "Published message with attributes %s to topic %s.",
 attributes,
 topic.arn,
)
 except ClientError:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise
 else:
 return message_id

Publish a message that takes different forms based on the protocol of the subscriber.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def publish_multi_message(
 topic, subject, default_message, sms_message, email_message
):
 """
 Publishes a multi-format message to a topic. A multi-format message takes
 different forms based on the protocol of the subscriber. For example,
 an SMS subscriber might receive a short version of the message
 while an email subscriber could receive a longer version.

 :param topic: The topic to publish to.
 :param subject: The subject of the message.
 :param default_message: The default version of the message. This version
 is

Actions 738

Amazon Simple Notification Service Developer Guide

 sent to subscribers that have protocols that are
 not
 otherwise specified in the structured message.
 :param sms_message: The version of the message sent to SMS subscribers.
 :param email_message: The version of the message sent to email
 subscribers.
 :return: The ID of the message.
 """
 try:
 message = {
 "default": default_message,
 "sms": sms_message,
 "email": email_message,
 }
 response = topic.publish(
 Message=json.dumps(message), Subject=subject,
 MessageStructure="json"
)
 message_id = response["MessageId"]
 logger.info("Published multi-format message to topic %s.", topic.arn)
 except ClientError:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise
 else:
 return message_id

• For API details, see Publish in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 739

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

Service class for sending messages using Amazon Simple Notification Service
 (SNS)
class SnsMessageSender
 # Initializes the SnsMessageSender with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Sends a message to a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param message [String] The message to send
 # @return [Boolean] true if message was successfully sent, false otherwise
 def send_message(topic_arn, message)
 @sns_client.publish(topic_arn: topic_arn, message: message)
 @logger.info("Message sent successfully to #{topic_arn}.")
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while sending the message: #{e.message}")
 false
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'SNS_TOPIC_ARN' # Should be replaced with a real topic ARN
 message = 'MESSAGE' # Should be replaced with the actual message
 content

 sns_client = Aws::SNS::Client.new
 message_sender = SnsMessageSender.new(sns_client)

 @logger.info('Sending message.')
 unless message_sender.send_message(topic_arn, message)
 @logger.error('Message sending failed. Stopping program.')
 exit 1
 end
end

Actions 740

Amazon Simple Notification Service Developer Guide

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see Publish in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn subscribe_and_publish(
 client: &Client,
 topic_arn: &str,
 email_address: &str,
) -> Result<(), Error> {
 println!("Receiving on topic with ARN: `{}`", topic_arn);

 let rsp = client
 .subscribe()
 .topic_arn(topic_arn)
 .protocol("email")
 .endpoint(email_address)
 .send()
 .await?;

 println!("Added a subscription: {:?}", rsp);

 let rsp = client
 .publish()
 .topic_arn(topic_arn)
 .message("hello sns!")
 .send()
 .await?;

 println!("Published message: {:?}", rsp);

 Ok(())
}

Actions 741

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-send-message.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Publish in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sns->publish(" oo_result is returned for
 testing purposes. "
 iv_topicarn = iv_topic_arn
 iv_message = iv_message
).
 MESSAGE 'Message published to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see Publish in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetSMSAttributes with an AWS SDK or CLI

The following code examples show how to use SetSMSAttributes.

Actions 742

https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

How to use Amazon SNS to set the DefaultSMSType attribute.

//! Set the default settings for sending SMS messages.
/*!
 \param smsType: The type of SMS message that you will send by default.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::setSMSType(const Aws::String &smsType,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SetSMSAttributesRequest request;
 request.AddAttributes("DefaultSMSType", smsType);

 const Aws::SNS::Model::SetSMSAttributesOutcome outcome =
 snsClient.SetSMSAttributes(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "SMS Type set successfully " << std::endl;
 }
 else {
 std::cerr << "Error while setting SMS Type: '"
 << outcome.GetError().GetMessage()
 << "'" << std::endl;
 }

 return outcome.IsSuccess();
}

Actions 743

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see SetSMSAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To set SMS message attributes

The following set-sms-attributes example sets the default sender ID for SMS messages
to MyName.

aws sns set-sms-attributes \
 --attributes DefaultSenderID=MyName

This command produces no output.

• For API details, see SetSMSAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Actions 744

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/SetSMSAttributes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-sms-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SetSMSAttributes {
 public static void main(String[] args) {
 HashMap<String, String> attributes = new HashMap<>(1);
 attributes.put("DefaultSMSType", "Transactional");
 attributes.put("UsageReportS3Bucket", "janbucket");

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 setSNSAttributes(snsClient, attributes);
 snsClient.close();
 }

 public static void setSNSAttributes(SnsClient snsClient, HashMap<String,
 String> attributes) {
 try {
 SetSmsAttributesRequest request = SetSmsAttributesRequest.builder()
 .attributes(attributes)
 .build();

 SetSmsAttributesResponse result =
 snsClient.setSMSAttributes(request);
 System.out.println("Set default Attributes to " + attributes + ".
 Status was "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SetSMSAttributes in AWS SDK for Java 2.x API Reference.

Actions 745

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetSMSAttributes

Amazon Simple Notification Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { SetSMSAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {"Transactional" | "Promotional"} defaultSmsType
 */
export const setSmsType = async (defaultSmsType = "Transactional") => {
 const response = await snsClient.send(
 new SetSMSAttributesCommand({
 attributes: {
 // Promotional – (Default) Noncritical messages, such as marketing
 messages.
 // Transactional – Critical messages that support customer transactions,
 // such as one-time passcodes for multi-factor authentication.
 DefaultSMSType: defaultSmsType,
 },
 }),
);
 console.log(response);
 // {

Actions 746

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '1885b977-2d7e-535e-8214-e44be727e265',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SetSMSAttributes in AWS SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

try {
 $result = $SnSclient->SetSMSAttributes([
 'attributes' => [
 'DefaultSMSType' => 'Transactional',
],
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails

Actions 747

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-sending-sms.html#sending-sms-setattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SetSMSAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see SetSMSAttributes in AWS SDK for PHP API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetSubscriptionAttributes with an AWS SDK or CLI

The following code examples show how to use SetSubscriptionAttributes.

CLI

AWS CLI

To set subscription attributes

The following set-subscription-attributes example sets the RawMessageDelivery
attribute to an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \
 --attribute-name RawMessageDelivery \
 --attribute-value true

This command produces no output.

The following set-subscription-attributes example sets a FilterPolicy attribute
to an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \
 --attribute-name FilterPolicy \
 --attribute-value "{ \"anyMandatoryKey\": [\"any\", \"of\", \"these\"] }"

Actions 748

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#set-sms-attributes
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/SetSMSAttributes

Amazon Simple Notification Service Developer Guide

This command produces no output.

The following set-subscription-attributes example removes the FilterPolicy
attribute from an SQS subscription.

aws sns set-subscription-attributes \
 --subscription-arn arn:aws:sns:us-
east-1:123456789012:mytopic:f248de18-2cf6-578c-8592-b6f1eaa877dc \
 --attribute-name FilterPolicy \
 --attribute-value "{}"

This command produces no output.

• For API details, see SetSubscriptionAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.ArrayList;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class UseMessageFilterPolicy {
 public static void main(String[] args) {
 final String usage = """

Actions 749

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-subscription-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 Usage: <subscriptionArn>

 Where:
 subscriptionArn - The ARN of a subscription.

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String subscriptionArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 usePolicy(snsClient, subscriptionArn);
 snsClient.close();
 }

 public static void usePolicy(SnsClient snsClient, String subscriptionArn) {
 try {
 SNSMessageFilterPolicy fp = new SNSMessageFilterPolicy();
 // Add a filter policy attribute with a single value
 fp.addAttribute("store", "example_corp");
 fp.addAttribute("event", "order_placed");

 // Add a prefix attribute
 fp.addAttributePrefix("customer_interests", "bas");

 // Add an anything-but attribute
 fp.addAttributeAnythingBut("customer_interests", "baseball");

 // Add a filter policy attribute with a list of values
 ArrayList<String> attributeValues = new ArrayList<>();
 attributeValues.add("rugby");
 attributeValues.add("soccer");
 attributeValues.add("hockey");
 fp.addAttribute("customer_interests", attributeValues);

 // Add a numeric attribute
 fp.addAttribute("price_usd", "=", 0);

Actions 750

Amazon Simple Notification Service Developer Guide

 // Add a numeric attribute with a range
 fp.addAttributeRange("price_usd", ">", 0, "<=", 100);

 // Apply the filter policy attributes to an Amazon SNS subscription
 fp.apply(snsClient, subscriptionArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SetSubscriptionAttributes in AWS SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def add_subscription_filter(subscription, attributes):
 """
 Adds a filter policy to a subscription. A filter policy is a key and a

Actions 751

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetSubscriptionAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 list of values that are allowed. When a message is published, it must
 have an
 attribute that passes the filter or it will not be sent to the
 subscription.

 :param subscription: The subscription the filter policy is attached to.
 :param attributes: A dictionary of key-value pairs that define the
 filter.
 """
 try:
 att_policy = {key: [value] for key, value in attributes.items()}
 subscription.set_attributes(
 AttributeName="FilterPolicy",
 AttributeValue=json.dumps(att_policy)
)
 logger.info("Added filter to subscription %s.", subscription.arn)
 except ClientError:
 logger.exception(
 "Couldn't add filter to subscription %s.", subscription.arn
)
 raise

• For API details, see SetSubscriptionAttributes in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetSubscriptionAttributesRedrivePolicy with an AWS SDK

The following code example shows how to use SetSubscriptionAttributesRedrivePolicy.

Actions 752

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/SetSubscriptionAttributes

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 1.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// Specify the ARN of the Amazon SNS subscription.
String subscriptionArn =
 "arn:aws:sns:us-east-2:123456789012:MyEndpoint:1234a567-
bc89-012d-3e45-6fg7h890123i";

// Specify the ARN of the Amazon SQS queue to use as a dead-letter queue.
String redrivePolicy =
 "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-2:123456789012:MyDeadLetterQueue\"}";

// Set the specified Amazon SQS queue as a dead-letter queue
// of the specified Amazon SNS subscription by setting the RedrivePolicy
 attribute.
SetSubscriptionAttributesRequest request = new SetSubscriptionAttributesRequest()
 .withSubscriptionArn(subscriptionArn)
 .withAttributeName("RedrivePolicy")
 .withAttributeValue(redrivePolicy);
sns.setSubscriptionAttributes(request);

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetTopicAttributes with an AWS SDK or CLI

The following code examples show how to use SetTopicAttributes.

Actions 753

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/java/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

CLI

AWS CLI

To set an attribute for a topic

The following set-topic-attributes example sets the DisplayName attribute for the
specified topic.

aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --attribute-name DisplayName \
 --attribute-value MyTopicDisplayName

This command produces no output.

• For API details, see SetTopicAttributes in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetTopicAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetTopicAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html

Actions 754

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/set-topic-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 */
public class SetTopicAttributes {

 public static void main(String[] args) {
 final String usage = """

 Usage: <attribute> <topicArn> <value>

 Where:
 attribute - The attribute action to use. Valid parameters are:
 Policy | DisplayName | DeliveryPolicy .
 topicArn - The ARN of the topic.\s
 value - The value for the attribute.
 """;

 if (args.length < 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String attribute = args[0];
 String topicArn = args[1];
 String value = args[2];

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 setTopAttr(snsClient, attribute, topicArn, value);
 snsClient.close();
 }

 public static void setTopAttr(SnsClient snsClient, String attribute, String
 topicArn, String value) {
 try {
 SetTopicAttributesRequest request =
 SetTopicAttributesRequest.builder()
 .attributeName(attribute)
 .attributeValue(value)
 .topicArn(topicArn)
 .build();

 SetTopicAttributesResponse result =
 snsClient.setTopicAttributes(request);

Actions 755

Amazon Simple Notification Service Developer Guide

 System.out.println(
 "\n\nStatus was " + result.sdkHttpResponse().statusCode() +
 "\n\nTopic " + request.topicArn()
 + " updated " + request.attributeName() + " to " +
 request.attributeValue());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SetTopicAttributes in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { SetTopicAttributesCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

Actions 756

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

export const setTopicAttributes = async (
 topicArn = "TOPIC_ARN",
 attributeName = "DisplayName",
 attributeValue = "Test Topic",
) => {
 const response = await snsClient.send(
 new SetTopicAttributesCommand({
 AttributeName: attributeName,
 AttributeValue: attributeValue,
 TopicArn: topicArn,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'd1b08d0e-e9a4-54c3-b8b1-d03238d2b935',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SetTopicAttributes in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun setTopAttr(

Actions 757

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-managing-topicsstttopicattributes
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SetTopicAttributesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 attribute: String?,
 topicArnVal: String?,
 value: String?,
) {
 val request =
 SetTopicAttributesRequest {
 attributeName = attribute
 attributeValue = value
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.setTopicAttributes(request)
 println("Topic ${request.topicArn} was updated.")
 }
}

• For API details, see SetTopicAttributes in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Configure the message delivery status attributes for an Amazon SNS Topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html

Actions 758

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);
$attribute = 'Policy | DisplayName | DeliveryPolicy';
$value = 'First Topic';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->setTopicAttributes([
 'AttributeName' => $attribute,
 'AttributeValue' => $value,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see SetTopicAttributes in AWS SDK for PHP API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Service class to enable an SNS resource with a specified policy
class SnsResourceEnabler
 # Initializes the SnsResourceEnabler with an SNS resource client
 #
 # @param sns_resource [Aws::SNS::Resource] The SNS resource client

Actions 759

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 def initialize(sns_resource)
 @sns_resource = sns_resource
 @logger = Logger.new($stdout)
 end

 # Sets a policy on a specified SNS topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource to include in the policy
 # @param policy_name [String] The name of the policy attribute to set
 def enable_resource(topic_arn, resource_arn, policy_name)
 policy = generate_policy(topic_arn, resource_arn)
 topic = @sns_resource.topic(topic_arn)

 topic.set_attributes({
 attribute_name: policy_name,
 attribute_value: policy
 })
 @logger.info("Policy #{policy_name} set successfully for topic
 #{topic_arn}.")
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Failed to set policy: #{e.message}")
 end

 private

 # Generates a policy string with dynamic resource ARNs
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param resource_arn [String] The ARN of the resource
 # @return [String] The policy as a JSON string
 def generate_policy(topic_arn, resource_arn)
 {
 Version: '2008-10-17',
 Id: '__default_policy_ID',
 Statement: [{
 Sid: '__default_statement_ID',
 Effect: 'Allow',
 Principal: { "AWS": '*' },
 Action: ['SNS:Publish'],
 Resource: topic_arn,
 Condition: {
 ArnEquals: {
 "AWS:SourceArn": resource_arn

Actions 760

Amazon Simple Notification Service Developer Guide

 }
 }
 }]
 }.to_json
 end
end

Example usage:
if $PROGRAM_NAME == __FILE__
 topic_arn = 'MY_TOPIC_ARN' # Should be replaced with a real topic ARN
 resource_arn = 'MY_RESOURCE_ARN' # Should be replaced with a real resource ARN
 policy_name = 'POLICY_NAME' # Typically, this is "Policy"

 sns_resource = Aws::SNS::Resource.new
 enabler = SnsResourceEnabler.new(sns_resource)

 enabler.enable_resource(topic_arn, resource_arn, policy_name)
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see SetTopicAttributes in AWS SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->settopicattributes(
 iv_topicarn = iv_topic_arn
 iv_attributename = iv_attribute_name
 iv_attributevalue = iv_attribute_value
).
 MESSAGE 'Set/updated SNS topic attributes.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.

Actions 761

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-enable-resource.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/SetTopicAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see SetTopicAttributes in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Subscribe with an AWS SDK or CLI

The following code examples show how to use Subscribe.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and publish to a FIFO topic

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

 /// <summary>
 /// Creates a new subscription to a topic.
 /// </summary>
 /// <param name="client">The initialized Amazon SNS client object, used
 /// to create an Amazon SNS subscription.</param>
 /// <param name="topicArn">The ARN of the topic to subscribe to.</param>

Actions 762

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// <returns>A SubscribeResponse object which includes the subscription
 /// ARN for the new subscription.</returns>
 public static async Task<SubscribeResponse> TopicSubscribeAsync(
 IAmazonSimpleNotificationService client,
 string topicArn)
 {
 SubscribeRequest request = new SubscribeRequest()
 {
 TopicArn = topicArn,
 ReturnSubscriptionArn = true,
 Protocol = "email",
 Endpoint = "recipient@example.com",
 };

 var response = await client.SubscribeAsync(request);

 return response;
 }

Subscribe a queue to a topic with optional filters.

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {

Actions 763

Amazon Simple Notification Service Developer Guide

 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

• For API details, see Subscribe in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to an email address.
/*!
 \param topicARN: An SNS topic Amazon Resource Name (ARN).
 \param emailAddress: An email address.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::subscribeEmail(const Aws::String &topicARN,
 const Aws::String &emailAddress,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("email");
 request.SetEndpoint(emailAddress);

Actions 764

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Subscribe a mobile application to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to a mobile app.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param endpointARN: The ARN for a mobile app or device endpoint.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::SNS::subscribeApp(const Aws::String &topicARN,
 const Aws::String &endpointARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("application");
 request.SetEndpoint(endpointARN);

Actions 765

Amazon Simple Notification Service Developer Guide

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Subscribe a Lambda function to a topic.

//! Subscribe to an Amazon Simple Notification Service (Amazon SNS) topic with
 delivery to an AWS Lambda function.
/*!
 \param topicARN: The Amazon Resource Name (ARN) for an Amazon SNS topic.
 \param lambdaFunctionARN: The ARN for an AWS Lambda function.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::subscribeLambda(const Aws::String &topicARN,
 const Aws::String &lambdaFunctionARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("lambda");
 request.SetEndpoint(lambdaFunctionARN);

 const Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

Actions 766

Amazon Simple Notification Service Developer Guide

 if (outcome.IsSuccess()) {
 std::cout << "Subscribed successfully." << std::endl;
 std::cout << "Subscription ARN '" <<
 outcome.GetResult().GetSubscriptionArn()
 << "'." << std::endl;
 }
 else {
 std::cerr << "Error while subscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Subscribe an SQS queue to a topic.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);

 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;
 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);

Actions 767

Amazon Simple Notification Service Developer Guide

 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

Subscribe with a filter to a topic.

 static const Aws::String TONE_ATTRIBUTE("tone");
 static const Aws::Vector<Aws::String> TONES = {"cheerful", "funny",
 "serious",
 "sincere"};

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);
 if (isFifoTopic) {
 if (first) {
 std::cout << "Subscriptions to a FIFO topic can have
 filters."
 << std::endl;
 std::cout
 << "If you add a filter to this subscription, then
 only the filtered messages "
 << "will be received in the queue." << std::endl;
 std::cout << "For information about message filtering, "

Actions 768

Amazon Simple Notification Service Developer Guide

 << "see https://docs.aws.amazon.com/sns/latest/dg/
sns-message-filtering.html"
 << std::endl;
 std::cout << "For this example, you can filter messages by a
 \""
 << TONE_ATTRIBUTE << "\" attribute." << std::endl;
 }

 std::ostringstream ostringstream;
 ostringstream << "Filter messages for \"" << queueName
 << "\"'s subscription to the topic \""
 << topicName << "\"? (y/n)";

 // Add filter if user answers yes.
 if (askYesNoQuestion(ostringstream.str())) {
 Aws::String jsonPolicy = getFilterPolicyFromUser();
 if (!jsonPolicy.empty()) {
 filteringMessages = true;

 std::cout << "This is the filter policy for this
 subscription."
 << std::endl;
 std::cout << jsonPolicy << std::endl;

 request.AddAttributes("FilterPolicy", jsonPolicy);
 }
 else {
 std::cout
 << "Because you did not select any attributes, no
 filter "
 << "will be added to this subscription." <<
 std::endl;
 }
 }
 } // if (isFifoTopic)
 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;

Actions 769

Amazon Simple Notification Service Developer Guide

 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

//! Routine that lets the user select attributes for a subscription filter
 policy.
/*!
 \sa getFilterPolicyFromUser()
 \return Aws::String: The filter policy as JSON.
 */
Aws::String AwsDoc::TopicsAndQueues::getFilterPolicyFromUser() {
 std::cout
 << "You can filter messages by one or more of the following \""
 << TONE_ATTRIBUTE << "\" attributes." << std::endl;

 std::vector<Aws::String> filterSelections;
 int selection;
 do {
 for (size_t j = 0; j < TONES.size(); ++j) {
 std::cout << " " << (j + 1) << ". " << TONES[j]
 << std::endl;
 }
 selection = askQuestionForIntRange(
 "Enter a number (or enter zero to stop adding more). ",
 0, static_cast<int>(TONES.size()));

 if (selection != 0) {
 const Aws::String &selectedTone(TONES[selection - 1]);
 // Add the tone to the selection if it is not already added.

Actions 770

Amazon Simple Notification Service Developer Guide

 if (std::find(filterSelections.begin(),
 filterSelections.end(),
 selectedTone)
 == filterSelections.end()) {
 filterSelections.push_back(selectedTone);
 }
 }
 } while (selection != 0);

 Aws::String result;
 if (!filterSelections.empty()) {
 std::ostringstream jsonPolicyStream;
 jsonPolicyStream << "{ \"" << TONE_ATTRIBUTE << "\": [";

 for (size_t j = 0; j < filterSelections.size(); ++j) {
 jsonPolicyStream << "\"" << filterSelections[j] << "\"";
 if (j < filterSelections.size() - 1) {
 jsonPolicyStream << ",";
 }
 }
 jsonPolicyStream << "] }";

 result = jsonPolicyStream.str();
 }

 return result;
}

• For API details, see Subscribe in AWS SDK for C++ API Reference.

CLI

AWS CLI

To subscribe to a topic

The following subscribe command subscribes an email address to the specified topic.

aws sns subscribe \
 --topic-arn arn:aws:sns:us-west-2:123456789012:my-topic \
 --protocol email \

Actions 771

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

 --notification-endpoint my-email@example.com

Output:

{
 "SubscriptionArn": "pending confirmation"
}

• For API details, see Subscribe in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe a queue to a topic with optional filters.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

Actions 772

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/subscribe.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

// SubscribeQueue subscribes an Amazon Simple Queue Service (Amazon SQS) queue to
 an
// Amazon SNS topic. When filterMap is not nil, it is used to specify a filter
 policy
// so that messages are only sent to the queue when the message has the specified
 attributes.
func (actor SnsActions) SubscribeQueue(ctx context.Context, topicArn string,
 queueArn string, filterMap map[string][]string) (string, error) {
 var subscriptionArn string
 var attributes map[string]string
 if filterMap != nil {
 filterBytes, err := json.Marshal(filterMap)
 if err != nil {
 log.Printf("Couldn't create filter policy, here's why: %v\n", err)
 return "", err
 }
 attributes = map[string]string{"FilterPolicy": string(filterBytes)}
 }
 output, err := actor.SnsClient.Subscribe(ctx, &sns.SubscribeInput{
 Protocol: aws.String("sqs"),
 TopicArn: aws.String(topicArn),
 Attributes: attributes,
 Endpoint: aws.String(queueArn),
 ReturnSubscriptionArn: true,
 })
 if err != nil {
 log.Printf("Couldn't susbscribe queue %v to topic %v. Here's why: %v\n",
 queueArn, topicArn, err)
 } else {
 subscriptionArn = *output.SubscriptionArn
 }

 return subscriptionArn, err
}

• For API details, see Subscribe in AWS SDK for Go API Reference.

Actions 773

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Subscribe

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeEmail {
 public static void main(String[] args) {
 final String usage = """
 Usage: <topicArn> <email>

 Where:
 topicArn - The ARN of the topic to subscribe.
 email - The email address to use.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];

Actions 774

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 String email = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subEmail(snsClient, topicArn, email);
 snsClient.close();
 }

 public static void subEmail(SnsClient snsClient, String topicArn, String
 email) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("email")
 .endpoint(email)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN: " + result.subscriptionArn() +
 "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Subscribe an HTTP endpoint to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

Actions 775

Amazon Simple Notification Service Developer Guide

 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeHTTPS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn> <url>

 Where:
 topicArn - The ARN of the topic to subscribe.
 url - The HTTPS endpoint that you want to receive
 notifications.
 """;

 if (args.length < 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String url = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subHTTPS(snsClient, topicArn, url);
 snsClient.close();
 }

 public static void subHTTPS(SnsClient snsClient, String topicArn, String url)
 {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("https")
 .endpoint(url)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);

Actions 776

Amazon Simple Notification Service Developer Guide

 System.out.println("Subscription ARN is " + result.subscriptionArn()
 + "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Subscribe a Lambda function to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeLambda {

 public static void main(String[] args) {

 final String usage = """

 Usage: <topicArn> <lambdaArn>

 Where:
 topicArn - The ARN of the topic to subscribe.
 lambdaArn - The ARN of an AWS Lambda function.
 """;

 if (args.length != 2) {

Actions 777

Amazon Simple Notification Service Developer Guide

 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String lambdaArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnValue = subLambda(snsClient, topicArn, lambdaArn);
 System.out.println("Subscription ARN: " + arnValue);
 snsClient.close();
 }

 public static String subLambda(SnsClient snsClient, String topicArn, String
 lambdaArn) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("lambda")
 .endpoint(lambdaArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 return result.subscriptionArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see Subscribe in AWS SDK for Java 2.x API Reference.

Actions 778

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic for which you wish to confirm
 a subscription.
 * @param {string} emailAddress - The email address that is subscribed to the
 topic.
 */
export const subscribeEmail = async (
 topicArn = "TOPIC_ARN",
 emailAddress = "usern@me.com",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "email",
 TopicArn: topicArn,
 Endpoint: emailAddress,
 }),

Actions 779

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
};

Subscribe a mobile application to a topic.

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing
 to.
 * @param {string} endpoint - The Endpoint ARN of an application. This endpoint
 is created
 * when an application registers for notifications.
 */
export const subscribeApp = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "application",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,

Actions 780

Amazon Simple Notification Service Developer Guide

 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

Subscribe a Lambda function to a topic.

import { SubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} topicArn - The ARN of the topic the subscriber is subscribing
 to.
 * @param {string} endpoint - The Endpoint ARN of and AWS Lambda function.
 */
export const subscribeLambda = async (
 topicArn = "TOPIC_ARN",
 endpoint = "ENDPOINT",
) => {
 const response = await snsClient.send(
 new SubscribeCommand({
 Protocol: "lambda",
 TopicArn: topicArn,
 Endpoint: endpoint,
 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: 'c8e35bcd-b3c0-5940-9f66-06f6fcc108f0',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },

Actions 781

Amazon Simple Notification Service Developer Guide

 // SubscriptionArn: 'pending confirmation'
 // }
 return response;
};

Subscribe an SQS queue to a topic.

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

const client = new SNSClient({});

export const subscribeQueue = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",
) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,
 Protocol: "sqs",
 Endpoint: queueArn,
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

Subscribe with a filter to a topic.

import { SubscribeCommand, SNSClient } from "@aws-sdk/client-sns";

Actions 782

Amazon Simple Notification Service Developer Guide

const client = new SNSClient({});

export const subscribeQueueFiltered = async (
 topicArn = "TOPIC_ARN",
 queueArn = "QUEUE_ARN",
) => {
 const command = new SubscribeCommand({
 TopicArn: topicArn,
 Protocol: "sqs",
 Endpoint: queueArn,
 Attributes: {
 // This subscription will only receive messages with the 'event' attribute
 set to 'order_placed'.
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 event: ["order_placed"],
 }),
 },
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '931e13d9-5e2b-543f-8781-4e9e494c5ff2',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // SubscriptionArn: 'arn:aws:sns:us-east-1:xxxxxxxxxxxx:subscribe-queue-
test-430895:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Subscribe in AWS SDK for JavaScript API Reference.

Actions 783

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-subscribing-email
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

suspend fun subEmail(
 topicArnVal: String,
 email: String,
): String {
 val request =
 SubscribeRequest {
 protocol = "email"
 endpoint = email
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 return result.subscriptionArn.toString()
 }
}

Subscribe a Lambda function to a topic.

suspend fun subLambda(
 topicArnVal: String?,
 lambdaArn: String?,
) {
 val request =
 SubscribeRequest {
 protocol = "lambda"
 endpoint = lambdaArn
 returnSubscriptionArn = true

Actions 784

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println(" The subscription Arn is ${result.subscriptionArn}")
 }
}

• For API details, see Subscribe in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Prepares to subscribe an endpoint by sending the endpoint a confirmation
 message.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',

Actions 785

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 'version' => '2010-03-31'
]);

$protocol = 'email';
$endpoint = 'sample@example.com';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->subscribe([
 'Protocol' => $protocol,
 'Endpoint' => $endpoint,
 'ReturnSubscriptionArn' => true,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

Subscribe an HTTP endpoint to a topic.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Prepares to subscribe an endpoint by sending the endpoint a confirmation
 message.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'

Actions 786

Amazon Simple Notification Service Developer Guide

]);

$protocol = 'https';
$endpoint = 'https://';
$topic = 'arn:aws:sns:us-east-1:111122223333:MyTopic';

try {
 $result = $SnSclient->subscribe([
 'Protocol' => $protocol,
 'Endpoint' => $endpoint,
 'ReturnSubscriptionArn' => true,
 'TopicArn' => $topic,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For API details, see Subscribe in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """

Actions 787

https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 self.sns_resource = sns_resource

 @staticmethod
 def subscribe(topic, protocol, endpoint):
 """
 Subscribes an endpoint to the topic. Some endpoint types, such as email,
 must be confirmed before their subscriptions are active. When a
 subscription
 is not confirmed, its Amazon Resource Number (ARN) is set to
 'PendingConfirmation'.

 :param topic: The topic to subscribe to.
 :param protocol: The protocol of the endpoint, such as 'sms' or 'email'.
 :param endpoint: The endpoint that receives messages, such as a phone
 number
 (in E.164 format) for SMS messages, or an email address
 for
 email messages.
 :return: The newly added subscription.
 """
 try:
 subscription = topic.subscribe(
 Protocol=protocol, Endpoint=endpoint, ReturnSubscriptionArn=True
)
 logger.info("Subscribed %s %s to topic %s.", protocol, endpoint,
 topic.arn)
 except ClientError:
 logger.exception(
 "Couldn't subscribe %s %s to topic %s.", protocol, endpoint,
 topic.arn
)
 raise
 else:
 return subscription

• For API details, see Subscribe in AWS SDK for Python (Boto3) API Reference.

Actions 788

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

require 'aws-sdk-sns'
require 'logger'

Represents a service for creating subscriptions in Amazon Simple Notification
 Service (SNS)
class SubscriptionService
 # Initializes the SubscriptionService with an SNS client
 #
 # @param sns_client [Aws::SNS::Client] The SNS client
 def initialize(sns_client)
 @sns_client = sns_client
 @logger = Logger.new($stdout)
 end

 # Attempts to create a subscription to a topic
 #
 # @param topic_arn [String] The ARN of the SNS topic
 # @param protocol [String] The subscription protocol (e.g., email)
 # @param endpoint [String] The endpoint that receives the notifications (email
 address)
 # @return [Boolean] true if subscription was successfully created, false
 otherwise
 def create_subscription(topic_arn, protocol, endpoint)
 @sns_client.subscribe(topic_arn: topic_arn, protocol: protocol, endpoint:
 endpoint)
 @logger.info('Subscription created successfully.')
 true
 rescue Aws::SNS::Errors::ServiceError => e
 @logger.error("Error while creating the subscription: #{e.message}")
 false
 end

Actions 789

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

end

Main execution if the script is run directly
if $PROGRAM_NAME == __FILE__
 protocol = 'email'
 endpoint = 'EMAIL_ADDRESS' # Should be replaced with a real email address
 topic_arn = 'TOPIC_ARN' # Should be replaced with a real topic ARN

 sns_client = Aws::SNS::Client.new
 subscription_service = SubscriptionService.new(sns_client)

 @logger.info('Creating the subscription.')
 unless subscription_service.create_subscription(topic_arn, protocol, endpoint)
 @logger.error('Subscription creation failed. Stopping program.')
 exit 1
 end
end

• For more information, see AWS SDK for Ruby Developer Guide.

• For API details, see Subscribe in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

async fn subscribe_and_publish(
 client: &Client,
 topic_arn: &str,
 email_address: &str,
) -> Result<(), Error> {
 println!("Receiving on topic with ARN: `{}`", topic_arn);

Actions 790

https://docs.aws.amazon.com/sdk-for-ruby/v3/developer-guide/sns-example-create-subscription.html
https://docs.aws.amazon.com/goto/SdkForRubyV3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sns#code-examples

Amazon Simple Notification Service Developer Guide

 let rsp = client
 .subscribe()
 .topic_arn(topic_arn)
 .protocol("email")
 .endpoint(email_address)
 .send()
 .await?;

 println!("Added a subscription: {:?}", rsp);

 let rsp = client
 .publish()
 .topic_arn(topic_arn)
 .message("hello sns!")
 .send()
 .await?;

 println!("Published message: {:?}", rsp);

 Ok(())
}

• For API details, see Subscribe in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Subscribe an email address to a topic.

 TRY.
 oo_result = lo_sns->subscribe("oo_result is
 returned for testing purposes."
 iv_topicarn = iv_topic_arn
 iv_protocol = 'email'

Actions 791

https://docs.rs/aws-sdk-sns/latest/aws_sdk_sns/client/struct.Client.html#method.subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 iv_endpoint = iv_email_address
 iv_returnsubscriptionarn = abap_true
).
 MESSAGE 'Email address subscribed to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snssubscriptionlmte00.
 MESSAGE 'Unable to create subscriptions. You have reached the maximum
 number of subscriptions allowed.' TYPE 'E'.
 ENDTRY.

• For API details, see Subscribe in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use TagResource with an AWS SDK or CLI

The following code examples show how to use TagResource.

CLI

AWS CLI

To add a tag to a topic

The following tag-resource example adds a metadata tag to the specified Amazon SNS
topic.

aws sns tag-resource \
 --resource-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --tags Key=Team,Value=Alpha

This command produces no output.

• For API details, see TagResource in AWS CLI Command Reference.

Actions 792

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/tag-resource.html

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.Tag;
import software.amazon.awssdk.services.sns.model.TagResourceRequest;
import java.util.ArrayList;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class AddTags {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn>

 Where:
 topicArn - The ARN of the topic to which tags are added.

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

Actions 793

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 String topicArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 addTopicTags(snsClient, topicArn);
 snsClient.close();
 }

 public static void addTopicTags(SnsClient snsClient, String topicArn) {
 try {
 Tag tag = Tag.builder()
 .key("Team")
 .value("Development")
 .build();

 Tag tag2 = Tag.builder()
 .key("Environment")
 .value("Gamma")
 .build();

 List<Tag> tagList = new ArrayList<>();
 tagList.add(tag);
 tagList.add(tag2);

 TagResourceRequest tagResourceRequest = TagResourceRequest.builder()
 .resourceArn(topicArn)
 .tags(tagList)
 .build();

 snsClient.tagResource(tagResourceRequest);
 System.out.println("Tags have been added to " + topicArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see TagResource in AWS SDK for Java 2.x API Reference.

Actions 794

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/TagResource

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun addTopicTags(topicArn: String) {
 val tag =
 Tag {
 key = "Team"
 value = "Development"
 }

 val tag2 =
 Tag {
 key = "Environment"
 value = "Gamma"
 }

 val tagList = mutableListOf<Tag>()
 tagList.add(tag)
 tagList.add(tag2)

 val request =
 TagResourceRequest {
 resourceArn = topicArn
 tags = tagList
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.tagResource(request)
 println("Tags have been added to $topicArn")
 }
}

• For API details, see TagResource in AWS SDK for Kotlin API reference.

Actions 795

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Unsubscribe with an AWS SDK or CLI

The following code examples show how to use Unsubscribe.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Unsubscribe from a topic by a subscription ARN.

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

Actions 796

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Unsubscribe in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

//! Delete a subscription to an Amazon Simple Notification Service (Amazon SNS)
 topic.
/*!
 \param subscriptionARN: The Amazon Resource Name (ARN) for an Amazon SNS topic
 subscription.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::unsubscribe(const Aws::String &subscriptionARN,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::UnsubscribeRequest request;
 request.SetSubscriptionArn(subscriptionARN);

 const Aws::SNS::Model::UnsubscribeOutcome outcome =
 snsClient.Unsubscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Unsubscribed successfully " << std::endl;
 }
 else {
 std::cerr << "Error while unsubscribing " <<
 outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Actions 797

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Unsubscribe in AWS SDK for C++ API Reference.

CLI

AWS CLI

To unsubscribe from a topic

The following unsubscribe example deletes the specified subscription from a topic.

aws sns unsubscribe \
 --subscription-arn arn:aws:sns:us-west-2:0123456789012:my-
topic:8a21d249-4329-4871-acc6-7be709c6ea7f

This command produces no output.

• For API details, see Unsubscribe in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.UnsubscribeRequest;
import software.amazon.awssdk.services.sns.model.UnsubscribeResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Actions 798

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Unsubscribe
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sns/unsubscribe.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class Unsubscribe {
 public static void main(String[] args) {
 final String usage = """

 Usage: <subscriptionArn>

 Where:
 subscriptionArn - The ARN of the subscription to delete.
 """;

 if (args.length < 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String subscriptionArn = args[0];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 unSub(snsClient, subscriptionArn);
 snsClient.close();
 }

 public static void unSub(SnsClient snsClient, String subscriptionArn) {
 try {
 UnsubscribeRequest request = UnsubscribeRequest.builder()
 .subscriptionArn(subscriptionArn)
 .build();

 UnsubscribeResponse result = snsClient.unsubscribe(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode()
 + "\n\nSubscription was removed for " +
 request.subscriptionArn());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

Actions 799

Amazon Simple Notification Service Developer Guide

 }
}

• For API details, see Unsubscribe in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create the client in a separate module and export it.

import { SNSClient } from "@aws-sdk/client-sns";

// The AWS Region can be provided here using the `region` property. If you leave
 it blank
// the SDK will default to the region set in your AWS config.
export const snsClient = new SNSClient({});

Import the SDK and client modules and call the API.

import { UnsubscribeCommand } from "@aws-sdk/client-sns";
import { snsClient } from "../libs/snsClient.js";

/**
 * @param {string} subscriptionArn - The ARN of the subscription to cancel.
 */
const unsubscribe = async (
 subscriptionArn = "arn:aws:sns:us-east-1:xxxxxxxxxxxx:mytopic:xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx",
) => {
 const response = await snsClient.send(
 new UnsubscribeCommand({
 SubscriptionArn: subscriptionArn,

Actions 800

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 }),
);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '0178259a-9204-507c-b620-78a7570a44c6',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // }
 // }
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see Unsubscribe in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun unSub(subscriptionArnVal: String) {
 val request =
 UnsubscribeRequest {
 subscriptionArn = subscriptionArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.unsubscribe(request)
 println("Subscription was removed for ${request.subscriptionArn}")
 }
}

Actions 801

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sns-examples-managing-topics.html#sns-examples-unsubscribing
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Unsubscribe in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Deletes a subscription to an Amazon SNS topic.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$subscription = 'arn:aws:sns:us-east-1:111122223333:MySubscription';

try {
 $result = $SnSclient->unsubscribe([
 'SubscriptionArn' => $subscription,
]);
 var_dump($result);
} catch (AwsException $e) {

Actions 802

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Unsubscribe in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 @staticmethod
 def delete_subscription(subscription):
 """
 Unsubscribes and deletes a subscription.
 """
 try:
 subscription.delete()
 logger.info("Deleted subscription %s.", subscription.arn)
 except ClientError:
 logger.exception("Couldn't delete subscription %s.",
 subscription.arn)
 raise

Actions 803

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-subscribing-unsubscribing-topics.html#unsubscribe-from-a-topic
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

• For API details, see Unsubscribe in AWS SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sns->unsubscribe(iv_subscriptionarn = iv_subscription_arn).
 MESSAGE 'Subscription deleted.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Subscription does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snsinvalidparameterex.
 MESSAGE 'Subscription with "PendingConfirmation" status cannot be
 deleted/unsubscribed. Confirm subscription before performing unsubscribe
 operation.' TYPE 'E'.
 ENDTRY.

• For API details, see Unsubscribe in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Amazon SNS using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon SNS with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Amazon SNS or combined with other AWS services. Each scenario includes a link to the
complete source code, where you can find instructions on how to set up and run the code.

Scenarios 804

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Build an application to submit data to a DynamoDB table

• Build a publish and subscription application that translates messages

• Create a platform endpoint for Amazon SNS push notifications using an AWS SDK

• Create a photo asset management application that lets users manage photos using labels

• Create an Amazon Textract explorer application

• Create and publish to a FIFO Amazon SNS topic using an AWS SDK

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Publish SMS messages to an Amazon SNS topic using an AWS SDK

• Publish a large message to Amazon SNS with Amazon S3 using an AWS SDK

• Publish an Amazon SNS SMS text message using an AWS SDK

• Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK

• Use API Gateway to invoke a Lambda function

• Use scheduled events to invoke a Lambda function

Build an application to submit data to a DynamoDB table

The following code examples show how to build an application that submits data to an Amazon
DynamoDB table and notifies you when a user updates the table.

Java

SDK for Java 2.x

Shows how to create a dynamic web application that submits data using the Amazon
DynamoDB Java API and sends a text message using the Amazon Simple Notification Service
Java API.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

Build an app to submit data to a DynamoDB table 805

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_first_project

Amazon Simple Notification Service Developer Guide

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

This example shows how to build an app that enables users to submit data to an Amazon
DynamoDB table, and send a text message to the administrator using Amazon Simple
Notification Service (Amazon SNS).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• Amazon SNS

Kotlin

SDK for Kotlin

Shows how to create a native Android application that submits data using the Amazon
DynamoDB Kotlin API and sends a text message using the Amazon SNS Kotlin API.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Build an app to submit data to a DynamoDB table 806

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/submit-data-app
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/cross-service-example-submitting-data.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/first_android_app

Amazon Simple Notification Service Developer Guide

Build a publish and subscription application that translates messages

The following code examples show how to create an application that has subscription and publish
functionality and translates messages.

.NET

AWS SDK for .NET

Shows how to use the Amazon Simple Notification Service .NET API to create a web
application that has subscription and publish functionality. In addition, this example
application also translates messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon SNS

• Amazon Translate

Java

SDK for Java 2.x

Shows how to use the Amazon Simple Notification Service Java API to create a web
application that has subscription and publish functionality. In addition, this example
application also translates messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For complete source code and instructions on how to set up and run the example that uses
the Java Async API, see the full example on GitHub.

Services used in this example

• Amazon SNS

• Amazon Translate

Building an Amazon SNS application 807

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/SubscribePublishTranslate
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_sns_sample_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_sns_async

Amazon Simple Notification Service Developer Guide

Kotlin

SDK for Kotlin

Shows how to use the Amazon SNS Kotlin API to create an application that has subscription
and publish functionality. In addition, this example application also translates messages.

For complete source code and instructions on how to create a web app, see the full example
on GitHub.

For complete source code and instructions on how to create a native Android app, see the
full example on GitHub.

Services used in this example

• Amazon SNS

• Amazon Translate

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a platform endpoint for Amazon SNS push notifications using an
AWS SDK

The following code examples show how to create a platform endpoint for Amazon SNS push
notifications.

CLI

AWS CLI

To create a platform application endpoint

The following create-platform-endpoint example creates an endpoint for the specified
platform application using the specified token.

aws sns create-platform-endpoint \
 --platform-application-arn arn:aws:sns:us-west-2:123456789012:app/GCM/
MyApplication \
 --token EXAMPLE12345...

Create a platform endpoint for push notifications 808

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/subpub_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/subpub_app_android

Amazon Simple Notification Service Developer Guide

Output:

{
 "EndpointArn": "arn:aws:sns:us-west-2:1234567890:endpoint/GCM/
MyApplication/12345678-abcd-9012-efgh-345678901234"
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreatePlatformEndpointRequest;
import software.amazon.awssdk.services.sns.model.CreatePlatformEndpointResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * In addition, create a platform application using the AWS Management Console.
 * See this doc topic:
 *
 * https://docs.aws.amazon.com/sns/latest/dg/mobile-push-send-register.html
 *
 * Without the values created by following the previous link, this code examples
 * does not work.
 */

Create a platform endpoint for push notifications 809

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

public class RegistrationExample {
 public static void main(String[] args) {
 final String usage = """

 Usage: <token> <platformApplicationArn>

 Where:
 token - The device token or registration ID of the mobile device.
 This is a unique
 identifier provided by the device platform (e.g., Apple Push
 Notification Service (APNS) for iOS devices, Firebase Cloud Messaging (FCM)
 for Android devices) when the mobile app is registered to receive
 push notifications.

 platformApplicationArn - The ARN value of platform application.
 You can get this value from the AWS Management Console.\s

 """;

 if (args.length != 2) {
 System.out.println(usage);
 return;
 }

 String token = args[0];
 String platformApplicationArn = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 createEndpoint(snsClient, token, platformApplicationArn);
 }
 public static void createEndpoint(SnsClient snsClient, String token, String
 platformApplicationArn) {
 System.out.println("Creating platform endpoint with token " + token);
 try {
 CreatePlatformEndpointRequest endpointRequest =
 CreatePlatformEndpointRequest.builder()
 .token(token)
 .platformApplicationArn(platformApplicationArn)
 .build();

 CreatePlatformEndpointResponse response =
 snsClient.createPlatformEndpoint(endpointRequest);

Create a platform endpoint for push notifications 810

Amazon Simple Notification Service Developer Guide

 System.out.println("The ARN of the endpoint is " +
 response.endpointArn());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }
}

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a photo asset management application that lets users manage
photos using labels

The following code examples show how to create a serverless application that lets users manage
photos using labels.

.NET

AWS SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

Create a serverless application to manage photos 811

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Simple Notification Service Developer Guide

• Amazon SNS

C++

SDK for C++

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Java

SDK for Java 2.x

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Create a serverless application to manage photos 812

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/pam_source_files
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Simple Notification Service Developer Guide

• Amazon Rekognition

• Amazon S3

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Kotlin

SDK for Kotlin

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

Create a serverless application to manage photos 813

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_pam
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Simple Notification Service Developer Guide

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

PHP

SDK for PHP

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Rust

SDK for Rust

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on AWS Community.

Create a serverless application to manage photos 814

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/applications/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/cross_service/photo_asset_management
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Simple Notification Service Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Amazon Textract explorer application

The following code examples show how to explore Amazon Textract output through an interactive
application.

JavaScript

SDK for JavaScript (v3)

Shows how to use the AWS SDK for JavaScript to build a React application that uses Amazon
Textract to extract data from a document image and display it in an interactive web page.
This example runs in a web browser and requires an authenticated Amazon Cognito identity
for credentials. It uses Amazon Simple Storage Service (Amazon S3) for storage, and
for notifications it polls an Amazon Simple Queue Service (Amazon SQS) queue that is
subscribed to an Amazon Simple Notification Service (Amazon SNS) topic.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

Create an Amazon Textract explorer application 815

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

Amazon Simple Notification Service Developer Guide

• Amazon SQS

• Amazon Textract

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with Amazon Textract to detect text,
form, and table elements in a document image. The input image and Amazon Textract
output are shown in a Tkinter application that lets you explore the detected elements.

• Submit a document image to Amazon Textract and explore the output of detected
elements.

• Submit images directly to Amazon Textract or through an Amazon Simple Storage Service
(Amazon S3) bucket.

• Use asynchronous APIs to start a job that publishes a notification to an Amazon Simple
Notification Service (Amazon SNS) topic when the job completes.

• Poll an Amazon Simple Queue Service (Amazon SQS) queue for a job completion message
and display the results.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create and publish to a FIFO Amazon SNS topic using an AWS SDK

The following code examples show how to create and publish to a FIFO Amazon SNS topic.

Create and publish to a FIFO topic 816

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_explorer

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example

• creates an Amazon SNS FIFO topic, two Amazon SQS FIFO queues, and one Standard
queue.

• subscribes the queues to the topic and publishes a message to the topic.

The test verifies the receipt of the message to each queue. The complete example also
shows the addition of access policies and deletes the resources at the end.

public class PriceUpdateExample {
 public final static SnsClient snsClient = SnsClient.create();
 public final static SqsClient sqsClient = SqsClient.create();

 public static void main(String[] args) {

 final String usage = "\n" +
 "Usage: " +
 " <topicName> <wholesaleQueueFifoName> <retailQueueFifoName>
 <analyticsQueueName>\n\n" +
 "Where:\n" +
 " fifoTopicName - The name of the FIFO topic that you want to
 create. \n\n" +
 " wholesaleQueueARN - The name of a SQS FIFO queue that will be
 created for the wholesale consumer. \n\n"
 +
 " retailQueueARN - The name of a SQS FIFO queue that will
 created for the retail consumer. \n\n" +
 " analyticsQueueARN - The name of a SQS standard queue that
 will be created for the analytics consumer. \n\n";
 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

Create and publish to a FIFO topic 817

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/test/java/com/example/sns/PriceUpdateExampleTest.java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/main/java/com/example/sns/PriceUpdateExample.java

Amazon Simple Notification Service Developer Guide

 final String fifoTopicName = args[0];
 final String wholeSaleQueueName = args[1];
 final String retailQueueName = args[2];
 final String analyticsQueueName = args[3];

 // For convenience, the QueueData class holds metadata about a queue:
 ARN, URL,
 // name and type.
 List<QueueData> queues = List.of(
 new QueueData(wholeSaleQueueName, QueueType.FIFO),
 new QueueData(retailQueueName, QueueType.FIFO),
 new QueueData(analyticsQueueName, QueueType.Standard));

 // Create queues.
 createQueues(queues);

 // Create a topic.
 String topicARN = createFIFOTopic(fifoTopicName);

 // Subscribe each queue to the topic.
 subscribeQueues(queues, topicARN);

 // Allow the newly created topic to send messages to the queues.
 addAccessPolicyToQueuesFINAL(queues, topicARN);

 // Publish a sample price update message with payload.
 publishPriceUpdate(topicARN, "{\"product\": 214, \"price\": 79.99}",
 "Consumables");

 // Clean up resources.
 deleteSubscriptions(queues);
 deleteQueues(queues);
 deleteTopic(topicARN);
 }

 public static String createFIFOTopic(String topicName) {
 try {
 // Create a FIFO topic by using the SNS service client.
 Map<String, String> topicAttributes = Map.of(
 "FifoTopic", "true",
 "ContentBasedDeduplication", "false");

 CreateTopicRequest topicRequest = CreateTopicRequest.builder()

Create and publish to a FIFO topic 818

Amazon Simple Notification Service Developer Guide

 .name(topicName)
 .attributes(topicAttributes)
 .build();

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 String topicArn = response.topicArn();
 System.out.println("The topic ARN is" + topicArn);

 return topicArn;

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static void subscribeQueues(List<QueueData> queues, String topicARN) {
 queues.forEach(queue -> {
 SubscribeRequest subscribeRequest = SubscribeRequest.builder()
 .topicArn(topicARN)
 .endpoint(queue.queueARN)
 .protocol("sqs")
 .build();

 // Subscribe to the endpoint by using the SNS service client.
 // Only Amazon SQS queues can receive notifications from an Amazon
 SNS FIFO
 // topic.
 SubscribeResponse subscribeResponse =
 snsClient.subscribe(subscribeRequest);
 System.out.println("The queue [" + queue.queueARN + "] subscribed to
 the topic [" + topicARN + "]");
 queue.subscriptionARN = subscribeResponse.subscriptionArn();
 });
 }

 public static void publishPriceUpdate(String topicArn, String payload, String
 groupId) {

 try {
 // Create and publish a message that updates the wholesale price.
 String subject = "Price Update";
 String dedupId = UUID.randomUUID().toString();

Create and publish to a FIFO topic 819

Amazon Simple Notification Service Developer Guide

 String attributeName = "business";
 String attributeValue = "wholesale";

 MessageAttributeValue msgAttValue = MessageAttributeValue.builder()
 .dataType("String")
 .stringValue(attributeValue)
 .build();

 Map<String, MessageAttributeValue> attributes = new HashMap<>();
 attributes.put(attributeName, msgAttValue);
 PublishRequest pubRequest = PublishRequest.builder()
 .topicArn(topicArn)
 .subject(subject)
 .message(payload)
 .messageGroupId(groupId)
 .messageDeduplicationId(dedupId)
 .messageAttributes(attributes)
 .build();

 final PublishResponse response = snsClient.publish(pubRequest);
 System.out.println(response.messageId());
 System.out.println(response.sequenceNumber());
 System.out.println("Message was published to " + topicArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 820

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe

Amazon Simple Notification Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SNS FIFO topic, subscribe Amazon SQS FIFO and standard queues to the
topic, and publish a message to the topic.

def usage_demo():
 """Shows how to subscribe queues to a FIFO topic."""
 print("-" * 88)
 print("Welcome to the `Subscribe queues to a FIFO topic` demo!")
 print("-" * 88)

 sns = boto3.resource("sns")
 sqs = boto3.resource("sqs")
 fifo_topic_wrapper = FifoTopicWrapper(sns)
 sns_wrapper = SnsWrapper(sns)

 prefix = "sqs-subscribe-demo-"
 queues = set()
 subscriptions = set()

 wholesale_queue = sqs.create_queue(
 QueueName=prefix + "wholesale.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(wholesale_queue)
 print(f"Created FIFO queue with URL: {wholesale_queue.url}.")

 retail_queue = sqs.create_queue(

Create and publish to a FIFO topic 821

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 QueueName=prefix + "retail.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(retail_queue)
 print(f"Created FIFO queue with URL: {retail_queue.url}.")

 analytics_queue = sqs.create_queue(QueueName=prefix + "analytics",
 Attributes={})
 queues.add(analytics_queue)
 print(f"Created standard queue with URL: {analytics_queue.url}.")

 topic = fifo_topic_wrapper.create_fifo_topic("price-updates-topic.fifo")
 print(f"Created FIFO topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 fifo_topic_wrapper.add_access_policy(q, topic.attributes["TopicArn"])

 print(f"Added access policies for topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 sub = fifo_topic_wrapper.subscribe_queue_to_topic(
 topic, q.attributes["QueueArn"]
)
 subscriptions.add(sub)

 print(f"Subscribed queues to topic: {topic.attributes['TopicArn']}.")

 input("Press Enter to publish a message to the topic.")

 message_id = fifo_topic_wrapper.publish_price_update(
 topic, '{"product": 214, "price": 79.99}', "Consumables"
)

 print(f"Published price update with message ID: {message_id}.")

 # Clean up the subscriptions, queues, and topic.
 input("Press Enter to clean up resources.")
 for s in subscriptions:

Create and publish to a FIFO topic 822

Amazon Simple Notification Service Developer Guide

 sns_wrapper.delete_subscription(s)

 sns_wrapper.delete_topic(topic)

 for q in queues:
 fifo_topic_wrapper.delete_queue(q)

 print(f"Deleted subscriptions, queues, and topic.")

 print("Thanks for watching!")
 print("-" * 88)

class FifoTopicWrapper:
 """Encapsulates Amazon SNS FIFO topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def create_fifo_topic(self, topic_name):
 """
 Create a FIFO topic.
 Topic names must be made up of only uppercase and lowercase ASCII
 letters,
 numbers, underscores, and hyphens, and must be between 1 and 256
 characters long.
 For a FIFO topic, the name must end with the .fifo suffix.

 :param topic_name: The name for the topic.
 :return: The new topic.
 """
 try:
 topic = self.sns_resource.create_topic(
 Name=topic_name,
 Attributes={
 "FifoTopic": str(True),
 "ContentBasedDeduplication": str(False),
 },
)
 logger.info("Created FIFO topic with name=%s.", topic_name)

Create and publish to a FIFO topic 823

Amazon Simple Notification Service Developer Guide

 return topic
 except ClientError as error:
 logger.exception("Couldn't create topic with name=%s!", topic_name)
 raise error

 @staticmethod
 def add_access_policy(queue, topic_arn):
 """
 Add the necessary access policy to a queue, so
 it can receive messages from a topic.

 :param queue: The queue resource.
 :param topic_arn: The ARN of the topic.
 :return: None.
 """
 try:
 queue.set_attributes(
 Attributes={
 "Policy": json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "test-sid",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": "SQS:SendMessage",
 "Resource": queue.attributes["QueueArn"],
 "Condition": {
 "ArnLike": {"aws:SourceArn": topic_arn}
 },
 }
],
 }
)
 }
)
 logger.info("Added trust policy to the queue.")
 except ClientError as error:
 logger.exception("Couldn't add trust policy to the queue!")
 raise error

Create and publish to a FIFO topic 824

Amazon Simple Notification Service Developer Guide

 @staticmethod
 def subscribe_queue_to_topic(topic, queue_arn):
 """
 Subscribe a queue to a topic.

 :param topic: The topic resource.
 :param queue_arn: The ARN of the queue.
 :return: The subscription resource.
 """
 try:
 subscription = topic.subscribe(
 Protocol="sqs",
 Endpoint=queue_arn,
)
 logger.info("The queue is subscribed to the topic.")
 return subscription
 except ClientError as error:
 logger.exception("Couldn't subscribe queue to topic!")
 raise error

 @staticmethod
 def publish_price_update(topic, payload, group_id):
 """
 Compose and publish a message that updates the wholesale price.

 :param topic: The topic to publish to.
 :param payload: The message to publish.
 :param group_id: The group ID for the message.
 :return: The ID of the message.
 """
 try:
 att_dict = {"business": {"DataType": "String", "StringValue":
 "wholesale"}}
 dedup_id = uuid.uuid4()
 response = topic.publish(
 Subject="Price Update",
 Message=payload,
 MessageAttributes=att_dict,
 MessageGroupId=group_id,
 MessageDeduplicationId=str(dedup_id),
)
 message_id = response["MessageId"]
 logger.info("Published message to topic %s.", topic.arn)

Create and publish to a FIFO topic 825

Amazon Simple Notification Service Developer Guide

 except ClientError as error:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise error
 return message_id

 @staticmethod
 def delete_queue(queue):
 """
 Removes an SQS queue. When run against an AWS account, it can take up to
 60 seconds before the queue is actually deleted.

 :param queue: The queue to delete.
 :return: None
 """
 try:
 queue.delete()
 logger.info("Deleted queue with URL=%s.", queue.url)
 except ClientError as error:
 logger.exception("Couldn't delete queue with URL=%s!", queue.url)
 raise error

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateTopic

• Publish

• Subscribe

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create and publish to a FIFO topic 826

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

Create a FIFO topic, subscribe an Amazon SQS FIFO queue to the topic, and publish a
message to an Amazon SNS topic.

 " Creates a FIFO topic. "
 DATA lt_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>tt_topicattributesmap.
 DATA ls_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>ts_topicattributesmap_maprow.
 ls_tpc_attributes-key = 'FifoTopic'.
 ls_tpc_attributes-value = NEW /aws1/cl_snstopicattrsmap_w(iv_value =
 'true').
 INSERT ls_tpc_attributes INTO TABLE lt_tpc_attributes.

 TRY.
 DATA(lo_create_result) = lo_sns->createtopic(
 iv_name = iv_topic_name
 it_attributes = lt_tpc_attributes
).
 DATA(lv_topic_arn) = lo_create_result->get_topicarn().
 ov_topic_arn = lv_topic_arn. "
 ov_topic_arn is returned for testing purposes. "
 MESSAGE 'FIFO topic created' TYPE 'I'.
 CATCH /aws1/cx_snstopiclimitexcdex.
 MESSAGE 'Unable to create more topics. You have reached the maximum
 number of topics allowed.' TYPE 'E'.
 ENDTRY.

 " Subscribes an endpoint to an Amazon Simple Notification Service (Amazon
 SNS) topic. "
 " Only Amazon Simple Queue Service (Amazon SQS) FIFO queues can be subscribed
 to an SNS FIFO topic. "
 TRY.
 DATA(lo_subscribe_result) = lo_sns->subscribe(
 iv_topicarn = lv_topic_arn
 iv_protocol = 'sqs'
 iv_endpoint = iv_queue_arn
).
 DATA(lv_subscription_arn) = lo_subscribe_result->get_subscriptionarn().
 ov_subscription_arn = lv_subscription_arn. "
 ov_subscription_arn is returned for testing purposes. "
 MESSAGE 'SQS queue was subscribed to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.

Create and publish to a FIFO topic 827

Amazon Simple Notification Service Developer Guide

 MESSAGE 'Topic does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snssubscriptionlmte00.
 MESSAGE 'Unable to create subscriptions. You have reached the maximum
 number of subscriptions allowed.' TYPE 'E'.
 ENDTRY.

 " Publish message to SNS topic. "
 TRY.
 DATA lt_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>tt_messageattributemap.
 DATA ls_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>ts_messageattributemap_maprow.
 ls_msg_attributes-key = 'Importance'.
 ls_msg_attributes-value = NEW /aws1/cl_snsmessageattrvalue(iv_datatype =
 'String' iv_stringvalue = 'High').
 INSERT ls_msg_attributes INTO TABLE lt_msg_attributes.

 DATA(lo_result) = lo_sns->publish(
 iv_topicarn = lv_topic_arn
 iv_message = 'The price of your mobile plan has been increased from
 $19 to $23'
 iv_subject = 'Changes to mobile plan'
 iv_messagegroupid = 'Update-2'
 iv_messagededuplicationid = 'Update-2.1'
 it_messageattributes = lt_msg_attributes
).
 ov_message_id = lo_result->get_messageid(). "
 ov_message_id is returned for testing purposes. "
 MESSAGE 'Message was published to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in AWS SDK for SAP ABAP API reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 828

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Notification Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Detect people and objects in a video with Amazon Rekognition using an
AWS SDK

The following code examples show how to detect people and objects in a video with Amazon
Rekognition.

Python

SDK for Python (Boto3)

Use Amazon Rekognition to detect faces, objects, and people in videos by starting
asynchronous detection jobs. This example also configures Amazon Rekognition to notify an
Amazon Simple Notification Service (Amazon SNS) topic when jobs complete and subscribes
an Amazon Simple Queue Service (Amazon SQS) queue to the topic. When the queue
receives a message about a job, the job is retrieved and the results are output.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• Amazon Rekognition

• Amazon SNS

• Amazon SQS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Publish SMS messages to an Amazon SNS topic using an AWS SDK

The following code example shows how to:

• Create an Amazon SNS topic.

• Subscribe phone numbers to the topic.

Detect people and objects in a video 829

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rekognition

Amazon Simple Notification Service Developer Guide

• Publish SMS messages to the topic so that all subscribed phone numbers receive the message at
once.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a topic and return its ARN.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTopic {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicName>

 Where:
 topicName - The name of the topic to create (for example,
 mytopic).

 """;

Publish SMS messages to a topic 830

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicName = args[0];
 System.out.println("Creating a topic with name: " + topicName);
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String arnVal = createSNSTopic(snsClient, topicName);
 System.out.println("The topic ARN is" + arnVal);
 snsClient.close();
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

Subscribe an endpoint to a topic.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;

Publish SMS messages to a topic 831

Amazon Simple Notification Service Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SubscribeTextSMS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <topicArn> <phoneNumber>

 Where:
 topicArn - The ARN of the topic to subscribe.
 phoneNumber - A mobile phone number that receives
 notifications (for example, +1XXX5550100).
 """;

 if (args.length < 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String topicArn = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

 subTextSNS(snsClient, topicArn, phoneNumber);
 snsClient.close();
 }

 public static void subTextSNS(SnsClient snsClient, String topicArn, String
 phoneNumber) {
 try {
 SubscribeRequest request = SubscribeRequest.builder()
 .protocol("sms")
 .endpoint(phoneNumber)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)

Publish SMS messages to a topic 832

Amazon Simple Notification Service Developer Guide

 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("Subscription ARN: " + result.subscriptionArn() +
 "\n\n Status is "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Set attributes on the message, such as the ID of the sender, the maximum price, and its type.
Message attributes are optional.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesRequest;
import software.amazon.awssdk.services.sns.model.SetSmsAttributesResponse;
import software.amazon.awssdk.services.sns.model.SnsException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SetSMSAttributes {
 public static void main(String[] args) {
 HashMap<String, String> attributes = new HashMap<>(1);
 attributes.put("DefaultSMSType", "Transactional");
 attributes.put("UsageReportS3Bucket", "janbucket");

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();

Publish SMS messages to a topic 833

Amazon Simple Notification Service Developer Guide

 setSNSAttributes(snsClient, attributes);
 snsClient.close();
 }

 public static void setSNSAttributes(SnsClient snsClient, HashMap<String,
 String> attributes) {
 try {
 SetSmsAttributesRequest request = SetSmsAttributesRequest.builder()
 .attributes(attributes)
 .build();

 SetSmsAttributesResponse result =
 snsClient.setSMSAttributes(request);
 System.out.println("Set default Attributes to " + attributes + ".
 Status was "
 + result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Publish a message to a topic. The message is sent to every subscriber.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTextSMS {

Publish SMS messages to a topic 834

Amazon Simple Notification Service Developer Guide

 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <phoneNumber>

 Where:
 message - The message text to send.
 phoneNumber - The mobile phone number to which a message is
 sent (for example, +1XXX5550100).\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTextSMS(snsClient, message, phoneNumber);
 snsClient.close();
 }

 public static void pubTextSMS(SnsClient snsClient, String message, String
 phoneNumber) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .phoneNumber(phoneNumber)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Publish SMS messages to a topic 835

Amazon Simple Notification Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Publish a large message to Amazon SNS with Amazon S3 using an AWS
SDK

The following code example shows how to publish a large message to Amazon SNS using Amazon
S3 to store the message payload.

Java

SDK for Java 1.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

To publish a large message, use the Amazon SNS Extended Client Library for Java. The
message that you send references an Amazon S3 object containing the actual message
content.

import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.sns.AmazonSNS;
import com.amazonaws.services.sns.AmazonSNSClientBuilder;
import com.amazonaws.services.sns.model.CreateTopicRequest;
import com.amazonaws.services.sns.model.PublishRequest;
import com.amazonaws.services.sns.model.SetSubscriptionAttributesRequest;
import com.amazonaws.services.sns.util.Topics;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Publish a large message 836

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/java/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import com.amazonaws.services.sqs.model.CreateQueueRequest;
import com.amazonaws.services.sqs.model.ReceiveMessageResult;
import software.amazon.sns.AmazonSNSExtendedClient;
import software.amazon.sns.SNSExtendedClientConfiguration;

public class Example {

 public static void main(String[] args) {
 final String BUCKET_NAME = "extended-client-bucket";
 final String TOPIC_NAME = "extended-client-topic";
 final String QUEUE_NAME = "extended-client-queue";
 final Regions region = Regions.DEFAULT_REGION;

 // Message threshold controls the maximum message size that will
 be allowed to
 // be published
 // through SNS using the extended client. Payload of messages
 exceeding this
 // value will be stored in
 // S3. The default value of this parameter is 256 KB which is the
 maximum
 // message size in SNS (and SQS).
 final int EXTENDED_STORAGE_MESSAGE_SIZE_THRESHOLD = 32;

 // Initialize SNS, SQS and S3 clients
 final AmazonSNS snsClient =
 AmazonSNSClientBuilder.standard().withRegion(region).build();
 final AmazonSQS sqsClient =
 AmazonSQSClientBuilder.standard().withRegion(region).build();
 final AmazonS3 s3Client =
 AmazonS3ClientBuilder.standard().withRegion(region).build();

 // Create bucket, topic, queue and subscription
 s3Client.createBucket(BUCKET_NAME);
 final String topicArn = snsClient.createTopic(
 new
 CreateTopicRequest().withName(TOPIC_NAME)).getTopicArn();
 final String queueUrl = sqsClient.createQueue(
 new
 CreateQueueRequest().withQueueName(QUEUE_NAME)).getQueueUrl();
 final String subscriptionArn = Topics.subscribeQueue(
 snsClient, sqsClient, topicArn, queueUrl);

Publish a large message 837

Amazon Simple Notification Service Developer Guide

 // To read message content stored in S3 transparently through SQS
 extended
 // client,
 // set the RawMessageDelivery subscription attribute to TRUE
 final SetSubscriptionAttributesRequest
 subscriptionAttributesRequest = new SetSubscriptionAttributesRequest();

 subscriptionAttributesRequest.setSubscriptionArn(subscriptionArn);

 subscriptionAttributesRequest.setAttributeName("RawMessageDelivery");
 subscriptionAttributesRequest.setAttributeValue("TRUE");

 snsClient.setSubscriptionAttributes(subscriptionAttributesRequest);

 // Initialize SNS extended client
 // PayloadSizeThreshold triggers message content storage in S3
 when the
 // threshold is exceeded
 // To store all messages content in S3, use AlwaysThroughS3 flag
 final SNSExtendedClientConfiguration
 snsExtendedClientConfiguration = new SNSExtendedClientConfiguration()
 .withPayloadSupportEnabled(s3Client, BUCKET_NAME)

 .withPayloadSizeThreshold(EXTENDED_STORAGE_MESSAGE_SIZE_THRESHOLD);
 final AmazonSNSExtendedClient snsExtendedClient = new
 AmazonSNSExtendedClient(snsClient,
 snsExtendedClientConfiguration);

 // Publish message via SNS with storage in S3
 final String message = "This message is stored in S3 as it
 exceeds the threshold of 32 bytes set above.";
 snsExtendedClient.publish(topicArn, message);

 // Initialize SQS extended client
 final ExtendedClientConfiguration sqsExtendedClientConfiguration
 = new ExtendedClientConfiguration()
 .withPayloadSupportEnabled(s3Client,
 BUCKET_NAME);
 final AmazonSQSExtendedClient sqsExtendedClient = new
 AmazonSQSExtendedClient(sqsClient,
 sqsExtendedClientConfiguration);

 // Read the message from the queue

Publish a large message 838

Amazon Simple Notification Service Developer Guide

 final ReceiveMessageResult result =
 sqsExtendedClient.receiveMessage(queueUrl);
 System.out.println("Received message is " +
 result.getMessages().get(0).getBody());
 }
}

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Publish an Amazon SNS SMS text message using an AWS SDK

The following code examples show how to publish SMS messages using Amazon SNS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

namespace SNSMessageExample
{
 using System;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SimpleNotificationService;
 using Amazon.SimpleNotificationService.Model;

 public class SNSMessage
 {
 private AmazonSimpleNotificationServiceClient snsClient;

 /// <summary>
 /// Initializes a new instance of the <see cref="SNSMessage"/> class.
 /// Constructs a new SNSMessage object initializing the Amazon Simple

Publish an SMS text message 839

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SNS#code-examples

Amazon Simple Notification Service Developer Guide

 /// Notification Service (Amazon SNS) client using the supplied
 /// Region endpoint.
 /// </summary>
 /// <param name="regionEndpoint">The Amazon Region endpoint to use in
 /// sending test messages with this object.</param>
 public SNSMessage(RegionEndpoint regionEndpoint)
 {
 snsClient = new
 AmazonSimpleNotificationServiceClient(regionEndpoint);
 }

 /// <summary>
 /// Sends the SMS message passed in the text parameter to the phone
 number
 /// in phoneNum.
 /// </summary>
 /// <param name="phoneNum">The ten-digit phone number to which the text
 /// message will be sent.</param>
 /// <param name="text">The text of the message to send.</param>
 /// <returns>Async task.</returns>
 public async Task SendTextMessageAsync(string phoneNum, string text)
 {
 if (string.IsNullOrEmpty(phoneNum) || string.IsNullOrEmpty(text))
 {
 return;
 }

 // Now actually send the message.
 var request = new PublishRequest
 {
 Message = text,
 PhoneNumber = phoneNum,
 };

 try
 {
 var response = await snsClient.PublishAsync(request);
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error sending message: {ex}");
 }
 }
 }

Publish an SMS text message 840

Amazon Simple Notification Service Developer Guide

}

• For API details, see Publish in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
 * Publish SMS: use Amazon Simple Notification Service (Amazon SNS) to send an
 SMS text message to a phone number.
 * Note: This requires additional AWS configuration prior to running example.
 *
 * NOTE: When you start using Amazon SNS to send SMS messages, your AWS account
 is in the SMS sandbox and you can only
 * use verified destination phone numbers. See https://docs.aws.amazon.com/sns/
latest/dg/sns-sms-sandbox.html.
 * NOTE: If destination is in the US, you also have an additional restriction
 that you have use a dedicated
 * origination ID (phone number). You can request an origination number using
 Amazon Pinpoint for a fee.
 * See https://aws.amazon.com/blogs/compute/provisioning-and-using-10dlc-
origination-numbers-with-amazon-sns/
 * for more information.
 *
 * <phone_number_value> input parameter uses E.164 format.
 * For example, in United States, this input value should be of the form:
 +12223334444
 */

//! Send an SMS text message to a phone number.
/*!
 \param message: The message to publish.
 \param phoneNumber: The phone number of the recipient in E.164 format.

Publish an SMS text message 841

https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SNS::publishSms(const Aws::String &message,
 const Aws::String &phoneNumber,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SNS::SNSClient snsClient(clientConfiguration);

 Aws::SNS::Model::PublishRequest request;
 request.SetMessage(message);
 request.SetPhoneNumber(phoneNumber);

 const Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Message published successfully with message id, '"
 << outcome.GetResult().GetMessageId() << "'."
 << std::endl;
 }
 else {
 std::cerr << "Error while publishing message "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see Publish in AWS SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Publish an SMS text message 842

https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import software.amazon.awssdk.services.sns.model.SnsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class PublishTextSMS {
 public static void main(String[] args) {
 final String usage = """

 Usage: <message> <phoneNumber>

 Where:
 message - The message text to send.
 phoneNumber - The mobile phone number to which a message is
 sent (for example, +1XXX5550100).\s
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String message = args[0];
 String phoneNumber = args[1];
 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)
 .build();
 pubTextSMS(snsClient, message, phoneNumber);
 snsClient.close();
 }

 public static void pubTextSMS(SnsClient snsClient, String message, String
 phoneNumber) {

Publish an SMS text message 843

Amazon Simple Notification Service Developer Guide

 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .phoneNumber(phoneNumber)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see Publish in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun pubTextSMS(
 messageVal: String?,
 phoneNumberVal: String?,
) {
 val request =
 PublishRequest {
 message = messageVal
 phoneNumber = phoneNumberVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->

Publish an SMS text message 844

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sns#code-examples

Amazon Simple Notification Service Developer Guide

 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

• For API details, see Publish in AWS SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require 'vendor/autoload.php';

use Aws\Exception\AwsException;
use Aws\Sns\SnsClient;

/**
 * Sends a text message (SMS message) directly to a phone number using Amazon
 SNS.
 *
 * This code expects that you have AWS credentials set up per:
 * https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/
guide_credentials.html
 */

$SnSclient = new SnsClient([
 'profile' => 'default',
 'region' => 'us-east-1',
 'version' => '2010-03-31'
]);

$message = 'This message is sent from a Amazon SNS code sample.';
$phone = '+1XXX5550100';

Publish an SMS text message 845

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

try {
 $result = $SnSclient->publish([
 'Message' => $message,
 'PhoneNumber' => $phone,
]);
 var_dump($result);
} catch (AwsException $e) {
 // output error message if fails
 error_log($e->getMessage());
}

• For more information, see AWS SDK for PHP Developer Guide.

• For API details, see Publish in AWS SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class SnsWrapper:
 """Encapsulates Amazon SNS topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def publish_text_message(self, phone_number, message):
 """
 Publishes a text message directly to a phone number without need for a
 subscription.

Publish an SMS text message 846

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/sns-examples-sending-sms.html#publish-to-a-text-message-sms-message
https://docs.aws.amazon.com/goto/SdkForPHPV3/sns-2010-03-31/Publish
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Notification Service Developer Guide

 :param phone_number: The phone number that receives the message. This
 must be
 in E.164 format. For example, a United States phone
 number might be +12065550101.
 :param message: The message to send.
 :return: The ID of the message.
 """
 try:
 response = self.sns_resource.meta.client.publish(
 PhoneNumber=phone_number, Message=message
)
 message_id = response["MessageId"]
 logger.info("Published message to %s.", phone_number)
 except ClientError:
 logger.exception("Couldn't publish message to %s.", phone_number)
 raise
 else:
 return message_id

• For API details, see Publish in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Publish Amazon SNS messages to Amazon SQS queues using an AWS
SDK

The following code examples show how to:

• Create topic (FIFO or non-FIFO).

• Subscribe several queues to the topic with an option to apply a filter.

• Publish messages to the topic.

• Poll the queues for messages received.

Publish messages to queues 847

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish

Amazon Simple Notification Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Console application to run a workflow scenario for topics and queues.
/// </summary>
public static class TopicsAndQueues
{
 private static bool _useFifoTopic = false;
 private static bool _useContentBasedDeduplication = false;
 private static string _topicName = null!;
 private static string _topicArn = null!;

 private static readonly int _queueCount = 2;
 private static readonly string[] _queueUrls = new string[_queueCount];
 private static readonly string[] _subscriptionArns = new string[_queueCount];
 private static readonly string[] _tones = { "cheerful", "funny", "serious",
 "sincere" };
 public static SNSWrapper SnsWrapper { get; set; } = null!;
 public static SQSWrapper SqsWrapper { get; set; } = null!;
 public static bool UseConsole { get; set; } = true;
 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSQS>()
 .AddAWSService<IAmazonSimpleNotificationService>()

Publish messages to queues 848

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Notification Service Developer Guide

 .AddTransient<SNSWrapper>()
 .AddTransient<SQSWrapper>()
)
 .Build();

 ServicesSetup(host);
 PrintDescription();

 await RunScenario();

 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 SnsWrapper = host.Services.GetRequiredService<SNSWrapper>();
 SqsWrapper = host.Services.GetRequiredService<SQSWrapper>();
 }

 /// <summary>
 /// Run the scenario for working with topics and queues.
 /// </summary>
 /// <returns>True if successful.</returns>
 public static async Task<bool> RunScenario()
 {
 try
 {
 await SetupTopic();

 await SetupQueues();

 await PublishMessages();

 foreach (var queueUrl in _queueUrls)
 {
 var messages = await PollForMessages(queueUrl);
 if (messages.Any())
 {
 await DeleteMessages(queueUrl, messages);
 }
 }

Publish messages to queues 849

Amazon Simple Notification Service Developer Guide

 await CleanupResources();

 Console.WriteLine("Messaging with topics and queues workflow is
 complete.");
 return true;
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await CleanupResources();
 Console.WriteLine(new string('-', 80));
 return false;
 }
 }

 /// <summary>
 /// Print a description for the tasks in the workflow.
 /// </summary>
 /// <returns>Async task.</returns>
 private static void PrintDescription()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Welcome to messaging with topics and queues.");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"In this workflow, you will create an SNS topic and
 subscribe {_queueCount} SQS queues to the topic." +
 $"\r\nYou can select from several options for
 configuring the topic and the subscriptions for the 2 queues." +
 $"\r\nYou can then post to the topic and see the
 results in the queues.\r\n");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up the SNS topic to be used with the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string> SetupTopic()
 {
 Console.WriteLine(new string('-', 80));

Publish messages to queues 850

Amazon Simple Notification Service Developer Guide

 Console.WriteLine($"SNS topics can be configured as FIFO (First-In-First-
Out)." +
 $"\r\nFIFO topics deliver messages in order and support
 deduplication and message filtering." +
 $"\r\nYou can then post to the topic and see the
 results in the queues.\r\n");

 _useFifoTopic = GetYesNoResponse("Would you like to work with FIFO
 topics?");

 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 _topicName = GetUserResponse("Enter a name for your SNS topic: ",
 "example-topic");
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be appended
 to the topic name.\r\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Because you have chosen a FIFO topic,
 deduplication is supported." +
 $"\r\nDeduplication IDs are either set in the
 message or automatically generated " +
 $"\r\nfrom content using a hash function.\r\n" +
 $"\r\nIf a message is successfully published to an
 SNS FIFO topic, any message " +
 $"\r\npublished and determined to have the same
 deduplication ID, " +
 $"\r\nwithin the five-minute deduplication
 interval, is accepted but not delivered.\r\n" +
 $"\r\nFor more information about deduplication, " +
 $"\r\nsee https://docs.aws.amazon.com/sns/latest/
dg/fifo-message-dedup.html.");

 _useContentBasedDeduplication = GetYesNoResponse("Use content-based
 deduplication instead of entering a deduplication ID?");
 Console.WriteLine(new string('-', 80));
 }

 _topicArn = await SnsWrapper.CreateTopicWithName(_topicName,
 _useFifoTopic, _useContentBasedDeduplication);

 Console.WriteLine($"Your new topic with the name {_topicName}" +

Publish messages to queues 851

Amazon Simple Notification Service Developer Guide

 $"\r\nand Amazon Resource Name (ARN) {_topicArn}" +
 $"\r\nhas been created.\r\n");

 Console.WriteLine(new string('-', 80));
 return _topicArn;
 }

 /// <summary>
 /// Set up the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task SetupQueues()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now you will create {_queueCount} Amazon Simple Queue
 Service (Amazon SQS) queues to subscribe to the topic.");

 // Repeat this section for each queue.
 for (int i = 0; i < _queueCount; i++)
 {
 var queueName = GetUserResponse("Enter a name for an Amazon SQS
 queue: ", $"example-queue-{i}");
 if (_useFifoTopic)
 {
 // Only explain this once.
 if (i == 0)
 {
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be
 appended to the queue name.");
 }

 var queueUrl = await SqsWrapper.CreateQueueWithName(queueName,
 _useFifoTopic);

 _queueUrls[i] = queueUrl;

 Console.WriteLine($"Your new queue with the name {queueName}" +
 $"\r\nand queue URL {queueUrl}" +
 $"\r\nhas been created.\r\n");

 if (i == 0)
 {
 Console.WriteLine(

Publish messages to queues 852

Amazon Simple Notification Service Developer Guide

 $"The queue URL is used to retrieve the queue ARN,\r\n" +
 $"which is used to create a subscription.");
 Console.WriteLine(new string('-', 80));
 }

 var queueArn = await SqsWrapper.GetQueueArnByUrl(queueUrl);

 if (i == 0)
 {
 Console.WriteLine(
 $"An AWS Identity and Access Management (IAM) policy must
 be attached to an SQS queue, enabling it to receive\r\n" +
 $"messages from an SNS topic");
 }

 await SqsWrapper.SetQueuePolicyForTopic(queueArn, _topicArn,
 queueUrl);

 await SetupFilters(i, queueArn, queueName);
 }
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up filters with user options for a queue.
 /// </summary>
 /// <param name="queueCount">The number of this queue.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="queueName">The name of the queue.</param>
 /// <returns>Async Task.</returns>
 public static async Task SetupFilters(int queueCount, string queueArn, string
 queueName)
 {
 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 // Only explain this once.
 if (queueCount == 0)
 {
 Console.WriteLine(
 "Subscriptions to a FIFO topic can have filters." +

Publish messages to queues 853

Amazon Simple Notification Service Developer Guide

 "If you add a filter to this subscription, then only the
 filtered messages " +
 "will be received in the queue.");

 Console.WriteLine(
 "For information about message filtering, " +
 "see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html");

 Console.WriteLine(
 "For this example, you can filter messages by a" +
 "TONE attribute.");
 }

 var useFilter = GetYesNoResponse($"Filter messages for {queueName}'s
 subscription to the topic?");

 string? filterPolicy = null;
 if (useFilter)
 {
 filterPolicy = CreateFilterPolicy();
 }
 var subscriptionArn = await
 SnsWrapper.SubscribeTopicWithFilter(_topicArn, filterPolicy,
 queueArn);
 _subscriptionArns[queueCount] = subscriptionArn;

 Console.WriteLine(
 $"The queue {queueName} has been subscribed to the topic
 {_topicName} " +
 $"with the subscription ARN {subscriptionArn}");
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Use user input to create a filter policy for a subscription.
 /// </summary>
 /// <returns>The serialized filter policy.</returns>
 public static string CreateFilterPolicy()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 $"You can filter messages by one or more of the following" +

Publish messages to queues 854

Amazon Simple Notification Service Developer Guide

 $"TONE attributes.");

 List<string> filterSelections = new List<string>();

 var selectionNumber = 0;
 do
 {
 Console.WriteLine(
 $"Enter a number to add a TONE filter, or enter 0 to stop adding
 filters.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", filterSelections.Any() ? "0" :
 "1");
 int.TryParse(selection, out selectionNumber);
 if (selectionNumber > 0 && !
filterSelections.Contains(_tones[selectionNumber - 1]))
 {
 filterSelections.Add(_tones[selectionNumber - 1]);
 }
 } while (selectionNumber != 0);

 var filters = new Dictionary<string, List<string>>
 {
 { "tone", filterSelections }
 };
 string filterPolicy = JsonSerializer.Serialize(filters);
 return filterPolicy;
 }

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;

Publish messages to queues 855

Amazon Simple Notification Service Developer Guide

 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is
 a sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must
 set a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID
 for this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this
 message.");
 deduplicationId = GetUserResponse("Enter a deduplication ID
 for this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];

Publish messages to queues 856

Amazon Simple Notification Service Developer Guide

 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?",
 false);
 }
 }

 /// <summary>
 /// Poll for the published messages to see the results of the user's choices.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task<List<Message>> PollForMessages(string queueUrl)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now the SQS queue at {queueUrl} will be polled to
 retrieve the messages." +
 "\r\nPress any key to continue.");
 if (UseConsole)
 {
 Console.ReadLine();
 }

 var moreMessages = true;
 var messages = new List<Message>();
 while (moreMessages)
 {
 var newMessages = await SqsWrapper.ReceiveMessagesByUrl(queueUrl,
 10);

 moreMessages = newMessages.Any();
 if (moreMessages)
 {
 messages.AddRange(newMessages);
 }
 }

Publish messages to queues 857

Amazon Simple Notification Service Developer Guide

 Console.WriteLine($"{messages.Count} message(s) were received by the
 queue at {queueUrl}.");

 foreach (var message in messages)
 {
 Console.WriteLine("\tMessage:" +
 $"\n\t{message.Body}");
 }

 Console.WriteLine(new string('-', 80));
 return messages;
 }

 /// <summary>
 /// Delete the message using handles in a batch.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task DeleteMessages(string queueUrl, List<Message>
 messages)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Now we can delete the messages in this queue in a
 batch.");
 await SqsWrapper.DeleteMessageBatchByUrl(queueUrl, messages);
 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 try
 {
 foreach (var queueUrl in _queueUrls)
 {
 if (!string.IsNullOrEmpty(queueUrl))
 {
 var deleteQueue =
 GetYesNoResponse($"Delete queue with url {queueUrl}?");

Publish messages to queues 858

Amazon Simple Notification Service Developer Guide

 if (deleteQueue)
 {
 await SqsWrapper.DeleteQueueByUrl(queueUrl);
 }
 }
 }

 foreach (var subscriptionArn in _subscriptionArns)
 {
 if (!string.IsNullOrEmpty(subscriptionArn))
 {
 await SnsWrapper.UnsubscribeByArn(subscriptionArn);
 }
 }

 var deleteTopic = GetYesNoResponse($"Delete topic {_topicName}?");
 if (deleteTopic)
 {
 await SnsWrapper.DeleteTopicByArn(_topicArn);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Unable to clean up resources. Here's why:
 {ex.Message}.");
 }

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question, bool defaultAnswer =
 true)
 {
 if (UseConsole)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();

Publish messages to queues 859

Amazon Simple Notification Service Developer Guide

 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }

 /// <summary>
 /// Helper method to get a string response from the user through the console.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static string GetUserResponse(string question, string defaultAnswer)
 {
 if (UseConsole)
 {
 var response = "";
 while (string.IsNullOrEmpty(response))
 {
 Console.WriteLine(question);
 response = Console.ReadLine();
 }
 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }
}

Create a class that wraps Amazon SQS operations.

/// <summary>
/// Wrapper for Amazon Simple Queue Service (SQS) operations.
/// </summary>
public class SQSWrapper
{
 private readonly IAmazonSQS _amazonSQSClient;

Publish messages to queues 860

Amazon Simple Notification Service Developer Guide

 /// <summary>
 /// Constructor for the Amazon SQS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SQS client.</param>
 public SQSWrapper(IAmazonSQS amazonSQS)
 {
 _amazonSQSClient = amazonSQS;
 }

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {
 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }
 };

 var createQueueRequest = new CreateQueueRequest()
 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(

Publish messages to queues 861

Amazon Simple Notification Service Developer Guide

 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(
 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }
 };

 var getAttributesResponse = await
 _amazonSQSClient.GetQueueAttributesAsync(
 getAttributesRequest);

 return getAttributesResponse.QueueARN;
 }

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string
 topicArn, string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +

Publish messages to queues 862

Amazon Simple Notification Service Developer Guide

 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\":
 \"{topicArn}\"" +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(
 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>
 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()
 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });

Publish messages to queues 863

Amazon Simple Notification Service Developer Guide

 return messageResponse.Messages;
 }

 /// <summary>
 /// Delete a batch of messages from a queue by its url.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl,
 List<Message> messages)
 {
 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;

Publish messages to queues 864

Amazon Simple Notification Service Developer Guide

 }
}

Create a class that wraps Amazon SNS operations.

/// <summary>
/// Wrapper for Amazon Simple Notification Service (SNS) operations.
/// </summary>
public class SNSWrapper
{
 private readonly IAmazonSimpleNotificationService _amazonSNSClient;

 /// <summary>
 /// Constructor for the Amazon SNS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SNS client.</param>
 public SNSWrapper(IAmazonSimpleNotificationService amazonSNS)
 {
 _amazonSNSClient = amazonSNS;
 }

 /// <summary>
 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.

Publish messages to queues 865

Amazon Simple Notification Service Developer Guide

 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {
 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };

Publish messages to queues 866

Amazon Simple Notification Service Developer Guide

 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</
param>
 /// <param name="attributeValue">The optional attribute value for the
 message.</param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,
 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {

Publish messages to queues 867

Amazon Simple Notification Service Developer Guide

 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await
 _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

Publish messages to queues 868

Amazon Simple Notification Service Developer Guide

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Workflow for messaging with topics and queues using Amazon SNS and Amazon
 SQS.
/*!
 \param clientConfig Aws client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::TopicsAndQueues::messagingWithTopicsAndQueues(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 std::cout << "Welcome to messaging with topics and queues." << std::endl;
 printAsterisksLine();
 std::cout << "In this workflow, you will create an SNS topic and subscribe "

Publish messages to queues 869

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

 << NUMBER_OF_QUEUES <<
 " SQS queues to the topic." << std::endl;
 std::cout
 << "You can select from several options for configuring the topic and
 the subscriptions for the "
 << NUMBER_OF_QUEUES << " queues." << std::endl;
 std::cout << "You can then post to the topic and see the results in the
 queues."
 << std::endl;

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 printAsterisksLine();

 std::cout << "SNS topics can be configured as FIFO (First-In-First-Out)."
 << std::endl;
 std::cout
 << "FIFO topics deliver messages in order and support deduplication
 and message filtering."
 << std::endl;
 bool isFifoTopic = askYesNoQuestion(
 "Would you like to work with FIFO topics? (y/n) ");

 bool contentBasedDeduplication = false;
 Aws::String topicName;
 if (isFifoTopic) {
 printAsterisksLine();
 std::cout << "Because you have chosen a FIFO topic, deduplication is
 supported."
 << std::endl;
 std::cout
 << "Deduplication IDs are either set in the message or
 automatically generated "
 << "from content using a hash function." << std::endl;
 std::cout
 << "If a message is successfully published to an SNS FIFO topic,
 any message "
 << "published and determined to have the same deduplication ID, "
 << std::endl;
 std::cout
 << "within the five-minute deduplication interval, is accepted
 but not delivered."
 << std::endl;
 std::cout

Publish messages to queues 870

Amazon Simple Notification Service Developer Guide

 << "For more information about deduplication, "
 << "see https://docs.aws.amazon.com/sns/latest/dg/fifo-message-
dedup.html."
 << std::endl;
 contentBasedDeduplication = askYesNoQuestion(
 "Use content-based deduplication instead of entering a
 deduplication ID? (y/n) ");
 }

 printAsterisksLine();

 Aws::SQS::SQSClient sqsClient(clientConfiguration);
 Aws::Vector<Aws::String> queueURLS;
 Aws::Vector<Aws::String> subscriptionARNS;

 Aws::String topicARN;
 {
 topicName = askQuestion("Enter a name for your SNS topic. ");

 // 1. Create an Amazon SNS topic, either FIFO or non-FIFO.
 Aws::SNS::Model::CreateTopicRequest request;

 if (isFifoTopic) {
 request.AddAttributes("FifoTopic", "true");
 if (contentBasedDeduplication) {
 request.AddAttributes("ContentBasedDeduplication", "true");
 }
 topicName = topicName + FIFO_SUFFIX;

 std::cout
 << "Because you have selected a FIFO topic, '.fifo' must be
 appended to the topic name."
 << std::endl;
 }

 request.SetName(topicName);

 Aws::SNS::Model::CreateTopicOutcome outcome =
 snsClient.CreateTopic(request);

 if (outcome.IsSuccess()) {
 topicARN = outcome.GetResult().GetTopicArn();
 std::cout << "Your new topic with the name '" << topicName

Publish messages to queues 871

Amazon Simple Notification Service Developer Guide

 << "' and the topic Amazon Resource Name (ARN) " <<
 std::endl;
 std::cout << "'" << topicARN << "' has been created." << std::endl;

 }
 else {
 std::cerr << "Error with TopicsAndQueues::CreateTopic. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 printAsterisksLine();

 std::cout << "Now you will create " << NUMBER_OF_QUEUES
 << " SQS queues to subscribe to the topic." << std::endl;
 Aws::Vector<Aws::String> queueNames;
 bool filteringMessages = false;
 bool first = true;
 for (int i = 1; i <= NUMBER_OF_QUEUES; ++i) {
 Aws::String queueURL;
 Aws::String queueName;
 {
 printAsterisksLine();
 std::ostringstream ostringstream;
 ostringstream << "Enter a name for " << (first ? "an" : "the next")
 << " SQS queue. ";
 queueName = askQuestion(ostringstream.str());

 // 2. Create an SQS queue.
 Aws::SQS::Model::CreateQueueRequest request;
 if (isFifoTopic) {

 request.AddAttributes(Aws::SQS::Model::QueueAttributeName::FifoQueue,
 "true");
 queueName = queueName + FIFO_SUFFIX;

Publish messages to queues 872

Amazon Simple Notification Service Developer Guide

 if (first) // Only explain this once.
 {
 std::cout
 << "Because you are creating a FIFO SQS queue,
 '.fifo' must "
 << "be appended to the queue name." << std::endl;
 }
 }

 request.SetQueueName(queueName);
 queueNames.push_back(queueName);

 Aws::SQS::Model::CreateQueueOutcome outcome =
 sqsClient.CreateQueue(request);

 if (outcome.IsSuccess()) {
 queueURL = outcome.GetResult().GetQueueUrl();
 std::cout << "Your new SQS queue with the name '" << queueName
 << "' and the queue URL " << std::endl;
 std::cout << "'" << queueURL << "' has been created." <<
 std::endl;
 }
 else {
 std::cerr << "Error with SQS::CreateQueue. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }
 queueURLS.push_back(queueURL);

 if (first) // Only explain this once.
 {
 std::cout
 << "The queue URL is used to retrieve the queue ARN, which is
 "

Publish messages to queues 873

Amazon Simple Notification Service Developer Guide

 << "used to create a subscription." << std::endl;
 }

 Aws::String queueARN;
 {
 // 3. Get the SQS queue ARN attribute.
 Aws::SQS::Model::GetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);

 request.AddAttributeNames(Aws::SQS::Model::QueueAttributeName::QueueArn);

 Aws::SQS::Model::GetQueueAttributesOutcome outcome =
 sqsClient.GetQueueAttributes(request);

 if (outcome.IsSuccess()) {
 const Aws::Map<Aws::SQS::Model::QueueAttributeName, Aws::String>
 &attributes =
 outcome.GetResult().GetAttributes();
 const auto &iter = attributes.find(
 Aws::SQS::Model::QueueAttributeName::QueueArn);
 if (iter != attributes.end()) {
 queueARN = iter->second;
 std::cout << "The queue ARN '" << queueARN
 << "' has been retrieved."
 << std::endl;
 }
 else {
 std::cerr
 << "Error ARN attribute not returned by
 GetQueueAttribute."
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }
 else {
 std::cerr << "Error with SQS::GetQueueAttributes. "
 << outcome.GetError().GetMessage()

Publish messages to queues 874

Amazon Simple Notification Service Developer Guide

 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 if (first) {
 std::cout
 << "An IAM policy must be attached to an SQS queue, enabling
 it to receive "
 "messages from an SNS topic." << std::endl;
 }

 {
 // 4. Set the SQS queue policy attribute with a policy enabling the
 receipt of SNS messages.
 Aws::SQS::Model::SetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);
 Aws::String policy = createPolicyForQueue(queueARN, topicARN);
 request.AddAttributes(Aws::SQS::Model::QueueAttributeName::Policy,
 policy);

 Aws::SQS::Model::SetQueueAttributesOutcome outcome =
 sqsClient.SetQueueAttributes(request);

 if (outcome.IsSuccess()) {
 std::cout << "The attributes for the queue '" << queueName
 << "' were successfully updated." << std::endl;
 }
 else {
 std::cerr << "Error with SQS::SetQueueAttributes. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,

Publish messages to queues 875

Amazon Simple Notification Service Developer Guide

 sqsClient);

 return false;
 }
 }

 printAsterisksLine();

 {
 // 5. Subscribe the SQS queue to the SNS topic.
 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);
 if (isFifoTopic) {
 if (first) {
 std::cout << "Subscriptions to a FIFO topic can have
 filters."
 << std::endl;
 std::cout
 << "If you add a filter to this subscription, then
 only the filtered messages "
 << "will be received in the queue." << std::endl;
 std::cout << "For information about message filtering, "
 << "see https://docs.aws.amazon.com/sns/latest/dg/
sns-message-filtering.html"
 << std::endl;
 std::cout << "For this example, you can filter messages by a
 \""
 << TONE_ATTRIBUTE << "\" attribute." << std::endl;
 }

 std::ostringstream ostringstream;
 ostringstream << "Filter messages for \"" << queueName
 << "\"'s subscription to the topic \""
 << topicName << "\"? (y/n)";

 // Add filter if user answers yes.
 if (askYesNoQuestion(ostringstream.str())) {
 Aws::String jsonPolicy = getFilterPolicyFromUser();
 if (!jsonPolicy.empty()) {
 filteringMessages = true;

Publish messages to queues 876

Amazon Simple Notification Service Developer Guide

 std::cout << "This is the filter policy for this
 subscription."
 << std::endl;
 std::cout << jsonPolicy << std::endl;

 request.AddAttributes("FilterPolicy", jsonPolicy);
 }
 else {
 std::cout
 << "Because you did not select any attributes, no
 filter "
 << "will be added to this subscription." <<
 std::endl;
 }
 }
 } // if (isFifoTopic)
 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;
 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

Publish messages to queues 877

Amazon Simple Notification Service Developer Guide

 first = false;
 }

 first = true;
 do {
 printAsterisksLine();

 // 6. Publish a message to the SNS topic.
 Aws::SNS::Model::PublishRequest request;
 request.SetTopicArn(topicARN);
 Aws::String message = askQuestion("Enter a message text to publish. ");
 request.SetMessage(message);
 if (isFifoTopic) {
 if (first) {
 std::cout
 << "Because you are using a FIFO topic, you must set a
 message group ID."
 << std::endl;
 std::cout
 << "All messages within the same group will be received
 in the "
 << "order they were published." << std::endl;
 }
 Aws::String messageGroupID = askQuestion(
 "Enter a message group ID for this message. ");
 request.SetMessageGroupId(messageGroupID);
 if (!contentBasedDeduplication) {
 if (first) {
 std::cout
 << "Because you are not using content-based
 deduplication, "
 << "you must enter a deduplication ID." << std::endl;
 }
 Aws::String deduplicationID = askQuestion(
 "Enter a deduplication ID for this message. ");
 request.SetMessageDeduplicationId(deduplicationID);
 }
 }

 if (filteringMessages && askYesNoQuestion(
 "Add an attribute to this message? (y/n) ")) {
 for (size_t i = 0; i < TONES.size(); ++i) {
 std::cout << " " << (i + 1) << ". " << TONES[i] << std::endl;

Publish messages to queues 878

Amazon Simple Notification Service Developer Guide

 }
 int selection = askQuestionForIntRange(
 "Enter a number for an attribute. ",
 1, static_cast<int>(TONES.size()));
 Aws::SNS::Model::MessageAttributeValue messageAttributeValue;
 messageAttributeValue.SetDataType("String");
 messageAttributeValue.SetStringValue(TONES[selection - 1]);
 request.AddMessageAttributes(TONE_ATTRIBUTE, messageAttributeValue);
 }

 Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Your message was successfully published." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Publish. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

 first = false;
 } while (askYesNoQuestion("Post another message? (y/n) "));

 printAsterisksLine();

 std::cout << "Now the SQS queue will be polled to retrieve the messages."
 << std::endl;
 askQuestion("Press any key to continue...", alwaysTrueTest);

 for (size_t i = 0; i < queueURLS.size(); ++i) {
 // 7. Poll an SQS queue for its messages.
 std::vector<Aws::String> messages;
 std::vector<Aws::String> receiptHandles;
 while (true) {
 Aws::SQS::Model::ReceiveMessageRequest request;

Publish messages to queues 879

Amazon Simple Notification Service Developer Guide

 request.SetMaxNumberOfMessages(10);
 request.SetQueueUrl(queueURLS[i]);

 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 request.SetWaitTimeSeconds(1);
 Aws::SQS::Model::ReceiveMessageOutcome outcome =
 sqsClient.ReceiveMessage(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::SQS::Model::Message> &newMessages =
 outcome.GetResult().GetMessages();
 if (newMessages.empty()) {
 break;
 }
 else {
 for (const Aws::SQS::Model::Message &message: newMessages) {
 messages.push_back(message.GetBody());
 receiptHandles.push_back(message.GetReceiptHandle());
 }
 }
 }
 else {
 std::cerr << "Error with SQS::ReceiveMessage. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 printAsterisksLine();

 if (messages.empty()) {
 std::cout << "No messages were ";
 }

Publish messages to queues 880

Amazon Simple Notification Service Developer Guide

 else if (messages.size() == 1) {
 std::cout << "One message was ";
 }
 else {
 std::cout << messages.size() << " messages were ";
 }
 std::cout << "received by the queue '" << queueNames[i]
 << "'." << std::endl;
 for (const Aws::String &message: messages) {
 std::cout << " Message : '" << message << "'."
 << std::endl;
 }

 // 8. Delete a batch of messages from an SQS queue.
 if (!receiptHandles.empty()) {
 Aws::SQS::Model::DeleteMessageBatchRequest request;
 request.SetQueueUrl(queueURLS[i]);
 int id = 1; // Ids must be unique within a batch delete request.
 for (const Aws::String &receiptHandle: receiptHandles) {
 Aws::SQS::Model::DeleteMessageBatchRequestEntry entry;
 entry.SetId(std::to_string(id));
 ++id;
 entry.SetReceiptHandle(receiptHandle);
 request.AddEntries(entry);
 }

 Aws::SQS::Model::DeleteMessageBatchOutcome outcome =
 sqsClient.DeleteMessageBatch(request);

 if (outcome.IsSuccess()) {
 std::cout << "The batch deletion of messages was successful."
 << std::endl;
 }
 else {
 std::cerr << "Error with SQS::DeleteMessageBatch. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;

Publish messages to queues 881

Amazon Simple Notification Service Developer Guide

 }
 }
 }

 return cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient,
 true); // askUser
}

bool AwsDoc::TopicsAndQueues::cleanUp(const Aws::String &topicARN,
 const Aws::Vector<Aws::String> &queueURLS,
 const Aws::Vector<Aws::String>
 &subscriptionARNS,
 const Aws::SNS::SNSClient &snsClient,
 const Aws::SQS::SQSClient &sqsClient,
 bool askUser) {
 bool result = true;
 printAsterisksLine();
 if (!queueURLS.empty() && askUser &&
 askYesNoQuestion("Delete the SQS queues? (y/n) ")) {

 for (const auto &queueURL: queueURLS) {
 // 9. Delete an SQS queue.
 Aws::SQS::Model::DeleteQueueRequest request;
 request.SetQueueUrl(queueURL);

 Aws::SQS::Model::DeleteQueueOutcome outcome =
 sqsClient.DeleteQueue(request);

 if (outcome.IsSuccess()) {
 std::cout << "The queue with URL '" << queueURL
 << "' was successfully deleted." << std::endl;
 }
 else {
 std::cerr << "Error with SQS::DeleteQueue. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

Publish messages to queues 882

Amazon Simple Notification Service Developer Guide

 for (const auto &subscriptionARN: subscriptionARNS) {
 // 10. Unsubscribe an SNS subscription.
 Aws::SNS::Model::UnsubscribeRequest request;
 request.SetSubscriptionArn(subscriptionARN);

 Aws::SNS::Model::UnsubscribeOutcome outcome =
 snsClient.Unsubscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Unsubscribe of subscription ARN '" <<
 subscriptionARN
 << "' was successful." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Unsubscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }
 }

 printAsterisksLine();
 if (!topicARN.empty() && askUser &&
 askYesNoQuestion("Delete the SNS topic? (y/n) ")) {

 // 11. Delete an SNS topic.
 Aws::SNS::Model::DeleteTopicRequest request;
 request.SetTopicArn(topicARN);

 Aws::SNS::Model::DeleteTopicOutcome outcome =
 snsClient.DeleteTopic(request);

 if (outcome.IsSuccess()) {
 std::cout << "The topic with ARN '" << topicARN
 << "' was successfully deleted." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::DeleteTopicRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }

Publish messages to queues 883

Amazon Simple Notification Service Developer Guide

 }

 return result;
}

//! Create an IAM policy that gives an SQS queue permission to receive messages
 from an SNS topic.
/*!
 \sa createPolicyForQueue()
 \param queueARN: The SQS queue Amazon Resource Name (ARN).
 \param topicARN: The SNS topic ARN.
 \return Aws::String: The policy as JSON.
 */
Aws::String AwsDoc::TopicsAndQueues::createPolicyForQueue(const Aws::String
 &queueARN,
 const Aws::String
 &topicARN) {
 std::ostringstream policyStream;
 policyStream << R"({
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": ")" << queueARN << R"(",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": ")" << topicARN << R"("
 }
 }
 }
]
 })";

 return policyStream.str();
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateQueue

• CreateTopic

Publish messages to queues 884

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/CreateTopic

Amazon Simple Notification Service Developer Guide

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "encoding/json"
 "fmt"
 "log"
 "strings"
 "topics_and_queues/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sqs"
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

Publish messages to queues 885

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

const FIFO_SUFFIX = ".fifo"
const TONE_KEY = "tone"

var ToneChoices = []string{"cheerful", "funny", "serious", "sincere"}

// MessageBody is used to deserialize the body of a message from a JSON string.
type MessageBody struct {
 Message string
}

// ScenarioRunner separates the steps of this scenario into individual functions
 so that
// they are simpler to read and understand.
type ScenarioRunner struct {
 questioner demotools.IQuestioner
 snsActor *actions.SnsActions
 sqsActor *actions.SqsActions
}

func (runner ScenarioRunner) CreateTopic(ctx context.Context) (string, string,
 bool, bool) {
 log.Println("SNS topics can be configured as FIFO (First-In-First-Out) or
 standard.\n" +
 "FIFO topics deliver messages in order and support deduplication and message
 filtering.")
 isFifoTopic := runner.questioner.AskBool("\nWould you like to work with FIFO
 topics? (y/n) ", "y")

 contentBasedDeduplication := false
 if isFifoTopic {
 log.Println(strings.Repeat("-", 88))
 log.Println("Because you have chosen a FIFO topic, deduplication is supported.
\n" +
 "Deduplication IDs are either set in the message or are automatically
 generated\n" +
 "from content using a hash function. If a message is successfully published to
\n" +
 "an SNS FIFO topic, any message published and determined to have the same\n" +
 "deduplication ID, within the five-minute deduplication interval, is accepted
\n" +
 "but not delivered. For more information about deduplication, see:\n" +
 "\thttps://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.")
 contentBasedDeduplication = runner.questioner.AskBool(

Publish messages to queues 886

Amazon Simple Notification Service Developer Guide

 "\nDo you want to use content-based deduplication instead of entering a
 deduplication ID? (y/n) ", "y")
 }
 log.Println(strings.Repeat("-", 88))

 topicName := runner.questioner.Ask("Enter a name for your SNS topic. ")
 if isFifoTopic {
 topicName = fmt.Sprintf("%v%v", topicName, FIFO_SUFFIX)
 log.Printf("Because you have selected a FIFO topic, '%v' must be appended to
\n"+
 "the topic name.", FIFO_SUFFIX)
 }

 topicArn, err := runner.snsActor.CreateTopic(ctx, topicName, isFifoTopic,
 contentBasedDeduplication)
 if err != nil {
 panic(err)
 }
 log.Printf("Your new topic with the name '%v' and Amazon Resource Name (ARN)
 \n"+
 "'%v' has been created.", topicName, topicArn)

 return topicName, topicArn, isFifoTopic, contentBasedDeduplication
}

func (runner ScenarioRunner) CreateQueue(ctx context.Context, ordinal string,
 isFifoTopic bool) (string, string) {
 queueName := runner.questioner.Ask(fmt.Sprintf("Enter a name for the %v SQS
 queue. ", ordinal))
 if isFifoTopic {
 queueName = fmt.Sprintf("%v%v", queueName, FIFO_SUFFIX)
 if ordinal == "first" {
 log.Printf("Because you are creating a FIFO SQS queue, '%v' must "+
 "be appended to the queue name.\n", FIFO_SUFFIX)
 }
 }
 queueUrl, err := runner.sqsActor.CreateQueue(ctx, queueName, isFifoTopic)
 if err != nil {
 panic(err)
 }
 log.Printf("Your new SQS queue with the name '%v' and the queue URL "+
 "'%v' has been created.", queueName, queueUrl)

 return queueName, queueUrl

Publish messages to queues 887

Amazon Simple Notification Service Developer Guide

}

func (runner ScenarioRunner) SubscribeQueueToTopic(
 ctx context.Context, queueName string, queueUrl string, topicName string,
 topicArn string, ordinal string,
 isFifoTopic bool) (string, bool) {

 queueArn, err := runner.sqsActor.GetQueueArn(ctx, queueUrl)
 if err != nil {
 panic(err)
 }
 log.Printf("The ARN of your queue is: %v.\n", queueArn)

 err = runner.sqsActor.AttachSendMessagePolicy(ctx, queueUrl, queueArn, topicArn)
 if err != nil {
 panic(err)
 }
 log.Println("Attached an IAM policy to the queue so the SNS topic can send " +
 "messages to it.")
 log.Println(strings.Repeat("-", 88))

 var filterPolicy map[string][]string
 if isFifoTopic {
 if ordinal == "first" {
 log.Println("Subscriptions to a FIFO topic can have filters.\n" +
 "If you add a filter to this subscription, then only the filtered messages\n"
 +
 "will be received in the queue.\n" +
 "For information about message filtering, see\n" +
 "\thttps://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n" +
 "For this example, you can filter messages by a \"tone\" attribute.")
 }

 wantFiltering := runner.questioner.AskBool(
 fmt.Sprintf("Do you want to filter messages that are sent to \"%v\"\n"+
 "from the %v topic? (y/n) ", queueName, topicName), "y")
 if wantFiltering {
 log.Println("You can filter messages by one or more of the following \"tone\"
 attributes.")

 var toneSelections []string
 askAboutTones := true
 for askAboutTones {
 toneIndex := runner.questioner.AskChoice(

Publish messages to queues 888

Amazon Simple Notification Service Developer Guide

 "Enter the number of the tone you want to filter by:\n", ToneChoices)
 toneSelections = append(toneSelections, ToneChoices[toneIndex])
 askAboutTones = runner.questioner.AskBool("Do you want to add another tone to
 the filter? (y/n) ", "y")
 }
 log.Printf("Your subscription will be filtered to only pass the following
 tones: %v\n", toneSelections)
 filterPolicy = map[string][]string{TONE_KEY: toneSelections}
 }
 }

 subscriptionArn, err := runner.snsActor.SubscribeQueue(ctx, topicArn, queueArn,
 filterPolicy)
 if err != nil {
 panic(err)
 }
 log.Printf("The queue %v is now subscribed to the topic %v with the subscription
 ARN %v.\n",
 queueName, topicName, subscriptionArn)

 return subscriptionArn, filterPolicy != nil
}

func (runner ScenarioRunner) PublishMessages(ctx context.Context, topicArn
 string, isFifoTopic bool, contentBasedDeduplication bool, usingFilters bool) {
 var message string
 var groupId string
 var dedupId string
 var toneSelection string
 publishMore := true
 for publishMore {
 groupId = ""
 dedupId = ""
 toneSelection = ""
 message = runner.questioner.Ask("Enter a message to publish: ")
 if isFifoTopic {
 log.Println("Because you are using a FIFO topic, you must set a message group
 ID.\n" +
 "All messages within the same group will be received in the order they were
 published.")
 groupId = runner.questioner.Ask("Enter a message group ID: ")
 if !contentBasedDeduplication {
 log.Println("Because you are not using content-based deduplication,\n" +
 "you must enter a deduplication ID.")

Publish messages to queues 889

Amazon Simple Notification Service Developer Guide

 dedupId = runner.questioner.Ask("Enter a deduplication ID: ")
 }
 }
 if usingFilters {
 if runner.questioner.AskBool("Add a tone attribute so this message can be
 filtered? (y/n) ", "y") {
 toneIndex := runner.questioner.AskChoice(
 "Enter the number of the tone you want to filter by:\n", ToneChoices)
 toneSelection = ToneChoices[toneIndex]
 }
 }

 err := runner.snsActor.Publish(ctx, topicArn, message, groupId, dedupId,
 TONE_KEY, toneSelection)
 if err != nil {
 panic(err)
 }
 log.Println(("Your message was published."))

 publishMore = runner.questioner.AskBool("Do you want to publish another
 messsage? (y/n) ", "y")
 }
}

func (runner ScenarioRunner) PollForMessages(ctx context.Context, queueUrls
 []string) {
 log.Println("Polling queues for messages...")
 for _, queueUrl := range queueUrls {
 var messages []types.Message
 for {
 currentMsgs, err := runner.sqsActor.GetMessages(ctx, queueUrl, 10, 1)
 if err != nil {
 panic(err)
 }
 if len(currentMsgs) == 0 {
 break
 }
 messages = append(messages, currentMsgs...)
 }
 if len(messages) == 0 {
 log.Printf("No messages were received by queue %v.\n", queueUrl)
 } else if len(messages) == 1 {
 log.Printf("One message was received by queue %v:\n", queueUrl)

Publish messages to queues 890

Amazon Simple Notification Service Developer Guide

 } else {
 log.Printf("%v messages were received by queue %v:\n", len(messages),
 queueUrl)
 }
 for msgIndex, message := range messages {
 messageBody := MessageBody{}
 err := json.Unmarshal([]byte(*message.Body), &messageBody)
 if err != nil {
 panic(err)
 }
 log.Printf("Message %v: %v\n", msgIndex+1, messageBody.Message)
 }

 if len(messages) > 0 {
 log.Printf("Deleting %v messages from queue %v.\n", len(messages), queueUrl)
 err := runner.sqsActor.DeleteMessages(ctx, queueUrl, messages)
 if err != nil {
 panic(err)
 }
 }
 }
}

// RunTopicsAndQueuesScenario is an interactive example that shows you how to use
 the
// AWS SDK for Go to create and use Amazon SNS topics and Amazon SQS queues.
//
// 1. Create a topic (FIFO or non-FIFO).
// 2. Subscribe several queues to the topic with an option to apply a filter.
// 3. Publish messages to the topic.
// 4. Poll the queues for messages received.
// 5. Delete the topic and the queues.
//
// This example creates service clients from the specified sdkConfig so that
// you can replace it with a mocked or stubbed config for unit testing.
//
// It uses a questioner from the `demotools` package to get input during the
 example.
// This package can be found in the ..\..\demotools folder of this repo.
func RunTopicsAndQueuesScenario(
 ctx context.Context, sdkConfig aws.Config, questioner demotools.IQuestioner) {
 resources := Resources{}
 defer func() {
 if r := recover(); r != nil {

Publish messages to queues 891

Amazon Simple Notification Service Developer Guide

 log.Println("Something went wrong with the demo.\n" +
 "Cleaning up any resources that were created...")
 resources.Cleanup(ctx)
 }
 }()
 queueCount := 2

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome to messaging with topics and queues.\n\n"+
 "In this workflow, you will create an SNS topic and subscribe %v SQS queues to
 the\n"+
 "topic. You can select from several options for configuring the topic and the
\n"+
 "subscriptions for the queues. You can then post to the topic and see the
 results\n"+
 "in the queues.\n", queueCount)

 log.Println(strings.Repeat("-", 88))

 runner := ScenarioRunner{
 questioner: questioner,
 snsActor: &actions.SnsActions{SnsClient: sns.NewFromConfig(sdkConfig)},
 sqsActor: &actions.SqsActions{SqsClient: sqs.NewFromConfig(sdkConfig)},
 }
 resources.snsActor = runner.snsActor
 resources.sqsActor = runner.sqsActor

 topicName, topicArn, isFifoTopic, contentBasedDeduplication :=
 runner.CreateTopic(ctx)
 resources.topicArn = topicArn
 log.Println(strings.Repeat("-", 88))

 log.Printf("Now you will create %v SQS queues and subscribe them to the topic.
\n", queueCount)
 ordinals := []string{"first", "next"}
 usingFilters := false
 for _, ordinal := range ordinals {
 queueName, queueUrl := runner.CreateQueue(ctx, ordinal, isFifoTopic)
 resources.queueUrls = append(resources.queueUrls, queueUrl)

 _, filtering := runner.SubscribeQueueToTopic(ctx, queueName, queueUrl,
 topicName, topicArn, ordinal, isFifoTopic)
 usingFilters = usingFilters || filtering
 }

Publish messages to queues 892

Amazon Simple Notification Service Developer Guide

 log.Println(strings.Repeat("-", 88))
 runner.PublishMessages(ctx, topicArn, isFifoTopic, contentBasedDeduplication,
 usingFilters)
 log.Println(strings.Repeat("-", 88))
 runner.PollForMessages(ctx, resources.queueUrls)

 log.Println(strings.Repeat("-", 88))

 wantCleanup := questioner.AskBool("Do you want to remove all AWS resources
 created for this scenario? (y/n) ", "y")
 if wantCleanup {
 log.Println("Cleaning up resources...")
 resources.Cleanup(ctx)
 }

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Define a struct that wraps Amazon SNS actions used in this example.

import (
 "context"
 "encoding/json"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sns"
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client
}

Publish messages to queues 893

Amazon Simple Notification Service Developer Guide

// CreateTopic creates an Amazon SNS topic with the specified name. You can
 optionally
// specify that the topic is created as a FIFO topic and whether it uses content-
based
// deduplication instead of ID-based deduplication.
func (actor SnsActions) CreateTopic(ctx context.Context, topicName string,
 isFifoTopic bool, contentBasedDeduplication bool) (string, error) {
 var topicArn string
 topicAttributes := map[string]string{}
 if isFifoTopic {
 topicAttributes["FifoTopic"] = "true"
 }
 if contentBasedDeduplication {
 topicAttributes["ContentBasedDeduplication"] = "true"
 }
 topic, err := actor.SnsClient.CreateTopic(ctx, &sns.CreateTopicInput{
 Name: aws.String(topicName),
 Attributes: topicAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create topic %v. Here's why: %v\n", topicName, err)
 } else {
 topicArn = *topic.TopicArn
 }

 return topicArn, err
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(ctx context.Context, topicArn string) error {
 _, err := actor.SnsClient.DeleteTopic(ctx, &sns.DeleteTopicInput{
 TopicArn: aws.String(topicArn)})
 if err != nil {
 log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err)
 }
 return err
}

Publish messages to queues 894

Amazon Simple Notification Service Developer Guide

// SubscribeQueue subscribes an Amazon Simple Queue Service (Amazon SQS) queue to
 an
// Amazon SNS topic. When filterMap is not nil, it is used to specify a filter
 policy
// so that messages are only sent to the queue when the message has the specified
 attributes.
func (actor SnsActions) SubscribeQueue(ctx context.Context, topicArn string,
 queueArn string, filterMap map[string][]string) (string, error) {
 var subscriptionArn string
 var attributes map[string]string
 if filterMap != nil {
 filterBytes, err := json.Marshal(filterMap)
 if err != nil {
 log.Printf("Couldn't create filter policy, here's why: %v\n", err)
 return "", err
 }
 attributes = map[string]string{"FilterPolicy": string(filterBytes)}
 }
 output, err := actor.SnsClient.Subscribe(ctx, &sns.SubscribeInput{
 Protocol: aws.String("sqs"),
 TopicArn: aws.String(topicArn),
 Attributes: attributes,
 Endpoint: aws.String(queueArn),
 ReturnSubscriptionArn: true,
 })
 if err != nil {
 log.Printf("Couldn't susbscribe queue %v to topic %v. Here's why: %v\n",
 queueArn, topicArn, err)
 } else {
 subscriptionArn = *output.SubscriptionArn
 }

 return subscriptionArn, err
}

// Publish publishes a message to an Amazon SNS topic. The message is then sent
 to all
// subscribers. When the topic is a FIFO topic, the message must also contain a
 group ID
// and, when ID-based deduplication is used, a deduplication ID. An optional key-
value

Publish messages to queues 895

Amazon Simple Notification Service Developer Guide

// filter attribute can be specified so that the message can be filtered
 according to
// a filter policy.
func (actor SnsActions) Publish(ctx context.Context, topicArn string, message
 string, groupId string, dedupId string, filterKey string, filterValue string)
 error {
 publishInput := sns.PublishInput{TopicArn: aws.String(topicArn), Message:
 aws.String(message)}
 if groupId != "" {
 publishInput.MessageGroupId = aws.String(groupId)
 }
 if dedupId != "" {
 publishInput.MessageDeduplicationId = aws.String(dedupId)
 }
 if filterKey != "" && filterValue != "" {
 publishInput.MessageAttributes = map[string]types.MessageAttributeValue{
 filterKey: {DataType: aws.String("String"), StringValue:
 aws.String(filterValue)},
 }
 }
 _, err := actor.SnsClient.Publish(ctx, &publishInput)
 if err != nil {
 log.Printf("Couldn't publish message to topic %v. Here's why: %v", topicArn,
 err)
 }
 return err
}

Define a struct that wraps Amazon SQS actions used in this example.

import (
 "context"
 "encoding/json"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/sqs"
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

Publish messages to queues 896

Amazon Simple Notification Service Developer Guide

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// CreateQueue creates an Amazon SQS queue with the specified name. You can
 specify
// whether the queue is created as a FIFO queue.
func (actor SqsActions) CreateQueue(ctx context.Context, queueName string,
 isFifoQueue bool) (string, error) {
 var queueUrl string
 queueAttributes := map[string]string{}
 if isFifoQueue {
 queueAttributes["FifoQueue"] = "true"
 }
 queue, err := actor.SqsClient.CreateQueue(ctx, &sqs.CreateQueueInput{
 QueueName: aws.String(queueName),
 Attributes: queueAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create queue %v. Here's why: %v\n", queueName, err)
 } else {
 queueUrl = *queue.QueueUrl
 }

 return queueUrl, err
}

// GetQueueArn uses the GetQueueAttributes action to get the Amazon Resource Name
 (ARN)
// of an Amazon SQS queue.
func (actor SqsActions) GetQueueArn(ctx context.Context, queueUrl string)
 (string, error) {
 var queueArn string
 arnAttributeName := types.QueueAttributeNameQueueArn
 attribute, err := actor.SqsClient.GetQueueAttributes(ctx,
 &sqs.GetQueueAttributesInput{
 QueueUrl: aws.String(queueUrl),

Publish messages to queues 897

Amazon Simple Notification Service Developer Guide

 AttributeNames: []types.QueueAttributeName{arnAttributeName},
 })
 if err != nil {
 log.Printf("Couldn't get ARN for queue %v. Here's why: %v\n", queueUrl, err)
 } else {
 queueArn = attribute.Attributes[string(arnAttributeName)]
 }
 return queueArn, err
}

// AttachSendMessagePolicy uses the SetQueueAttributes action to attach a policy
 to an
// Amazon SQS queue that allows the specified Amazon SNS topic to send messages
 to the
// queue.
func (actor SqsActions) AttachSendMessagePolicy(ctx context.Context, queueUrl
 string, queueArn string, topicArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: "sqs:SendMessage",
 Principal: map[string]string{"Service": "sns.amazonaws.com"},
 Resource: aws.String(queueArn),
 Condition: PolicyCondition{"ArnEquals": map[string]string{"aws:SourceArn":
 topicArn}},
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document. Here's why: %v\n", err)
 return err
 }
 _, err = actor.SqsClient.SetQueueAttributes(ctx, &sqs.SetQueueAttributesInput{
 Attributes: map[string]string{
 string(types.QueueAttributeNamePolicy): string(policyBytes),
 },
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't set send message policy on queue %v. Here's why: %v\n",
 queueUrl, err)

Publish messages to queues 898

Amazon Simple Notification Service Developer Guide

 }
 return err
}

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct {
 Version string
 Statement []PolicyStatement
}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct {
 Effect string
 Action string
 Principal map[string]string `json:",omitempty"`
 Resource *string `json:",omitempty"`
 Condition PolicyCondition `json:",omitempty"`
}

// PolicyCondition defines a condition in a policy.
type PolicyCondition map[string]map[string]string

// GetMessages uses the ReceiveMessage action to get messages from an Amazon SQS
 queue.
func (actor SqsActions) GetMessages(ctx context.Context, queueUrl string,
 maxMessages int32, waitTime int32) ([]types.Message, error) {
 var messages []types.Message
 result, err := actor.SqsClient.ReceiveMessage(ctx, &sqs.ReceiveMessageInput{
 QueueUrl: aws.String(queueUrl),
 MaxNumberOfMessages: maxMessages,
 WaitTimeSeconds: waitTime,
 })
 if err != nil {
 log.Printf("Couldn't get messages from queue %v. Here's why: %v\n", queueUrl,
 err)
 } else {
 messages = result.Messages
 }
 return messages, err
}

Publish messages to queues 899

Amazon Simple Notification Service Developer Guide

// DeleteMessages uses the DeleteMessageBatch action to delete a batch of
 messages from
// an Amazon SQS queue.
func (actor SqsActions) DeleteMessages(ctx context.Context, queueUrl string,
 messages []types.Message) error {
 entries := make([]types.DeleteMessageBatchRequestEntry, len(messages))
 for msgIndex := range messages {
 entries[msgIndex].Id = aws.String(fmt.Sprintf("%v", msgIndex))
 entries[msgIndex].ReceiptHandle = messages[msgIndex].ReceiptHandle
 }
 _, err := actor.SqsClient.DeleteMessageBatch(ctx, &sqs.DeleteMessageBatchInput{
 Entries: entries,
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't delete messages from queue %v. Here's why: %v\n",
 queueUrl, err)
 }
 return err
}

// DeleteQueue deletes an Amazon SQS queue.
func (actor SqsActions) DeleteQueue(ctx context.Context, queueUrl string) error {
 _, err := actor.SqsClient.DeleteQueue(ctx, &sqs.DeleteQueueInput{
 QueueUrl: aws.String(queueUrl)})
 if err != nil {
 log.Printf("Couldn't delete queue %v. Here's why: %v\n", queueUrl, err)
 }
 return err
}

Clean up resources.

import (
 "context"
 "fmt"

Publish messages to queues 900

Amazon Simple Notification Service Developer Guide

 "log"
 "topics_and_queues/actions"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {
 topicArn string
 queueUrls []string
 snsActor *actions.SnsActions
 sqsActor *actions.SqsActions
}

// Cleanup deletes all AWS resources created during an example.
func (resources Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 fmt.Println("Something went wrong during cleanup. Use the AWS Management
 Console\n" +
 "to remove any remaining resources that were created for this scenario.")
 }
 }()

 var err error
 if resources.topicArn != "" {
 log.Printf("Deleting topic %v.\n", resources.topicArn)
 err = resources.snsActor.DeleteTopic(ctx, resources.topicArn)
 if err != nil {
 panic(err)
 }
 }

 for _, queueUrl := range resources.queueUrls {
 log.Printf("Deleting queue %v.\n", queueUrl)
 err = resources.sqsActor.DeleteQueue(ctx, queueUrl)
 if err != nil {
 panic(err)
 }
 }
}

• For API details, see the following topics in AWS SDK for Go API Reference.

Publish messages to queues 901

Amazon Simple Notification Service Developer Guide

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns;

import
 software.amazon.awssdk.auth.credentials.EnvironmentVariableCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.MessageAttributeValue;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import
 software.amazon.awssdk.services.sns.model.SetSubscriptionAttributesRequest;

Publish messages to queues 902

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.CreateQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.CreateTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteMessageBatch
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.GetQueueAttributes
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Publish
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ReceiveMessage
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.SetQueueAttributes
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Subscribe
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;
import software.amazon.awssdk.services.sns.model.UnsubscribeRequest;
import software.amazon.awssdk.services.sns.model.UnsubscribeResponse;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import com.google.gson.Gson;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This Java example performs these tasks:
 *
 * 1. Gives the user three options to choose from.
 * 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic.
 * 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue.
 * 4. Gets the SQS queue Amazon Resource Name (ARN) attribute.

Publish messages to queues 903

Amazon Simple Notification Service Developer Guide

 * 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue.
 * 6. Subscribes to the SQS queue.
 * 7. Publishes a message to the topic.
 * 8. Displays the messages.
 * 9. Deletes the received message.
 * 10. Unsubscribes from the topic.
 * 11. Deletes the SNS topic.
 */
public class SNSWorkflow {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) {
 final String usage = "\n" +
 "Usage:\n" +
 " <fifoQueueARN>\n\n" +
 "Where:\n" +
 " accountId - Your AWS account Id value.";

 // if (args.length != 1) {
 // System.out.println(usage);
 // System.exit(1);
 // }

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();

 SqsClient sqsClient = SqsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();

 Scanner in = new Scanner(System.in);
 String accountId = "814548047983";
 String useFIFO;
 String duplication = "n";
 String topicName;
 String deduplicationID = null;
 String groupId = null;

Publish messages to queues 904

Amazon Simple Notification Service Developer Guide

 String topicArn;
 String sqsQueueName;
 String sqsQueueUrl;
 String sqsQueueArn;
 String subscriptionArn;
 boolean selectFIFO = false;

 String message;
 List<Message> messageList;
 List<String> filterList = new ArrayList<>();
 String msgAttValue = "";

 System.out.println(DASHES);
 System.out.println("Welcome to messaging with topics and queues.");
 System.out.println("In this workflow, you will create an SNS topic and
 subscribe an SQS queue to the topic.\n" +
 "You can select from several options for configuring the topic
 and the subscriptions for the queue.\n" +
 "You can then post to the topic and see the results in the
 queue.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("SNS topics can be configured as FIFO (First-In-First-
Out).\n" +
 "FIFO topics deliver messages in order and support deduplication
 and message filtering.\n" +
 "Would you like to work with FIFO topics? (y/n)");
 useFIFO = in.nextLine();
 if (useFIFO.compareTo("y") == 0) {
 selectFIFO = true;
 System.out.println("You have selected FIFO");
 System.out.println(" Because you have chosen a FIFO topic,
 deduplication is supported.\n" +
 " Deduplication IDs are either set in the message or
 automatically generated from content using a hash function.\n"
 +
 " If a message is successfully published to an SNS
 FIFO topic, any message published and determined to have the same deduplication
 ID,\n"
 +
 " within the five-minute deduplication interval, is
 accepted but not delivered.\n" +

Publish messages to queues 905

Amazon Simple Notification Service Developer Guide

 " For more information about deduplication, see
 https://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.");

 System.out.println(
 "Would you like to use content-based deduplication instead of
 entering a deduplication ID? (y/n)");
 duplication = in.nextLine();
 if (duplication.compareTo("y") == 0) {
 System.out.println("Please enter a group id value");
 groupId = in.nextLine();
 } else {
 System.out.println("Please enter deduplication Id value");
 deduplicationID = in.nextLine();
 System.out.println("Please enter a group id value");
 groupId = in.nextLine();
 }
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create a topic.");
 System.out.println("Enter a name for your SNS topic.");
 topicName = in.nextLine();
 if (selectFIFO) {
 System.out.println("Because you have selected a FIFO topic, '.fifo'
 must be appended to the topic name.");
 topicName = topicName + ".fifo";
 System.out.println("The name of the topic is " + topicName);
 topicArn = createFIFO(snsClient, topicName, duplication);
 System.out.println("The ARN of the FIFO topic is " + topicArn);

 } else {
 System.out.println("The name of the topic is " + topicName);
 topicArn = createSNSTopic(snsClient, topicName);
 System.out.println("The ARN of the non-FIFO topic is " + topicArn);

 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Create an SQS queue.");
 System.out.println("Enter a name for your SQS queue.");
 sqsQueueName = in.nextLine();
 if (selectFIFO) {

Publish messages to queues 906

Amazon Simple Notification Service Developer Guide

 sqsQueueName = sqsQueueName + ".fifo";
 }
 sqsQueueUrl = createQueue(sqsClient, sqsQueueName, selectFIFO);
 System.out.println("The queue URL is " + sqsQueueUrl);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Get the SQS queue ARN attribute.");
 sqsQueueArn = getSQSQueueAttrs(sqsClient, sqsQueueUrl);
 System.out.println("The ARN of the new queue is " + sqsQueueArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Attach an IAM policy to the queue.");

 // Define the policy to use. Make sure that you change the REGION if you
 are
 // running this code
 // in a different region.
 String policy = "{\n" +
 " \"Statement\": [\n" +
 " {\n" +
 " \"Effect\": \"Allow\",\n" +
 " \"Principal\": {\n" +
 " \"Service\": \"sns.amazonaws.com\"\n" +
 " },\n" +
 " \"Action\": \"sqs:SendMessage\",\n" +
 " \"Resource\": \"arn:aws:sqs:us-east-1:" +
 accountId + ":" + sqsQueueName + "\",\n" +
 " \"Condition\": {\n" +
 " \"ArnEquals\": {\n" +
 " \"aws:SourceArn\": \"arn:aws:sns:us-east-1:" +
 accountId + ":" + topicName + "\"\n" +
 " }\n" +
 " }\n" +
 " }\n" +
 "]\n" +
 " }";

 setQueueAttr(sqsClient, sqsQueueUrl, policy);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Subscribe to the SQS queue.");

Publish messages to queues 907

Amazon Simple Notification Service Developer Guide

 if (selectFIFO) {
 System.out.println(
 "If you add a filter to this subscription, then only the
 filtered messages will be received in the queue.\n"
 +
 "For information about message filtering, see
 https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n"
 +
 "For this example, you can filter messages by a
 \"tone\" attribute.");
 System.out.println("Would you like to filter messages for " +
 sqsQueueName + "'s subscription to the topic "
 + topicName + "? (y/n)");
 String filterAns = in.nextLine();
 if (filterAns.compareTo("y") == 0) {
 boolean moreAns = false;
 System.out.println("You can filter messages by one or more of the
 following \"tone\" attributes.");
 System.out.println("1. cheerful");
 System.out.println("2. funny");
 System.out.println("3. serious");
 System.out.println("4. sincere");
 while (!moreAns) {
 System.out.println("Select a number or choose 0 to end.");
 String ans = in.nextLine();
 switch (ans) {
 case "1":
 filterList.add("cheerful");
 break;
 case "2":
 filterList.add("funny");
 break;
 case "3":
 filterList.add("serious");
 break;
 case "4":
 filterList.add("sincere");
 break;
 default:
 moreAns = true;
 break;
 }
 }
 }

Publish messages to queues 908

Amazon Simple Notification Service Developer Guide

 }
 subscriptionArn = subQueue(snsClient, topicArn, sqsQueueArn, filterList);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Publish a message to the topic.");
 if (selectFIFO) {
 System.out.println("Would you like to add an attribute to this
 message? (y/n)");
 String msgAns = in.nextLine();
 if (msgAns.compareTo("y") == 0) {
 System.out.println("You can filter messages by one or more of the
 following \"tone\" attributes.");
 System.out.println("1. cheerful");
 System.out.println("2. funny");
 System.out.println("3. serious");
 System.out.println("4. sincere");
 System.out.println("Select a number or choose 0 to end.");
 String ans = in.nextLine();
 switch (ans) {
 case "1":
 msgAttValue = "cheerful";
 break;
 case "2":
 msgAttValue = "funny";
 break;
 case "3":
 msgAttValue = "serious";
 break;
 default:
 msgAttValue = "sincere";
 break;
 }

 System.out.println("Selected value is " + msgAttValue);
 }
 System.out.println("Enter a message.");
 message = in.nextLine();
 pubMessageFIFO(snsClient, message, topicArn, msgAttValue,
 duplication, groupId, deduplicationID);

 } else {
 System.out.println("Enter a message.");
 message = in.nextLine();

Publish messages to queues 909

Amazon Simple Notification Service Developer Guide

 pubMessage(snsClient, message, topicArn);
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Display the message. Press any key to continue.");
 in.nextLine();
 messageList = receiveMessages(sqsClient, sqsQueueUrl, msgAttValue);
 for (Message mes : messageList) {
 System.out.println("Message Id: " + mes.messageId());
 System.out.println("Full Message: " + mes.body());
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. Delete the received message. Press any key to
 continue.");
 in.nextLine();
 deleteMessages(sqsClient, sqsQueueUrl, messageList);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Unsubscribe from the topic and delete the queue.
 Press any key to continue.");
 in.nextLine();
 unSub(snsClient, subscriptionArn);
 deleteSQSQueue(sqsClient, sqsQueueName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Delete the topic. Press any key to continue.");
 in.nextLine();
 deleteSNSTopic(snsClient, topicArn);

 System.out.println(DASHES);
 System.out.println("The SNS/SQS workflow has completed successfully.");
 System.out.println(DASHES);
 }

 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

Publish messages to queues 910

Amazon Simple Notification Service Developer Guide

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteSQSQueue(SqsClient sqsClient, String queueName) {
 try {
 GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder()
 .queueName(queueName)
 .build();

 String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl();
 DeleteQueueRequest deleteQueueRequest = DeleteQueueRequest.builder()
 .queueUrl(queueUrl)
 .build();

 sqsClient.deleteQueue(deleteQueueRequest);
 System.out.println(queueName + " was successfully deleted.");

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void unSub(SnsClient snsClient, String subscriptionArn) {
 try {
 UnsubscribeRequest request = UnsubscribeRequest.builder()
 .subscriptionArn(subscriptionArn)
 .build();

 UnsubscribeResponse result = snsClient.unsubscribe(request);
 System.out.println("Status was " +
 result.sdkHttpResponse().statusCode()
 + "\nSubscription was removed for " +
 request.subscriptionArn());

 } catch (SnsException e) {

Publish messages to queues 911

Amazon Simple Notification Service Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteMessages(SqsClient sqsClient, String queueUrl,
 List<Message> messages) {
 try {
 List<DeleteMessageBatchRequestEntry> entries = new ArrayList<>();
 for (Message msg : messages) {
 DeleteMessageBatchRequestEntry entry =
 DeleteMessageBatchRequestEntry.builder()
 .id(msg.messageId())
 .build();

 entries.add(entry);
 }

 DeleteMessageBatchRequest deleteMessageBatchRequest =
 DeleteMessageBatchRequest.builder()
 .queueUrl(queueUrl)
 .entries(entries)
 .build();

 sqsClient.deleteMessageBatch(deleteMessageBatchRequest);
 System.out.println("The batch delete of messages was successful");

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static List<Message> receiveMessages(SqsClient sqsClient, String
 queueUrl, String msgAttValue) {
 try {
 if (msgAttValue.isEmpty()) {
 ReceiveMessageRequest receiveMessageRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .maxNumberOfMessages(5)
 .build();
 return
 sqsClient.receiveMessage(receiveMessageRequest).messages();

Publish messages to queues 912

Amazon Simple Notification Service Developer Guide

 } else {
 // We know there are filters on the message.
 ReceiveMessageRequest receiveRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .messageAttributeNames(msgAttValue) // Include other
 message attributes if needed.
 .maxNumberOfMessages(5)
 .build();

 return sqsClient.receiveMessage(receiveRequest).messages();
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static void pubMessage(SnsClient snsClient, String message, String
 topicArn) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .topicArn(topicArn)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status is " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void pubMessageFIFO(SnsClient snsClient,
 String message,
 String topicArn,
 String msgAttValue,
 String duplication,

Publish messages to queues 913

Amazon Simple Notification Service Developer Guide

 String groupId,
 String deduplicationID) {

 try {
 PublishRequest request;
 // Means the user did not choose to use a message attribute.
 if (msgAttValue.isEmpty()) {
 if (duplication.compareTo("y") == 0) {
 request = PublishRequest.builder()
 .message(message)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 } else {
 request = PublishRequest.builder()
 .message(message)
 .messageDeduplicationId(deduplicationID)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 }

 } else {
 Map<String, MessageAttributeValue> messageAttributes = new
 HashMap<>();
 messageAttributes.put(msgAttValue,
 MessageAttributeValue.builder()
 .dataType("String")
 .stringValue("true")
 .build());

 if (duplication.compareTo("y") == 0) {
 request = PublishRequest.builder()
 .message(message)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 } else {
 // Create a publish request with the message and attributes.
 request = PublishRequest.builder()
 .topicArn(topicArn)
 .message(message)
 .messageDeduplicationId(deduplicationID)
 .messageGroupId(groupId)

Publish messages to queues 914

Amazon Simple Notification Service Developer Guide

 .messageAttributes(messageAttributes)
 .build();
 }
 }

 // Publish the message to the topic.
 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Subscribe to the SQS queue.
 public static String subQueue(SnsClient snsClient, String topicArn, String
 queueArn, List<String> filterList) {
 try {
 SubscribeRequest request;
 if (filterList.isEmpty()) {
 // No filter subscription is added.
 request = SubscribeRequest.builder()
 .protocol("sqs")
 .endpoint(queueArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("The queue " + queueArn + " has been
 subscribed to the topic " + topicArn + "\n" +
 "with the subscription ARN " + result.subscriptionArn());
 return result.subscriptionArn();
 } else {
 request = SubscribeRequest.builder()
 .protocol("sqs")
 .endpoint(queueArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

Publish messages to queues 915

Amazon Simple Notification Service Developer Guide

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("The queue " + queueArn + " has been
 subscribed to the topic " + topicArn + "\n" +
 "with the subscription ARN " + result.subscriptionArn());

 String attributeName = "FilterPolicy";
 Gson gson = new Gson();
 String jsonString = "{\"tone\": []}";
 JsonObject jsonObject = gson.fromJson(jsonString,
 JsonObject.class);
 JsonArray toneArray = jsonObject.getAsJsonArray("tone");
 for (String value : filterList) {
 toneArray.add(new JsonPrimitive(value));
 }

 String updatedJsonString = gson.toJson(jsonObject);
 System.out.println(updatedJsonString);
 SetSubscriptionAttributesRequest attRequest =
 SetSubscriptionAttributesRequest.builder()
 .subscriptionArn(result.subscriptionArn())
 .attributeName(attributeName)
 .attributeValue(updatedJsonString)
 .build();

 snsClient.setSubscriptionAttributes(attRequest);
 return result.subscriptionArn();
 }

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 // Attach a policy to the queue.
 public static void setQueueAttr(SqsClient sqsClient, String queueUrl, String
 policy) {
 try {
 Map<software.amazon.awssdk.services.sqs.model.QueueAttributeName,
 String> attrMap = new HashMap<>();
 attrMap.put(QueueAttributeName.POLICY, policy);

Publish messages to queues 916

Amazon Simple Notification Service Developer Guide

 SetQueueAttributesRequest attributesRequest =
 SetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributes(attrMap)
 .build();

 sqsClient.setQueueAttributes(attributesRequest);
 System.out.println("The policy has been successfully attached.");

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static String getSQSQueueAttrs(SqsClient sqsClient, String queueUrl) {
 // Specify the attributes to retrieve.
 List<QueueAttributeName> atts = new ArrayList<>();
 atts.add(QueueAttributeName.QUEUE_ARN);

 GetQueueAttributesRequest attributesRequest =
 GetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributeNames(atts)
 .build();

 GetQueueAttributesResponse response =
 sqsClient.getQueueAttributes(attributesRequest);
 Map<String, String> queueAtts = response.attributesAsStrings();
 for (Map.Entry<String, String> queueAtt : queueAtts.entrySet())
 return queueAtt.getValue();

 return "";
 }

 public static String createQueue(SqsClient sqsClient, String queueName,
 Boolean selectFIFO) {
 try {
 System.out.println("\nCreate Queue");
 if (selectFIFO) {
 Map<QueueAttributeName, String> attrs = new HashMap<>();
 attrs.put(QueueAttributeName.FIFO_QUEUE, "true");
 CreateQueueRequest createQueueRequest =
 CreateQueueRequest.builder()

Publish messages to queues 917

Amazon Simple Notification Service Developer Guide

 .queueName(queueName)
 .attributes(attrs)
 .build();

 sqsClient.createQueue(createQueueRequest);
 System.out.println("\nGet queue url");
 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();
 } else {
 CreateQueueRequest createQueueRequest =
 CreateQueueRequest.builder()
 .queueName(queueName)
 .build();

 sqsClient.createQueue(createQueueRequest);
 System.out.println("\nGet queue url");
 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Publish messages to queues 918

Amazon Simple Notification Service Developer Guide

 }
 return "";
 }

 public static String createFIFO(SnsClient snsClient, String topicName, String
 duplication) {
 try {
 // Create a FIFO topic by using the SNS service client.
 Map<String, String> topicAttributes = new HashMap<>();
 if (duplication.compareTo("n") == 0) {
 topicAttributes.put("FifoTopic", "true");
 topicAttributes.put("ContentBasedDeduplication", "false");
 } else {
 topicAttributes.put("FifoTopic", "true");
 topicAttributes.put("ContentBasedDeduplication", "true");
 }

 CreateTopicRequest topicRequest = CreateTopicRequest.builder()
 .name(topicName)
 .attributes(topicAttributes)
 .build();

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 return response.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

Publish messages to queues 919

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueAttributes

Amazon Simple Notification Service Developer Guide

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This is the entry point for this workflow.

import { SNSClient } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";

import { TopicsQueuesWkflw } from "./TopicsQueuesWkflw.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";

export const startSnsWorkflow = () => {
 const snsClient = new SNSClient({});
 const sqsClient = new SQSClient({});
 const prompter = new Prompter();
 const logger = console;

 const wkflw = new TopicsQueuesWkflw(snsClient, sqsClient, prompter, logger);

 wkflw.start();
};

The preceding code provides the necessary dependencies and starts the workflow. The next
section contains the bulk of the example.

Publish messages to queues 920

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-topics-queues#code-examples

Amazon Simple Notification Service Developer Guide

const toneChoices = [
 { name: "cheerful", value: "cheerful" },
 { name: "funny", value: "funny" },
 { name: "serious", value: "serious" },
 { name: "sincere", value: "sincere" },
];

export class TopicsQueuesWkflw {
 // SNS topic is configured as First-In-First-Out
 isFifo = true;

 // Automatic content-based deduplication is enabled.
 autoDedup = false;

 snsClient;
 sqsClient;
 topicName;
 topicArn;
 subscriptionArns = [];
 /**
 * @type {{ queueName: string, queueArn: string, queueUrl: string, policy?:
 string }[]}
 */
 queues = [];
 prompter;

 /**
 * @param {import('@aws-sdk/client-sns').SNSClient} snsClient
 * @param {import('@aws-sdk/client-sqs').SQSClient} sqsClient
 * @param {import('../../libs/prompter.js').Prompter} prompter
 * @param {import('../../libs/logger.js').Logger} logger
 */
 constructor(snsClient, sqsClient, prompter, logger) {
 this.snsClient = snsClient;
 this.sqsClient = sqsClient;
 this.prompter = prompter;
 this.logger = logger;
 }

 async welcome() {
 await this.logger.log(MESSAGES.description);
 }

Publish messages to queues 921

Amazon Simple Notification Service Developer Guide

 async confirmFifo() {
 await this.logger.log(MESSAGES.snsFifoDescription);
 this.isFifo = await this.prompter.confirm({
 message: MESSAGES.snsFifoPrompt,
 });

 if (this.isFifo) {
 this.logger.logSeparator(MESSAGES.headerDedup);
 await this.logger.log(MESSAGES.deduplicationNotice);
 await this.logger.log(MESSAGES.deduplicationDescription);
 this.autoDedup = await this.prompter.confirm({
 message: MESSAGES.deduplicationPrompt,
 });
 }
 }

 async createTopic() {
 await this.logger.log(MESSAGES.creatingTopics);
 this.topicName = await this.prompter.input({
 message: MESSAGES.topicNamePrompt,
 });
 if (this.isFifo) {
 this.topicName += ".fifo";
 this.logger.logSeparator(MESSAGES.headerFifoNaming);
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.snsClient.send(
 new CreateTopicCommand({
 Name: this.topicName,
 Attributes: {
 FifoTopic: this.isFifo ? "true" : "false",
 ...(this.autoDedup ? { ContentBasedDeduplication: "true" } : {}),
 },
 }),
);

 this.topicArn = response.TopicArn;

 await this.logger.log(
 MESSAGES.topicCreatedNotice
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TOPIC_ARN}", this.topicArn),

Publish messages to queues 922

Amazon Simple Notification Service Developer Guide

);
 }

 async createQueues() {
 await this.logger.log(MESSAGES.createQueuesNotice);
 // Increase this number to add more queues.
 const maxQueues = 2;

 for (let i = 0; i < maxQueues; i++) {
 await this.logger.log(MESSAGES.queueCount.replace("${COUNT}", i + 1));
 let queueName = await this.prompter.input({
 message: MESSAGES.queueNamePrompt.replace(
 "${EXAMPLE_NAME}",
 i === 0 ? "good-news" : "bad-news",
),
 });

 if (this.isFifo) {
 queueName += ".fifo";
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.sqsClient.send(
 new CreateQueueCommand({
 QueueName: queueName,
 Attributes: { ...(this.isFifo ? { FifoQueue: "true" } : {}) },
 }),
);

 const { Attributes } = await this.sqsClient.send(
 new GetQueueAttributesCommand({
 QueueUrl: response.QueueUrl,
 AttributeNames: ["QueueArn"],
 }),
);

 this.queues.push({
 queueName,
 queueArn: Attributes.QueueArn,
 queueUrl: response.QueueUrl,
 });

 await this.logger.log(
 MESSAGES.queueCreatedNotice

Publish messages to queues 923

Amazon Simple Notification Service Developer Guide

 .replace("${QUEUE_NAME}", queueName)
 .replace("${QUEUE_URL}", response.QueueUrl)
 .replace("${QUEUE_ARN}", Attributes.QueueArn),
);
 }
 }

 async attachQueueIamPolicies() {
 for (const [index, queue] of this.queues.entries()) {
 const policy = JSON.stringify(
 {
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: "sqs:SendMessage",
 Resource: queue.queueArn,
 Condition: {
 ArnEquals: {
 "aws:SourceArn": this.topicArn,
 },
 },
 },
],
 },
 null,
 2,
);

 if (index !== 0) {
 this.logger.logSeparator();
 }

 await this.logger.log(MESSAGES.attachPolicyNotice);
 console.log(policy);
 const addPolicy = await this.prompter.confirm({
 message: MESSAGES.addPolicyConfirmation.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 });

Publish messages to queues 924

Amazon Simple Notification Service Developer Guide

 if (addPolicy) {
 await this.sqsClient.send(
 new SetQueueAttributesCommand({
 QueueUrl: queue.queueUrl,
 Attributes: {
 Policy: policy,
 },
 }),
);
 queue.policy = policy;
 } else {
 await this.logger.log(
 MESSAGES.policyNotAttachedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }
 }

 async subscribeQueuesToTopic() {
 for (const [index, queue] of this.queues.entries()) {
 /**
 * @type {import('@aws-sdk/client-sns').SubscribeCommandInput}
 */
 const subscribeParams = {
 TopicArn: this.topicArn,
 Protocol: "sqs",
 Endpoint: queue.queueArn,
 };
 let tones = [];

 if (this.isFifo) {
 if (index === 0) {
 await this.logger.log(MESSAGES.fifoFilterNotice);
 }
 tones = await this.prompter.checkbox({
 message: MESSAGES.fifoFilterSelect.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 choices: toneChoices,
 });

Publish messages to queues 925

Amazon Simple Notification Service Developer Guide

 if (tones.length) {
 subscribeParams.Attributes = {
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 tone: tones,
 }),
 };
 }
 }

 const { SubscriptionArn } = await this.snsClient.send(
 new SubscribeCommand(subscribeParams),
);

 this.subscriptionArns.push(SubscriptionArn);

 await this.logger.log(
 MESSAGES.queueSubscribedNotice
 .replace("${QUEUE_NAME}", queue.queueName)
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TONES}", tones.length ? tones.join(", ") : "none"),
);
 }
 }

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId;
 let deduplicationId;
 let choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({

Publish messages to queues 926

Amazon Simple Notification Service Developer Guide

 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }

Publish messages to queues 927

Amazon Simple Notification Service Developer Guide

 }

 async receiveAndDeleteMessages() {
 for (const queue of this.queues) {
 const { Messages } = await this.sqsClient.send(
 new ReceiveMessageCommand({
 QueueUrl: queue.queueUrl,
 }),
);

 if (Messages) {
 await this.logger.log(
 MESSAGES.messagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 console.log(Messages);

 await this.sqsClient.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queue.queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 } else {
 await this.logger.log(
 MESSAGES.noMessagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }

 const deleteAndPoll = await this.prompter.confirm({
 message: MESSAGES.deleteAndPollConfirmation,
 });

 if (deleteAndPoll) {
 await this.receiveAndDeleteMessages();

Publish messages to queues 928

Amazon Simple Notification Service Developer Guide

 }
 }

 async destroyResources() {
 for (const subscriptionArn of this.subscriptionArns) {
 await this.snsClient.send(
 new UnsubscribeCommand({ SubscriptionArn: subscriptionArn }),
);
 }

 for (const queue of this.queues) {
 await this.sqsClient.send(
 new DeleteQueueCommand({ QueueUrl: queue.queueUrl }),
);
 }

 if (this.topicArn) {
 await this.snsClient.send(
 new DeleteTopicCommand({ TopicArn: this.topicArn }),
);
 }
 }

 async start() {
 console.clear();

 try {
 this.logger.logSeparator(MESSAGES.headerWelcome);
 await this.welcome();
 this.logger.logSeparator(MESSAGES.headerFifo);
 await this.confirmFifo();
 this.logger.logSeparator(MESSAGES.headerCreateTopic);
 await this.createTopic();
 this.logger.logSeparator(MESSAGES.headerCreateQueues);
 await this.createQueues();
 this.logger.logSeparator(MESSAGES.headerAttachPolicy);
 await this.attachQueueIamPolicies();
 this.logger.logSeparator(MESSAGES.headerSubscribeQueues);
 await this.subscribeQueuesToTopic();
 this.logger.logSeparator(MESSAGES.headerPublishMessage);
 await this.publishMessages();
 this.logger.logSeparator(MESSAGES.headerReceiveMessages);
 await this.receiveAndDeleteMessages();
 } catch (err) {

Publish messages to queues 929

Amazon Simple Notification Service Developer Guide

 console.error(err);
 } finally {
 await this.destroyResources();
 }
 }
}

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns

import aws.sdk.kotlin.services.sns.SnsClient
import aws.sdk.kotlin.services.sns.model.CreateTopicRequest
import aws.sdk.kotlin.services.sns.model.DeleteTopicRequest
import aws.sdk.kotlin.services.sns.model.PublishRequest

Publish messages to queues 930

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/topics_and_queues#code-examples

Amazon Simple Notification Service Developer Guide

import aws.sdk.kotlin.services.sns.model.SetSubscriptionAttributesRequest
import aws.sdk.kotlin.services.sns.model.SubscribeRequest
import aws.sdk.kotlin.services.sns.model.UnsubscribeRequest
import aws.sdk.kotlin.services.sqs.SqsClient
import aws.sdk.kotlin.services.sqs.model.CreateQueueRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequestEntry
import aws.sdk.kotlin.services.sqs.model.DeleteQueueRequest
import aws.sdk.kotlin.services.sqs.model.GetQueueAttributesRequest
import aws.sdk.kotlin.services.sqs.model.GetQueueUrlRequest
import aws.sdk.kotlin.services.sqs.model.Message
import aws.sdk.kotlin.services.sqs.model.QueueAttributeName
import aws.sdk.kotlin.services.sqs.model.ReceiveMessageRequest
import aws.sdk.kotlin.services.sqs.model.SetQueueAttributesRequest
import com.google.gson.Gson
import com.google.gson.JsonObject
import com.google.gson.JsonPrimitive
import java.util.Scanner

/**
Before running this Kotlin code example, set up your development environment,
including your AWS credentials.

For more information, see the following documentation topic:
https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

This Kotlin example performs the following tasks:

 1. Gives the user three options to choose from.
 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic.
 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue.
 4. Gets the SQS queue Amazon Resource Name (ARN) attribute.
 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue.
 6. Subscribes to the SQS queue.
 7. Publishes a message to the topic.
 8. Displays the messages.
 9. Deletes the received message.
 10. Unsubscribes from the topic.
 11. Deletes the SNS topic.
 */

val DASHES: String = String(CharArray(80)).replace("\u0000", "-")
suspend fun main() {
 val input = Scanner(System.`in`)

Publish messages to queues 931

Amazon Simple Notification Service Developer Guide

 val useFIFO: String
 var duplication = "n"
 var topicName: String
 var deduplicationID: String? = null
 var groupId: String? = null
 val topicArn: String?
 var sqsQueueName: String
 val sqsQueueUrl: String?
 val sqsQueueArn: String
 val subscriptionArn: String?
 var selectFIFO = false
 val message: String
 val messageList: List<Message?>?
 val filterList = ArrayList<String>()
 var msgAttValue = ""

 println(DASHES)
 println("Welcome to the AWS SDK for Kotlin messaging with topics and
 queues.")
 println(
 """
 In this workflow, you will create an SNS topic and subscribe an
 SQS queue to the topic.
 You can select from several options for configuring the topic and
 the subscriptions for the queue.
 You can then post to the topic and see the results in the queue.
 """.trimIndent(),
)
 println(DASHES)

 println(DASHES)
 println(
 """
 SNS topics can be configured as FIFO (First-In-First-Out).
 FIFO topics deliver messages in order and support deduplication
 and message filtering.
 Would you like to work with FIFO topics? (y/n)
 """.trimIndent(),
)
 useFIFO = input.nextLine()
 if (useFIFO.compareTo("y") == 0) {
 selectFIFO = true
 println("You have selected FIFO")
 println(

Publish messages to queues 932

Amazon Simple Notification Service Developer Guide

 """ Because you have chosen a FIFO topic, deduplication is supported.
 Deduplication IDs are either set in the message or automatically
 generated from content using a hash function.
 If a message is successfully published to an SNS FIFO topic, any message
 published and determined to have the same deduplication ID,
 within the five-minute deduplication interval, is accepted but not
 delivered.
 For more information about deduplication, see https://
docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.""",
)

 println("Would you like to use content-based deduplication instead of
 entering a deduplication ID? (y/n)")
 duplication = input.nextLine()
 if (duplication.compareTo("y") == 0) {
 println("Enter a group id value")
 groupId = input.nextLine()
 } else {
 println("Enter deduplication Id value")
 deduplicationID = input.nextLine()
 println("Enter a group id value")
 groupId = input.nextLine()
 }
 }
 println(DASHES)

 println(DASHES)
 println("2. Create a topic.")
 println("Enter a name for your SNS topic.")
 topicName = input.nextLine()
 if (selectFIFO) {
 println("Because you have selected a FIFO topic, '.fifo' must be appended
 to the topic name.")
 topicName = "$topicName.fifo"
 println("The name of the topic is $topicName")
 topicArn = createFIFO(topicName, duplication)
 println("The ARN of the FIFO topic is $topicArn")
 } else {
 println("The name of the topic is $topicName")
 topicArn = createSNSTopic(topicName)
 println("The ARN of the non-FIFO topic is $topicArn")
 }
 println(DASHES)

Publish messages to queues 933

Amazon Simple Notification Service Developer Guide

 println(DASHES)
 println("3. Create an SQS queue.")
 println("Enter a name for your SQS queue.")
 sqsQueueName = input.nextLine()
 if (selectFIFO) {
 sqsQueueName = "$sqsQueueName.fifo"
 }
 sqsQueueUrl = createQueue(sqsQueueName, selectFIFO)
 println("The queue URL is $sqsQueueUrl")
 println(DASHES)

 println(DASHES)
 println("4. Get the SQS queue ARN attribute.")
 sqsQueueArn = getSQSQueueAttrs(sqsQueueUrl)
 println("The ARN of the new queue is $sqsQueueArn")
 println(DASHES)

 println(DASHES)
 println("5. Attach an IAM policy to the queue.")
 // Define the policy to use.
 val policy = """{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "$sqsQueueArn",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "$topicArn"
 }
 }
 }
]
 }"""
 setQueueAttr(sqsQueueUrl, policy)
 println(DASHES)

 println(DASHES)
 println("6. Subscribe to the SQS queue.")
 if (selectFIFO) {
 println(

Publish messages to queues 934

Amazon Simple Notification Service Developer Guide

 """If you add a filter to this subscription, then only the filtered
 messages will be received in the queue.
For information about message filtering, see https://docs.aws.amazon.com/sns/
latest/dg/sns-message-filtering.html
For this example, you can filter messages by a "tone" attribute.""",
)
 println("Would you like to filter messages for $sqsQueueName's
 subscription to the topic $topicName? (y/n)")
 val filterAns: String = input.nextLine()
 if (filterAns.compareTo("y") == 0) {
 var moreAns = false
 println("You can filter messages by using one or more of the
 following \"tone\" attributes.")
 println("1. cheerful")
 println("2. funny")
 println("3. serious")
 println("4. sincere")
 while (!moreAns) {
 println("Select a number or choose 0 to end.")
 val ans: String = input.nextLine()
 when (ans) {
 "1" -> filterList.add("cheerful")
 "2" -> filterList.add("funny")
 "3" -> filterList.add("serious")
 "4" -> filterList.add("sincere")
 else -> moreAns = true
 }
 }
 }
 }
 subscriptionArn = subQueue(topicArn, sqsQueueArn, filterList)
 println(DASHES)

 println(DASHES)
 println("7. Publish a message to the topic.")
 if (selectFIFO) {
 println("Would you like to add an attribute to this message? (y/n)")
 val msgAns: String = input.nextLine()
 if (msgAns.compareTo("y") == 0) {
 println("You can filter messages by one or more of the following
 \"tone\" attributes.")
 println("1. cheerful")
 println("2. funny")
 println("3. serious")

Publish messages to queues 935

Amazon Simple Notification Service Developer Guide

 println("4. sincere")
 println("Select a number or choose 0 to end.")
 val ans: String = input.nextLine()
 msgAttValue = when (ans) {
 "1" -> "cheerful"
 "2" -> "funny"
 "3" -> "serious"
 else -> "sincere"
 }
 println("Selected value is $msgAttValue")
 }
 println("Enter a message.")
 message = input.nextLine()
 pubMessageFIFO(message, topicArn, msgAttValue, duplication, groupId,
 deduplicationID)
 } else {
 println("Enter a message.")
 message = input.nextLine()
 pubMessage(message, topicArn)
 }
 println(DASHES)

 println(DASHES)
 println("8. Display the message. Press any key to continue.")
 input.nextLine()
 messageList = receiveMessages(sqsQueueUrl, msgAttValue)
 if (messageList != null) {
 for (mes in messageList) {
 println("Message Id: ${mes.messageId}")
 println("Full Message: ${mes.body}")
 }
 }
 println(DASHES)

 println(DASHES)
 println("9. Delete the received message. Press any key to continue.")
 input.nextLine()
 if (messageList != null) {
 deleteMessages(sqsQueueUrl, messageList)
 }
 println(DASHES)

 println(DASHES)

Publish messages to queues 936

Amazon Simple Notification Service Developer Guide

 println("10. Unsubscribe from the topic and delete the queue. Press any key
 to continue.")
 input.nextLine()
 unSub(subscriptionArn)
 deleteSQSQueue(sqsQueueName)
 println(DASHES)

 println(DASHES)
 println("11. Delete the topic. Press any key to continue.")
 input.nextLine()
 deleteSNSTopic(topicArn)
 println(DASHES)

 println(DASHES)
 println("The SNS/SQS workflow has completed successfully.")
 println(DASHES)
}

suspend fun deleteSNSTopic(topicArnVal: String?) {
 val request = DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println("$topicArnVal was deleted")
 }
}

suspend fun deleteSQSQueue(queueNameVal: String) {
 val getQueueRequest = GetQueueUrlRequest {
 queueName = queueNameVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val queueUrlVal = sqsClient.getQueueUrl(getQueueRequest).queueUrl
 val deleteQueueRequest = DeleteQueueRequest {
 queueUrl = queueUrlVal
 }

 sqsClient.deleteQueue(deleteQueueRequest)
 println("$queueNameVal was successfully deleted.")
 }
}

Publish messages to queues 937

Amazon Simple Notification Service Developer Guide

suspend fun unSub(subscripArn: String?) {
 val request = UnsubscribeRequest {
 subscriptionArn = subscripArn
 }
 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.unsubscribe(request)
 println("Subscription was removed for $subscripArn")
 }
}

suspend fun deleteMessages(queueUrlVal: String?, messages: List<Message>) {
 val entriesVal: MutableList<DeleteMessageBatchRequestEntry> = mutableListOf()
 for (msg in messages) {
 val entry = DeleteMessageBatchRequestEntry {
 id = msg.messageId
 }
 entriesVal.add(entry)
 }

 val deleteMessageBatchRequest = DeleteMessageBatchRequest {
 queueUrl = queueUrlVal
 entries = entriesVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.deleteMessageBatch(deleteMessageBatchRequest)
 println("The batch delete of messages was successful")
 }
}

suspend fun receiveMessages(queueUrlVal: String?, msgAttValue: String):
 List<Message>? {
 if (msgAttValue.isEmpty()) {
 val request = ReceiveMessageRequest {
 queueUrl = queueUrlVal
 maxNumberOfMessages = 5
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 return sqsClient.receiveMessage(request).messages
 }
 } else {
 val receiveRequest = ReceiveMessageRequest {
 queueUrl = queueUrlVal

Publish messages to queues 938

Amazon Simple Notification Service Developer Guide

 waitTimeSeconds = 1
 maxNumberOfMessages = 5
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 return sqsClient.receiveMessage(receiveRequest).messages
 }
 }
}

suspend fun pubMessage(messageVal: String?, topicArnVal: String?) {
 val request = PublishRequest {
 message = messageVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

suspend fun pubMessageFIFO(
 messageVal: String?,
 topicArnVal: String?,
 msgAttValue: String,
 duplication: String,
 groupIdVal: String?,
 deduplicationID: String?,
) {
 // Means the user did not choose to use a message attribute.
 if (msgAttValue.isEmpty()) {
 if (duplication.compareTo("y") == 0) {
 val request = PublishRequest {
 message = messageVal
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 } else {
 val request = PublishRequest {

Publish messages to queues 939

Amazon Simple Notification Service Developer Guide

 message = messageVal
 messageDeduplicationId = deduplicationID
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 }
 } else {
 val messAttr = aws.sdk.kotlin.services.sns.model.MessageAttributeValue {
 dataType = "String"
 stringValue = "true"
 }

 val mapAtt: Map<String,
 aws.sdk.kotlin.services.sns.model.MessageAttributeValue> =
 mapOf(msgAttValue to messAttr)
 if (duplication.compareTo("y") == 0) {
 val request = PublishRequest {
 message = messageVal
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 } else {
 // Create a publish request with the message and attributes.
 val request = PublishRequest {
 topicArn = topicArnVal
 message = messageVal
 messageDeduplicationId = deduplicationID
 messageGroupId = groupIdVal
 messageAttributes = mapAtt
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")

Publish messages to queues 940

Amazon Simple Notification Service Developer Guide

 }
 }
 }
}

// Subscribe to the SQS queue.
suspend fun subQueue(topicArnVal: String?, queueArnVal: String, filterList:
 List<String?>): String? {
 val request: SubscribeRequest
 if (filterList.isEmpty()) {
 // No filter subscription is added.
 request = SubscribeRequest {
 protocol = "sqs"
 endpoint = queueArnVal
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println(
 "The queue " + queueArnVal + " has been subscribed to the topic "
 + topicArnVal + "\n" +
 "with the subscription ARN " + result.subscriptionArn,
)
 return result.subscriptionArn
 }
 } else {
 request = SubscribeRequest {
 protocol = "sqs"
 endpoint = queueArnVal
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println("The queue $queueArnVal has been subscribed to the topic
 $topicArnVal with the subscription ARN ${result.subscriptionArn}")

 val attributeNameVal = "FilterPolicy"
 val gson = Gson()
 val jsonString = "{\"tone\": []}"
 val jsonObject = gson.fromJson(jsonString, JsonObject::class.java)

Publish messages to queues 941

Amazon Simple Notification Service Developer Guide

 val toneArray = jsonObject.getAsJsonArray("tone")
 for (value: String? in filterList) {
 toneArray.add(JsonPrimitive(value))
 }

 val updatedJsonString: String = gson.toJson(jsonObject)
 println(updatedJsonString)
 val attRequest = SetSubscriptionAttributesRequest {
 subscriptionArn = result.subscriptionArn
 attributeName = attributeNameVal
 attributeValue = updatedJsonString
 }

 snsClient.setSubscriptionAttributes(attRequest)
 return result.subscriptionArn
 }
 }
}

suspend fun setQueueAttr(queueUrlVal: String?, policy: String) {
 val attrMap: MutableMap<String, String> = HashMap()
 attrMap[QueueAttributeName.Policy.toString()] = policy

 val attributesRequest = SetQueueAttributesRequest {
 queueUrl = queueUrlVal
 attributes = attrMap
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.setQueueAttributes(attributesRequest)
 println("The policy has been successfully attached.")
 }
}

suspend fun getSQSQueueAttrs(queueUrlVal: String?): String {
 val atts: MutableList<QueueAttributeName> = ArrayList()
 atts.add(QueueAttributeName.QueueArn)

 val attributesRequest = GetQueueAttributesRequest {
 queueUrl = queueUrlVal
 attributeNames = atts
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val response = sqsClient.getQueueAttributes(attributesRequest)

Publish messages to queues 942

Amazon Simple Notification Service Developer Guide

 val mapAtts = response.attributes
 if (mapAtts != null) {
 mapAtts.forEach { entry ->
 println("${entry.key} : ${entry.value}")
 return entry.value
 }
 }
 }
 return ""
}

suspend fun createQueue(queueNameVal: String?, selectFIFO: Boolean): String? {
 println("\nCreate Queue")
 if (selectFIFO) {
 val attrs = mutableMapOf<String, String>()
 attrs[QueueAttributeName.FifoQueue.toString()] = "true"

 val createQueueRequest = CreateQueueRequest {
 queueName = queueNameVal
 attributes = attrs
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.createQueue(createQueueRequest)
 println("\nGet queue url")

 val urlRequest = GetQueueUrlRequest {
 queueName = queueNameVal
 }

 val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest)
 return getQueueUrlResponse.queueUrl
 }
 } else {
 val createQueueRequest = CreateQueueRequest {
 queueName = queueNameVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.createQueue(createQueueRequest)
 println("Get queue url")

 val urlRequest = GetQueueUrlRequest {
 queueName = queueNameVal

Publish messages to queues 943

Amazon Simple Notification Service Developer Guide

 }

 val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest)
 return getQueueUrlResponse.queueUrl
 }
 }
}

suspend fun createSNSTopic(topicName: String?): String? {
 val request = CreateTopicRequest {
 name = topicName
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.createTopic(request)
 return result.topicArn
 }
}

suspend fun createFIFO(topicName: String?, duplication: String): String? {
 val topicAttributes: MutableMap<String, String> = HashMap()
 if (duplication.compareTo("n") == 0) {
 topicAttributes["FifoTopic"] = "true"
 topicAttributes["ContentBasedDeduplication"] = "false"
 } else {
 topicAttributes["FifoTopic"] = "true"
 topicAttributes["ContentBasedDeduplication"] = "true"
 }

 val topicRequest = CreateTopicRequest {
 name = topicName
 attributes = topicAttributes
 }
 SnsClient { region = "us-east-1" }.use { snsClient ->
 val response = snsClient.createTopic(topicRequest)
 return response.topicArn
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateQueue

• CreateTopic

Publish messages to queues 944

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Notification Service Developer Guide

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use API Gateway to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by Amazon API
Gateway.

Java

SDK for Java 2.x

Shows how to create an AWS Lambda function by using the Lambda Java runtime API.
This example invokes different AWS services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans
an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

Use API Gateway to invoke a Lambda function 945

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_apigateway

Amazon Simple Notification Service Developer Guide

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an AWS Lambda function by using the Lambda JavaScript runtime API.
This example invokes different AWS services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans
an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use scheduled events to invoke a Lambda function

The following code examples show how to create an AWS Lambda function invoked by an Amazon
EventBridge scheduled event.

Use scheduled events to invoke a Lambda function 946

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda Java
runtime API. This example invokes different AWS services to perform a specific use case.
This example demonstrates how to create an app that sends a mobile text message to your
employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon EventBridge scheduled event that invokes an AWS Lambda
function. Configure EventBridge to use a cron expression to schedule when the Lambda
function is invoked. In this example, you create a Lambda function by using the Lambda
JavaScript runtime API. This example invokes different AWS services to perform a specific
use case. This example demonstrates how to create an app that sends a mobile text message
to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the AWS SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• EventBridge

Use scheduled events to invoke a Lambda function 947

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_scheduled_events
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html

Amazon Simple Notification Service Developer Guide

• Lambda

• Amazon SNS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Serverless examples for Amazon SNS using AWS SDKs

The following code examples show how to use Amazon SNS with AWS SDKs.

Examples

• Invoke a Lambda function from an Amazon SNS trigger

Invoke a Lambda function from an Amazon SNS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

Serverless examples 948

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record
 {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Invoke a Lambda function from an Amazon SNS trigger 949

Amazon Simple Notification Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 processMessage(record)
 }
 fmt.Println("done")
}

func processMessage(record events.SNSEventRecord) {
 message := record.SNS.Message
 fmt.Printf("Processed message: %s\n", message)
 // TODO: Process your record here
}

func main() {
 lambda.Start(handler)
}

Invoke a Lambda function from an Amazon SNS trigger 950

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;
import com.amazonaws.services.lambda.runtime.events.SNSEvent.SNSRecord;

import java.util.Iterator;
import java.util.List;

public class SNSEventHandler implements RequestHandler<SNSEvent, Boolean> {
 LambdaLogger logger;

 @Override
 public Boolean handleRequest(SNSEvent event, Context context) {
 logger = context.getLogger();
 List<SNSRecord> records = event.getRecords();
 if (!records.isEmpty()) {
 Iterator<SNSRecord> recordsIter = records.iterator();
 while (recordsIter.hasNext()) {
 processRecord(recordsIter.next());
 }
 }
 return Boolean.TRUE;
 }

 public void processRecord(SNSRecord record) {

Invoke a Lambda function from an Amazon SNS trigger 951

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

 try {
 String message = record.getSNS().getMessage();
 logger.log("message: " + message);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");

Invoke a Lambda function from an Amazon SNS trigger 952

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

 throw err;
 }
}

Consuming an SNS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SNS trigger 953

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

Consuming an SNS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

/*
Since native PHP support for AWS Lambda is not available, we are utilizing Bref's
 PHP functions runtime for AWS Lambda.
For more information on Bref's PHP runtime for Lambda, refer to: https://bref.sh/
docs/runtimes/function

Another approach would be to create a custom runtime.
A practical example can be found here: https://aws.amazon.com/blogs/apn/aws-
lambda-custom-runtime-for-php-a-practical-example/
*/

// Additional composer packages may be required when using Bref or any other PHP
 functions runtime.
// require __DIR__ . '/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Sns\SnsEvent;
use Bref\Event\Sns\SnsHandler;

class Handler extends SnsHandler
{
 public function handleSns(SnsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $message = $record->getMessage();

 // TODO: Implement your custom processing logic here
 // Any exception thrown will be logged and the invocation will be
 marked as failed

 echo "Processed Message: $message" . PHP_EOL;
 }
 }
}

return new Handler();

Invoke a Lambda function from an Amazon SNS trigger 954

Amazon Simple Notification Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for record in event['Records']:
 process_message(record)
 print("done")

def process_message(record):
 try:
 message = record['Sns']['Message']
 print(f"Processed message {message}")
 # TODO; Process your record here

 except Exception as e:
 print("An error occurred")
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SNS trigger 955

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sns::SnsEvent;
use aws_lambda_events::sns::SnsRecord;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use tracing::info;

// Built with the following dependencies:
// aws_lambda_events = { version = "0.10.0", default-features = false, features
 = ["sns"] }
// lambda_runtime = "0.8.1"
// tokio = { version = "1", features = ["macros"] }

Invoke a Lambda function from an Amazon SNS trigger 956

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Simple Notification Service Developer Guide

// tracing = { version = "0.1", features = ["log"] }
// tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }

async fn function_handler(event: LambdaEvent<SnsEvent>) -> Result<(), Error> {
 for event in event.payload.records {
 process_record(&event)?;
 }

 Ok(())
}

fn process_record(record: &SnsRecord) -> Result<(), Error> {
 info!("Processing SNS Message: {}", record.sns.message);

 // Implement your record handling code here.

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SNS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon SNS trigger 957

Amazon Simple Notification Service Developer Guide

Amazon SNS security

This section provides information about Amazon SNS security, authentication and access control,
and the Amazon SNS Access Policy Language.

Topics

• Amazon SNS data protection

• Identity and access management in Amazon SNS

• Logging and monitoring in Amazon SNS

• Compliance validation for Amazon SNS

• Resilience in Amazon SNS

• Infrastructure security in Amazon SNS

Amazon SNS data protection

The AWS shared responsibility model applies to data protection in Amazon Simple Notification
Service. As described in this model, AWS is responsible for protecting the global infrastructure that
runs all of the AWS Cloud. You are responsible for maintaining control over your content that is
hosted on this infrastructure. This content includes the security configuration and management
tasks for the AWS services that you use. For more information about data privacy, see the Data
Privacy FAQ. For information about data protection in Europe, see the AWS Shared Responsibility
Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

Data protection 958

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Simple Notification Service Developer Guide

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

• Message data protection

• Message data protection is a new major feature of Amazon SNS

• Use MDP to scan message for confidential or sensitive information

• Provide message auditing to all content flowing through the topic

• Provide content access controls to messages published to the topic and messages delivered by
the topic

Important

We strongly recommend that you never put confidential or sensitive information, such
as your customers' email addresses, into tags or free-form fields such as a Name field.
This includes when you work with Amazon SNS or other Amazon Web Services using the
console, API, AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form fields
used for names may be used for billing or diagnostic logs. If you provide a URL to an
external server, we strongly recommend that you do not include credentials information in
the URL to validate your request to that server.

The following sections provide additional information about data protection in Amazon SNS.

Topics

• Amazon SNS data encryption

• Securing Amazon SNS traffic with VPC endpoints

• Enhancing Amazon SNS security with Message Data Protection

Amazon SNS data encryption

Data protection refers to protecting data while in-transit (as it travels to and from Amazon SNS)
and at rest (while it is stored on disks in Amazon SNS data centers). You can protect data in
transit using Secure Sockets Layer (SSL) or client-side encryption. By default, Amazon SNS stores
messages and files using disk encryption. You can protect data at rest by requesting Amazon SNS

Data encryption 959

https://aws.amazon.com/compliance/fips/

Amazon Simple Notification Service Developer Guide

to encrypt your messages before saving them to the encrypted file system in its data centers.
Amazon SNS recommends using SSE for optimized data encryption.

Topics

• Securing Amazon SNS data with server-side encryption

• Managing Amazon SNS encryption keys and costs

• Setting up Amazon SNS topic encryption with server-side encryption

• Setting up Amazon SNS topic encryption with encrypted Amazon SQS queue subscription

Securing Amazon SNS data with server-side encryption

Server-side encryption (SSE) lets you store sensitive data in encrypted topics by protecting the
contents of messages in Amazon SNS topics using keys managed in AWS Key Management Service
(AWS KMS).

SSE encrypts messages as soon as Amazon SNS receives them. The messages are stored in
encrypted form, and only decrypted when they are sent.

• For information about managing SSE using the AWS Management Console or the AWS
SDK for Java (by setting the KmsMasterKeyId attribute using the CreateTopic and
SetTopicAttributes API actions), see Setting up Amazon SNS topic encryption with server-
side encryption.

• For information about creating encrypted topics using AWS CloudFormation (by setting
the KmsMasterKeyId property using the AWS::SNS::Topic resource), see the AWS
CloudFormation User Guide.

Important

All requests to topics with SSE enabled must use HTTPS and Signature Version 4.
For information about compatibility of other services with encrypted topics, see your
service documentation.
Amazon SNS only supports symmetric encryption KMS keys. You cannot use any other type
of KMS key to encrypt your service resources. For help determining whether a KMS key is a
symmetric encryption key, see Identifying asymmetric KMS keys.

Data encryption 960

https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html

Amazon Simple Notification Service Developer Guide

AWS KMS combines secure, highly available hardware and software to provide a key management
system scaled for the cloud. When you use Amazon SNS with AWS KMS, the data keys that encrypt
your message data are also encrypted and stored with the data they protect.

The following are benefits of using AWS KMS:

• You can create and manage the AWS KMS key yourself.

• You can also use AWS-managed KMS keys for Amazon SNS, which are unique for each account
and region.

• The AWS KMS security standards can help you meet encryption-related compliance
requirements.

For more information, see What is AWS Key Management Service? in the AWS Key Management
Service Developer Guide.

Topics

• Encryption scope

• Key terms

Encryption scope

SSE encrypts the body of a message in an Amazon SNS topic.

SSE doesn't encrypt the following:

• Topic metadata (topic name and attributes)

• Message metadata (subject, message ID, timestamp, and attributes)

• Data protection policy

• Per-topic metrics

Note

• A message is encrypted only if it is sent after the encryption of a topic is enabled.
Amazon SNS doesn't encrypt backlogged messages.

• Any encrypted message remains encrypted even if the encryption of its topic is disabled.

Data encryption 961

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Simple Notification Service Developer Guide

Key terms

The following key terms can help you better understand the functionality of SSE. For detailed
descriptions, see the Amazon Simple Notification Service API Reference.

Data key

The data encryption key (DEK) responsible for encrypting the contents of Amazon SNS
messages.

For more information, see Data Keys in the AWS Key Management Service Developer Guide and
Envelope Encryption in the AWS Encryption SDK Developer Guide.

AWS KMS key ID

The alias, alias ARN, key ID, or key ARN of an AWS KMS key, or a custom AWS KMS—in
your account or in another account. While the alias of the AWS managed AWS KMS for
Amazon SNS is always alias/aws/sns, the alias of a custom AWS KMS can, for example, be
alias/MyAlias. You can use these AWS KMS keys to protect the messages in Amazon SNS
topics.

Note

Keep the following in mind:

• The first time you use the AWS Management Console to specify the AWS managed
KMS for Amazon SNS for a topic, AWS KMS creates the AWS managed KMS for
Amazon SNS.

• Alternatively, the first time you use the Publish action on a topic with SSE enabled,
AWS KMS creates the AWS managed KMS for Amazon SNS.

You can create AWS KMS keys, define the policies that control how AWS KMS keys can be used,
and audit AWS KMS usage using the AWS KMS keys section of the AWS KMS console or the
CreateKey AWS KMS action. For more information, see AWS KMS keys and Creating Keys in
the AWS Key Management Service Developer Guide. For more examples of AWS KMS identifiers,
see KeyId in the AWS Key Management Service API Reference. For information about finding AWS
KMS identifiers, see Find the Key ID and ARN in the AWS Key Management Service Developer
Guide.

Data encryption 962

https://docs.aws.amazon.com/sns/latest/api/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

Amazon Simple Notification Service Developer Guide

Important

There are additional charges for using AWS KMS. For more information, see Estimating
AWS KMS costs and AWS Key Management Service Pricing.

Managing Amazon SNS encryption keys and costs

The following sections provide information about working with keys managed in AWS Key
Management Service (AWS KMS).

Note

Amazon SNS only supports symmetric encryption KMS keys. You cannot use any other type
of KMS key to encrypt your service resources. For help determining whether a KMS key is a
symmetric encryption key, see Identifying asymmetric KMS keys.

Topics

• Estimating AWS KMS costs

• Configuring AWS KMS permissions

• AWS KMS errors

Estimating AWS KMS costs

To predict costs and better understand your AWS bill, you might want to know how often Amazon
SNS uses your AWS KMS key.

Note

Although the following formula can give you a very good idea of expected costs, actual
costs might be higher because of the distributed nature of Amazon SNS.

To calculate the number of API requests (R) per topic, use the following formula:

R = B / D * (2 * P)

Data encryption 963

https://aws.amazon.com/kms/pricing
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html

Amazon Simple Notification Service Developer Guide

B is the billing period (in seconds).

D is the data key reuse period (in seconds—Amazon SNS reuses a data key for up to 5 minutes).

P is the number of publishing principals that send to the Amazon SNS topic.

The following are example calculations. For exact pricing information, see AWS Key Management
Service Pricing.

Example 1: Calculating the number of AWS KMS API calls for 1 publisher and 1 topic

This example assumes the following:

• The billing period is January 1-31 (2,678,400 seconds).

• The data key reuse period is 5 minutes (300 seconds).

• There is 1 topic.

• There is 1 publishing principal.

2,678,400 / 300 * (2 * 1) = 17,856

Example 2: Calculating the number of AWS KMS API calls for multiple publishers and 2 topics

This example assumes the following:

• The billing period is February 1-28 (2,419,200 seconds).

• The data key reuse period is 5 minutes (300 seconds).

• There are 2 topics.

• The first topic has 3 publishing principals.

• The second topic has 5 publishing principals.

(2,419,200 / 300 * (2 * 3)) + (2,419,200 / 300 * (2 * 5)) = 129,024

Configuring AWS KMS permissions

Before you can use SSE, you must configure AWS KMS key policies to allow encryption of topics
and encryption and decryption of messages. For examples and more information about AWS

Data encryption 964

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal
https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/

Amazon Simple Notification Service Developer Guide

KMS permissions, see AWS KMS API Permissions: Actions and Resources Reference in the AWS
Key Management Service Developer Guide. For details on how to set up an Amazon SNS topic with
server-side encryption, see Additional information.

Note

You can also manage permissions for symmetric encryption KMS keys using IAM policies.
For more information, see Using IAM Policies with AWS KMS.
While you can configure global permissions to send to and receive from Amazon SNS, AWS
KMS requires explicitly naming the full ARN of KMSs in specific regions in the Resource
section of an IAM policy.

You must also ensure that the key policies of the AWS KMS key allow the necessary permissions.
To do this, name the principals that produce and consume encrypted messages in Amazon SNS as
users in the KMS key policy.

Alternatively, you can specify the required AWS KMS actions and KMS ARN in an IAM policy
assigned to the principals that publish and subscribe to receive encrypted messages in Amazon
SNS. For more information, see Managing Access to AWS KMS in the AWS Key Management Service
Developer Guide.

If selecting a customer-managed key for your Amazon SNS topic and you are using aliases
to control access to KMS keys using IAM policies or KMS key policies with the condition key
kms:ResourceAliases, ensure that the customer-managed key that is selected also has an alias
associated. For more information on using alias to control access to KMS keys, see Using aliases to
control access to KMS keys in the AWS Key Management Service Developer Guide.

Allow a user to send messages to a topic with SSE

The publisher must have the kms:GenerateDataKey* and kms:Decrypt permissions for the
AWS KMS key.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey*",
 "kms:Decrypt"
],

Data encryption 965

https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/developerguide/alias-authorization.html
https://docs.aws.amazon.com/kms/latest/developerguide/alias-authorization.html

Amazon Simple Notification Service Developer Guide

 "Resource": "arn:aws:kms:us-
east-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }, {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:*:123456789012:MyTopic"
 }]
}

Enable compatibility between event sources from AWS services and encrypted topics

Several AWS services publish events to Amazon SNS topics. To allow these event sources to work
with encrypted topics, you must perform the following steps.

1. Use a customer managed key. For more information, see Creating Keys in the AWS Key
Management Service Developer Guide.

2. To allow the AWS service to have the kms:GenerateDataKey* and kms:Decrypt
permissions, add the following statement to the KMS policy.

{
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "service.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:Decrypt"
],
 "Resource": "*"
 }]
}

Event source Service principal

Amazon CloudWatch cloudwatch.amazonaws.com

Amazon CloudWatch Events events.amazonaws.com

Data encryption 966

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/

Amazon Simple Notification Service Developer Guide

Event source Service principal

AWS CodeCommit codecommit.amazonaws.com

AWS CodeStar codestar-notifications.amaz
onaws.com

AWS Database Migration Service dms.amazonaws.com

AWS Directory Service ds.amazonaws.com

Amazon DynamoDB dynamodb.amazonaws.com

Amazon Inspector inspector.amazonaws.com

Amazon Redshift redshift.amazonaws.com

Amazon RDS events.rds.amazonaws.com

Amazon S3 Glacier glacier.amazonaws.com

Amazon Simple Email Service ses.amazonaws.com

Amazon Simple Storage Service s3.amazonaws.com

AWS Snowball importexport.amazonaws.com

AWS Systems Manager Incident Manager AWS Systems Manager Incident Manager
consists of two service principles:
ssm-incidents.amazonaws.com ;
ssm-contacts.amazonaws.com

Note

Some Amazon SNS event sources require you to provide an IAM role (rather than the
service principal) in the AWS KMS key policy:

• Amazon EC2 Auto Scaling

• Amazon Elastic Transcoder

Data encryption 967

https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-notify-sns.html
https://docs.aws.amazon.com/codestar/latest/userguide/customize-ec2-multi-endpoints.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Events.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_enable_notifications.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.cluster-management.html#DAX.cluster-management.custom-settings
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-event-notifications.html
https://docs.aws.amazon.com/AmazonRDS/latest/DeveloperGuide/USER_Events.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/configuring-notifications.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/configure-sns-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/snowball/latest/api-reference/API_Notification.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/chat.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ASGettingNotifications.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/notifications.html

Amazon Simple Notification Service Developer Guide

• AWS CodePipeline

• AWS Config

• AWS Elastic Beanstalk

• AWS IoT

• EC2 Image Builder

3. Add the aws:SourceAccount and aws:SourceArn condition keys to the KMS resource
policy to further protect the KMS key from confused deputy attacks. Refer to service specific
documentation list (above) for exact details in each case.

Important

Adding the aws:SourceAccount and aws:SourceArn to a AWS KMS policy is not
supported for EventBridge-to-encrypted topics.

{
 "Effect": "Allow",
 "Principal": {
 "Service": "service.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey*",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "customer-account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:service:region:customer-account-id:resource-
type:customer-resource-id"
 }
 }
}

4. Enable SSE for your topic using your KMS.

5. Provide the ARN of the encrypted topic to the event source.

Data encryption 968

https://docs.aws.amazon.com/codepipeline/latest/userguide/approvals.html#approvals-configuration-options
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.sns.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sns-rule.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/ibhow-integrations.html#integ-sns-encrypted
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Simple Notification Service Developer Guide

AWS KMS errors

When you work with Amazon SNS and AWS KMS, you might encounter errors. The following list
describes the errors and possible troubleshooting solutions.

KMSAccessDeniedException

The ciphertext references a key that doesn't exist or that you don't have access to.

HTTP Status Code: 400

KMSDisabledException

The request was rejected because the specified KMS isn't enabled.

HTTP Status Code: 400

KMSInvalidStateException

The request was rejected because the state of the specified resource isn't valid for this request.
For more information, see Key states of AWS KMS keys in the AWS Key Management Service
Developer Guide.

HTTP Status Code: 400

KMSNotFoundException

The request was rejected because the specified entity or resource can't be found.

HTTP Status Code: 400

KMSOptInRequired

The AWS access key ID needs a subscription for the service.

HTTP Status Code: 403

KMSThrottlingException

The request was denied due to request throttling. For more information about throttling, see
Quotas in the AWS Key Management Service Developer Guide.

HTTP Status Code: 400

Data encryption 969

https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second

Amazon Simple Notification Service Developer Guide

Setting up Amazon SNS topic encryption with server-side encryption

Amazon SNS supports server-side encryption (SSE) to protect the contents of messages using
AWS Key Management Service (AWS KMS). Follow the instructions below to enable SSE using the
Amazon SNS console or CDK.

Option 1: Enable encryption using the AWS Management Console

1. Sign in to the Amazon SNS console.

2. Navigate to the Topics page, select your topic, and choose Edit.

3. Expand the Encryption section and do the following:

• Toggle encryption to Enable.

• Select the AWS managed SNS Key (alias/aws/sns) as the encryption key. This is selected by
default.

4. Choose Save changes.

Note

• The AWS managed key is automatically created if it doesn’t already exist.

• If you don’t see the key or have insufficient permissions, ask your administrator for
kms:ListAliases and kms:DescribeKey.

Option 2: Enable encryption using AWS CDK

To use the AWS managed SNS key in your CDK application, add the following snippet:

import software.amazon.awscdk.services.sns.*;
import software.amazon.awscdk.services.kms.*;
import software.amazon.awscdk.core.*;

public class SnsEncryptionExample extends Stack {
 public SnsEncryptionExample(final Construct scope, final String id) {
 super(scope, id);

 // Define the managed SNS key
 IKey snsKey = Alias.fromAliasName(this, "helloKey", "alias/aws/sns");

Data encryption 970

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

 // Create the SNS Topic with encryption enabled
 Topic.Builder.create(this, "MyEncryptedTopic")
 .masterKey(snsKey)
 .build();
 }
}

Additional information

• Custom KMS key – You can specify a custom key if required. In the Amazon SNS console, select
your custom KMS key from the list or enter the ARN.

• Permissions for custom KMS keys – If using a custom KMS key, include the following in the key
policy to allow Amazon SNS to encrypt and decrypt messages:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:service:region:customer-account-id:resource-
type/customer-resource-id"
 },
 "StringEquals": {
 "kms:EncryptionContext:aws:sns:topicArn":
 "arn:aws:sns:your_region:customer-account-id:your_sns_topic_name"
 }
 }
}

Impact on consumers

Enabling SSE does not change how subscribers consume messages. AWS manages encryption and
decryption transparently. Messages remain encrypted at rest and are automatically decrypted

Data encryption 971

Amazon Simple Notification Service Developer Guide

before delivery to subscribers. For optimal security, AWS recommends enabling HTTPS for all
endpoints to ensure secure transmission of messages.

Setting up Amazon SNS topic encryption with encrypted Amazon SQS queue
subscription

You can enable server-side encryption (SSE) for a topic to protect its data. To allow Amazon SNS to
send messages to encrypted Amazon SQS queues, the customer managed key associated with the
Amazon SQS queue must have a policy statement that grants Amazon SNS service-principal access
to the AWS KMS API actions GenerateDataKey and Decrypt. For more information about using
SSE, see Securing Amazon SNS data with server-side encryption.

This page shows how you can enable SSE for an Amazon SNS topic to which an encrypted Amazon
SQS queue is subscribed, using the AWS Management Console.

Step 1: Create a custom KMS key

1. Sign in to the AWS KMS console with a user that has at least the
AWSKeyManagementServicePowerUser policy.

2. Choose Create a key.

3. To create a symmetric encryption KMS key, for Key type choose Symmetric.

For information about how to create an asymmetric KMS key in the AWS KMS console, see
Creating asymmetric KMS keys (console).

4. In Key usage, the Encrypt and decrypt option is selected for you.

For information about how to create KMS keys that generate and verify MAC codes, see
Creating HMAC KMS keys.

For information about the Advanced options, see Special-purpose keys.

5. Choose Next.

6. Type an alias for the KMS key. The alias name cannot begin with aws/. The aws/ prefix is
reserved by Amazon Web Services to represent AWS managed keys in your account.

Note

Adding, deleting, or updating an alias can allow or deny permission to the KMS key. For
details, see ABAC for AWS KMS and Using aliases to control access to KMS keys.

Data encryption 972

https://console.aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/asymm-create-key.html#create-asymmetric-keys-console
https://docs.aws.amazon.com/kms/latest/developerguide/hmac-create-key.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/abac.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#hmac-key-concept

Amazon Simple Notification Service Developer Guide

An alias is a display name that you can use to identify the KMS key. We recommend that you
choose an alias that indicates the type of data you plan to protect or the application you plan
to use with the KMS key.

Aliases are required when you create a KMS key in the AWS Management Console. They are
optional when you use the CreateKey operation.

7. (Optional) Type a description for the KMS key.

You can add a description now or update it any time unless the key state is Pending
Deletion or Pending Replica Deletion. To add, change, or delete the description of an
existing customer managed key, edit the description in the AWS Management Console or use
the UpdateKeyDescription operation.

8. (Optional) Type a tag key and an optional tag value. To add more than one tag to the KMS key,
choose Add tag.

Note

Tagging or untagging a KMS key can allow or deny permission to the KMS key. For
details, see ABAC for AWS KMS and Using tags to control access to KMS keys.

When you add tags to your AWS resources, AWS generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tagging keys and ABAC for AWS KMS.

9. Choose Next.

10. Select the IAM users and roles that can administer the KMS key.

Note

This key policy gives the AWS account full control of this KMS key. It allows account
administrators to use IAM policies to give other principals permission to manage the
KMS key. For details, see Default key policy.

Data encryption 973

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html
https://docs.aws.amazon.com/kms/latest/developerguide/editing-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/kms/latest/developerguide/abac.html
https://docs.aws.amazon.com/kms/latest/developerguide/tag-authorization.html
https://docs.aws.amazon.com/kms/latest/developerguide/tagging-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/abac.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-default.html

Amazon Simple Notification Service Developer Guide

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.

11. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

12. Choose Next.

13. Select the IAM users and roles that can use the key in cryptographic operations. Choose Next.

14. On the Review and edit key policy page, add the following statement to the key policy, and
then choose Finish.

{
 "Sid": "Allow Amazon SNS to use this key",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*"
}

Your new customer managed key appears in the list of keys.

Step 2: Create an encrypted Amazon SNS topic

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. Choose Create topic.

4. On the Create new topic page, for Name, enter a topic name (for example,
MyEncryptedTopic) and then choose Create topic.

5. Expand the Encryption section and do the following:

a. Choose Enable server-side encryption.

Data encryption 974

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#cryptographic-operations
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

b. Specify the customer managed key. For more information, see Key terms.

For each customer managed key type, the Description, Account, and customer managed
key ARN are displayed.

Important

If you aren't the owner of the customer managed key, or if you log in with an
account that doesn't have the kms:ListAliases and kms:DescribeKey
permissions, you won't be able to view information about the customer managed
key on the Amazon SNS console.
Ask the owner of the customer managed key to grant you these permissions.
For more information, see the AWS KMS API Permissions: Actions and Resources
Reference in the AWS Key Management Service Developer Guide.

c. For customer managed key, choose MyCustomKey which you created earlier and then
choose Enable server-side encryption.

6. Choose Save changes.

SSE is enabled for your topic and the MyTopic page is displayed.

The topic's Encryption status, AWS Account, customer managed key, customer managed key
ARN, and Description are displayed on the Encryption tab.

Your new encrypted topic appears in the list of topics.

Step 3: Create and subscribe encrypted Amazon SQS queues

1. Sign in to the Amazon SQS console.

2. Choose Create New Queue.

3. On the Create New Queue page, do the following:

a. Enter a Queue Name (for example, MyEncryptedQueue1).

b. Choose Standard Queue, and then choose Configure Queue.

c. Choose Use SSE.

d. For AWS KMS key, choose MyCustomKey which you created earlier, and then choose
Create Queue.

Data encryption 975

https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide

4. Repeat the process to create a second queue (for example, named MyEncryptedQueue2).

Your new encrypted queues appear in the list of queues.

5. On the Amazon SQS console, choose MyEncryptedQueue1 and MyEncryptedQueue2 and
then choose Queue Actions, Subscribe Queues to SNS Topic.

6. In the Subscribe to a Topic dialog box, for Choose a Topic select MyEncryptedTopic, and then
choose Subscribe.

Your encrypted queues' subscriptions to your encrypted topic are displayed in the Topic
Subscription Result dialog box.

7. Choose OK.

Step 4: Publish a message to your encrypted topic

1. Sign in to the Amazon SNS console.

2. On the navigation panel, choose Topics.

3. From the list of topics, choose MyEncryptedTopic and then choose Publish message.

4. On the Publish a message page, do the following:

a. (Optional) In the Message details section, enter the Subject (for example, Testing
message publishing).

b. In the Message body section, enter the message body (for example, My message body
is encrypted at rest.).

c. Choose Publish message.

Your message is published to your subscribed encrypted queues.

Step 5: Verify message delivery

1. Sign in to the Amazon SQS console.

2. From the list of queues, choose MyEncryptedQueue1 and then choose Send and receive
messages.

3. On the Send and receive messages in MyEncryptedQueue1 page, choose Poll for messages.

The message that you sent earlier is displayed.

4. Choose More Details to view your message.

Data encryption 976

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide

5. When you're finished, choose Close.

6. Repeat the process for MyEncryptedQueue2.

Securing Amazon SNS traffic with VPC endpoints

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for Amazon SNS is a logical entity within
a VPC that allows connectivity only to Amazon SNS. The VPC routes requests to Amazon SNS and
routes responses back to the VPC. The following sections provide information about working with
VPC endpoints and creating VPC endpoint policies.

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and Amazon SNS. With this connection, you can
publish messages to your Amazon SNS topics without sending them through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such the IP address range,
subnets, route tables, and network gateways. To connect your VPC to Amazon SNS, you define an
interface VPC endpoint. This type of endpoint enables you to connect your VPC to AWS services.
The endpoint provides reliable, scalable connectivity to Amazon SNS without requiring an internet
gateway, network address translation (NAT) instance, or VPN connection. For more information, see
Interface VPC Endpoints in the Amazon VPC User Guide.

The information in this section is for users of Amazon VPC. For more information, and to get
started with creating a VPC, see Getting Started With Amazon VPC in the Amazon VPC User Guide.

Note

VPC endpoints don't allow you to subscribe an Amazon SNS topic to a private IP address.

Topics

• Creating an Amazon VPC endpoint for Amazon SNS

• Creating an Amazon VPC endpoint policy for Amazon SNS

• Publishing an Amazon SNS message from Amazon VPC

Securing traffic with VPC endpoints 977

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/getting-started-ipv4.html

Amazon Simple Notification Service Developer Guide

Creating an Amazon VPC endpoint for Amazon SNS

To publish messages to your Amazon SNS topics from an Amazon VPC, create an interface VPC
endpoint. Then, you can publish messages to your topics while keeping the traffic within the
network that you manage with the VPC.

Use the following information to create the endpoint and test the connection between your VPC
and Amazon SNS. Or, for a walkthrough that helps you start from scratch, see Publishing an
Amazon SNS message from Amazon VPC.

Creating the endpoint

You can create an Amazon SNS endpoint in your VPC using the AWS Management Console, the
AWS CLI, an AWS SDK, the Amazon SNS API, or AWS CloudFormation.

For information about creating and configuring an endpoint using the Amazon VPC console or the
AWS CLI, see Creating an Interface Endpoint in the Amazon VPC User Guide.

Important

You can use Amazon Virtual Private Cloud only with HTTPS Amazon SNS endpoints.
When you create an endpoint, specify Amazon SNS as the service that you want your VPC
to connect to. In the Amazon VPC console, service names vary based on the region. For
example, if you choose US East (N. Virginia), the service name is com.amazonaws.us-
east-1.sns.
When you configure Amazon SNS to send messages from Amazon VPC, you must enable
private DNS and specify endpoints in the format sns.us-east-2.amazonaws.com.
Private DNS doesn't support legacy endpoints such as queue.amazonaws.com or us-
east-2.queue.amazonaws.com.

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

Testing the connection between your VPC and Amazon SNS

After you create an endpoint for Amazon SNS, you can publish messages from your VPC to your
Amazon SNS topics. To test this connection, do the following:

Securing traffic with VPC endpoints 978

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html

Amazon Simple Notification Service Developer Guide

1. Connect to an Amazon EC2 instance that resides in your VPC. For information about
connecting, see Connect to Your Linux Instance or Connecting to Your Windows Instance in the
Amazon EC2 documentation.

For example, to connect to a Linux instance using an SSH client, run the following command
from a terminal:

$ ssh -i ec2-key-pair.pem ec2-user@instance-hostname

Where:

• ec2-key-pair.pem is the file that contains the key pair that Amazon EC2 provided when you
created the instance.

• instance-hostname is the public hostname of the instance. To get the hostname in the
Amazon EC2 console: Choose Instances, choose your instance, and find the value for Public
DNS (IPv4).

2. From your instance, use the Amazon SNS publish command with the AWS CLI. You can send
a simple message to a topic with the following command:

$ aws sns publish --region aws-region --topic-arn sns-topic-arn --message "Hello"

Where:

• aws-region is the AWS Region that the topic is located in.

• sns-topic-arn is the Amazon Resource Name (ARN) of the topic. To get the ARN from the
Amazon SNS console: Choose Topics, find your topic, and find the value in the ARN column.

If the message is successfully received by Amazon SNS, the terminal prints a message ID, like
the following:

{
 "MessageId": "6c96dfff-0fdf-5b37-88d7-8cba910a8b64"
}

Securing traffic with VPC endpoints 979

https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/cli/latest/reference/sns/publish.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

Creating an Amazon VPC endpoint policy for Amazon SNS

You can create a policy for Amazon VPC endpoints for Amazon SNS in which you specify the
following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide.

The following example VPC endpoint policy specifies that the IAM user MyUser is allowed to
publish to the Amazon SNS topic MyTopic.

{
 "Statement": [{
 "Action": ["sns:Publish"],
 "Effect": "Allow",
 "Resource": "arn:aws:sns:us-east-2:123456789012:MyTopic",
 "Principal": {
 "AWS": "arn:aws:iam:123456789012:user/MyUser"
 }
 }]
}

The following are denied:

• Other Amazon SNS API actions, such as sns:Subscribe and sns:Unsubscribe.

• Other IAM users and rules which attempt to use this VPC endpoint.

• MyUser publishing to a different Amazon SNS topic.

Note

The IAM user can still use other Amazon SNS API actions from outside the VPC.

Securing traffic with VPC endpoints 980

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Simple Notification Service Developer Guide

Publishing an Amazon SNS message from Amazon VPC

This section describes how to publish to an Amazon SNS topic while keeping the messages secure
in a private network. You publish a message from an Amazon EC2 instance that's hosted in Amazon
Virtual Private Cloud (Amazon VPC). The message stays within the AWS network without traveling
the public internet. By publishing messages privately from a VPC, you can improve the security
of the traffic between your applications and Amazon SNS. This security is important when you
publish personally identifiable information (PII) about your customers, or when your application is
subject to market regulations. For example, publishing privately is helpful if you have a healthcare
system that must comply with the Health Insurance Portability and Accountability Act (HIPAA), or
a financial system that must comply with the Payment Card Industry Data Security Standard (PCI
DSS).

The general steps are as follows:

• Use an AWS CloudFormation template to automatically create a temporary private network in
your AWS account.

• Create a VPC endpoint that connects the VPC with Amazon SNS.

• Log in to an Amazon EC2 instance and publish a message privately to an Amazon SNS topic.

• Verify that the message was delivered successfully.

• Delete the resources that you created during this process so that they don't remain in your AWS
account.

The following diagram depicts the private network that you create in your AWS account as you
complete these steps:

Securing traffic with VPC endpoints 981

Amazon Simple Notification Service Developer Guide

This network consists of a VPC that contains an Amazon EC2 instance. The instance connects to
Amazon SNS through an interface VPC endpoint. This type of endpoint connects to services that are
powered by AWS PrivateLink. With this connection established, you can log in to the Amazon EC2
instance and publish messages to the Amazon SNS topic, even though the network is disconnected
from the public internet. The topic fans out the messages that it receives to two subscribing AWS
Lambda functions. These functions log the messages that they receive in Amazon CloudWatch
Logs.

It takes about 20 minutes to complete these steps.

Topics

• Before you begin

• Step 1: Create an Amazon EC2 key pair

• Step 2: Create the AWS resources

• Step 3: Confirm that your Amazon EC2 instance lacks internet access

• Step 4: Create an Amazon VPC endpoint for Amazon SNS

• Step 5: Publish a message to your Amazon SNS topic

• Step 6: Verify your message deliveries

• Step 7: Clean up

• Related resources

Before you begin

Before you start, you need an Amazon Web Services (AWS) account. When you sign up, your
account is automatically signed up for all services in AWS, including Amazon SNS and Amazon VPC.
If you haven't created an account already, go to https://aws.amazon.com/, and then choose Create
a Free Account.

Step 1: Create an Amazon EC2 key pair

A key pair is used to log in to an Amazon EC2 instance. It consists of a public key that's used to
encrypt your login information, and a private key that's used to decrypt it. When you create a key
pair, you download a copy of the private key. Later, you use the key pair to log in to an Amazon EC2
instance. To log in, you specify the name of the key pair, and you provide the private key.

Securing traffic with VPC endpoints 982

https://aws.amazon.com/

Amazon Simple Notification Service Developer Guide

To create the key pair

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. In the navigation menu on the left, find the Network & Security section. Then, choose Key
Pairs.

3. Choose Create Key Pair.

4. In the Create Key Pair window, for Key pair name, type VPCE-Tutorial-KeyPair. Then,
choose Create.

5. The private key file is automatically downloaded by your browser. Save it in a safe place.
Amazon EC2 gives the file an extension of .pem.

6. (Optional) If you're using an SSH client on a Mac or Linux computer to connect to your
instance, use the chmod command to set the permissions of your private key file so that only
you can read it:

a. Open a terminal and navigate to the directory that contains the private key:

$ cd /filepath_to_private_key/

b. Set the permissions using the following command:

$ chmod 400 VPCE-Tutorial-KeyPair.pem

Step 2: Create the AWS resources

To set up the infrastructure, you use an AWS CloudFormation template. A template is a file that
acts as a blueprint for building AWS resources, such as Amazon EC2 instances and Amazon SNS
topics. The template for this process is provided on GitHub for you to download.

Securing traffic with VPC endpoints 983

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Simple Notification Service Developer Guide

You provide the template to AWS CloudFormation, and AWS CloudFormation provisions the
resources that you need as a stack in your AWS account. A stack is a collection of resources that you
manage as a single unit. When you finish these steps, you can use AWS CloudFormation to delete
all of the resources in the stack at once. These resources don't remain in your AWS account, unless
you want them to.

The stack for this process includes the following resources:

• A VPC and the associated networking resources, including a subnet, a security group, an internet
gateway, and a route table.

• An Amazon EC2 instance that's launched into the subnet in the VPC.

• An Amazon SNS topic.

• Two AWS Lambda functions. These functions receive messages that are published to the Amazon
SNS topic, and they log events in CloudWatch Logs.

• Amazon CloudWatch metrics and logs.

• An IAM role that allows the Amazon EC2 instance to use Amazon SNS, and an IAM role that
allows the Lambda functions to write to CloudWatch logs.

To create the AWS resources

1. Download the template file from the GitHub website.

2. Sign in to the AWS CloudFormation console.

3. Choose Create Stack.

4. On the Select Template page, choose Upload a template to Amazon S3, choose the file, and
choose Next.

5. On the Specify Details page, specify stack and key names:

a. For Stack name, type VPCE-Tutorial-Stack.

b. For KeyName, choose VPCE-Tutorial-KeyPair.

c. For SSHLocation, keep the default value of 0.0.0.0/0.

Securing traffic with VPC endpoints 984

https://github.com/aws-samples/aws-sns-samples/blob/master/templates/SNS-VPCE-Tutorial-CloudFormation.template
https://console.aws.amazon.com/cloudformation

Amazon Simple Notification Service Developer Guide

d. Choose Next.

6. On the Options page, keep all of the default values, and choose Next.

7. On the Review page, verify the stack details.

8. Under Capabilities, acknowledge that AWS CloudFormation might create IAM resources with
custom names.

9. Choose Create.

The AWS CloudFormation console opens the Stacks page. The VPCE-Tutorial-Stack has a
status of CREATE_IN_PROGRESS. In a few minutes, after the creation process completes, the
status changes to CREATE_COMPLETE.

Tip

Choose the Refresh button to see the latest stack status.

Step 3: Confirm that your Amazon EC2 instance lacks internet access

The Amazon EC2 instance that was launched in your VPC in the previous step lacks internet access.
It disallows outbound traffic, and it's unable to publish messages to Amazon SNS. Verify this by

Securing traffic with VPC endpoints 985

Amazon Simple Notification Service Developer Guide

logging in to the instance. Then, attempt to connect to a public endpoint, and attempt to message
Amazon SNS.

At this point, the publish attempt fails. In a later step, after you create a VPC endpoint for Amazon
SNS, your publish attempt succeeds.

To connect to your Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation menu on the left, find the Instances section. Then, choose Instances.

3. In the list of instances, select VPCE-Tutorial-EC2Instance.

4. Copy the hostname that's provided in the Public DNS (IPv4) column.

5. Open a terminal. From the directory that contains the key pair, connect to the instance using
the following command, where instance-hostname is the hostname that you copied from
the Amazon EC2 console:

$ ssh -i VPCE-Tutorial-KeyPair.pem ec2-user@instance-hostname

To verify that the instance lacks internet connectivity

• In your terminal, attempt to connect to any public endpoint, such as amazon.com:

$ ping amazon.com

Because the connection attempt fails, you can cancel at any time (Ctrl + C on Windows or
Command + C on macOS).

To verify that the instance lacks connectivity to Amazon SNS

1. Sign in to the Amazon SNS console.

2. In the navigation menu on the left, choose Topics.

Securing traffic with VPC endpoints 986

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

3. On the Topics page, copy the Amazon Resource Name (ARN) for the topic VPCE-Tutorial-
Topic.

4. In your terminal, attempt to publish a message to the topic:

$ aws sns publish --region aws-region --topic-arn sns-topic-arn --message "Hello"

Because the publish attempt fails, you can cancel at any time.

Step 4: Create an Amazon VPC endpoint for Amazon SNS

To connect the VPC to Amazon SNS, you define an interface VPC endpoint. After you add the
endpoint, you can log in to the Amazon EC2 instance in your VPC, and from there you can use the
Amazon SNS API. You can publish messages to the topic, and the messages are published privately.
They stay within the AWS network, and they don't travel the public internet.

Note

The instance still lacks access to other AWS services and endpoints on the internet.

To create the endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation menu on the left, choose Endpoints.

3. Choose Create Endpoint.

4. On the Create Endpoint page, for Service category, keep the default choice of AWS services.

5. For Service Name, choose the service name for Amazon SNS.

The service names vary based on the chosen region. For example, if you chose US East (N.
Virginia), the service name is com.amazonaws.us-east-1.sns.

6. For VPC, choose the VPC that has the name VPCE-Tutorial-VPC.

Securing traffic with VPC endpoints 987

https://console.aws.amazon.com/vpc/

Amazon Simple Notification Service Developer Guide

7. For Subnets, choose the subnet that has VPCE-Tutorial-Subnet in the subnet ID.

8. For Enable Private DNS Name, select Enable for this endpoint.

9. For Security group, choose Select security group, and choose VPCE-Tutorial-SecurityGroup.

Securing traffic with VPC endpoints 988

Amazon Simple Notification Service Developer Guide

10. Choose Create endpoint. The Amazon VPC console confirms that a VPC endpoint was created.

11. Choose Close.

The Amazon VPC console opens the Endpoints page. The new endpoint has a status of
pending. In a few minutes, after the creation process completes, the status changes to
available.

Step 5: Publish a message to your Amazon SNS topic

Now that your VPC includes an endpoint for Amazon SNS, you can log in to the Amazon EC2
instance and publish messages to the topic.

Securing traffic with VPC endpoints 989

Amazon Simple Notification Service Developer Guide

To publish a message

1. If your terminal is no longer connected to your Amazon EC2 instance, connect again:

$ ssh -i VPCE-Tutorial-KeyPair.pem ec2-user@instance-hostname

2. Run the same command that you did previously to publish a message to your Amazon SNS
topic. This time, the publish attempt succeeds, and Amazon SNS returns a message ID:

$ aws sns publish --region aws-region --topic-arn sns-topic-arn --message "Hello"

{
 "MessageId": "5b111270-d169-5be6-9042-410dfc9e86de"
}

Step 6: Verify your message deliveries

When the Amazon SNS topic receives a message, it fans out the message by sending it to the two
subscribing Lambda functions. When these functions receive the message, they log the event to
CloudWatch logs. To verify that your message delivery succeeded, check that the functions were
invoked, and check that the CloudWatch logs were updated.

To verify that the Lambda functions were invoked

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. On the Functions page, choose VPCE-Tutorial-Lambda-1.

3. Choose Monitoring.

4. Check the Invocation count graph. This graph shows the number of times that the Lambda
function has been run.

The invocation count matches the number of times you published a message to the topic.

Securing traffic with VPC endpoints 990

https://console.aws.amazon.com/lambda/

Amazon Simple Notification Service Developer Guide

To verify that the CloudWatch logs were updated

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation menu on the left, choose Logs.

3. Check the logs that were written by the Lambda functions:

a. Choose the /aws/lambda/VPCE-Tutorial-Lambda-1/ log group.

b. Choose the log stream.

c. Check that the log includes the entry From SNS: Hello.

Securing traffic with VPC endpoints 991

https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide

d. Choose Log Groups at the top of the console to return the Log Groups page. Then, repeat
the preceding steps for the /aws/lambda/VPCE-Tutorial-Lambda-2/ log group.

Congratulations! By adding an endpoint for Amazon SNS to a VPC, you were able to publish
a message to a topic from within the network that's managed by the VPC. The message was
published privately without being exposed to the public internet.

Step 7: Clean up

Unless you want to retain the resources that you created, you can delete them now. By deleting
AWS resources that you're no longer using, you prevent unnecessary charges to your AWS account.

First, delete your VPC endpoint using the Amazon VPC console. Then, delete the other resources
that you created by deleting the stack in the AWS CloudFormation console. When you delete a
stack, AWS CloudFormation removes the stack's resources from your AWS account.

To delete your VPC endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation menu on the left, choose Endpoints.

3. Select the endpoint that you created.

4. Choose Actions, and then choose Delete Endpoint.

Securing traffic with VPC endpoints 992

https://console.aws.amazon.com/vpc/

Amazon Simple Notification Service Developer Guide

5. In the Delete Endpoint window, choose Yes, Delete.

The endpoint status changes to deleting. When the deletion completes, the endpoint is
removed from the page.

To delete your AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. Select the stack VPCE-Tutorial-Stack.

3. Choose Actions, and then choose Delete Stack.

4. In the Delete Stack window, choose Yes, Delete.

The stack status changes to DELETE_IN_PROGRESS. When the deletion completes, the stack is
removed from the page.

Related resources

For more information, see the following resources.

• AWS Security Blog: Securing messages published to Amazon SNS with AWS PrivateLink

• What Is Amazon VPC?

• VPC Endpoints

• What Is Amazon EC2?

• AWS CloudFormation Concepts

Enhancing Amazon SNS security with Message Data Protection

• Message Data Protection is a feature in Amazon SNS used to define your own rules and policies
to audit and control the content for data in motion, as opposed to data at rest.

• Message Data Protection provides governance, compliance, and auditing services for enterprise
applications that are message-centric, so data ingress and egress can be controlled by the
Amazon SNS topic owner, and content flows can be tracked and logged.

• You can write payload-based governance rules to stop unauthorized payload content from
entering your message streams.

Message Data Protection security 993

https://console.aws.amazon.com/cloudformation/
https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html

Amazon Simple Notification Service Developer Guide

• You can grant different content-access permissions to individual subscribers, and audit the entire
content-flow process.

Identity and access management in Amazon SNS

Access to Amazon SNS requires credentials that AWS can use to authenticate your requests. These
credentials must have permissions to access AWS resources, such an Amazon SNS topics and
messages. The following sections provide details on how you can use AWS Identity and Access
Management (IAM) and Amazon SNS to help secure your resources by controlling access to them.

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon SNS resources. IAM is an AWS service that you
can use with no additional charge.

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon SNS.

Service user – If you use the Amazon SNS service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon SNS features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Amazon SNS, see Troubleshooting Amazon Simple Notification Service identity and access.

Service administrator – If you're in charge of Amazon SNS resources at your company, you
probably have full access to Amazon SNS. It's your job to determine which Amazon SNS features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon SNS, see How Amazon SNS works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon SNS. To view example Amazon SNS identity-
based policies that you can use in IAM, see Identity-based policy examples for Amazon Simple
Notification Service.

Identity and access management 994

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

Amazon Simple Notification Service Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 995

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon Simple Notification Service Developer Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a

Authenticating with identities 996

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Amazon Simple Notification Service Developer Guide

role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

Authenticating with identities 997

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Notification Service Developer Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing access using policies 998

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Simple Notification Service Developer Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user

Managing access using policies 999

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

Amazon Simple Notification Service Developer Guide

or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Access control

Amazon SNS has its own resource-based permissions system that uses policies written in the same
language used for AWS Identity and Access Management (IAM) policies. This means that you can
achieve similar things with Amazon SNS policies and IAM policies.

Access control 1000

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Simple Notification Service Developer Guide

Note

It is important to understand that all AWS accounts can delegate their permissions to
users under their accounts. Cross-account access allows you to share access to your AWS
resources without having to manage additional users. For information about using cross-
account access, see Enabling Cross-Account Access in the IAM User Guide.

Overview of managing access in Amazon SNS

This section describes basic concepts you need to understand to use the access policy language to
write policies. It also describes the general process for how access control works with the access
policy language, and how policies are evaluated.

Topics

• Amazon SNS access control use cases

• Key Amazon SNS access policy concepts

• Amazon SNS access control architecture overview

• Using the Access Policy Language in Amazon SNS

• Evaluation logic

• Example cases for Amazon SNS access control

Amazon SNS access control use cases

You have a great deal of flexibility in how you grant or deny access to a resource. However, the
typical use cases are fairly simple:

• You want to grant another AWS account a particular type of topic action (for example, Publish).
For more information, see Grant AWS account access to a topic.

• You want to limit subscriptions to your topic to only the HTTPS protocol. For more information,
see Limit subscriptions to HTTPS.

• You want to allow Amazon SNS to publish messages to your Amazon SQS queue. For more
information, see Publish messages to an Amazon SQS queue.

Overview 1001

https://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

Amazon Simple Notification Service Developer Guide

Key Amazon SNS access policy concepts

The following sections describe the concepts you need to understand to use the access policy
language. They're presented in a logical order, with the first terms you need to know at the top of
the list.

Topics

• Permission

• Statement

• Policy

• Issuer

• Principal

• Action

• Resource

• Conditions and keys

• Requester

• Evaluation

• Effect

• Default deny

• Allow

• Explicit deny

Permission

A permission is the concept of allowing or disallowing some kind of access to a particular resource.
Permissions essentially follow this form: "A is/isn't allowed to do B to C where D applies." For
example, Jane (A) has permission to publish (B) to TopicA (C) as long as she uses the HTTP protocol
(D). Whenever Jane publishes to TopicA, the service checks to see if she has permission and if the
request satisfies the conditions set forth in the permission.

Statement

A statement is the formal description of a single permission, written in the access policy language.
You always write a statement as part of a broader container document known as a policy (see the
next concept).

Overview 1002

Amazon Simple Notification Service Developer Guide

Policy

A policy is a document (written in the access policy language) that acts as a container for one or
more statements. For example, a policy could have two statements in it: one that states that Jane
can subscribe using the email protocol, and another that states that Bob cannot publish to Topic
A. As shown in the following figure, an equivalent scenario would be to have two policies, one that
states that Jane can subscribe using the email protocol, and another that states that Bob cannot
publish to Topic A.

Only ASCII characters are allowed in policy documents. You can utilize aws:SourceAccount and
aws:SourceOwner to work around the scenario where you need to plug-in other AWS services'
ARNs that contain non-ASCII characters. See the difference between aws:SourceAccount versus
aws:SourceOwner.

Issuer

The issuer is the person who writes a policy to grant permissions for a resource. The issuer (by
definition) is always the resource owner. AWS does not permit AWS service users to create policies
for resources they don't own. If John is the resource owner, AWS authenticates John's identity when
he submits the policy he's written to grant permissions for that resource.

Principal

The principal is the person or persons who receive the permission in the policy. The principal is
A in the statement "A has permission to do B to C where D applies." In a policy, you can set the
principal to "anyone" (that is, you can specify a wildcard to represent all people). You might do this,
for example, if you don't want to restrict access based on the actual identity of the requester, but
instead on some other identifying characteristic such as the requester's IP address.

Overview 1003

Amazon Simple Notification Service Developer Guide

Action

The action is the activity the principal has permission to perform. The action is B in the statement
"A has permission to do B to C where D applies." Typically, the action is just the operation in the
request to AWS. For example, Jane sends a request to Amazon SNS with Action=Subscribe. You
can specify one or multiple actions in a policy.

Resource

The resource is the object the principal is requesting access to. The resource is C in the statement "A
has permission to do B to C where D applies."

Conditions and keys

The conditions are any restrictions or details about the permission. The condition is D in the
statement "A has permission to do B to C where D applies." The part of the policy that specifies the
conditions can be the most detailed and complex of all the parts. Typical conditions are related to:

• Date and time (for example, the request must arrive before a specific day)

• IP address (for example, the requester's IP address must be part of a particular CIDR range)

A key is the specific characteristic that is the basis for access restriction. For example, the date and
time of request.

You use both conditions and keys together to express the restriction. The easiest way to understand
how you actually implement a restriction is with an example: If you want to restrict access
to before May 30, 2010, you use the condition called DateLessThan. You use the key called
aws:CurrentTime and set it to the value 2010-05-30T00:00:00Z. AWS defines the conditions
and keys you can use. The AWS service itself (for example, Amazon SQS or Amazon SNS) might also
define service-specific keys. For more information, see Amazon SNS API permissions: Actions and
resources reference.

Requester

The requester is the person who sends a request to an AWS service and asks for access to a
particular resource. The requester sends a request to AWS that essentially says: "Will you allow me
to do B to C where D applies?"

Overview 1004

Amazon Simple Notification Service Developer Guide

Evaluation

Evaluation is the process the AWS service uses to determine if an incoming request should be
denied or allowed based on the applicable policies. For information about the evaluation logic, see
Evaluation logic.

Effect

The effect is the result that you want a policy statement to return at evaluation time. You specify
this value when you write the statements in a policy, and the possible values are deny and allow.

For example, you could write a policy that has a statement that denies all requests that come
from Antarctica (effect=deny given that the request uses an IP address allocated to Antarctica).
Alternately, you could write a policy that has a statement that allows all requests that don't come
from Antarctica (effect=allow given that the request doesn't come from Antarctica). Although the
two statements sound like they do the same thing, in the access policy language logic, they are
different. For more information, see Evaluation logic.

Although there are only two possible values you can specify for the effect (allow or deny), there
can be three different results at policy evaluation time: default deny, allow, or explicit deny. For
more information, see the following concepts and Evaluation logic.

Default deny

A default deny is the default result from a policy in the absence of an allow or explicit deny.

Allow

An allow results from a statement that has effect=allow, assuming any stated conditions are met.
Example: Allow requests if they are received before 1:00 p.m. on April 30, 2010. An allow overrides
all default denies, but never an explicit deny.

Explicit deny

An explicit deny results from a statement that has effect=deny, assuming any stated conditions
are met. Example: Deny all requests if they are from Antarctica. Any request that comes from
Antarctica will always be denied no matter what any other policies might allow.

Amazon SNS access control architecture overview

The following figure and table describe the main components that interact to provide access
control for your resources.

Overview 1005

Amazon Simple Notification Service Developer Guide

1 You, the resource owner.

2 Your resources (contained within the AWS service; for example, Amazon SQS queues).

3 Your policies.

Typically you have one policy per resource, although you could have multiple. The AWS
service itself provides an API you use to upload and manage your policies.

4 Requesters and their incoming requests to the AWS service.

5 The access policy language evaluation code.

This is the set of code within the AWS service that evaluates incoming requests against
the applicable policies and determines whether the requester is allowed access to the
resource. For information about how the service makes the decision, see Evaluation logic.

Overview 1006

Amazon Simple Notification Service Developer Guide

Using the Access Policy Language in Amazon SNS

The following figure and table describe the general process of how access control works with the
access policy language.

Process for using access control with the Access Policy Language

1 You write a policy for your resource.

For example, you write a policy to specify permissions for your Amazon SNS topics.

2 You upload your policy to AWS.

The AWS service itself provides an API you use to upload your policies. For example, you
use the Amazon SNS SetTopicAttributes action to upload a policy for a particular
Amazon SNS topic.

3 Someone sends a request to use your resource.

For example, a user sends a request to Amazon SNS to use one of your topics.

4 The AWS service determines which policies are applicable to the request.

For example, Amazon SNS looks at all the available Amazon SNS policies and determines
which ones are applicable (based on what the resource is, who the requester is, etc.).

5 The AWS service evaluates the policies.

Overview 1007

Amazon Simple Notification Service Developer Guide

For example, Amazon SNS evaluates the policies and determines if the requester is
allowed to use your topic or not. For information about the decision logic, see Evaluation
logic.

6 The AWS service either denies the request or continues to process it.

For example, based on the policy evaluation result, the service either returns an "Access
denied" error to the requester or continues to process the request.

Evaluation logic

The goal at evaluation time is to decide whether a grant request should be allowed or denied. The
evaluation logic follows several basic rules:

• By default, all requests to use your resource coming from anyone but you are denied

• An allow overrides any default denies

• An explicit deny overrides any allows

• The order in which the policies are evaluated is not important

The following flow chart and discussion describe in more detail how the decision is made.

Overview 1008

Amazon Simple Notification Service Developer Guide

1 The decision starts with a default deny.

2 The enforcement code then evaluates all the policies that are applicable to the request
(based on the resource, principal, action, and conditions).

The order in which the enforcement code evaluates the policies is not important.

3 In all those policies, the enforcement code looks for an explicit deny instruction that
would apply to the request.

Overview 1009

Amazon Simple Notification Service Developer Guide

If it finds even one, the enforcement code returns a decision of "deny" and the process is
finished (this is an explicit deny; for more information, see Explicit deny).

4 If no explicit deny is found, the enforcement code looks for any "allow" instructions that
would apply to the request.

If it finds even one, the enforcement code returns a decision of "allow" and the process is
done (the service continues to process the request).

5 If no allow is found, then the final decision is "deny" (because there was no explicit deny
or allow, this is considered a default deny (for more information, see Default deny).

The interplay of explicit and default denials

A policy results in a default deny if it doesn't directly apply to the request. For example, if a user
requests to use Amazon SNS, but the policy on the topic doesn't refer to the user's AWS account at
all, then that policy results in a default deny.

A policy also results in a default deny if a condition in a statement isn't met. If all conditions in the
statement are met, then the policy results in either an allow or an explicit deny, based on the value
of the Effect element in the policy. Policies don't specify what to do if a condition isn't met, and so
the default result in that case is a default deny.

For example, let's say you want to prevent requests coming in from Antarctica. You write a policy
(called Policy A1) that allows a request only if it doesn't come from Antarctica. The following
diagram illustrates the policy.

If someone sends a request from the U.S., the condition is met (the request is not from Antarctica).
Therefore, the request is allowed. But, if someone sends a request from Antarctica, the condition
isn't met, and the policy's result is therefore a default deny.

Overview 1010

Amazon Simple Notification Service Developer Guide

You could turn the result into an explicit deny by rewriting the policy (named Policy A2) as in the
following diagram. Here, the policy explicitly denies a request if it comes from Antarctica.

If someone sends a request from Antarctica, the condition is met, and the policy's result is
therefore an explicit deny.

The distinction between a default deny and an explicit deny is important because a default deny
can be overridden by an allow, but an explicit deny can't. For example, let's say there's another
policy that allows requests if they arrive on June 1, 2010. How does this policy affect the overall
outcome when coupled with the policy restricting access from Antarctica? We'll compare the
overall outcome when coupling the date-based policy (we'll call Policy B) with the preceding
policies A1 and A2. Scenario 1 couples Policy A1 with Policy B, and Scenario 2 couples Policy A2
with Policy B. The following figure and discussion show the results when a request comes in from
Antarctica on June 1, 2010.

Overview 1011

Amazon Simple Notification Service Developer Guide

In Scenario 1, Policy A1 returns a default deny, as described earlier in this section. Policy B returns
an allow because the policy (by definition) allows requests that come in on June 1, 2010. The allow
from Policy B overrides the default deny from Policy A1, and the request is therefore allowed.

In Scenario 2, Policy A2 returns an explicit deny, as described earlier in this section. Again, Policy
B returns an allow. The explicit deny from Policy A2 overrides the allow from Policy B, and the
request is therefore denied.

Overview 1012

Amazon Simple Notification Service Developer Guide

Example cases for Amazon SNS access control

This section describes a few examples of typical use cases for access control.

Topics

• Grant AWS account access to a topic

• Limit subscriptions to HTTPS

• Publish messages to an Amazon SQS queue

• Allow Amazon S3 event notifications to publish to a topic

• Allow Amazon SES to publish to a topic that is owned by another account

• aws:SourceAccount versus aws:SourceOwner

• Allow accounts in an organization in AWS Organizations to publish to a topic in a different
account

• Allow any CloudWatch alarm to publish to a topic in a different account

• Restrict publication to an Amazon SNS topic only from a specific VPC endpoint

Grant AWS account access to a topic

Let's say you have a topic in Amazon SNS, and you want to allow one or more AWS accounts to
perform a specific action on that topic, such as publishing messages. You can accomplish this by
using the Amazon SNS API action AddPermission.

The AddPermission action allows you to specify a topic, a list of AWS account IDs, a list of
actions, and a label. Amazon SNS then automatically generates and adds a new policy statement
to the topic's access control policy. You don’t need to write the policy statement yourself—
Amazon SNS handles this for you. If you need to remove the policy later, you can do so by calling
RemovePermission and providing the label you used when adding the permission.

For example, if you call AddPermission on the topic arn:aws:sns:us-
east-2:444455556666:MyTopic, specify AWS account ID 1111-2222-3333, the Publish action,
and the label grant-1234-publish, Amazon SNS will generate and insert the following policy
statement into the topic’s access control policy:

{
 "Statement": [{
 "Sid": "grant-1234-publish",

Overview 1013

Amazon Simple Notification Service Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": ["sns:Publish"],
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic"
 }]
}

After this statement is added, the AWS account 1111-2222-3333 will have permission to publish
messages to the topic.

Additional information:

• Custom policy management: While AddPermission is convenient for granting permissions, it's
often useful to manually manage the topic's access control policy for more complex scenarios,
such as adding conditions or granting permissions to specific IAM roles or services. You can do
this by using the SetTopicAttributes API to update the policy attribute directly.

• Security best practices: Be cautious when granting permissions to ensure that only trusted
AWS accounts or entities have access to your Amazon SNS topics. Regularly review and audit the
policies attached to your topics to maintain security.

• Policy limits: Keep in mind that there are limits to the size and complexity of Amazon SNS
policies. If you need to add many permissions or complex conditions, ensure that your policy
stays within these limits.

Limit subscriptions to HTTPS

To restrict the notification delivery protocol for your Amazon SNS topic to HTTPS, you must
create a custom policy. The AddPermission action in Amazon SNS does not allow you to specify
protocol restrictions when granting access to your topic. Therefore, you need to manually write a
policy that enforces this restriction and then use the SetTopicAttributes action to apply the
policy to your topic.

Here’s how you can create a policy that limits subscriptions to HTTPS:

1. Write the Policy. The policy must specify the AWS account ID that you want to grant access
to and enforce the condition that only HTTPS subscriptions are allowed. Below is an example
policy that grants the AWS account ID 1111-2222-3333 permission to subscribe to the topic,
but only if the protocol used is HTTPS.

Overview 1014

Amazon Simple Notification Service Developer Guide

{
 "Statement": [{
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "111122223333"
 },
 "Action": ["sns:Subscribe"],
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic",
 "Condition": {
 "StringEquals": {
 "sns:Protocol": "https"
 }
 }
 }]
}

2. Apply the Policy. Use the SetTopicAttributes action in the Amazon SNS API to apply this
policy to your topic. Set the Policy attribute of the topic to the JSON policy you created.

snsClient.setTopicAttributes(SetTopicAttributesRequest.builder()
 .topicArn("arn:aws:sns:us-east-2:444455556666:MyTopic")
 .attributeName("Policy")
 .attributeValue(jsonPolicyString) // The JSON policy as a string
 .build());

Additional information:

• Customizing access control. This approach allows you to enforce more granular access controls,
such as restricting subscription protocols, which is not possible through the AddPermission
action alone. Custom policies provide flexibility for scenarios requiring specific conditions, such
as protocol enforcement or IP address restrictions.

• Security best practices. Limiting subscriptions to HTTPS enhances the security of your
notifications by ensuring that data in transit is encrypted. Regularly review your topic policies to
ensure they meet your security and compliance requirements.

• Policy testing. Before applying the policy in a production environment, test it in a development
environment to ensure it behaves as expected. This helps prevent accidental access issues or
unintended restrictions.

Overview 1015

Amazon Simple Notification Service Developer Guide

Publish messages to an Amazon SQS queue

To publish messages from your Amazon SNS topic to an Amazon SQS queue, you need to configure
the correct permissions on the Amazon SQS queue. While both Amazon SNS and Amazon SQS use
AWS’s access control policy language, you must explicitly set a policy on the Amazon SQS queue to
allow messages to be sent from the Amazon SNS topic.

You can achieve this by using the SetQueueAttributes action to apply a custom policy to the
Amazon SQS queue. Unlike Amazon SNS, Amazon SQS does not support the AddPermission
action for creating policy statements with conditions. Therefore, you must write the policy
manually.

The following is an example of an Amazon SQS policy that grants Amazon SNS permission to
send messages to your queue. Note that this policy is associated with the Amazon SQS queue,
not the Amazon SNS topic. The actions specified are Amazon SQS actions, and the resource is
the Amazon Resource Name (ARN) of the queue. You can retrieve the queue's ARN by using the
GetQueueAttributes action.

{
 "Statement": [{
 "Sid": "Allow-SNS-SendMessage",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": ["sqs:SendMessage"],
 "Resource": "arn:aws:sqs:us-east-2:444455556666:MyQueue",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:sns:us-east-2:444455556666:MyTopic"
 }
 }
 }]
}

This policy uses the aws:SourceArn condition to restrict access to the SQS queue based on the
source of the messages being sent. This ensures that only messages originating from the specified
SNS topic (in this case, arn:aws:sns:us-east-2:444455556666:MyTopic) are allowed to be delivered
to the queue.

Additional information:

Overview 1016

Amazon Simple Notification Service Developer Guide

• Queue ARN. Ensure you retrieve the correct ARN of your Amazon SQS queue using the
GetQueueAttributes action. This ARN is essential for setting the correct permissions.

• Security best practices. When setting up policies, always follow the principle of least privilege.
Grant only the necessary permissions to the Amazon SNS topic to interact with the Amazon SQS
queue, and regularly review your policies to ensure they are up-to-date and secure

• Default policies in Amazon SNS. Amazon SNS doesn't automatically grant a default policy
that allows other AWS services or accounts to access newly created topics. By default, Amazon
SNS topics are created with no permissions, meaning they are private and only accessible to the
account that created them. To enable access for other AWS services, accounts, or principals, you
must explicitly define and attach an access policy to the topic. This aligns with the principle of
least privilege, ensuring that no unintended access is granted by default.

• Testing and validation. After setting the policy, test the integration by publishing messages
to the Amazon SNS topic and verifying that they are successfully delivered to the Amazon SQS
queue. This helps confirm that the policy is correctly configured.

Allow Amazon S3 event notifications to publish to a topic

To allow an Amazon S3 bucket from another AWS account to publish event notifications to your
Amazon SNS topic, you need to configure the topic's access policy accordingly. This involves writing
a custom policy that grants permission to the Amazon S3 service from the specific AWS account
and then applying this policy to your Amazon SNS topic.

Here’s how you can set it up:

1. Write the policy. The policy should grant the Amazon S3 service (s3.amazonaws.com) the
necessary permissions to publish to your Amazon SNS topic. You will use the SourceAccount
condition to ensure that only the specified AWS account, which owns the Amazon S3 bucket,
can publish notifications to your topic.

The following is an example policy:

{
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "sns:Publish",

Overview 1017

Amazon Simple Notification Service Developer Guide

 "Resource": "arn:aws:sns:us-east-2:111122223333:MyTopic",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "444455556666"
 }
 }
 }]
}

• Topic owner – 111122223333 is the AWS account ID that owns the Amazon SNS topic.

• Amazon S3 bucket owner – 444455556666 is the AWS account ID that owns the Amazon S3
bucket sending notifications.

2. Apply the Policy. Use the SetTopicAttributes action to set this policy on your Amazon
SNS topic. This will update the topic’s access control to include the permissions specified in
your custom policy.

snsClient.setTopicAttributes(SetTopicAttributesRequest.builder()
 .topicArn("arn:aws:sns:us-east-2:111122223333:MyTopic")
 .attributeName("Policy")
 .attributeValue(jsonPolicyString) // The JSON policy as a string
 .build());

Additional information:

• Using SourceAccount condition. The SourceAccount condition ensures that only events
originating from the specified AWS account (444455556666 in this case) can trigger the
Amazon SNS topic. This is a security measure to prevent unauthorized accounts from sending
notifications to your topic.

• Other services supporting SourceAccount. The SourceAccount condition is supported by
the following services. It’s crucial to use this condition when you want to restrict access to your
Amazon SNS topic based on the originating account.

• Amazon API Gateway

• Amazon CloudWatch

• Amazon DevOps Guru

• Amazon EventBridge

• Amazon GameLift

Overview 1018

Amazon Simple Notification Service Developer Guide

• Amazon Pinpoint SMS and Voice API

• Amazon RDS

• Amazon Redshift

• Amazon S3 Glacier

• Amazon SES

• Amazon Simple Storage Service

• AWS CodeCommit

• AWS Directory Service

• AWS Lambda

• AWS Systems Manager Incident Manager

• Testing and validation. After applying the policy, test the setup by triggering an event in the
Amazon S3 bucket and confirming that it successfully publishes to your Amazon SNS topic. This
will help ensure that your policy is correctly configured.

• Security best practices. Regularly review and audit your Amazon SNS topic policies to ensure
they comply with your security requirements. Limiting access to only trusted accounts and
services is essential for maintaining secure operations.

Allow Amazon SES to publish to a topic that is owned by another account

You can allow another AWS service to publish to a topic that is owned by another AWS account.
Suppose that you signed into the 111122223333 account, opened Amazon SES, and created an
email. To publish notifications about this email to a Amazon SNS topic that the 444455556666
account owns, you'd create a policy like the following. To do so, you need to provide information
about the principal (the other service) and each resource's ownership. The Resource statement
provides the topic ARN, which includes the account ID of the topic owner, 444455556666. The
"aws:SourceOwner": "111122223333" statement specifies that your account owns the email.

{
 "Version": "2008-10-17",
 "Id": "__default_policy_ID",
 "Statement": [
 {
 "Sid": "__default_statement_ID",
 "Effect": "Allow",
 "Principal": {
 "Service": "ses.amazonaws.com"

Overview 1019

Amazon Simple Notification Service Developer Guide

 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic",
 "Condition": {
 "StringEquals": {
 "aws:SourceOwner": "111122223333"
 }
 }
 }
]
}

When publishing events to Amazon SNS, the following services support aws:SourceOwner:

• Amazon API Gateway

• Amazon CloudWatch

• Amazon DevOps Guru

• Amazon GameLift

• Amazon Pinpoint SMS and Voice API

• Amazon RDS

• Amazon Redshift

• Amazon SES

• AWS CodeCommit

• AWS Directory Service

• AWS Lambda

• AWS Systems Manager Incident Manager

aws:SourceAccount versus aws:SourceOwner

Important

aws:SourceOwner is deprecated and new services can integrate with Amazon
SNS only through aws:SourceArn and aws:SourceAccount. Amazon SNS still
maintains backward compatibility for existing services that are currently supporting
aws:SourceOwner.

Overview 1020

Amazon Simple Notification Service Developer Guide

The aws:SourceAccount and aws:SourceOwner condition keys are each set by some AWS
services when they publish to an Amazon SNS topic. When supported, the value will be the 12-
digit AWS account ID on whose behalf the service is publishing data. Some services support one,
and some support the other.

• See Allow Amazon S3 event notifications to publish to a topic for how Amazon S3 notifications
use aws:SourceAccount and a list of AWS services that support that condition.

• See Allow Amazon SES to publish to a topic that is owned by another account for how Amazon
SES uses aws:SourceOwner and a list of AWS services that support that condition.

Allow accounts in an organization in AWS Organizations to publish to a topic in a different
account

The AWS Organizations service helps you to centrally manage billing, control access and security,
and share resources across your AWS accounts.

You can find your organization ID in the Organizations console. For more information, see Viewing
details of an organization from the management account.

In this example, any AWS account in organization myOrgId can publish to Amazon SNS topic
MyTopic in account 444455556666. The policy checks the organization ID value using the
aws:PrincipalOrgID global condition key.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "myOrgId"
 }
 }
 }
]
}

Overview 1021

https://console.aws.amazon.com/organizations/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_org
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_org

Amazon Simple Notification Service Developer Guide

Allow any CloudWatch alarm to publish to a topic in a different account

In this case, any CloudWatch alarms in account 111122223333 are allowed to publish to an
Amazon SNS topic in account 444455556666.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cloudwatch:us-
east-2:111122223333:alarm:*"
 }
 }
 }
]
}

Restrict publication to an Amazon SNS topic only from a specific VPC endpoint

In this case, the topic in account 444455556666 is allowed to publish only from the VPC endpoint
with the ID vpce-1ab2c34d.

{
 "Statement": [{
 "Effect": "Deny",
 "Principal": "*",
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:us-east-2:444455556666:MyTopic",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1ab2c34d"
 }
 }
 }]
}

Overview 1022

Amazon Simple Notification Service Developer Guide

How Amazon SNS works with IAM

Before you use IAM to manage access to Amazon SNS, learn what IAM features are available to use
with Amazon SNS.

IAM features you can use with Amazon Simple Notification Service

IAM feature Amazon SNS support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amazon SNS and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

AWS managed policies for Amazon Simple Notification Service

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

How Amazon SNS works with IAM 1023

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Simple Notification Service Developer Guide

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonSNSFullAccess

AmazonSNSFullAccess provides full access to Amazon SNS using the AWS Management Console.
This policy also includes the following read and write actions for AWS End User Messaging SMS
when called using Amazon SNS. You can attach this policy to your users, groups, or roles.

Permissions details

The following permissions apply only when using the Amazon SNS APIs:

• sns:* – Allows full permissions to perform any action related to Amazon SNS. This wildcard (*)
means that the user can execute all possible Amazon SNS actions.

• sms-voice:DescribeVerifiedDestinationNumbers – Allows you to retrieve a list of
phone numbers that have been verified for sending SMS messages within the AWS account.

• sms-voice:CreateVerifiedDestinationNumber – Allows you to verify a new phone
number for use with SMS messaging services within AWS.

• sms-voice:SendDestinationNumberVerificationCode – Allows you to send a verification
code to a phone number that is in the process of being verified for SMS messaging within AWS.

• sms-voice:SendTextMessage – Allows you to create a new text message and send it to a
recipient's phone number. SendTextMessage only sends an SMS message to one recipient each
time it's invoked.

• sms-voice:DeleteVerifiedDestinationNumber – Allows you to remove a phone number
from the list of verified numbers within the AWS account

AWS managed policies 1024

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Simple Notification Service Developer Guide

• sms-voice:VerifyDestinationNumber – Allows you to initiate and complete the verification
process for a phone number to be used for SMS messaging services within AWS.

• sms-voice:DescribeAccountAttributes – Allows you to retrieve detailed information
about the account-level attributes related to SMS messaging services within AWS.

• sms-voice:DescribeSpendLimits – Allows you to retrieve information about the spending
limits associated with SMS messaging services within the AWS account

• sms-voice:DescribePhoneNumbers – Allows you to retrieve detailed information about the
phone numbers associated with SMS messaging services within the AWS account

• sms-voice:SetTextMessageSpendLimitOverride – Allows you to set or override the
spending limit for SMS text messaging within the AWS account

• sms-voice:DescribeOptedOutNumbers – Allows you to retrieve a list of phone numbers that
have opted out of receiving SMS messages from your AWS account.

• sms-voice:DeleteOptedOutNumber – Allows you to remove a phone number from the list of
opted-out numbers within the AWS account

AmazonSNSFullAccess example policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SNSFullAccess",
 "Effect": "Allow",
 "Action": "sns:*",
 "Resource": "*"
 },
 {
 "Sid": "SMSAccessViaSNS",
 "Effect": "Allow",
 "Action": [
 "sms-voice:DescribeVerifiedDestinationNumbers",
 "sms-voice:CreateVerifiedDestinationNumber",
 "sms-voice:SendDestinationNumberVerificationCode",
 "sms-voice:SendTextMessage",
 "sms-voice:DeleteVerifiedDestinationNumber",
 "sms-voice:VerifyDestinationNumber",
 "sms-voice:DescribeAccountAttributes",
 "sms-voice:DescribeSpendLimits",
 "sms-voice:DescribePhoneNumbers",

AWS managed policies 1025

Amazon Simple Notification Service Developer Guide

 "sms-voice:SetTextMessageSpendLimitOverride",
 "sms-voice:DescribeOptedOutNumbers",
 "sms-voice:DeleteOptedOutNumber"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "sns.amazonaws.com"
 }
 }
 }
]
}

To view the permissions for this policy, see AmazonSNSFullAccess in the AWS Managed Policy
Reference.

AWS managed policy: AmazonSNSReadOnlyAccess

AmazonSNSReadOnlyAccess provides read-only access to Amazon SNS using the AWS
Management Console. This policy also includes the following read-only actions for AWS End User
Messaging SMS when called using Amazon SNS. You can attach this policy to your users, groups,
and roles.

Permissions details

The following permissions apply only when using the Amazon SNS APIs:

• sns:GetTopicAttributes – Allows you to retrieve the attributes of an Amazon SNS
topic. This includes information such as the topic's ARN (Amazon Resource Name), the list of
subscribers, delivery policies, access control policies, and any other metadata associated with the
topic.

• sns:List* – Allows you to perform any operation that begins with List for Amazon SNS
resources. This includes permissions to list various elements related to Amazon SNS, such as:

• sns:ListTopics – Allows you to retrieve a list of all Amazon SNS topics in the AWS account.

• sns:ListSubscriptions – Allows you to retrieve a list of all subscriptions to Amazon SNS
topics.

• sns:ListSubscriptionsByTopic – Allows you to list all subscriptions for a specific
Amazon SNS topic.

AWS managed policies 1026

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSNSFullAccess.html

Amazon Simple Notification Service Developer Guide

• sns:ListPlatformApplications – Allows you to list all platform applications that are
created for mobile push notifications.

• sns:ListEndpointsByPlatformApplication – Allows you to list all endpoints associated
with a platform application.

• sns:CheckIfPhoneNumberIsOptedOut – Allows you to check whether a specific phone
number has opted out of receiving SMS messages through Amazon SNS.

• sns:GetEndpointAttributes – Allows you to retrieve the attributes of an endpoint
associated with an Amazon SNS platform application. This could include attributes such as
the endpoint's enabled status, custom user data, and any other metadata associated with the
endpoint.

• sns:GetDataProtectionPolicy – Allows you to retrieve the data protection policy
associated with an Amazon SNS topic.

• sns:GetPlatformApplicationAttributes – Allows you to retrieve the attributes of an
Amazon SNS platform application. Platform applications are used in Amazon SNS to send push
notifications to mobile devices through services such as Apple Push Notification Service (APNS)
or Firebase Cloud Messaging (FCM).

• sns:GetSMSAttributes – Allows you to retrieve the default SMS settings for the AWS
account.

• sns:GetSMSSandboxAccountStatus – Allows you to retrieve the current status of the SMS
sandbox for your AWS account.

• sns:GetSubscriptionAttributes – Allows you to retrieve the attributes of a specific
subscription to an Amazon SNS topic.

• sms-voice:DescribeVerifiedDestinationNumbers – Allows you to view or retrieve a list
of phone numbers that have been verified for sending SMS messages within the AWS account

• sms-voice:DescribeAccountAttributes – Allows you to view or retrieve information about
the account-level attributes related to SMS messaging services within AWS.

• sms-voice:DescribeSpendLimits – Allows you to view or retrieve information about the
spending limits associated with SMS messaging services within your AWS account

• sms-voice:DescribePhoneNumbers – Allows you to view or retrieve information about the
phone numbers that are used for SMS messaging services within the AWS account

• sms-voice:DescribeOptedOutNumbers – Allows you to view or retrieve a list of phone
numbers that have opted out of receiving SMS messages from your AWS account

AWS managed policies 1027

Amazon Simple Notification Service Developer Guide

AmazonSNSReadOnlyAccess example policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SNSReadOnlyAccess",
 "Effect": "Allow",
 "Action": [
 "sns:GetTopicAttributes",
 "sns:List*",
 "sns:CheckIfPhoneNumberIsOptedOut",
 "sns:GetEndpointAttributes",
 "sns:GetDataProtectionPolicy",
 "sns:GetPlatformApplicationAttributes",
 "sns:GetSMSAttributes",
 "sns:GetSMSSandboxAccountStatus",
 "sns:GetSubscriptionAttributes"
],
 "Resource": "*"
 },
 {
 "Sid": "SMSAccessViaSNS",
 "Effect": "Allow",
 "Action": [
 "sms-voice:DescribeVerifiedDestinationNumbers",
 "sms-voice:DescribeAccountAttributes",
 "sms-voice:DescribeSpendLimits",
 "sms-voice:DescribePhoneNumbers",
 "sms-voice:DescribeOptedOutNumbers"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "sns.amazonaws.com"
 }
 }
 }
]
}

To view the permissions for this policy, see AmazonSNSFullAccess in the AWS Managed Policy
Reference.

AWS managed policies 1028

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSNSFullAccess.html

Amazon Simple Notification Service Developer Guide

Amazon SNS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon SNS since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon SNS Document history page.

Change Description Date

AmazonSNSFullAccess –
Update to an existing policy

Amazon SNS added new
permissions to allow full
access to Amazon SNS
using the AWS Management
Console.

09/24/2024

AmazonSNSReadOnlyAccess –
Update to an existing policy

Amazon SNS added new
permissions to allow read-
only access to Amazon SNS
using the AWS Management
Console.

09/24/2024

Amazon SNS started tracking
changes

Amazon SNS started tracking
changes for its AWS managed
policies.

08/27/2024

Policy actions for Amazon SNS

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Policy actions 1029

Amazon Simple Notification Service Developer Guide

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon SNS actions, see Resources Defined by Amazon Simple Notification Service
in the Service Authorization Reference.

Policy actions in Amazon SNS use the following prefix before the action:

sns

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "sns:action1",
 "sns:action2"
]

To view examples of Amazon SNS identity-based policies, see Identity-based policy examples for
Amazon Simple Notification Service.

Policy resources for Amazon SNS

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon SNS resource types and their ARNs, see Actions Defined by Amazon Simple
Notification Service in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Resources Defined by Amazon Simple Notification Service.

Policy resources 1030

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html

Amazon Simple Notification Service Developer Guide

To view examples of Amazon SNS identity-based policies, see Identity-based policy examples for
Amazon Simple Notification Service.

Policy condition keys for Amazon SNS

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon SNS condition keys, see Condition Keys for Amazon Simple Notification
Service in the Service Authorization Reference. To learn with which actions and resources you can
use a condition key, see Resources Defined by Amazon Simple Notification Service.

To view examples of Amazon SNS identity-based policies, see Identity-based policy examples for
Amazon Simple Notification Service.

ACLs in Amazon SNS

Supports ACLs: No

Policy condition keys 1031

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html

Amazon Simple Notification Service Developer Guide

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon SNS

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with Amazon SNS

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then

ABAC 1032

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Simple Notification Service Developer Guide

switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Amazon SNS

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon SNS

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon SNS functionality. Edit
service roles only when Amazon SNS provides guidance to do so.

Service-linked roles for Amazon SNS

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS

Principal permissions 1033

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Notification Service Developer Guide

account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Simple Notification Service

By default, users and roles don't have permission to create or modify Amazon SNS resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Amazon SNS, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon Simple
Notification Service in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon SNS console

• Other policy types

• Multiple policy types

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon SNS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies

Identity-based policy examples 1034

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsns.html

Amazon Simple Notification Service Developer Guide

that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon SNS console

To access the Amazon Simple Notification Service console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the Amazon SNS
resources in your AWS account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (users or
roles) with that policy.

Identity-based policy examples 1035

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Simple Notification Service Developer Guide

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Amazon SNS console, also attach the Amazon SNS
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session

Identity-based policy examples 1036

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html

Amazon Simple Notification Service Developer Guide

policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"

Identity-based policy examples 1037

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Simple Notification Service Developer Guide

],
 "Resource": "*"
 }
]
}

Identity-based policies for Amazon SNS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon SNS

To view examples of Amazon SNS identity-based policies, see Identity-based policy examples for
Amazon Simple Notification Service.

Resource-based policies within Amazon SNS

Supports resource-based policies Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Identity-based policies 1038

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Simple Notification Service Developer Guide

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Using identity-based policies with Amazon SNS

Topics

• IAM and Amazon SNS policies together

• Amazon SNS resource ARN format

• Amazon SNS API actions

• Amazon SNS policy keys

• Example policies for Amazon SNS

Amazon Simple Notification Service integrates with AWS Identity and Access Management (IAM)
so that you can specify which Amazon SNS actions a user in your AWS account can perform with
Amazon SNS resources. You can specify a particular topic in the policy. For example, you could use
variables when creating an IAM policy that grants certain users in your organization permission to
use the Publish action with specific topics in your AWS account. For more information, see Policy
Variables in the Using IAM guide.

Important

Using Amazon SNS with IAM doesn't change how you use Amazon SNS. There are no
changes to Amazon SNS actions, and no new Amazon SNS actions related to users and
access control.

For examples of policies that cover Amazon SNS actions and resources, see Example policies for
Amazon SNS.

Using identity-based policies 1039

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html

Amazon Simple Notification Service Developer Guide

IAM and Amazon SNS policies together

You use an IAM policy to restrict your users' access to Amazon SNS actions and topics. An IAM
policy can restrict access only to users within your AWS account, not to other AWS accounts.

You use an Amazon SNS policy with a particular topic to restrict who can work with that topic (for
example, who can publish messages to it, who can subscribe to it, etc.). Amazon SNS policies can
grant access to other AWS accounts, or to users within your own AWS account.

To grant your users permissions for your Amazon SNS topics, you can use IAM policies, Amazon
SNS policies, or both. For the most part, you can achieve the same results with either. For example,
the following diagram shows an IAM policy and an Amazon SNS policy that are equivalent. The
IAM policy allows the Amazon SNS Subscribe action for the topic called topic_xyz in your AWS
account The IAM policy is attached to the users Bob and Susan (which means that Bob and Susan
have the permissions stated in the policy). The Amazon SNS policy likewise grants Bob and Susan
permission to access Subscribe for topic_xyz.

Note

The preceding example shows simple policies with no conditions. You could specify a
particular condition in either policy and get the same result.

Using identity-based policies 1040

Amazon Simple Notification Service Developer Guide

There is one difference between AWS IAM and Amazon SNS policies: The Amazon SNS policy
system lets you grant permission to other AWS accounts, whereas the IAM policy doesn't.

It's up to you how you use both of the systems together to manage your permissions, based on
your needs. The following examples show how the two policy systems work together.

Example 1

In this example, both an IAM policy and an Amazon SNS policy apply to Bob. The IAM policy grants
him permission for Subscribe on any of the AWS account's topics, whereas the Amazon SNS
policy grants him permission to use Publish on a specific topic (topic_xyz). The following diagram
illustrates the concept.

If Bob were to send a request to subscribe to any topic in the AWS account, the IAM policy would
allow the action. If Bob were to send a request to publish a message to topic_xyz, the Amazon SNS
policy would allow the action.

Example 2

In this example, we build on example 1 (where Bob has two policies that apply to him). Let's say
that Bob publishes messages to topic_xyz that he shouldn't have, so you want to entirely remove
his ability to publish to topics. The easiest thing to do is to add an IAM policy that denies him
access to the Publish action on all topics. This third policy overrides the Amazon SNS policy that
originally gave him permission to publish to topic_xyz, because an explicit deny always overrides
an allow (for more information about policy evaluation logic, see Evaluation logic). The following
diagram illustrates the concept.

Using identity-based policies 1041

Amazon Simple Notification Service Developer Guide

For examples of policies that cover Amazon SNS actions and resources, see Example policies for
Amazon SNS.

Amazon SNS resource ARN format

For Amazon SNS, topics are the only resource type you can specify in a policy. The following is the
Amazon Resource Name (ARN) format for topics.

arn:aws:sns:region:account_ID:topic_name

For more information about ARNs, go to ARNs in IAM User Guide.

Example

The following is an ARN for a topic named MyTopic in the us-east-2 region, belonging to AWS
account 123456789012.

arn:aws:sns:us-east-2:123456789012:MyTopic

Example

If you had a topic named MyTopic in each of the different Regions that Amazon SNS supports, you
could specify the topics with the following ARN.

Using identity-based policies 1042

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Amazon Simple Notification Service Developer Guide

arn:aws:sns:*:123456789012:MyTopic

You can use * and ? wildcards in the topic name. For example, the following could refer to all the
topics created by Bob that he has prefixed with bob_.

arn:aws:sns:*:123456789012:bob_*

As a convenience to you, when you create a topic, Amazon SNS returns the topic's ARN in the
response.

Amazon SNS API actions

In an IAM policy, you can specify any actions that Amazon SNS offers. However, the
ConfirmSubscription and Unsubscribe actions do not require authentication, which means
that even if you specify those actions in a policy, IAM won't restrict users' access to those actions.

Each action you specify in a policy must be prefixed with the lowercase string sns:. To specify all
Amazon SNS actions, for example, you would use sns:*. For a list of the actions, go to the Amazon
Simple Notification Service API Reference.

Amazon SNS policy keys

Amazon SNS implements the following AWS wide policy keys, plus some service-specific keys.

For a list of condition keys supported by each AWS service, see Actions, resources, and condition
keys for AWS services in the IAM User Guide. For a list of condition keys that can be used in multiple
AWS services, see AWS global condition context keys in the IAM User Guide.

Amazon SNS uses the following service-specific keys. Use these keys in policies that restrict access
to Subscribe requests.

• sns:endpoint—The URL, email address, or ARN from a Subscribe request or a previously
confirmed subscription. Use with string conditions (see Example policies for Amazon SNS) to
restrict access to specific endpoints (for example, *@yourcompany.com).

• sns:protocol—The protocol value from a Subscribe request or a previously confirmed
subscription. Use with string conditions (see Example policies for Amazon SNS) to restrict
publication to specific delivery protocols (for example, https).

Using identity-based policies 1043

https://docs.aws.amazon.com/sns/latest/api/
https://docs.aws.amazon.com/sns/latest/api/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Simple Notification Service Developer Guide

Example policies for Amazon SNS

This section shows several simple policies for controlling user access to Amazon SNS.

Note

In the future, Amazon SNS might add new actions that should logically be included in one
of the following policies, based on the policy’s stated goals.

Example 1: Allow a group to create and manage topics

In this example, we create a policy that grants access to CreateTopic, ListTopics,
SetTopicAttributes, and DeleteTopic.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["sns:CreateTopic", "sns:ListTopics", "sns:SetTopicAttributes",
 "sns:DeleteTopic"],
 "Resource": "*"
 }]
}

Example 2: Allow the IT group to publish messages to a particular topic

In this example, we create a group for IT, and assign a policy that grants access to Publish on the
specific topic of interest.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:*:123456789012:MyTopic"
 }]
}

Example 3: Give users in the AWS account ability to subscribe to topics

In this example, we create a policy that grants access to the Subscribeaction, with string
matching conditions for the sns:Protocol and sns:Endpoint policy keys.

Using identity-based policies 1044

Amazon Simple Notification Service Developer Guide

{
 "Statement": [{
 "Effect": "Allow",
 "Action": ["sns:Subscribe"],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "sns:Endpoint": "*@example.com"
 },
 "StringEquals": {
 "sns:Protocol": "email"
 }
 }
 }]
}

Example 4: Allow a partner to publish messages to a particular topic

You can use an Amazon SNS policy or an IAM policy to allow a partner to publish to a specific topic.
If your partner has an AWS account, it might be easier to use an Amazon SNS policy. However,
anyone in the partner's company who possesses the AWS security credentials could publish
messages to the topic. This example assumes that you want to limit access to a particular person
(or application). To do this you need to treat the partner like a user within your own company, and
use a IAM policy instead of an Amazon SNS policy.

For this example, we create a group called WidgetCo that represents the partner company; we
create a user for the specific person (or application) at the partner company who needs access; and
then we put the user in the group.

We then attach a policy that grants the group Publish access on the specific topic named
WidgetPartnerTopic.

We also want to prevent the WidgetCo group from doing anything else with topics, so we add a
statement that denies permission to any Amazon SNS actions other than Publish on any topics
other than WidgetPartnerTopic. This is necessary only if there's a broad policy elsewhere in the
system that grants users wide access to Amazon SNS.

{
 "Statement": [{
 "Effect": "Allow",
 "Action": "sns:Publish",

Using identity-based policies 1045

Amazon Simple Notification Service Developer Guide

 "Resource": "arn:aws:sns:*:123456789012:WidgetPartnerTopic"
 },
 {
 "Effect": "Deny",
 "NotAction": "sns:Publish",
 "NotResource": "arn:aws:sns:*:123456789012:WidgetPartnerTopic"
 }
]
}

Using temporary security credentials with Amazon SNS

AWS Identity and Access Management (IAM) allows you to grant temporary security credentials
to users and applications that need access to your AWS resources. These temporary security
credentials are primarily used for IAM roles and federated access via industry-standard protocols
such as SAML and OpenID Connect (OIDC).

To effectively manage access to AWS resources, it's essential to understand the following key
concepts:

• IAM Roles – Roles are used to delegate access to AWS resources. Roles can be assumed by
entities such as Amazon EC2 instances, Lambda functions, or users from other AWS accounts.

• Federated Users – These are users authenticated via external identity providers (IdPs) using
SAML or OIDC. Federated access is recommended for human users, while IAM roles should be
used for software applications.

• Roles Anywhere – For external applications requiring AWS access, you can use IAM Roles
Anywhere to securely manage access without creating long-term credentials.

You can use temporary security credentials to make requests to Amazon SNS. The SDKs and API
libraries compute the necessary signature using these credentials to authenticate your requests.
Requests with expired credentials will be denied by Amazon SNS.

For more information on temporary security credentials, refer to Using IAM roles and Providing
access to externally authenticated users (identity federation) in the IAM User Guide.

Example HTTPS request example

The following example demonstrates how to authenticate an Amazon SNS request using
temporary security credentials obtained from AWS Security Token Service (STS).

Using temporary credentials 1046

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html

Amazon Simple Notification Service Developer Guide

https://sns.us-east-2.amazonaws.com/
?Action=CreateTopic
&Name=My-Topic
&SignatureVersion=4
&SignatureMethod=AWS4-HMAC-SHA256
&Timestamp=2023-07-05T12:00:00Z
&X-Amz-Security-Token=SecurityTokenValue
&X-Amz-Date=20230705T120000Z
&X-Amz-Credential=<your-access-key-id>/20230705/us-east-2/sns/aws4_request
&X-Amz-SignedHeaders=host
&X-Amz-Signature=<signature-value>

Steps to authenticate the request

1. Obtain Temporary Security Credentials – Use AWS STS to assume a role or get federated user
credentials. This will provide you with an access key ID, secret access key, and security token.

2. Construct the Request – Include the required parameters for your Amazon SNS action (for
example, CreateTopic), and ensure you use HTTPS for secure communication.

3. Sign the Request – Use the AWS Signature Version 4 process to sign your request. This
involves creating a canonical request, string-to-sign, and then calculating the signature. For
more on AWS Signature Version 4, see Use Signature Version 4 signing in the Amazon EBS User
Guide.

4. Send the Request – Include the X-Amz-Security-Token in your request header to pass the
temporary security credentials to Amazon SNS.

Amazon SNS API permissions: Actions and resources reference

The following list grants information specific to the Amazon SNS implementation of access control:

• Each policy must cover only a single topic (when writing a policy, don't include statements that
cover different topics)

• Each policy must have a unique policy Id

• Each statement in a policy must have a unique statement sid

Policy quotas

The following table lists the maximum quotas for a policy statement.

API permissions reference 1047

https://docs.aws.amazon.com/ebs/latest/userguide/ebsapis-using-sigv4.html

Amazon Simple Notification Service Developer Guide

Name Maximum quota

Bytes 30 kb

Statements 100

Principals 1 to 200 (0 is invalid.)

Resource 1 (0 is invalid. The value must match the ARN of the
policy's topic.)

Valid Amazon SNS policy actions

Amazon SNS supports the actions shown in the following table.

Action Description

sns:AddPermission Grants permission to add permissions to the topic policy.

sns:DeleteTopic Grants permission to delete a topic.

sns:GetDataProtectionPolicy Grants permission to retrieve a topic's data protection policy.

sns:GetTopicAttributes Grants permission to receive all of the topic attributes.

sns:ListSubscriptionsByTopic Grants permission to retrieve all the subscriptions to a specific
topic.

sns:ListTagsForResource Grants permission to list all tags added to a specific topic.

sns:Publish Grants permission to both publish and publish batch to a topic
or endpoint. For more information, see Publish and PublishBa
tch in the Amazon Simple Notification Service API Reference.

sns:PutDataProtectionPolicy Grants permission to set a topic's data protection policy.

sns:RemovePermission Grants permission to remove any permissions in the topic
policy.

API permissions reference 1048

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/sns/latest/api/API_BatchPublish.html
https://docs.aws.amazon.com/sns/latest/api/API_BatchPublish.html

Amazon Simple Notification Service Developer Guide

Action Description

sns:SetTopicAttributes Grants permission to set a topic's attributes.

sns:Subscribe Grants permission to subscribe to a topic.

Service-specific keys

Amazon SNS uses the following service-specific keys. You can use these in policies that restrict
access to Subscribe requests.

• sns:endpoint—The URL, email address, or ARN from a Subscribe request or a previously
confirmed subscription. Use with string conditions (see Example policies for Amazon SNS) to
restrict access to specific endpoints (for example, *@example.com).

• sns:protocol—The protocol value from a Subscribe request or a previously confirmed
subscription. Use with string conditions (see Example policies for Amazon SNS) to restrict
publication to specific delivery protocols (for example, https).

Important

When you use a policy to control access by sns:Endpoint, be aware that DNS issues might
affect the endpoint's name resolution in the future.

Troubleshooting Amazon Simple Notification Service identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon SNS and IAM.

Topics

• I am not authorized to perform an action in Amazon SNS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon SNS resources

API permissions reference 1049

Amazon Simple Notification Service Developer Guide

I am not authorized to perform an action in Amazon SNS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
sns:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 sns:GetWidget on resource: my-example-widget

In this case, Mateo's policy must be updated to allow him to access the my-example-widget
resource using the sns:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon SNS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon SNS. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

API permissions reference 1050

Amazon Simple Notification Service Developer Guide

I want to allow people outside of my AWS account to access my Amazon SNS resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon SNS supports these features, see How Amazon SNS works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in Amazon SNS

Amazon SNS allows you to track and monitor messaging activity by logging API calls with
CloudTrail and monitoring topics with CloudWatch. These tools help you gain insights into message
delivery, troubleshoot issues, and ensure the health of your messaging workflows. This topic covers
the following:

• Logging Amazon SNS API calls using CloudTrail. This logging enables you to track the actions
performed on your Amazon SNS topics, such as topic creation, subscription management,
and message publishing. By analyzing CloudTrail logs, you can identify who made specific API
requests and when those requests were made, helping you audit and troubleshoot your Amazon
SNS usage.

• Monitoring Amazon SNS topics using CloudWatch. CloudWatch provides metrics that allow you
to observe the performance and health of your Amazon SNS topics in real time. Set up alarms
based on these metrics, enabling you to respond promptly to any anomalies, such as delivery
failures or high message latency. This monitoring capability ensures that you can maintain the
reliability of your SNS-based messaging system by proactively addressing potential issues.

Logging and monitoring 1051

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Simple Notification Service Developer Guide

Logging Amazon SNS API calls using CloudTrail

Amazon SNS is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Amazon SNS. CloudTrail captures API calls for Amazon SNS
as events. The calls captured include calls from the Amazon SNS console and code calls to the
Amazon SNS API operations. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for Amazon SNS. If you don't configure a trail,
you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to Amazon SNS,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

Amazon SNS information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Amazon SNS, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon SNS, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Control plane events in CloudTrail

Amazon SNS supports logging the following actions as events in CloudTrail log files:

Logging API calls using CloudTrail 1052

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Simple Notification Service Developer Guide

• AddPermission

• CheckIfPhoneNumberIsOptedOut

• ConfirmSubscription

• CreatePlatformApplication

• CreatePlatformEndpoint

• CreateSMSSandboxPhoneNumber

• CreateTopic

• DeleteEndpoint

• DeletePlatformApplication

• DeleteSMSSandboxPhoneNumber

• DeleteTopic

• GetDataProtectionPolicy

• GetEndpointAttributes

• GetPlatformApplicationAttributes

• GetSMSAttributes

• GetSMSSandboxAccountStatus

• GetSubscriptionAttributes

• GetTopicAttributes

• ListEndpointsByPlatformApplication

• ListOriginationNumbers

• ListPhoneNumbersOptedOut

• ListPlatformApplications

• ListSMSSandboxPhoneNumbers

• ListSubscriptions

• ListSubscriptionsByTopic

• ListTagsForResource

• ListTopics

• OptInPhoneNumber

Logging API calls using CloudTrail 1053

https://docs.aws.amazon.com/sns/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/sns/latest/api/API_CheckIfPhoneNumberIsOptedOut.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
https://docs.aws.amazon.com/sns/latest/api/API_CreateSMSSandboxPhoneNumber.html
https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
https://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteSMSSandboxPhoneNumber.html
https://docs.aws.amazon.com/sns/latest/api/API_DeleteTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_GetDataProtectionPolicy.html
https://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetSMSAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetSMSSandboxAccountStatus.html
https://docs.aws.amazon.com/sns/latest/api/API_GetSubscriptionAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_GetTopicAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
https://docs.aws.amazon.com/sns/latest/api/API_ListOriginationNumbers.html
https://docs.aws.amazon.com/sns/latest/api/API_ListPhoneNumbersOptedOut.html
https://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
https://docs.aws.amazon.com/sns/latest/api/API_ListSMSSandboxPhoneNumbers.html
https://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptions.html
https://docs.aws.amazon.com/sns/latest/api/API_ListSubscriptionsByTopic.html
https://docs.aws.amazon.com/sns/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/sns/latest/api/API_ListTopics.html
https://docs.aws.amazon.com/sns/latest/api/API_OptInPhoneNumber.html

Amazon Simple Notification Service Developer Guide

• PutDataProtectionPolicy

• RemovePermission

• SetEndpointAttributes

• SetPlatformApplicationAttributes

• SetSMSAttributes

• SetSubscriptionAttributes

• SetTopicAttributes

• Subscribe

• TagResource

• Unsubscribe

• UntagResource

• VerifySMSSandboxPhoneNumber

Note

When you are not logged in to Amazon Web Services (unauthenticated mode) and either
the ConfirmSubscription or Unsubscribe actions are invoked, then they will not be logged
to CloudTrail. Such as, when you choose the provided link in an email notification to
confirm a pending subscription to a topic, the ConfirmSubscription action is invoked in
unauthenticated mode. In this example, the ConfirmSubscription action would not be
logged to CloudTrail.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Logging API calls using CloudTrail 1054

https://docs.aws.amazon.com/sns/latest/api/API_PutDataProtectionPolicy.html
https://docs.aws.amazon.com/sns/latest/api/API_RemovePermission.html
https://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
https://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_TagResource.html
https://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
https://docs.aws.amazon.com/sns/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/sns/latest/api/API_VerifySMSSandboxPhoneNumber.html
https://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
https://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Simple Notification Service Developer Guide

Data plane events in CloudTrail

To enable logging of the following API actions in CloudTrail files, you'll need to enable logging of
data plane API activity in CloudTrail. For more information, see Logging data events in the AWS
CloudTrail User Guide.

Data plane events can also be filtered by resource type, for granular control over which Amazon
SNS API calls you want to selectively log and pay for in CloudTrail. For example, by specifying
AWS::SNS::Topic as a resource type, you can log calls to Publish and PublishBatch API
actions for topics. Likewise, by specifying AWS::SNS::PlatformEndpoint as a resource
type, you can log calls to Publish API action for platform endpoints. For more information, see
AdvancedEventSelector in the AWS CloudTrail API Reference.

Note

Amazon SNS resource type AWS::SNS::PhoneNumber is not logged by CloudTrail.

Amazon SNS data plane APIs

• Publish

• PublishBatch

Example: Amazon SNS log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the ListTopics,
CreateTopic, and DeleteTopic actions.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {

Logging API calls using CloudTrail 1055

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedEventSelector.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/sns/latest/api/API_PublishBatch.html

Amazon Simple Notification Service Developer Guide

 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "ListTopics",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "nextToken": "ABCDEF1234567890EXAMPLE=="
 },
 "responseElements": null,
 "requestID": "example1-b9bb-50fa-abdb-80f274981d60",
 "eventID": "example0-09a3-47d6-a810-c5f9fd2534fe",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "CreateTopic",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "name": "hello"
 },
 "responseElements": {
 "topicArn": "arn:aws:sns:us-west-2:123456789012:hello-topic"
 },

Logging API calls using CloudTrail 1056

Amazon Simple Notification Service Developer Guide

 "requestID": "example7-5cd3-5323-8a00-f1889011fee9",
 "eventID": "examplec-4f2f-4625-8378-130ac89660b1",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type":"IAMUser",
 "userName":"Bob"
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2014-09-30T00:00:00Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "DeleteTopic",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version",
 "requestParameters": {
 "topicArn": "arn:aws:sns:us-west-2:123456789012:hello-topic"
 },
 "responseElements": null,
 "requestID": "example5-4faa-51d5-aab2-803a8294388d",
 "eventID": "example8-6443-4b4d-abfd-1b867280d964",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
]
}

The following examples show CloudTrail log entries that demonstrate the Publish and
PublishBatch actions.

Publish

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EX_PRINCIPAL_ID",

Logging API calls using CloudTrail 1057

Amazon Simple Notification Service Developer Guide

 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "ExampleUser"
 },
 "attributes": {
 "creationDate": "2023-08-21T16:44:05Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-08-21T16:48:37Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "Publish",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {
 "topicArn": "arn:aws:sns:us-east-1:123456789012:ExampleSNSTopic",
 "message": "HIDDEN_DUE_TO_SECURITY_REASONS",
 "subject": "HIDDEN_DUE_TO_SECURITY_REASONS",
 "messageStructure": "json",
 "messageAttributes": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "responseElements": {
 "messageId": "0787cd1e-d92b-521c-a8b4-90434e8ef840"
 },
 "requestID": "0a8ab208-11bf-5e01-bd2d-ef55861b545d",
 "eventID": "bb3496d4-5252-4660-9c28-3c6aebdb21c0",
 "readOnly": false,
 "resources": [{
 "accountId": "123456789012",
 "type": "AWS::SNS::Topic",
 "ARN": "arn:aws:sns:us-east-1:123456789012:ExampleSNSTopic"
 }],
 "eventType": "AwsApiCall",

Logging API calls using CloudTrail 1058

Amazon Simple Notification Service Developer Guide

 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sns.us-east-1.amazonaws.com"
 }
}

PublishBatch

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAIOSFODNN7EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "ExampleUser"
 },
 "attributes": {
 "creationDate": "2023-08-21T19:20:49Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-08-21T19:22:01Z",
 "eventSource": "sns.amazonaws.com",
 "eventName": "PublishBatch",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {

Logging API calls using CloudTrail 1059

Amazon Simple Notification Service Developer Guide

 "topicArn": "arn:aws:sns:us-east-1:123456789012:ExampleSNSTopic",
 "publishBatchRequestEntries": [{
 "id": "1",
 "message": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 {
 "id": "2",
 "message": "HIDDEN_DUE_TO_SECURITY_REASONS"
 }
]
 },
 "responseElements": {
 "successful": [{
 "id": "1",
 "messageId": "30d68101-a64a-5573-9e10-dc5c1dd3af2f"
 },
 {
 "id": "2",
 "messageId": "c0aa0c5c-561d-5455-b6c4-5101ed84de09"
 }
],
 "failed": []
 },
 "requestID": "e2cdf7f3-1b35-58ad-ac9e-aaaea0ace2f1",
 "eventID": "10da9a14-0154-4ab6-b3a5-1825b229a7ed",
 "readOnly": false,
 "resources": [{
 "accountId": "123456789012",
 "type": "AWS::SNS::Topic",
 "ARN": "arn:aws:sns:us-east-1:123456789012:ExampleSNSTopic"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sns.us-east-1.amazonaws.com"
 }
}

Logging API calls using CloudTrail 1060

Amazon Simple Notification Service Developer Guide

Monitoring Amazon SNS topics using CloudWatch

Amazon SNS and Amazon CloudWatch are integrated so you can collect, view, and analyze metrics
for every active Amazon SNS notification. Once you have configured CloudWatch for Amazon SNS,
you can gain better insight into the performance of your Amazon SNS topics, push notifications,
and SMS deliveries. For example, you can set an alarm to send you an email notification if a
specified threshold is met for an Amazon SNS metric, such as NumberOfNotificationsFailed.
For a list of all the metrics that Amazon SNS sends to CloudWatch, see Amazon SNS metrics. For
more information about Amazon SNS push notifications, see Sending mobile push notifications
with Amazon SNS.

Note

The metrics you configure with CloudWatch for your Amazon SNS topics are automatically
collected and pushed to CloudWatch at 1-minute intervals. These metrics are gathered on
all topics that meet the CloudWatch guidelines for being active. A topic is considered active
by CloudWatch for up to six hours from the last activity (that is, any API call) on the topic.
There is no charge for the Amazon SNS metrics reported in CloudWatch; they are provided
as part of the Amazon SNS service.

View CloudWatch metrics for Amazon SNS

You can monitor metrics for Amazon SNS using the CloudWatch console, CloudWatch's own
command line interface (CLI), or programmatically using the CloudWatch API. The following
procedures show you how to access the metrics using the AWS Management Console.

To view metrics using the CloudWatch console

1. Sign in to the CloudWatch console.

2. On the navigation panel, choose Metrics.

3. On the All metrics tab, choose SNS, and then choose one of the following dimensions:

• Country, SMS Type

• PhoneNumber

• Topic Metrics

• Metrics with no dimensions

Monitoring topics using CloudWatch 1061

https://console.aws.amazon.com/cloudwatch

Amazon Simple Notification Service Developer Guide

4. To view more detail, choose a specific item. For example, if you choose Topic Metrics and
then choose NumberOfMessagesPublished, the average number of published Amazon SNS
messages for a 1-minute period throughout the time range of 6 hours is displayed.

5. To view Amazon SNS usage metrics, on the All metrics tab, choose
Usage, and select the target Amazon SNS usage metric (for example,
NumberOfMessagesPublishedPerAccount).

Set CloudWatch alarms for Amazon SNS metrics

CloudWatch also allows you to set alarms when a threshold is met for a metric. For example, you
could set an alarm for the metric, NumberOfNotificationsFailed, so that when your specified
threshold number is met within the sampling period, then an email notification would be sent to
inform you of the event.

To set alarms using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Alarms, and then choose the Create Alarm button. This launches the Create Alarm
wizard.

3. Scroll through the Amazon SNS metrics to locate the metric you want to place an alarm on.
Select the metric to create an alarm on and choose Continue.

4. Fill in the Name, Description, Threshold, and Time values for the metric, and then choose
Continue.

5. Choose Alarm as the alarm state. If you want CloudWatch to send you an email when the
alarm state is reached, choose either an existing Amazon SNS topic or choose Create New
Email Topic. If you choose Create New Email Topic, you can set the name and email addresses
for a new topic. This list will be saved and appear in the drop-down box for future alarms.
Choose Continue.

Note

If you use Create New Email Topic to create a new Amazon SNS topic, the email
addresses must be verified before they will receive notifications. Emails are sent only
when the alarm enters an alarm state. If this alarm state change happens before the
email addresses are verified, they will not receive a notification.

Monitoring topics using CloudWatch 1062

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide

6. At this point, the Create Alarm wizard gives you a chance to review the alarm you’re about to
create. If you need to make any changes, you can use the Edit links on the right. Once you are
satisfied, choose Create Alarm.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation.

Amazon SNS metrics

Amazon SNS sends the following metrics to CloudWatch.

Namespace Metric Description

AWS/SNS NumberOfMessagesPu
blished

The number of messages
published to your Amazon SNS
topics.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum

AWS/SNS NumberOfNotificati
onsDelivered

The number of messages successfu
lly delivered from your Amazon
SNS topics to subscribing
endpoints.

For a delivery attempt to succeed,
the endpoint's subscription must
accept the message. A subscription
accepts a message if a.) it lacks a
filter policy or b.) its filter policy
includes attributes that match
those assigned to the message.
If the subscription rejects the
message, the delivery attempt isn't
counted for this metric.

Monitoring topics using CloudWatch 1063

https://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum

Monitoring topics using CloudWatch 1064

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS NumberOfNotificati
onsFailed

The number of messages that
Amazon SNS failed to deliver.

For Amazon SQS, email, SMS, or
mobile push endpoints, the metric
increments by 1 when Amazon
SNS stops attempting message
deliveries. For HTTP or HTTPS
endpoints, the metric includes
every failed delivery attempt,
including retries that follow
the initial attempt. For all other
endpoints, the count increases
by 1 when the message fails to
deliver (regardless of the number
of attempts).

This metric does not include
messages that were rejected by
subscription filter policies.

You can control the number of
retries for HTTP endpoints. For
more information, see Amazon
SNS message delivery retries.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

Monitoring topics using CloudWatch 1065

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS NumberOfNotificati
onsFilteredOut

The number of messages that
were rejected by subscription
filter policies. A filter policy rejects
a message when the message
attributes don't match the policy
attributes.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

AWS/SNS NumberOfNotificati
onsFilteredOut-Mes
sageAttributes

The number of messages that
were rejected by subscription
filter policies for attribute-based
filtering.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

Monitoring topics using CloudWatch 1066

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS NumberOfNotificati
onsFilteredOut-Mes
sageBody

The number of messages that
were rejected by subscription filter
policies for payload-based filtering
.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

AWS/SNS NumberOfNotificati
onsFilteredOut-Inv
alidAttributes

The number of messages that
were rejected by subscript
ion filter policies because the
messages' attributes are invalid –
for example, because the attribute
JSON is incorrectly formatted.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

Monitoring topics using CloudWatch 1067

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS NumberOfNotificati
onsFilteredOut-NoM
essageAttributes

The number of messages that
were rejected by subscription filter
policies because the messages
have no attributes.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

AWS/SNS NumberOfNotificati
onsFilteredOut-Inv
alidMessageBody

The number of messages that
were rejected by subscription filter
policies because the message
body is invalid for filtering – for
example, invalid JSON message
body.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

Monitoring topics using CloudWatch 1068

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS NumberOfNotificati
onsRedrivenToDlq

The number of messages that
have been moved to a dead-letter
queue.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

AWS/SNS NumberOfNotificati
onsFailedToRedrive
ToDlq

The number of messages that
couldn't be moved to a dead-letter
queue.

Units: Count

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Sum, Average

AWS/SNS PublishSize The size of messages published.

Units: Bytes

Valid dimensions: Application,
PhoneNumber, Platform, and
TopicName

Valid statistics: Minimum,
Maximum, Average and Count

Monitoring topics using CloudWatch 1069

Amazon Simple Notification Service Developer Guide

Namespace Metric Description

AWS/SNS SMSMonthToDateSpen
tUSD

The charges you have accrued since
the start of the current calendar
month for sending SMS messages.

You can set an alarm for this
metric to know when your month-
to-date charges are close to the
monthly SMS spend quota for
your account. When Amazon
SNS determines that sending an
SMS message would incur a cost
that exceeds this quota, it stops
publishing SMS messages within
minutes.

For information about setting
your monthly SMS spend quota,
or for information about requestin
g a spend quota increase with
AWS, see Setting SMS messaging
preferences in Amazon SNS.

Units: USD

Valid dimensions: None

Valid statistics: Sum

AWS/SNS SMSSuccessRate The rate of successful SMS
message deliveries.

Units: Count

Valid dimensions: PhoneNumber

Valid statistics: Sum, Average,
Data Samples

Monitoring topics using CloudWatch 1070

Amazon Simple Notification Service Developer Guide

Dimensions for Amazon SNS metrics

Amazon Simple Notification Service sends the following dimensions to CloudWatch.

Dimension Description

Application Filters on application objects, which represent an app and
device registered with one of the supported push notification
services, such as APNs and FCM.

Application,Platform Filters on application and platform objects, where the platform
objects are for the supported push notification services, such
as APNs and FCM.

Country Filters on the destination country or region of an SMS
message. The country or region is represented by its ISO
3166-1 alpha-2 code.

PhoneNumber Filters on the phone number when you publish SMS directly to
a phone number (without a topic).

Platform Filters on platform objects for the push notification services,
such as APNs and FCM.

TopicName Filters on Amazon SNS topic names.

SMSType Filters on the message type of SMS message. Can be promotion
al or transactional.

Amazon SNS usage metrics

Amazon Simple Notification Service sends the following usage metrics to CloudWatch.

Namespace Service Metric Resource Type Description

AWS/Usage SNS ResourceC
ount

NumberOfM
essagesPu

Resource • The
number of
messages

Monitoring topics using CloudWatch 1071

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

blishedPe
rAccount

published
to your
Amazon
SNS topics
across
your AWS
account.

• Units:
None

• Valid
Statistics:
Sum

AWS/Usage SNS ResourceC
ount

Approxima
teNumberO
fTopics

Resource • The
approxima
te number
of topics
across
your AWS
account.

• Units:
None

• Valid
Statistics:
Average,
Minimum,
Maximum,
Sum

Monitoring topics using CloudWatch 1072

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

AWS/Usage SNS ResourceC
ount

Approxima
teNumberO
fFilterPo
licies

Resource • The
approxima
te number
of filter
policies
across
your AWS
account.

• Units:
None

• Valid
Statistics:
Average,
Minimum,
Maximum,
Sum

AWS/Usage SNS ResourceC
ount

Approxima
teNumberO
fPendingS
ubscripti
ons

Resource • The
approxima
te number
of pending
subscript
ions across
your AWS
account.

• Units:
None

• Valid
Statistics:
Average,
Minimum,
Maximum,
Sum

Monitoring topics using CloudWatch 1073

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

AWS/Usage SNS CallCount • AddPermis
sion

• CheckIfPh
oneNumber
IsOptedOu
t

• CreatePla
tformAppl
ication

• CreatePla
tformEndp
oint

• ConfirmSu
bscriptio
n

• CreateSMS
SandboxPh
oneNumber

• CreateTop
ic

• DeleteEnd
point

• DeletePla
tformAppl
ication

• DeleteSMS
SandboxPh
oneNumber

• DeleteTop
ic

API • The
number of
API calls
for the
selected
Amazon
SNS API
across
your AWS
account.

• Units:
None

• Valid
Statistics:
Sum

Monitoring topics using CloudWatch 1074

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

• GetEndpoi
ntAttribu
tes

• GetPlatfo
rmApplica
tionAttri
butes

• GetSMSAtt
ributes

• GetSMSSan
dboxAccou
ntStatus

• GetSubscr
iptionAtt
ributes

• GetTopicA
ttributes

• ListEndpo
intsByPla
tformAppl
ication

• ListOrigi
nationNum
bers

• ListPhone
NumbersOp
tedOut

• ListPlatf
ormApplic
ations

Monitoring topics using CloudWatch 1075

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

• ListSMSSa
ndboxPhon
eNumbers

• ListSubsc
riptions

• ListSubsc
riptionsB
yTopic

• ListTagsF
orResourc
e

• ListTopic
s

• OptInPhon
eNumber

• RemovePer
mission

• SetEndpoi
ntAttribu
tes

• SetPlatfo
rmApplica
tionAttri
butes

• SetSMSAtt
ributes

• SetSubscr
iptionAtt
ributes

• SetTopicA
ttributes

Monitoring topics using CloudWatch 1076

Amazon Simple Notification Service Developer Guide

Namespace Service Metric Resource Type Description

• Subscribe

• Unsubscri
be

• UntagReso
urce

• VerifySMS
SandboxPh
oneNumber

Compliance validation for Amazon SNS

Third-party auditors assess the security and compliance of Amazon SNS as part of multiple AWS
compliance programs, including the Health Insurance Portability and Accountability Act (HIPAA).

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Amazon SNS is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Compliance validation 1077

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/

Amazon Simple Notification Service Developer Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in Amazon SNS

Resilience in Amazon SNS is ensured through leveraging the AWS global infrastructure, which
revolves around AWS Regions and Availability Zones. AWS Regions offer physically separated and
isolated Availability Zones connected by low-latency, high-throughput, and highly redundant
networking. This architecture allows for seamless failover between Availability Zones without
interruption, making applications and databases inherently more fault tolerant and scalable
compared to traditional data center infrastructures. By using Availability Zones, Amazon SNS
subscribers benefit from enhanced availability and reliability, guaranteeing message delivery
despite potential disruptions. For more information about AWS Regions and Availability Zones, see
AWS Global Infrastructure.

Additionally, subscriptions to Amazon SNS topics can be configured with delivery retries and dead-
letter queues, enabling automatic handling of transient failures and ensuring messages reliably
reach their intended destinations.

Amazon SNS also supports message filtering and message attributes, which lets you tailor
resilience strategies to their specific use cases, enhancing the overall robustness of your
applications.

Infrastructure security in Amazon SNS

As a managed service, Amazon SNS is protected by the AWS global network security procedures
found in the Best Practices for Security, Identity, & Compliance documentation.

Use AWS API actions to access Amazon SNS through the network. Clients must support Transport
Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with Perfect Forward
Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman
(ECDHE).

Resilience 1078

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/architecture/security-identity-compliance

Amazon Simple Notification Service Developer Guide

You must sign requests using both an access key ID and a secret access key associated with an
IAM principal. Alternatively, you can use the AWS Security Token Service (AWS STS) to generate
temporary security credentials for signing requests.

You can call these API actions from any network location, but Amazon SNS supports resource-
based access policies, which can include restrictions based on the source IP address. You can also
use Amazon SNS policies to control access from specific Amazon VPC endpoints or specific VPCs.
This effectively isolates network access to a given Amazon SNS topic from only the specific VPC
within the AWS network. For more information, see Restrict publication to an Amazon SNS topic
only from a specific VPC endpoint.

Infrastructure security 1079

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Simple Notification Service Developer Guide

Troubleshooting Amazon SNS topics

Learn how to use AWS X-Ray to troubleshoot Amazon SNS topics by tracing and analyzing
messages, identifying issues, and optimizing performance through detailed request and response
data.

Troubleshooting Amazon SNS topics using AWS X-Ray

AWS X-Ray collects data about requests that your application serves, and lets you view and filter
data to identify potential issues and opportunities for optimization. For any traced request to your
application, you can see detailed information about the request, the response, and the calls that
your application makes to downstream AWS resources, microservices, databases and HTTP web
APIs.

You can use X-Ray with Amazon SNS to trace and analyze the messages that travel through your
application. You can use the AWS Management Console to view the map of connections between
Amazon SNS and other services that your application uses. You can also use the console to view
metrics such as average latency and failure rates. For more information, see Amazon SNS and AWS
X-Ray in the AWS X-Ray Developer Guide.

Active tracing in Amazon SNS

You can use AWS X-Ray to trace and analyze user requests as they travel through your Amazon
SNS topics to your Amazon Data Firehose, AWS Lambda, Amazon SQS, and HTTP/S endpoint
subscriptions. Because X-Ray gives you an end-to-end view of an entire request, you can view what
is calling your Amazon SNS topic, and what is downstream of your topic's subscriptions. You can
analyze latencies in your messages and their backend services (for example, how long a request
spends in a topic, and how long it took to deliver the message to each of the topic’s subscriptions).

Important

Amazon SNS topics with numerous subscriptions may reach a size limit and not be fully
traced. For information about trace document size limits, see X-ray service quotas in AWS
General Reference.

Troubleshooting topics using X-Ray 1080

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sqs.html
https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray

Amazon Simple Notification Service Developer Guide

If you call an Amazon SNS API from a service that's already being traced, Amazon SNS passes the
trace through, even if X-Ray tracing isn't enabled on the API.

Amazon SNS supports X-Ray tracing for both standard and FIFO topics. You can enable X-Ray for
an Amazon SNS topic by using the Amazon SNS console, Amazon SNS SetTopicAttributes API,
Amazon Simple Notification Service CLI Reference, or AWS CloudFormation.

To learn more about using Amazon SNS with X-Ray, see Amazon SNS and AWS X-Ray in the AWS X-
Ray Developer Guide.

Topics

• Active tracing permissions

• Enabling active tracing on an Amazon SNS topic using the AWS console

• Enabling active tracing on an Amazon SNS topic using the AWS SDK

• Enabling active tracing on an Amazon SNS topic using the AWS CLI

• Enabling active tracing on an Amazon SNS topic using AWS CloudFormation

• Verifying active tracing is enabled for your topic

• Testing active tracing

Active tracing permissions

When using the Amazon SNS console, Amazon SNS attempts to create the necessary permissions
for the Amazon SNS topic to call X-Ray. The attempt can be rejected if you don't have sufficient
permissions to use the Amazon SNS console. For more information, see Identity and access
management in Amazon SNS and Example cases for Amazon SNS access control.

When using the CLI, you must manually configure the permissions. Those permissions are
configured using resource policies. For more on using required permissions in X-Ray, see Amazon
SNS and AWS X-Ray.

Enabling active tracing on an Amazon SNS topic using the AWS console

When active tracing is enabled on an Amazon SNS topic, it reads the trace ID, sends the data to the
customer based on the trace ID, and propagates the trace ID to downstream services.

1. Sign in to the Amazon SNS console.

Permissions 1081

https://console.aws.amazon.com/sns/v3/home
https://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html
https://docs.aws.amazon.com/cli/latest/reference/sns/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sns-topic.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

2. Choose a topic or create a new one. For more details on creating topics, see Creating an
Amazon SNS topic.

3. On the Create topic page, in the Details section, choose a topic type: FIFO or Standard.

a. Enter a Name for the topic.

b. (Optional) Enter a Display name for the topic.

4. Expand Active tracing, and choose Use active tracing.

Once you've enabled X-Ray for your Amazon SNS topic, you can use the X-Ray service map to view
the end-to-end traces and service maps for the topic.

Enabling active tracing on an Amazon SNS topic using the AWS SDK

The following code example shows how to enable active tracing on an Amazon SNS topic by using
the AWS SDK for Java.

public static void enableActiveTracing(SnsClient snsClient, String topicArn) {

 try {

 SetTopicAttributesRequest request = SetTopicAttributesRequest.builder()
 .attributeName("TracingConfig")
 .attributeValue("Active")
 .topicArn(topicArn)
 .build();

 SetTopicAttributesResponse result = snsClient.setTopicAttributes(request);
 System.out.println("\n\nStatus was " +
 result.sdkHttpResponse().statusCode() + "\n\nTopic " + request.topicArn()
 + " updated " + request.attributeName() + " to " +
 request.attributeValue());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

Enabling active tracing on an Amazon SNS topic using the AWS SDK 1082

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html

Amazon Simple Notification Service Developer Guide

Enabling active tracing on an Amazon SNS topic using the AWS CLI

The following code example shows how to enable active tracing on an Amazon SNS topic by using
the AWS CLI.

aws sns set-topic-attributes \
 --topic-arn arn:aws:sns:us-west-2:123456789012:MyTopic \
 --attribute-name TracingConfig \
 --attribute-value Active

Enabling active tracing on an Amazon SNS topic using AWS
CloudFormation

The following AWS CloudFormation stack shows how to enable active tracing on an Amazon SNS
topic.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 MyTopicResource:
 Type: 'AWS::SNS::Topic'
 Properties:
 TopicName: 'MyTopic'
 TracingConfig: 'Active'

Verifying active tracing is enabled for your topic

You can use the Amazon SNS console to verify if active tracing is enabled for your topic, or when
the resource policy has failed to be added.

1. Sign in to the Amazon SNS console.

2. In the left navigation pane, choose Topics.

3. On the Topics page, select a topic.

4. Choose the Integrations tab.

When active tracing is enabled, a green Active icon is displayed.

5. If you have enabled active tracing and you don't see that the resource policy has been added,
choose Create policy to add the additional required permissions.

Enabling active tracing on an Amazon SNS topic using the AWS CLI 1083

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide

Testing active tracing

1. Sign in to the Amazon SNS console.

2. Create an Amazon SNS topic. For details on how to do this, see To create a topic using the AWS
Management Console.

3. Expand Active tracing, and choose Use active tracing.

4. Publish a message to the Amazon SNS topic. For details on how to do this, see To publish
messages to Amazon SNS topics using the AWS Management Console.

5. Use the X-Ray service map to view the end-to-end traces and service maps for the topic.

Testing 1084

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html

Amazon Simple Notification Service Developer Guide

Testing 1085

Amazon Simple Notification Service Developer Guide

Amazon SNS documentation history

The following table describes recent changes to the Amazon Simple Notification Service Developer
Guide.

Service features are sometimes rolled out incrementally to the AWS Regions where a service is
available. We update this documentation for the first release only. We don't provide information
about Region availability or announce subsequent Region rollouts. For information about Region
availability of service features and to subscribe to notifications about updates, see What's New with
AWS?.

Change Description Date

AmazonSNSFullAccess
and AmazonSNSReadOnlyA
ccess managed policy
updates

Amazon SNS added new
permissions the AmazonSNS
FullAccess and AmazonSNS
ReadOnlyAccess managed
policies, which allows
additional access to Amazon
SNS via the AWS Managemen
t Console.

September 24, 2024

Amazon SNS integration with
AWS End User Messaging SMS
for delivery of SMS messages

Amazon SNS customers can
use new features such as SMS
resource management, two-
way messaging, granular
resource permissions, country
block rules, and centraliz
ed billing for all AWS SMS
messaging without making
any changes to configura
tions or the global AWS SMS
network used by Amazon
SNS.

September 24, 2024

1086

https://aws.amazon.com/new
https://aws.amazon.com/new
https://docs.aws.amazon.com/sns/latest/dg/security-iam-awsmanpol.html
https://docs.aws.amazon.com/sns/latest/dg/security-iam-awsmanpol.html
https://docs.aws.amazon.com/sns/latest/dg/security-iam-awsmanpol.html
https://docs.aws.amazon.com/sns/latest/dg/security-iam-awsmanpol.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html

Amazon Simple Notification Service Developer Guide

Canada West (Calgary)
support for FIFO topics

Amazon SNS supports
FIFO topic in Canada West
(Calgary).

March 28, 2024

Amazon SNS SMS support in
five new regions

Amazon SNS added SMS
support to the following
regions: Asia Pacific
(Hyderabad), Asia Pacific
(Melbourne), Middle East
(UAE), Europe (Zurich). and
Europe (Spain).

February 8, 2024

Firebase Cloud Messaging
(FCM) HTTP v1 support

Amazon SNS supports FCM v1
credentials.

January 18, 2024

Amazon SNS SMS supported
in Asia Pacific (Jakarta)

Amazon SNS supports SMS
messaging in Asia Pacific
(Jakarta).

December 14, 2023

AWS CloudFormation support
for configuring DeliveryS
tatusLogging for
Amazon SNS topics

AWS CloudFormation support
is available for configuring
DeliveryStatusLogg
ing while creating or
updating Amazon SNS topics.

December 7, 2023

New message filtering
operators added

You can now use suffix
matching, equals-ignore
case, and OR operators
when filtering Amazon SNS
messages.

November 16, 2023

1087

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fcm-v1-payloads.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fcm-v1-payloads.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/sns/latest/dg/sns-topic-attributes.html#msg-status-cloudformation
https://docs.aws.amazon.com/sns/latest/dg/sns-topic-attributes.html#msg-status-cloudformation
https://docs.aws.amazon.com/sns/latest/dg/sns-topic-attributes.html#msg-status-cloudformation
https://docs.aws.amazon.com/sns/latest/dg/sns-topic-attributes.html#msg-status-cloudformation
https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html#creating-delivery-policy
https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html#creating-delivery-policy

Amazon Simple Notification Service Developer Guide

Support added for message
archiving and replay

Topic owners can archive
messages to a topic for up
to 365 days. Topic subscribe
rs can replay the archived
messages back to a subscribe
d endpoint to recover
messages due to a failure in
a downstream application, or
to replicate the state of an
existing application.

October 26, 2023

Support added for subscribi
ng a standard queue to a FIFO
topic

You can subscribe an Amazon
SQS FIFO queue or a standard
queue to an Amazon SNS
FIFO topic. Only Amazon
SQS FIFO queues guarantee
messages are received in
order and with no duplicates.

September 14, 2023

SMS support added for Israel
(Tel Aviv)

Amazon SNS SMS is now
supported in the Israel (Tel
Aviv) region.

August 28, 2023

Support for X-Ray active
tracing added to FIFO topics

Previously only supported
with Amazon SNS standard
topics, AWS X-Ray now traces
and analyzes user requests
as they travel through your
FIFO topics to your Amazon
Data Firehose, AWS Lambda,
Amazon SQS, and HTTP/S
endpoint subscriptions.

May 31, 2023

Enhanced Content-Type
header support

You can set the Content-Type
header in the request policy
to specify the media type of
the notification.

March 23, 2023

1088

https://docs.aws.amazon.com/sns/latest/dg/fifo-message-archiving-replay.html
https://docs.aws.amazon.com/sns/latest/dg/fifo-message-archiving-replay.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html#creating-delivery-policy
https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html#creating-delivery-policy

Amazon Simple Notification Service Developer Guide

Active tracing support added AWS X-Ray traces and
analyzes user requests as they
travel through your Amazon
SNS standard topics to your
Amazon Data Firehose, AWS
Lambda, Amazon SQS, and
HTTP/S endpoint subscript
ions.

February 8, 2023

Singapore Sender ID registrat
ion

Instructions added for
registering Sender IDs in
Singapore.

January 10, 2023

Payload-based message
filtering

Payload-based filtering lets
you filter messages based
on the message payload and
avoid the costs associated
with processing unwanted
data.

November 22, 2022

SHA256 hash algorithm
added for Amazon SNS
message signing

Support added for SHA256
hash algorithm when using
Amazon SNS message
signing.

September 15, 2022

Additional regions added to
SMS messaging

Amazon SNS supports SMS
messaging in the following
regions: Africa (Cape Town),
Asia Pacific (Osaka), Europe
(Milan) and AWS GovCloud
(US-East).

September 9, 2022

1089

https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-singapore-requirements.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-singapore-requirements.html
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html
https://docs.aws.amazon.com/sns/latest/dg/sns-verify-signature-of-message.html
https://docs.aws.amazon.com/sns/latest/dg/sns-verify-signature-of-message.html
https://docs.aws.amazon.com/sns/latest/dg/sns-verify-signature-of-message.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html
https://docs.aws.amazon.com/general/latest/gr/end-user-messaging.html

Amazon Simple Notification Service Developer Guide

Message data protection
support added

Message data protection
safeguards the data that's
published to your Amazon
SNS topics by using data
protection policies to audit
and block the sensitive
information that moves
between applications or AWS
services.

September 8, 2022

New registration process for
toll-free numbers

Support added for sending
for Amazon SNS messages
using toll-free phone
numbers (TFN) to United
States recipients.

August 1, 2022

Support for Attribute-based
access controls (ABAC)

Added support for attribute-
based access control (ABAC)
for API actions including
 Publish and PublishBa
tch . ABAC is an authoriza
tion strategy that defines
access permissions based on
tags which can be attached
to IAM resources, such as IAM
users and roles, and to AWS
resources, like Amazon SNS
topics, to simplify permission
management.

January 10, 2022

Support for Apple token-bas
ed authentication for push
notifications

You can authorize Amazon
SNS to send push notificat
ions to your iOS or macOS
app by providing informati
on that identifies you as the
developer of the app.

October 28, 2021

1090

https://docs.aws.amazon.com/sns/latest/dg/message-data-protection.html
https://docs.aws.amazon.com/sns/latest/dg/message-data-protection.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities-tfn.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities-tfn.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tags-configuring.html#api-actions-that-support-abac
https://docs.aws.amazon.com/sns/latest/dg/sns-tags-configuring.html#api-actions-that-support-abac
https://docs.aws.amazon.com/sns/latest/dg/sns-apple-authentication-methods.html
https://docs.aws.amazon.com/sns/latest/dg/sns-apple-authentication-methods.html
https://docs.aws.amazon.com/sns/latest/dg/sns-apple-authentication-methods.html

Amazon Simple Notification Service Developer Guide

New senders of SMS
messages are placed in the
SMS sandbox

The SMS sandbox exists to
help prevent fraud and abuse,
and to help protect your
reputation as a sender. While
your AWS account is in the
SMS sandbox, you can send
SMS messages only to verified
destination phone numbers.

June 1, 2021

New senders of SMS
messages are placed in the
SMS sandbox

The SMS sandbox exists to
help prevent fraud and abuse,
and to help protect your
reputation as a sender. While
your AWS account is in the
SMS sandbox, you can send
SMS messages only to verified
destination phone numbers.

June 1, 2021

New attributes for sending
SMS messages to recipients in
India

Two new attributes, Entity
ID and Template ID, are now
required for sending SMS
messages to recipients in
India.

April 22, 2021

Updates to message filtering
operators

A new operator, cidr, is
available for matching
message source IP addresses
and subnets. You can now
also check for the absence of
an attribute key, and use a
prefix with the anything-
but operator for attribute
string matching.

April 7, 2021

1091

https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/sns-sms-sandbox.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-senderid-india.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-senderid-india.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-senderid-india.html
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html

Amazon Simple Notification Service Developer Guide

Ending support for P2P long
codes for US destinations

Effective June 1, 2021, US
telecom providers no longer
support using person-to
-person (P2P) long codes
for application-to-person
(A2P) communications to US
destinations. Instead, you
can use short codes, toll-free
numbers, or a new type of
origination number called
10DLC.

February 16, 2021

Support for 1-minute Amazon
CloudWatch metrics

The 1-minute CloudWatch
metric for Amazon SNS is now
available in all AWS Regions.

January 28, 2021

Support for Amazon Data
Firehose endpoints

You can subscribe Firehose
delivery streams to SNS
topics. This allows you to
send notifications to archiving
and analytics endpoints such
as Amazon Simple Storage
Service (Amazon S3) buckets,
Amazon Redshift tables,
Amazon OpenSearch Service
(OpenSearch Service), and
more.

January 12, 2021

Origination numbers are
available

You can use origination
numbers when sending text
messages (SMS).

October 23, 2020

1092

https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities-10dlc.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities-10dlc.html
https://docs.aws.amazon.com/sns/latest/dg/sns-monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/sns/latest/dg/sns-monitoring-using-cloudwatch.html
https://docs.aws.amazon.com/sns/latest/dg/sns-firehose-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sns-firehose-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html
https://docs.aws.amazon.com/sns/latest/dg/sms_publish-to-phone.html

Amazon Simple Notification Service Developer Guide

Support for Amazon SNS FIFO
topics

To integrate distributed
applications that require
data consistency in near-real
time, you can use Amazon
SNS first-in, first-out (FIFO)
topics with Amazon SQS FIFO
queues.

October 22, 2020

The Amazon SNS Extended
Client Library for Java is
available

You can use this library to
publish large Amazon SNS
messages.

August 25, 2020

SSE is available in the China
Regions

Server-side encryption (SSE)
for Amazon SNS is available in
the China Regions.

January 20, 2020

Support for using DLQs
to capture undeliverable
messages

To capture undeliverable
messages, you can use an
Amazon SQS dead-letter
queue (DLQ) with an Amazon
SNS subscription.

November 14, 2019

Support for specifying
custom APNs header values

You can specify a custom
APNs header value.

October 18, 2019

Support for the 'apns-push
-type ' header field for
APNs

You can use the apns-push
-type header field for
mobile notifications sent
through APNs.

September 10, 2019

Support for topic troublesh
ooting using AWS X-Ray

You can use X-Ray to
troubleshoot messages
passing through SNS topics.

July 24, 2019

1093

https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/sns-fifo-topics.html
https://docs.aws.amazon.com/sns/latest/dg/large-message-payloads.html
https://docs.aws.amazon.com/sns/latest/dg/large-message-payloads.html
https://docs.aws.amazon.com/sns/latest/dg/large-message-payloads.html
https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html
https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html
https://docs.aws.amazon.com/sns/latest/dg/sns-dead-letter-queues.html
https://docs.aws.amazon.com/sns/latest/dg/sns-dead-letter-queues.html
https://docs.aws.amazon.com/sns/latest/dg/sns-dead-letter-queues.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html#specify-custom-header-value
https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html#specify-custom-header-value
https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-custom-platform-specific-payloads-mobile-devices.html
https://docs.aws.amazon.com/sns/latest/dg/sns-troubleshooting.html#sns-troubleshooting-using-x-ray
https://docs.aws.amazon.com/sns/latest/dg/sns-troubleshooting.html#sns-troubleshooting-using-x-ray

Amazon Simple Notification Service Developer Guide

Support for attribute key
matching using the 'exists'
operator

To check whether an
incoming message has an
attribute whose key is listed
in the filter policy, you can
use the exists operator.

July 5, 2019

Support for anything-but
matching of multiple numeric
values

In addition to multiple strings,
Amazon SNS allows anything-
but matching of multiple
numeric values.

July 5, 2019

Amazon SNS release notes are
available as an RSS feed

Following the title on this
page (Documentation
history), choose RSS.

June 22, 2019

1094

https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#attribute-key-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#attribute-key-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#attribute-key-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#numeric-anything-but-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#numeric-anything-but-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-subscription-filter-policies.html#numeric-anything-but-matching
https://docs.aws.amazon.com/sns/latest/dg/sns-release-notes.html
https://docs.aws.amazon.com/sns/latest/dg/sns-release-notes.html

	Amazon Simple Notification Service
	Table of Contents
	What is Amazon SNS?
	Amazon SNS features and capabilities
	AWS services commonly used with Amazon SNS
	Accessing Amazon SNS
	Pricing for Amazon SNS
	Common Amazon SNS scenarios
	Application integration
	Application alerts
	User notifications
	Mobile push notifications

	Using Amazon SNS with an AWS SDK

	Create an Amazon SNS topic and publish messages
	Setting up access for Amazon SNS
	Create an AWS account and an IAM user
	Sign up for an AWS account
	Create a user with administrative access

	Next steps

	Creating an Amazon SNS topic
	To create a topic using the AWS Management Console
	To create a topic using an AWS SDK

	Creating a subscription to an Amazon SNS topic
	To subscribe an endpoint to an Amazon SNS topic

	Publishing an Amazon SNS message
	To publish messages to Amazon SNS topics using the AWS Management Console
	To publish a message to a topic using an AWS SDK
	Publishing large messages with Amazon SNS and Amazon S3
	Amazon SNS Extended Client Library for Java
	Prerequisites
	Configuring message storage
	Example: Publishing messages to Amazon SNS with payload stored in Amazon S3
	Other endpoint protocols

	Amazon SNS Extended Client Library for Python
	Prerequisites
	Configuring message storage
	Example: Publishing messages to Amazon SNS with the payload stored in Amazon S3

	Amazon SNS message attributes
	Message attribute items and validation
	Message attribute data types and validation
	Reserved message attributes for mobile push notifications

	Amazon SNS message batching
	What is message batching?
	How does message batching work?
	Examples

	Deleting an Amazon SNS topic and subscription
	To delete an Amazon SNS topic or subscription using the AWS Management Console
	To delete a subscription and topic using an AWS SDK

	Next steps

	Message ordering and deduplication strategies using Amazon SNS FIFO topics
	Amazon SNS FIFO topic example use case
	Amazon SNS message ordering details for FIFO topics
	Amazon SNS message grouping for FIFO topics
	Distributing data by message group IDs for improved performance

	Amazon SNS message delivery for FIFO topics
	Amazon SNS message filtering for FIFO topics
	Amazon SNS message deduplication for FIFO topics
	Amazon SNS message security for FIFO topics
	Amazon SNS message durability for FIFO topics
	Amazon SNS message archiving and replay for FIFO topics
	What is message archiving and replay?
	Components of message archiving and replay

	Amazon SNS message archiving for FIFO topic owners
	Create a message archive policy using the AWS Management Console
	Create a message archive policy using the API
	Create a message archive policy using the SDK
	Create a message archive policy using AWS CloudFormation
	Grant access to an encrypted archive
	Grant decrypt permissions to Amazon SNS

	Monitor message archive metrics using Amazon CloudWatch

	Amazon SNS message replay for FIFO topic subscribers
	Create a message replay policy using the AWS Management Console
	Add a replay policy to the subscription using the API
	Add a replay policy to the subscription using the SDK
	Understanding the EndingPoint
	Filter replayed messages
	Monitor message replay metrics using Amazon CloudWatch

	Amazon SNS code examples for FIFO topics
	Using an AWS SDK
	Receiving messages from FIFO subscriptions

	Using AWS CloudFormation

	Amazon SNS message filtering
	Amazon SNS subscription filter policy scope
	Amazon SNS subscription filter policies
	Amazon SNS example filter policies
	A policy that accepts the example message
	A policy that rejects the example message

	Filter policy constraints in Amazon SNS
	Common policy constraints
	Policy constraints for attribute-based filtering
	Policy constraints for payload-based filtering

	AND/OR logic
	AND logic
	OR logic
	OR operator
	Policy constraints that include OR relationships

	Key matching
	Numeric value matching
	Exact matching
	Anything-but matching
	Value range matching

	String value matching
	Exact matching
	Anything-but matching
	Using a prefix with the anything-but operator
	Equals-ignore-case matching
	IP address matching
	Prefix matching
	Suffix matching

	Applying a subscription filter policy in Amazon SNS
	AWS Management Console
	AWS CLI
	AWS SDKs
	Amazon SNS API
	AWS CloudFormation

	Removing a subscription filter policy in Amazon SNS
	Using the AWS Management Console
	Using the AWS CLI
	Using the Amazon SNS API

	Message data protection in Amazon SNS
	What is message data protection?
	Why should I use message data protection?
	Understanding Amazon SNS data protection policies
	What are data protection policies?
	How is the data protection policy structured?
	JSON properties for the data protection policy
	JSON properties for a policy statement
	JSON properties for a policy statement operation

	How do I determine the IAM principals for my data protection policy?
	Data protection policy operations in Amazon SNS
	Audit operation
	Required permissions when specifying log destinations
	Required key policy for use with SSE-KMS

	Audit destination log example
	Audit operation metrics

	De-identify operation
	Deny operation

	Amazon SNS data protection policy examples
	Example policy for auditing
	Example policy with inbound de-identify mask statement
	Example policy with inbound de-identify redact statement
	Example policy with outbound de-identify mask statement
	Example policy with outbound de-identify redact statement
	Example policy with inbound deny statement
	Example policy with outbound deny statement

	Creating data protection policies in Amazon SNS
	Creating data protection policies in Amazon SNS using the API
	Creating a data protection policy using API

	Creating data protection policies in Amazon SNS using the CLI
	Creating data protection policies using the AWS CLI

	Creating data protection policies in Amazon SNS using CloudFormation
	Creating data protection policies (CloudFormation)

	Creating data protection policies in Amazon SNS using the console
	Creating Amazon SNS data protection policies to secure message data using the SDK
	Creating data protection policies using the AWS SDK

	Deleting data protection policies in Amazon SNS
	Deleting data protection policies using the console
	Deleting a data protection policy using an empty JSON string
	Deleting a data protection policy using the AWS CLI

	Amazon SNS data identifiers
	Using managed data identifiers in Amazon SNS
	What are managed data identifiers?
	Keyword requirements
	Amazon SNS managed data identifiers for sensitive data types

	Amazon SNS sensitive data types: Credentials
	Data identifier ARNs for credential data types

	Amazon SNS sensitive data types: Devices
	Data identifier ARNs for device data types

	Amazon SNS sensitive data types: Financial
	Keywords for bank account numbers
	Data identifier ARNs for financial data types

	Amazon SNS sensitive data types: Protected health information (PHI)
	Keywords for health insurance and medical identification numbers
	Data identifier ARNs for protected health information data types (PHI)

	Amazon SNS sensitive data types: Personally identifiable information (PII)
	Keywords for driver’s license identification numbers
	Keywords for national identification numbers
	Keywords for passport numbers
	Keywords for taxpayer identification and reference numbers
	Data identifier ARNs for personally identifiable information (PII)

	Using custom data identifiers in Amazon SNS
	What are custom data identifiers?
	Using custom data identifiers in your data protection policy
	Custom data identifier constraints

	Amazon SNS message delivery
	Amazon SNS raw message delivery
	Enabling raw message delivery using the AWS Management Console
	Message format examples
	Message attributes and raw message delivery for Amazon SQS subscriptions

	Sending Amazon SNS messages to an Amazon SQS queue in a different account
	Queue owner creates subscription
	Step 1: To set the topic policy using the AWS Management Console
	Step 2: To add an Amazon SQS queue subscription to a topic in another AWS account using the AWS Management Console

	A user who does not own the queue creates a subscription
	Step 1: To add an Amazon SQS queue subscription to a topic in another AWS account using the AWS Management Console
	Step 2: To confirm a subscription using the AWS Management Console

	How do I force a subscription to require authentication on unsubscribe requests?

	Sending Amazon SNS messages to an Amazon SQS queue or AWS Lambda function in a different Region
	Opt-in Regions

	Amazon SNS message delivery status
	Prerequisites for delivery status logging
	Configuring delivery status logging using the AWS Management Console
	Configuring delivery status logging using the AWS SDKs
	Topic attributes

	AWS SDK examples to configure topic attributes
	Configuring delivery status logging using AWS CloudFormation

	Amazon SNS message delivery retries
	Delivery protocols and policies
	Delivery policy stages
	Creating an HTTP/S delivery policy

	Amazon SNS dead-letter queues
	Why do message deliveries fail?
	Client-side errors
	Server-side errors

	How do dead-letter queues work?
	How are messages moved into a dead-letter queue?
	How can I move messages out of a dead-letter queue?
	How can I monitor and log dead-letter queues?
	Configuring an Amazon SNS dead-letter queue for a subscription
	Prerequisites
	To configure a dead-letter queue for an Amazon SNS subscription using the AWS Management Console
	To configure a dead-letter queue for an Amazon SNS subscription using an AWS SDK
	To configure a dead-letter queue for an Amazon SNS subscription using the AWS CLI
	To configure a dead-letter queue for an Amazon SNS subscription using AWS CloudFormation

	Amazon SNS message archiving, replay, and analytics
	Resource management and optimization in Amazon SNS
	Amazon SNS topic tagging
	Tagging for cost allocation
	Tagging for access control
	Tagging for resource searching and filtering
	Configuring Amazon SNS topic tags
	Listing, adding, and removing tags for an Amazon SNS topic using the AWS Management Console
	Adding tags to a topic using an AWS SDK
	Managing tags with Amazon SNS API actions
	API actions that support ABAC

	Amazon SNS event sources and destinations
	Amazon SNS event sources
	Analytics services
	Application integration services
	Billing & cost management services
	Business applications services
	Compute services
	Containers services
	Customer engagement services
	Database services
	Developer tools services
	Front-end web & mobile services
	Game development services
	Internet of Things services
	Machine learning services
	Management & governance services
	Media services
	Migration & transfer services
	Networking & content delivery services
	Security, identity, & compliance services
	Serverless services
	Storage services
	Additional event sources

	Amazon SNS event destinations
	A2A destinations
	A2P destinations

	Using Amazon SNS for application-to-application messaging
	Fanout to Firehose delivery streams
	Prerequisites for subscribing Firehose delivery streams to Amazon SNS topics
	Subscribing a Firehose delivery stream to an Amazon SNS topic
	Managing Amazon SNS messages across multiple delivery stream destinations
	Storing and analyzing Amazon SNS messages in Amazon S3 destinations
	Formatting Amazon SNS notifications for storage in Amazon S3 destinations
	Analyzing Amazon SNS messages stored in Amazon S3 using Athena
	Example query

	Integrating Amazon SNS messages with Amazon OpenSearch Service destinations
	Storing and formatting Amazon SNS Notifications in OpenSearch Service indices
	Analyzing Amazon SNS messages for OpenSearch Service destinations
	Example query

	Configuring Amazon SNS message delivery and analysis in Amazon Redshift destinations
	Structuring Amazon SNS message archives in Amazon Redshift tables
	Analyzing Amazon SNS messages stored in Amazon Redshift destinations
	Example query

	Configuring Amazon SNS message delivery to HTTP destinations using Amazon Data Firehose
	Amazon SNS notification format for delivery to HTTP destinations

	Amazon SNS message archiving and analytics: An example use case for airline ticketing platforms
	Setting-up initial AWS resources for Amazon SNS message archiving and analytics
	Setting-up a Firehose delivery stream for Amazon SNS message archiving
	Subscribing the Firehose delivery stream to the Amazon SNS topic
	Testing and querying an Amazon SNS configuration for effective data management
	Cleaning up

	Automating Amazon SNS message archiving with an AWS CloudFormation template

	Fanout Amazon SNS notifications to Lambda functions for automated processing
	Prerequisites for integrating Amazon SNS with Lambda functions across regions
	Subscribing a Lambda function to an Amazon SNS topic

	Fanout Amazon SNS notifications to Amazon SQS queues for asynchronous processing
	Subscribing an Amazon SQS queue to an Amazon SNS topic
	Step 1: Get the ARN of the queue and topic
	Step 2: Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue
	Step 3: Subscribe the queue to the Amazon SNS topic
	Step 4: Give users permissions to the appropriate topic and queue actions
	Adding a policy to an IAM user or group
	Adding a policy to a topic or queue

	Step 5: Test the topic's queue subscriptions

	Automate Amazon SNS to Amazon SQS messaging with AWS CloudFormation
	Using an AWS CloudFormation template to set up topics and queues within an AWS account

	Fanout Amazon SNS notifications to HTTPS endpoints
	Subscribing an HTTPS endpoint to an Amazon SNS topic
	Step 1: Make sure your endpoint is ready to process Amazon SNS messages
	Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic
	Step 3: Confirm your Amazon SNS subscription
	Step 4: Optional - Set the delivery policy for the Amazon SNS subscription
	Step 5: Optional - Give users permissions to publish to the Amazon SNS topic
	Step 6: Send Amazon SNS messages to the HTTP/HTTPS endpoint

	Verifying the signatures of Amazon SNS messages
	Parsing Amazon SNS message formats
	HTTP/HTTPS headers
	HTTP/HTTPS subscription confirmation JSON format
	HTTP/HTTPS notification JSON format
	HTTP/HTTPS unsubscribe confirmation JSON format
	SetSubscriptionAttributes delivery policy JSON format
	SetTopicAttributes delivery policy JSON format

	Fanout Amazon SNS events to AWS Event Fork Pipelines
	How AWS Event Fork Pipelines works
	The event storage and backup pipeline
	The event search and analytics pipeline
	The event replay pipeline

	Deploying AWS Event Fork Pipelines
	Deploying and testing the Amazon SNS event fork pipelines sample application
	AWS Event Fork Pipelines use case example
	Applying AWS Event Fork Pipelines

	Step 1: Deploying the sample Amazon SNS application
	Step 2: Executing the SNS-linked sample application
	Step 3: Verifying Amazon SNS application and pipeline performance
	Step 1: Verifying the execution of the sample checkout pipeline
	Step 2: Verifying the execution of the event storage and backup pipeline
	Step 3: Verifying the execution of the event search and analytics pipeline
	Step 4: Verifying the execution of the event replay pipeline

	Step 4: Simulating an issue and replay events for recovery
	Step 1: Enable the simulated issue and send a second API request
	Step 2: Verify simulated data corruption
	Step 3: Disable the simulated issue
	Step 4: Enable replay to recover from the issue

	Subscribing AWS Event Fork Pipelines to an Amazon SNS topic
	Deploying and subscribing the Event Storage and Backup Pipeline to Amazon SNS
	Deploying and subscribing the Event Search and Analytics Pipeline to Amazon SNS
	Deploying the Event Replay Pipeline with Amazon SNS integration

	Using Amazon EventBridge Scheduler with Amazon SNS
	Setting-up the execution role
	Create a schedule
	Related resources

	Using Amazon SNS for application-to-person messaging
	Mobile text messaging with Amazon SNS
	How does Amazon SNS deliver my SMS messages?
	Getting started with Amazon SNS SMS
	Getting started with Amazon SNS SMS access management
	SMS IAM policies
	Managing custom Amazon SNS IAM policies
	Resource-based policies
	Origination identities

	Prerequisites
	Using the Amazon SNS SMS sandbox
	First steps
	Adding and verifying phone numbers in the Amazon SNS SMS sandbox
	Troubleshooting non-receipt of an OTP text

	Deleting phone numbers from the Amazon SNS SMS sandbox
	Moving out of the Amazon SNS SMS sandbox

	Origination identities for Amazon SNS SMS messages
	Configuring SMS messaging in Amazon SNS
	Sending SMS messages using Amazon SNS
	Publishing SMS messages to an Amazon SNS topic
	Sending a message to a topic using the AWS console
	Sending a message to a topic using the AWS SDKs

	Publishing SMS messages to a mobile phone using Amazon SNS
	Sending a message (console)
	Sending a message (AWS SDKs)
	Sending a message

	Setting SMS messaging preferences in Amazon SNS
	Setting SMS messaging preferences using the AWS Management Console
	Setting preferences (AWS SDKs)
	Setting SMS messaging preferences for country-specific delivery

	Managing Amazon SNS phone numbers and subscriptions
	Opting out of receiving SMS messages
	Managing phone numbers and subscriptions using the Amazon SNS console
	Opting-in a phone number that has been opted-out the Amazon SNS console
	Deleting an SMS subscription the Amazon SNS console
	Deleting a topic the Amazon SNS console

	Managing phone numbers and subscriptions using the AWS SDK
	Viewing all opted-out phone numbers using the AWS SDK
	Checking whether a phone number is opted-out using the AWS SDK
	Opting-in a phone number that has been opted-out using the Amazon SNS API
	Deleting an SMS subscription using the AWS SDK
	Deleting a topic using the AWS SDK

	Amazon SNS SMS activity monitoring
	Viewing Amazon SNS SMS delivery statistics
	Amazon SNS SMS delivery monitoring with Amazon CloudWatch metrics and logs
	Viewing Amazon CloudWatch metrics
	Viewing CloudWatch Logs
	Example log for successful SMS delivery
	Example log for failed SMS delivery
	SMS delivery failure reasons

	Subscribing to Amazon SNS daily SMS usage reports
	Daily usage report information
	Subscribing to daily usage reports
	Example bucket policy
	Example daily usage report

	Requesting support for Amazon SNS SMS messaging
	Requesting increases to your monthly Amazon SNS SMS spending quota
	Step 1: Open an Amazon SNS SMS case
	Step 2: Update your SMS settings on the Amazon SNS console

	Sending mobile push notifications with Amazon SNS
	How Amazon SNS user notifications work
	Setting up push notifications with Amazon SNS
	Setting up a mobile app in Amazon SNS
	Prerequisites for Amazon SNS user notifications
	Creating an Amazon SNS platform application
	Setting up an Amazon SNS platform endpoint for mobile notifications
	Understanding device tokens and platform endpoints
	Create a platform endpoint
	Pseudo code
	AWS SDK example
	Troubleshooting
	Repeatedly calling create platform endpoint with an outdated device token
	Re-enabling a platform endpoint associated with an invalid device token

	Integrating device tokens with Amazon SNS for mobile notifications
	Amazon SNS Apple push notification authentication methods
	Amazon SNS integration with Firebase Cloud Messaging authentication setup
	Prerequisite
	Managing FCM settings using the CLI
	Managing FCM settings using the console
	Managing FCM settings (console)

	Amazon SNS management of Firebase Cloud Messaging endpoints
	Managing and maintaining device tokens
	Pseudo code

	Detecting invalid tokens
	Removing stale tokens

	Using Amazon SNS for mobile push notifications
	Publishing to a topic
	Direct Amazon SNS mobile device messaging
	Publishing Amazon SNS notifications with platform-specific payloads
	Sending JSON-formatted messages
	Sending platform-specific messages
	Sending messages to an application on multiple platforms
	Sending messages to APNs as alert or background notifications
	Specifying custom APNs header values
	Inferring the APNs push type header from the payload

	Using Google Firebase Cloud Messaging v1 payloads in Amazon SNS
	Using the FCM v1 payload structure to send messages
	Using the legacy payload structure to send messages to the FCM v1 API
	FCM delivery failure events

	Amazon SNS mobile app attributes
	Configuring message delivery status attributes using the AWS Management Console
	Amazon SNS message delivery status CloudWatch log examples
	Configuring message delivery status attributes with the AWS SDKs
	Platform response codes

	Amazon SNS application event notifications for mobile applications
	Available application events
	Sending mobile push notifications
	AWS Management Console
	AWS CLI
	AWS SDKs

	Mobile push API actions
	Common Amazon SNS mobile push API errors
	Using the Amazon SNS time to live message attribute for mobile push notifications
	TTL message attributes for push notification services
	Precedence order for determining TTL
	Specifying TTL using the AWS Management Console

	Amazon SNS mobile application supported Regions
	Best practices for managing Amazon SNS mobile push notifications
	Endpoint management
	Delivery status logging
	Event notifications

	Amazon SNS email subscription setup and management
	Subscribing an email address to an Amazon SNS topic using the AWS Management Console
	Subscribing an email address to an Amazon SNS topic using an AWS SDK

	Amazon SNS best practices
	Amazon SNS security best practices
	Preventative best practices
	Ensure topics aren't publicly accessible
	Implement least-privilege access
	Use IAM roles for applications and AWS services which require Amazon SNS access
	Implement server-side encryption
	Enforce encryption of data in transit
	Consider using VPC endpoints to access Amazon SNS
	Ensure subscriptions are not configured to deliver to raw http endpoints

	Amazon SNS SMS best practices
	Comply with laws, regulations, and carrier requirements
	Obtain permission
	Opt-in workflow
	Other opt-in workflow types

	Don't send to old lists
	Audit your customer lists
	Keep records
	Make your messages clear, honest, and concise
	Identify yourself as the sender
	Don't try to make your message look like a person-to-person message
	Be careful when talking about money
	Use only the necessary characters
	Use valid, safe links
	Limit the number of abbreviations that you use

	Respond appropriately
	Adjust your sending based on engagement
	Send at appropriate times
	Avoid cross-channel fatigue
	Use dedicated short codes
	Verify your destination phone numbers
	Design with redundancy in mind
	SMS limits and restrictions
	Managing opt out keywords
	CreatePool
	PutKeyword
	Managing number settings
	SMS character limits in Amazon SNS
	GSM 03.38 character set
	Example messages

	Code examples for Amazon SNS using AWS SDKs
	Hello Amazon SNS
	Basic examples for Amazon SNS using AWS SDKs
	Hello Amazon SNS
	Actions for Amazon SNS using AWS SDKs
	Use CheckIfPhoneNumberIsOptedOut with an AWS SDK or CLI
	Use ConfirmSubscription with an AWS SDK or CLI
	Use CreateTopic with an AWS SDK or CLI
	Use DeleteTopic with an AWS SDK or CLI
	Use GetSMSAttributes with an AWS SDK or CLI
	Use GetTopicAttributes with an AWS SDK or CLI
	Use ListPhoneNumbersOptedOut with an AWS SDK or CLI
	Use ListSubscriptions with an AWS SDK or CLI
	Use ListTopics with an AWS SDK or CLI
	Use Publish with an AWS SDK or CLI
	Use SetSMSAttributes with an AWS SDK or CLI
	Use SetSubscriptionAttributes with an AWS SDK or CLI
	Use SetSubscriptionAttributesRedrivePolicy with an AWS SDK
	Use SetTopicAttributes with an AWS SDK or CLI
	Use Subscribe with an AWS SDK or CLI
	Use TagResource with an AWS SDK or CLI
	Use Unsubscribe with an AWS SDK or CLI

	Scenarios for Amazon SNS using AWS SDKs
	Build an application to submit data to a DynamoDB table
	Build a publish and subscription application that translates messages
	Create a platform endpoint for Amazon SNS push notifications using an AWS SDK
	Create a photo asset management application that lets users manage photos using labels
	Create an Amazon Textract explorer application
	Create and publish to a FIFO Amazon SNS topic using an AWS SDK
	Detect people and objects in a video with Amazon Rekognition using an AWS SDK
	Publish SMS messages to an Amazon SNS topic using an AWS SDK
	Publish a large message to Amazon SNS with Amazon S3 using an AWS SDK
	Publish an Amazon SNS SMS text message using an AWS SDK
	Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK
	Use API Gateway to invoke a Lambda function
	Use scheduled events to invoke a Lambda function

	Serverless examples for Amazon SNS using AWS SDKs
	Invoke a Lambda function from an Amazon SNS trigger

	Amazon SNS security
	Amazon SNS data protection
	Amazon SNS data encryption
	Securing Amazon SNS data with server-side encryption
	Encryption scope
	Key terms

	Managing Amazon SNS encryption keys and costs
	Estimating AWS KMS costs
	Example 1: Calculating the number of AWS KMS API calls for 1 publisher and 1 topic
	Example 2: Calculating the number of AWS KMS API calls for multiple publishers and 2 topics

	Configuring AWS KMS permissions
	Allow a user to send messages to a topic with SSE
	Enable compatibility between event sources from AWS services and encrypted topics

	AWS KMS errors

	Setting up Amazon SNS topic encryption with server-side encryption
	Option 1: Enable encryption using the AWS Management Console
	Option 2: Enable encryption using AWS CDK
	Additional information
	Impact on consumers

	Setting up Amazon SNS topic encryption with encrypted Amazon SQS queue subscription
	Step 1: Create a custom KMS key
	Step 2: Create an encrypted Amazon SNS topic
	Step 3: Create and subscribe encrypted Amazon SQS queues
	Step 4: Publish a message to your encrypted topic
	Step 5: Verify message delivery

	Securing Amazon SNS traffic with VPC endpoints
	Creating an Amazon VPC endpoint for Amazon SNS
	Creating the endpoint
	Testing the connection between your VPC and Amazon SNS

	Creating an Amazon VPC endpoint policy for Amazon SNS
	Publishing an Amazon SNS message from Amazon VPC
	Before you begin
	Step 1: Create an Amazon EC2 key pair
	Step 2: Create the AWS resources
	Step 3: Confirm that your Amazon EC2 instance lacks internet access
	Step 4: Create an Amazon VPC endpoint for Amazon SNS
	Step 5: Publish a message to your Amazon SNS topic
	Step 6: Verify your message deliveries
	Step 7: Clean up
	Related resources

	Enhancing Amazon SNS security with Message Data Protection

	Identity and access management in Amazon SNS
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	Access control
	Overview of managing access in Amazon SNS
	Amazon SNS access control use cases
	Key Amazon SNS access policy concepts
	Permission
	Statement
	Policy
	Issuer
	Principal
	Action
	Resource
	Conditions and keys
	Requester
	Evaluation
	Effect
	Default deny
	Allow
	Explicit deny

	Amazon SNS access control architecture overview
	Using the Access Policy Language in Amazon SNS
	Evaluation logic
	The interplay of explicit and default denials

	Example cases for Amazon SNS access control
	Grant AWS account access to a topic
	Limit subscriptions to HTTPS
	Publish messages to an Amazon SQS queue
	Allow Amazon S3 event notifications to publish to a topic
	Allow Amazon SES to publish to a topic that is owned by another account
	aws:SourceAccount versus aws:SourceOwner
	Allow accounts in an organization in AWS Organizations to publish to a topic in a different account
	Allow any CloudWatch alarm to publish to a topic in a different account
	Restrict publication to an Amazon SNS topic only from a specific VPC endpoint

	How Amazon SNS works with IAM
	AWS managed policies for Amazon Simple Notification Service
	AWS managed policy: AmazonSNSFullAccess
	AWS managed policy: AmazonSNSReadOnlyAccess
	Amazon SNS updates to AWS managed policies

	Policy actions for Amazon SNS
	Policy resources for Amazon SNS
	Policy condition keys for Amazon SNS
	ACLs in Amazon SNS
	ABAC with Amazon SNS
	Using temporary credentials with Amazon SNS
	Cross-service principal permissions for Amazon SNS
	Service roles for Amazon SNS
	Service-linked roles for Amazon SNS
	Identity-based policy examples for Amazon Simple Notification Service
	Policy best practices
	Using the Amazon SNS console
	Other policy types
	Multiple policy types
	Allow users to view their own permissions

	Identity-based policies for Amazon SNS
	Identity-based policy examples for Amazon SNS

	Resource-based policies within Amazon SNS
	Using identity-based policies with Amazon SNS
	IAM and Amazon SNS policies together
	Amazon SNS resource ARN format
	Amazon SNS API actions
	Amazon SNS policy keys
	Example policies for Amazon SNS

	Using temporary security credentials with Amazon SNS
	Amazon SNS API permissions: Actions and resources reference
	Policy quotas
	Valid Amazon SNS policy actions
	Service-specific keys
	Troubleshooting Amazon Simple Notification Service identity and access
	I am not authorized to perform an action in Amazon SNS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon SNS resources

	Logging and monitoring in Amazon SNS
	Logging Amazon SNS API calls using CloudTrail
	Amazon SNS information in CloudTrail
	Control plane events in CloudTrail
	Data plane events in CloudTrail
	Example: Amazon SNS log file entries

	Monitoring Amazon SNS topics using CloudWatch
	View CloudWatch metrics for Amazon SNS
	Set CloudWatch alarms for Amazon SNS metrics
	Amazon SNS metrics
	Dimensions for Amazon SNS metrics
	Amazon SNS usage metrics

	Compliance validation for Amazon SNS
	Resilience in Amazon SNS
	Infrastructure security in Amazon SNS

	Troubleshooting Amazon SNS topics
	Troubleshooting Amazon SNS topics using AWS X-Ray
	Active tracing in Amazon SNS
	Active tracing permissions
	Enabling active tracing on an Amazon SNS topic using the AWS console
	Enabling active tracing on an Amazon SNS topic using the AWS SDK
	Enabling active tracing on an Amazon SNS topic using the AWS CLI
	Enabling active tracing on an Amazon SNS topic using AWS CloudFormation
	Verifying active tracing is enabled for your topic
	Testing active tracing

	Amazon SNS documentation history

