aws

Developer Guide

AWS Database Encryption SDK

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Database Encryption SDK Developer Guide

AWS Database Encryption SDK: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Database Encryption SDK Developer Guide

Table of Contents

What is the AWS Database ENcryption SDK?ciiiiiiiiiiinneeenneesiiiiicceiinnsssssssssssssssssssssssssssssssssses 1
Developed in OPeNn-SOUIrCE rEPOSITOMIEScceceeeeeeeeieietertestecteee s e e e et et e st e saesaessessessesseesseaesaesessensenss 3
SUPPOrt aNd MAINTENANCEceeeeeeeeee ettt se e e et e et esaesae st e te s e e se s e e se e e etesesaassassassassasseansans 3
SENAING FEEADACK ...ttt e e et et b e s b e e e e e e e e e e saenaeseasenes 3
CONCEPLS ettt ettt s e et s b e s sae e s b e s s sa e s b e s s sa e s b e s st e s b e e e s e essbeessaa s ae e s e e et e e st e e ae e s e e e aa e s e eeteeeraennaeas 4

ENVELOPE ENCIYPLION ..ttt ettt et e st e e e st e e e s s e e et et e b e aasbassassesnnenaanes 5
DA KEY oottt et te s e e et e st st e st e st e st e ae e e e e s et et et e b e s e e s e e Raeat et et e tessaeseeseeneentententantanes 6
WIEAPPING KBY ettt ettt te et e e e e st et e st e st et e s b e e se e e e e e e et et entassasassasseesaeneessensanes 7
KEYFINGS ettt ettt e et e st e s ae e s b e s s st e s sae s aa e e saesssaessaesssaessba s seasssessaesssaesstesssesssaessseesnsesssennes 8
CryptographiC @CHIONS ...ttt a et et e st e s e s e s e sa e e e e et e tesaansanes 8
Material AESCIIPLION ..ottt ettt et e s te st e et e e e e e e ae st et esaessassesseeneesaansansan 9
ENCrYPLION CONTEXT ettt ettt st e e e s ae e st e s sae s e e s ae e s e e s saa s sa e s aeessaasssassaasssans 9
Cryptographic MaterialS MAaN@gEN ...ttt e sae e s e e e e e e s e saesaessenaans 10
Symmetric and asymmetric @NCrYPLiON ...ttt a e ae s 10
KEY COMMUEIMIENT ...ttt ettt s s e e st e s s ae s s e e s saa e st e s saeessaesssaessnasssasssaennns 11
DiIGItal SIGNALUIES ..ottt e et e st e st st e s e e e e e e s et et e st et e s tessessaesaensansensansanes 12
HOW Tt WOTKS ettt sttt sttt sttt st ettt et s e b et s aa st e e ssassesaenas 13
ENCIYPL QN SIGN oottt ettt e st e st e st e st e e e e s e e s et et e ste st e sasseesasssensansensansansans 13
DECIYPL @NA VO ettt sttt s b e st e s s e se e e a e b et e s tessaeseeneesnanes 15
Supported algorithm SUITES ...ttt st s e s e e e e e st aanean 15
Default algorithim SUILE ...ttt ettt s e s e e e a e e aan 18
AES-GCM without ECDSA digital SIgNatures ...ttt 19

Interacting With AWS KIMS ... iiiiiiiiertniiiicieciiiiiiessssssssssssssssscsss 21

Configuring the SDKciiiiiiiiiiieeeiiiiieeeiiiiteeessssssssssssssecsesses 23
Selecting a programming LANQUAGE ..ottt sre e e e saesaesae st e ssessessessaesnennens 23
SEleCting WIAPPING KEYS ..ottt ettt et estesse st s e s e e s et e st e aessessesseesaensensansansansansans 23
Creating @ diSCOVENY FILLON ...ttt e a et sae st e s eese e e e e saeaanes 25
Working with multitenant databases ... 26
Creating SIgNEA DEACONS ..ottt ettt te e s e e e e e et et e st e ste s b e saesesseenn et ansansansanes 27

K@Y TINGS ciiiiiiiinnennnnniiiiiiieiiinneennssssesssssssessassnnsss 34
HOW KEYIINGS WOTK ...ttt te e ste e te e e e e e e et et e st e st e s s asseeseeseesaessa st ansassassassessassssnsansanes 35
AWS KMS KEYTINGS ..uveriteieeieetesieeeeeteisestestestessessassessesssessessessessessassassessassssssensessessessessassassessessesssessensans 36

Required permissions for AWS KMS KEYIINGScceeieirieiierierieceeeseeee st sae e sae e e s s snenns 37

Identifying AWS KMS keys in an AWS KMS KEYIINGcceeeeieiienieieneseseeeeeecaetestessessesseseessnnens 37

AWS Database Encryption SDK Developer Guide

Creating an AWS KMS KEYIING ...ttt sttt e stestesse e s e e s e s e aea e aesaanan 38
Using MUlti-REGION AWS KMS KEYSooeeiiiiieciecteceeeeeeeeeestestessestessesssssssssessessessessessessassessssssensan 41
Using an AWS KMS diSCOVEIY KEYIINGocveieieeeececeeeeetete et tesse e aeae s 43
Using an AWS KMS regional diSCOVEry KEYINGc.cccceeeeeeerieeieeeirecteetesesteeeeeeeeseessesaessessansens 45
AWS KMS HierarchiCal KEYIINGS ... oiiieieeeeeeeeeeeeetete ettt sveete e e et saesaesaesaessessessa e e e s e saannanaans 47
HOW Tt WOTKS <.ttt st ettt ettt s st et s b et e s s e b e s saessasnenaes 48
PrErEQUISITES .eeeeiiteeieeteece ettt s et s e st e st e s sae e s b e s s st e sbesssaesssasssaesssasssaesssessssesaessseesssennses 50
Create @ Hierarchical KEYING ...ttt s et ae st e st e se s e s e e e e e aennan 55
Rotate your active BranCh KEY ...ttt steste st s a e e a et aa s 56
Using the Hierarchical keyring with multitenant databases ..., 57
Using the Hierarchical keyring for searchable encryption ..., 65
AWS KMS ECDH KEYFINGS ..ouveiereeieereeieeeeteiteitestestestessessessessessessessessessessassessassassssssessessensessassassessassaseens 71
Required permissions for AWS KMS ECDH KEYIINGScccoveeevierrerierieneneeeeeereseecsesaessessessesneaenns 72
Creating an AWS KMS ECDH KEYIINGcccveievierieeieeieeeeeeeeeetestetestessesseesesssesesaesaessessessesssssessssnsenes 73
Creating an AWS KMS ECDH diSCOVErY KEYIINGccecuecueeiereeieeeeeesteceectecte e steseeeeesaesaessessennas 75
RAW AES KEYIINGS .ottt sttt ste e e s e e s st et et e st e st e st e ssasseeseesseaeaasessassassasssessansessensansans 78
RAW RSA KEYFINGS ..ouveteiieiieeeteietestestesteseeeesetesaessessessassessesssessassessessansassassassessssssessensensensessessessessaensenes 80
RAW ECDH KEYFINGS «oeveeiieeiteteteiectestee et ee e seestestestestesse s e ssasss e s e se st assassassessassssssensessansansansensassassessesnen 83
Creating @ RAW ECDH KEYIING ...coueuieieieteteteeceseeeeee et steste e e e e e e e saessesaessassa s e ssnennesaesaannan 84
MULLISKEYTINGS ettt et et et et e st e st e s s e e e e e et e s s et e tebessassaeseesaessensantansansansans 91
SY=FTd 1 F: 1] CI=T) ol V7 01 4] o [OTOS 94
Are beacons right for MY dataset? ...ttt st an 95
Searchable eNCryption SCENAMOccioeeieeeeeeeeeteetecee ettt te s e e e s e s et e st e saesaasseesnennannens 98
BRACONS ..ttt ettt et b e st b e st b e e b et s bt e b e e st e st et e e st e es e s b e e atesneeane 99
STANAAIA DEACONS ...ttt ettt ettt st et s et e s e b et e e s be b e e esassensenaene 100
COMPOUNT DEACOMNS ...ttt et e stesteste s e e e e e e s e aesaestessessessaesaessessansassansassassassaensessanen 102
Planning DEACONS ..ottt te s e st e st e st e st et e s e e e e e e s et et e tassessaesneseansensansanes 103
Considerations for multitenant databases ... 104
ChOOSING @ DEACON LYPE ..ttt ettt st e s te st e e e e e e e et e b e testessessessaennanaansans 104
ChooSiNg @ BEACON LENGLN ...ttt e a e e a e es 111
ChoOSING @ DEACON NAME ...ttt te e s e e e e e e e e st e st et e sessa s e e e esnennansansans 117
CoNFIGUIING DEACONS ...ttt e st e st et e s e e e e e et e b et e saesbassaeseeneessanaansansanes 118
Configuring standard DEACONS ...ttt st e s ae e s s e s e s e aeaenaan 118
Configuring cOMPOUNd DEACONSooieieieeeececeetetetete et saesteste e se e e s e e e aesaesaanas 126
EXample CONTIQUIAtIONSoviieeeceeeeee ettt ve e e et sae st e s e s basbe s eaeaesnennan 134
USING DBACONS ...ttt te st e et et et e st e st e s b e s s e e e e e e sa e st esaastessassassessaeseessensensansans 138

AWS Database Encryption SDK Developer Guide

QUENYING DEACONS ...ttt st e s ae e e et et e s te st e st e st e s seesa e e e s e s ansansanaanes 140
Searchable encryption for multitenant databases ... 142
Querying beacons in a multitenant database ... 144
AMaAzon DYNAMODBcciiiiiiiiniiinniiiimeiciimmeisissssiessessssssesssssessesssssssssssssssssssssssssssssssssssesssssssssssnes 146
Client-side and server-side @NCrYPLIONccccceeicieeeeceecetere et ste e e e e s sae s sae s 147
Which fields are encrypted and SIgNed? ...ttt aens 149
ENcrypting attribUte VALUES ...ttt sttt nean 150
SIGNING ThE FEIM ettt te s e s e e e e e e b e s ae st e s besse e e esaennennan 151
Searchable encryption in DYNAmODB ...t a et st saesae s s s se e seenens 151
Configuring secondary indexes With DEACONSc.coeeieieieieceeecece e 151
Testing DEACON OULPULS ...o.eeeeeeeeeeee ettt sa e st e st e s se s s e e e e e e e e aesaasaanean 153
Updating your data MOAEL ...ttt te et a et e st sa e st s e nsanennan 157
Add new ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributesccccceevmverreecrrrreeeecreeeeereeeneens 159
REMOVE eXiStiNG QtIriDULES ...cveeeeeee et st a s 159
Change an existing ENCRYPT_AND_SIGN attribute to SIGN_ONLY or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .cocicirecerirerirreererierereeeseesessssesessenessesessssenennes 160
Change an existing SIGN_ONLY or STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attribute to ENCRYPT_AND_STIGN ...ccoecieieieiiereteerenteseeestesteeesestesaeessessessssessessssessassesassessessenes 161
Add @ NeW DO_NOTHING @triDULE ...ccueeeeeeeeieeeeeeeecteeecteeceecce e cere e csne e essne e sseeesneeenns 161
Change an existing SIGN_ONLY attribute to
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .ovecrcirerrrirerieneeesressesssessensenessassesessesseseenes 162
Change an existing SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribute to
STGN_ONLY ceteieiertetrententetsestestesesteste st ssesse st esessesae st ssessestesassessensssessessessssensestesessentenessessensesessessesassans 163
Programming LANQUAGESccucouieeeireiieeeeectectestestesteeeeseereestesaestestessessassasseess s s essessessessassassassassesssenean 163
JAVA ettt et a et a s b et a s b et e Rt s b et e n e be st e ne e neaee 164
INET ettt ettt ettt et st a ettt e e e e Rt et e R b et et e R et et e e se b et e sese e enene 198
LOGACY ettt ettt st s e st e st e e st e e e e e e e b e e s R e e e a e e e e e e s e et e e b e et e e s e et e e ae e e st e e sraesnreesseenssasnne 214
AWS Database Encryption SDK for DynamoDB version SUPPOrtcccceeeverereneneereeseecnennas 215
HOW Tt WOTKS ettt ettt ettt ettt sb e st et s e s e st e s s e b e e ssansen 216
CONCEPLS ettt sttt et e st e st e s sae s st e s te s st e s saa s s st e s se s st assse e saesssessssasssassseesssessssesssessseesssessseenaens 219
Cryptographic MaterialS ProVIAEr ... ettt ettt este s se e an 224
Programming LANQUAGESccucceeuereeieieeeietertestestesteeee e saessestestesaessessessaesssssessessassassassassessnsssaseans 254
Changing your data MOAEL ...ttt e s e e e e e aesaenaans 281
TrOUBLESNOOTING ..ottt s ae s e e ettt t e saesbe s e s sa e e e saea et ensenean 285
DynamoDB Encryption ClIeNt reNamecciciciiiiiiineenennnciiiiicccinnnnss 289

AWS Database Encryption SDK Developer Guide

3 T2 =T =T 3T 291
Material description fOrMAt ..ottt a e et nes 291
AWS KMS Hierarchical keyring technical details ... 294

DOCUMENT NISTOIY auueuiiiiiiiiiiiiiieeenenniiiiiieieeinieensnsssssssssssseseesssnes 296

Vi

AWS Database Encryption SDK Developer Guide

What is the AWS Database Encryption SDK?

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK is a set of software libraries that enable you to include client-
side encryption in your database design. The AWS Database Encryption SDK provides record-level
encryption solutions. You specify which fields are encrypted and which fields are included in the
signatures that ensure the authenticity of your data. Encrypting your sensitive data in transit and at
rest helps ensure that your plaintext data isn't available to any third party, including AWS. The AWS
Database Encryption SDK is provided free of charge under the Apache 2.0 license.

This developer guide provides a conceptual overview of the AWS Database Encryption SDK,
including an introduction to its architecture, details about how it protects your data, how it differs
from server-side encryption, and guidance on selecting critical components for your application to
help you get started.

The AWS Database Encryption SDK supports Amazon DynamoDB with attribute-level encryption.
Version 3.x of the Java client-side encryption library for DynamoDB is a major rewrite of the
DynamoDB Encryption Client for Java. It includes many updates, such as a new structured data
format, improved multitenancy support, searchable encryption, and support for seamless schema
changes.

The AWS Database Encryption SDK has the following benefits:

Designed especially for database applications

You don't need to be a cryptography expert to use the AWS Database Encryption SDK.
The implementations include helper methods that are designed to work with your existing
applications.

After you create and configure the required components, the encryption client transparently
encrypts and signs your records when you add them to a database, and verifies and decrypts
them when you retrieve them.

AWS Database Encryption SDK Developer Guide

Includes secure encryption and signing

The AWS Database Encryption SDK includes secure implementations that encrypt the field
values in each record using a unique data encryption key, and then sign the record to protect it
against unauthorized changes, such as adding or deleting fields, or swapping encrypted values.

Uses cryptographic materials from any source

The AWS Database Encryption SDK uses keyrings to generate, encrypt, and decrypt the unique

data encryption key that protects your record. Keyrings determine the wrapping keys that
encrypt that data key.

You can use wrapping keys from any source, including cryptography services, such as AWS Key
Management Service (AWS KMS) or AWS CloudHSM. The AWS Database Encryption SDK doesn't
require an AWS account or any AWS service.

Support for cryptographic materials caching

The AWS KMS Hierarchical keyring is a cryptographic materials caching solution that reduces
the number of AWS KMS calls by using AWS KMS protected branch keys persisted in an Amazon
DynamoDB table, and then locally caching branch key materials used in encrypt and decrypt
operations. It allows you to protect your cryptographic materials under a symmetric encryption
KMS key without calling AWS KMS every time you encrypt or decrypt a record. The AWS KMS
Hierarchical keyring is a good choice for applications that need to minimize calls to AWS KMS.

Searchable encryption

You can design databases that can search encrypted records without decrypting the entire
database. Depending on your threat model and query requirements, you can use searchable

encryption to perform exact match searches or more customized complex queries on your
encrypted database.

Support for multitenant database schemas

The AWS Database Encryption SDK enables you to protect data stored in databases with a
shared schema by isolating each tenant with distinct encryption materials. If you have multiple
users performing encrypt operations within your database, use one of the AWS KMS keyrings
to provide each user with a distinct key to use in their cryptographic operations. For more
information, see Working with multitenant databases.

Support for seamless schema updates

When you configure the AWS Database Encryption SDK, you provide cryptographic actions that
tell the client which fields to encrypt and sign, which fields to sign (but not encrypt), and which

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Database Encryption SDK Developer Guide

to ignore. After you have used the AWS Database Encryption SDK to protect your records, you
can still make changes to your data model. You can update your cryptographic actions, such as
adding or removing encrypted fields, in a single deployment.

Developed in open-source repositories

The AWS Database Encryption SDK is developed in open-source repositories on GitHub. You can
use these repositories to view the code, read and submit issues, and find information that is specific
to your implementation.

The AWS Database Encryption SDK for DynamoDB

» The aws-database-encryption-sdk-dynamodb repository on GitHub supports version 3.x and
later of the AWS Database Encryption SDK for DynamoDB in Java and .NET.

Version 3.x of the AWS Database Encryption SDK for DynamoDB is a product of Dafny, a
verification-aware language in which you write specifications, the code to implement them, and
the proofs to test them. The result is a library that implements the features of the AWS Database
Encryption SDK for DynamoDB in a framework that assures functional correctness.

Support and maintenance

The AWS Database Encryption SDK uses the same maintenance policy that the AWS SDK and
Tools use, including its versioning and lifecycle phases. As a best practice, we recommend that

you use the latest available version of the AWS Database Encryption SDK for your database
implementation, and upgrade as new versions are released.

For more information, see the AWS SDKs and Tools maintenance policy in the AWS SDKs and Tools
Reference Guide.

Sending feedback

We welcome your feedback! If you have a question or comment, or an issue to report, please use
the following resources.

If you discover a potential security vulnerability in the AWS Database Encryption SDK, please notify
AWS security. Do not create a public GitHub issue.

Developed in open-source repositories 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS Database Encryption SDK Developer Guide

To provide feedback on this documentation, use the feedback link on any page.

AWS Database Encryption SDK concepts

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

This topic explains the concepts and terminology used in the AWS Database Encryption SDK.

To learn how the components of the AWS Database Encryption SDK interact, see How the AWS
Database Encryption SDK works.

To learn more about the AWS Database Encryption SDK, see the following topics.

« Learn how the AWS Database Encryption SDK uses envelope encryption to protect your data.

 Learn about the elements of envelope encryption: the data keys that protect your records and
the wrapping keys that protect your data keys.

 Learn about the keyrings that determine which wrapping keys you use.

» Learn about the encryption context that adds integrity to your encryption process.

» Learn about the material description that the encryption methods add to your record.

» Learn about the cryptographic actions that tell the AWS Database Encryption SDK what fields to
encrypt and sign.

Topics
« Envelope encryption

« Data key
« Wrapping key

 Keyrings
» Cryptographic actions

» Material description

« Encryption context

» Cryptographic materials manager

o Symmetric and asymmetric encryption

Concepts 4

AWS Database Encryption SDK Developer Guide

» Key commitment

 Digital signatures

Envelope encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt it.
One accepted best practice for protecting the data key is to encrypt it. To do this, you need another
encryption key, known as a key-encryption key or wrapping key. The practice of using a wrapping
key to encrypt data keys is known as envelope encryption.

Protecting data keys

The AWS Database Encryption SDK encrypts each field with a unique data key. Then it encrypts

each data key under the wrapping key you specify. It stores the encrypted data keys in the
material description.

To specify your wrapping key, you use a keyring.

Stored
g together in
your database

e o i
Encrypts :
Plaintext data key Plaintext field Encrypted field
@ .0 O
Encrypts
Wrapping key Plaintext data key Encrypted data key

Encrypting the same data under multiple wrapping keys

You can encrypt the data key with multiple wrapping keys. You might want to provide different
wrapping keys for different users, or wrapping keys of different types, or in different locations.
Each of the wrapping keys encrypts the same data key. The AWS Database Encryption SDK
stores all of the encrypted data keys alongside the encrypted fields in the material description.

To decrypt the data, you need to provide at least one wrapping key that can decrypt the
encrypted data keys.

Envelope encryption 5

AWS Database Encryption SDK Developer Guide

Combining the strengths of multiple algorithms

To encrypt your data, by default, the AWS Database Encryption SDK uses an algorithm suite
with AES-GCM symmetric encryption, an HMAC-based key derivation function (HKDF), and
ECDSA signing. To encrypt the data key, you can specify a symmetric or asymmetric encryption
algorithm appropriate to your wrapping key.

In general, symmetric key encryption algorithms are faster and produce smaller ciphertexts
than asymmetric or public key encryption. But public key algorithms provide inherent separation
of roles. To combine the strengths of each, you can encrypt the data key with public key
encryption.

We recommend using one of the AWS KMS keyrings whenever possible. When you use the AWS
KMS keyring, you can choose to combine the strengths of multiple algorithms by specifying an
asymmetric RSA AWS KMS key as your wrapping key. You can also use a symmetric encryption
KMS key.

Data key

A data key is an encryption key that the AWS Database Encryption SDK uses to encrypt the fields in
a record that are marked ENCRYPT_AND_SIGN in the cryptographic actions. Each data key is a byte
array that conforms to the requirements for cryptographic keys. The AWS Database Encryption SDK
uses a unique data key to encrypt each attribute.

You don't need to specify, generate, implement, extend, protect, or use data keys. The AWS
Database Encryption SDK does that work for you when you call the encrypt and decrypt
operations.

To protect your data keys, the AWS Database Encryption SDK encrypts them under one or more
key-encryption keys known as wrapping keys. After the AWS Database Encryption SDK uses your
plaintext data keys to encrypt your data, it removes them from memory as soon as possible. Then
stores the encrypted data key in the material description. For details, see How the AWS Database
Encryption SDK works.

® Tip
In the AWS Database Encryption SDK, we distinguish data keys from data encryption keys.
As a best practice, all of the supported algorithm suites use a key derivation function. The

Data key 6

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Database Encryption SDK Developer Guide

key derivation function takes a data key as input and returns the data encryption keys
that are actually used to encrypt your records. For this reason, we often say that data is
encrypted "under" a data key rather than "by" the data key.

Each encrypted data key includes metadata, including the identifier of the wrapping key that
encrypted it. This metadata makes it possible for the AWS Database Encryption SDK to identify
valid wrapping keys when decrypting.

Wrapping key

A wrapping key is a key-encryption key that the AWS Database Encryption SDK uses to encrypt the
data key that encrypts your records. Each data key can be encrypted under one or more wrapping
keys. You determine which wrapping keys are used to protect your data when you configure a

keyring.

e

Encrypts

Wrapping key Plaintext data key Encrypted data key

The AWS Database Encryption SDK supports several commonly used wrapping keys, such as AWS
Key Management Service (AWS KMS) symmetric encryption KMS keys (including multi-Region AWS
KMS keys) and asymmetric RSA KMS keys, raw AES-GCM (Advanced Encryption Standard/Galois
Counter Mode) keys, and raw RSA keys. We recommend using KMS keys whenever possible. To

decide which wrapping key you should use, see Selecting wrapping keys.

When you use envelope encryption, you need to protect your wrapping keys from unauthorized
access. You can do this in any of the following ways:

» Use a service designed for this purpose, such as AWS Key Management Service (AWS KMS).
» Use a hardware security module (HSM) such as those offered by AWS CloudHSM.

» Use other key management tools and services.

If you don't have a key management system, we recommend AWS KMS. The AWS Database
Encryption SDK integrates with AWS KMS to help you protect and use your wrapping keys.

Wrapping key 7

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Database Encryption SDK Developer Guide

Keyrings

To specify the wrapping keys you use for encryption and decryption, you use a keyring. You can use
the keyrings that the AWS Database Encryption SDK provides or design your own implementations.

A keyring generates, encrypts, and decrypts data keys. It also generates the MAC keys used to
calculate the Hash-Based Message Authentication Codes (HMACs) in the signature. When you
define a keyring, you can specify the wrapping keys that encrypt your data keys. Most keyrings

specify at least one wrapping key or a service that provides and protects wrapping keys. When
encrypting, the AWS Database Encryption SDK uses all of the wrapping keys specified in the
keyring to encrypt the data key. For help with choosing and using the keyrings that the AWS
Database Encryption SDK defines, see Using keyrings.

Cryptographic actions

Cryptographic actions tell the encryptor which actions to perform on each field in a record.

The cryptographic action values can be one of the following:

« Encrypt and sign - Encrypt the field. Include the encrypted field in the signature.
« Sign only - Include the field in the signature.

« Sign and include in encryption context — Include the field in the signature and encryption
context.

By default, the partition and sort keys are the only attribute included in

the encryption context. You might consider defining additional fields as
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT so that the branch key ID supplier for your
AWS KMS Hierarchical keyring can identify which branch key is required for decryption from the

encryption context. For more information, see branch key ID supplier.

(@ Note

To use the SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographic
action, you must use version 3.3 or later of the AWS Database Encryption SDK.
Deploy the new version to all readers before updating your data model to include
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

« Do nothing - Do not encrypt or include the field in the signature.

Keyrings 8

AWS Database Encryption SDK Developer Guide

For any field that can store sensitive data, use Encrypt and sign. For primary key values (for
example, a partition key and sort key in a DynamoDB table), use Sign only or Sign and include in
encryption context. If you specify any Sign and include in encryption context attributes, then
the partition and sort attributes must also be Sign and include in encryption context. You do not
need to specify cryptographic actions for the material description. The AWS Database Encryption
SDK automatically signs the field that the material description is stored in.

Choose your cryptographic actions carefully. When in doubt, use Encrypt and sign. After you have
used the AWS Database Encryption SDK to protect your records, you cannot change an existing
ENCRYPT_AND_SIGN, STIGN_ONLY, or STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT field

to DO_NOTHING, or change the cryptographic action assigned to an existing DO_NOTHING field.
However, you can still make other changes to your data model. For example, you can add or

remove encrypted fields, in a single deployment.

Material description

The material description serves as the header for an encrypted record. When you encrypt and
sign fields with the AWS Database Encryption SDK, the encryptor records the material description
as it assembles the cryptographic materials and stores the material description in a new field
(aws_dbe_head) that the encryptor adds to your record.

The material description is a portable formatted data structure that contains encrypted copies

of the data keys and other information, such as encryption algorithms, encryption context,

and encryption and signing instructions. The encryptor records the material description as

it assembles the cryptographic materials for encryption and signing. Later, when it needs to
assemble cryptographic materials to verify and decrypt a field, it uses the material description as
its guide.

Storing the encrypted data keys alongside the encrypted field streamlines the decryption
operation and frees you from having to store and manage encrypted data keys independently of
the data that they encrypt.

For technical information about the material description, see Material description format.

Encryption context

To improve the security of your cryptographic operations, the AWS Database Encryption SDK
includes an encryption context in all requests to encrypt and sign a record.

Material description 9

https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-encryption-context

AWS Database Encryption SDK Developer Guide

An encryption context is a set of name-value pairs that contain arbitrary, non-secret additional
authenticated data. The AWS Database Encryption SDK includes the logical name for your database
and primary key values (for example, a partition key and sort key in a DynamoDB table) in the
encryption context. When you encrypt and sign a field, the encryption context is cryptographically
bound to the encrypted record so that the same encryption context is required to decrypt the field.

If you use an AWS KMS keyring, the AWS Database Encryption SDK also uses the encryption
context to provide additional authenticated data (AAD) in the calls the keyring makes to AWS KMS.

Whenever you use the default algorithm suite, the cryptographic materials manager (CMM) adds
a name-value pair to the encryption context that consists of a reserved name, aws-crypto-

public-key, and a value that represents the public verification key. The public verification key is
stored in the material description.

Cryptographic materials manager

The cryptographic materials manager (CMM) assembles the cryptographic materials that are
used to encrypt, decrypt, and sign your data. Whenever you use the default algorithm suite, the

cryptographic materials include plaintext and encrypted data keys, symmetric signing keys, and an
asymmetric signing key. You never interact with the CMM directly. The encryption and decryption
methods handle it for you.

Because the CMM acts as a liaison between the AWS Database Encryption SDK and a keyring, it

is an ideal point for customization and extension, such as support for policy enforcement. You

can explicitly specify a CMM, but it's not required. When you specify a keyring, the AWS Database
Encryption SDK creates a default CMM for you. The default CMM gets the encryption or decryption
materials from the keyring that you specify. This might involve a call to a cryptographic service,
such as AWS Key Management Service (AWS KMS).

Symmetric and asymmetric encryption

Symmetric encryption uses the same key to encrypt and decrypt data.

Asymmetric encryption uses a mathematically related data key pair. One key in the pair encrypts
the data; only the other key in the pair can decrypt the data. For details, see Cryptographic

algorithms in the AWS Cryptographic Services and Tools Guide.

The AWS Database Encryption SDK uses envelope encryption. It encrypts your data with a

symmetric data key. It encrypts the symmetric data key with one or more symmetric or asymmetric

Cryptographic materials manager 10

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html
https://docs.aws.amazon.com/crypto/latest/userguide/concepts-algorithms.html

AWS Database Encryption SDK Developer Guide

wrapping keys. It adds a material description to the record that includes at least one encrypted
copy of the data key.

Encrypting your data (symmetric encryption)

To encrypt your data, the AWS Database Encryption SDK uses a symmetric data key and an
algorithm suite that includes a symmetric encryption algorithm. To decrypt the data, the AWS
Database Encryption SDK uses the same data key and the same algorithm suite.

Encrypting your data key (symmetric or asymmetric encryption)

The keyring that you supply to an encrypt and decrypt operation determines how the
symmetric data key is encrypted and decrypted. You can choose a keyring that uses symmetric
encryption, such as an AWS KMS keyring with a symmetric encryption KMS key, or one that uses
asymmetric encryption, such as an AWS KMS keyring with an asymmetric RSA KMS key.

Key commitment

The AWS Database Encryption SDK supports key commitment (sometimes known as robustness),

a security property that ensures that each ciphertext can be decrypted only to a single plaintext.
To do this, key commitment ensures that only the data key that encrypted your record will be used
to decrypt it. The AWS Database Encryption SDK includes key commitment for all encryption and
decryption operations.

Most modern symmetric ciphers (including AES) encrypt plaintext under a single secret key, like
the unique data key that the AWS Database Encryption SDK uses to encrypt each plaintext field
marked ENCRYPT_AND_SIGN in a record. Decrypting this record with the same data key returns a
plaintext that is identical to the original. Decrypting with a different key will usually fail. Although
difficult, it's technically possible to decrypt a ciphertext under two different keys. In rare cases, it
is feasible to find a key that can partially decrypt ciphertext into a different, but still intelligible,
plaintext.

The AWS Database Encryption SDK always encrypts each attribute under one unique data key. It
might encrypt that data key under multiple wrapping keys, but the wrapping keys always encrypt
the same data key. Nonetheless, a sophisticated, manually crafted encrypted record might actually
contain different data keys, each encrypted by a different wrapping key. For example, if one

user decrypts the encrypted record it returns 0x0 (false) while another user decrypting the same
encrypted record gets 0x1 (true).

Key commitment 11

AWS Database Encryption SDK Developer Guide

To prevent this scenario, the AWS Database Encryption SDK includes key commitment when
encrypting and decrypting. The encrypt method cryptographically binds the unique data key that
produced the ciphertext to the key commitment, a Hash-Based Message Authentication Code
(HMAC) calculated over the material description using a derivation of the data key. Then it stores
the key commitment in the material description. When it decrypts a record with key commitment,
the AWS Database Encryption SDK verifies that the data key is the only key for that encrypted
record. If data key verification fails, the decrypt operation fails.

Digital signatures

To ensure the authenticity of data as it goes between systems, you can apply a digital signature
to the record. Digital signatures are always asymmetric. You use your private key to create the
signature, and append it to the original record. Your recipient uses a public key to verify that the
record has not been modified since you signed it. You should use digital signatures if the users
encrypting data and the users decrypting data are not equally trusted.

The AWS Database Encryption SDK encrypts your data using an authenticated encryption
algorithm, AES-GCM, but because AES-GCM uses symmetric keys, anyone who can decrypt the data
key used to decrypt the ciphertext could also manually create a new encrypted ciphertext, causing
a potential security concern.

To avoid this issue, the default algorithm suite adds an Elliptic Curve Digital Signature Algorithm

(ECDSA) signature to encrypted records. The default algorithm suite encrypts the fields in your
record marked ENCRYPT_AND_SIGN using an authenticated encryption algorithm, AES-GCM.
Then, it calculates both Hash-Based Message Authentication Codes (HMACs) and asymmetric
ECDSA signatures over the fields in your record marked ENCRYPT_AND_SIGN, SIGN_ONLY, and
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. The decryption process uses the signatures to
verify that an authorized user encrypted the record.

When the default algorithm suite is used, the AWS Database Encryption SDK generates a
temporary private key and public key pair for each encrypted record. The AWS Database Encryption
SDK stores the public key in the material description and discards the private key, and no one can

create another signature that verifies with the public key. Because the algorithm binds the public
key to the encrypted data key as additional authenticated data in the material description, a user
who can only decrypt records cannot alter the public key.

The AWS Database Encryption SDK always includes HMAC verification. ECDSA digital signatures
are enabled by default, but not required. If the users encrypting data and the users decrypting
data are equally trusted, you might consider using an algorithm suite that does not include digital

Digital signatures 12

AWS Database Encryption SDK Developer Guide

signatures to improve your performance. For more information on selecting alternative algorithm
suites, see Choosing an algorithm suite.

How the AWS Database Encryption SDK works

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

The AWS Database Encryption SDK provides client-side encryption libraries that are designed
specifically to protect the data that you store in databases. The libraries include secure
implementations that you can extend or use unchanged. For more information about defining and
using custom components, see the GitHub repository for your database implementation.

The workflows in this section explain how the AWS Database Encryption SDK encrypts and signs
and decrypts and verifies the data in your database. These workflows describe the basic process
using abstract elements and the default features. For details about how the AWS Database
Encryption SDK works with your database implementation, see the What is encrypted topic for your
database.

The AWS Database Encryption SDK uses envelope encryption to protect your data. Each record is

encrypted under a unique data key. The data key is used to derive a unique data encryption key for
each field marked ENCRYPT_AND_SIGN in your cryptographic actions. Then, a copy of data key is
encrypted by the wrapping keys you specify. To decrypt the encrypted record, the AWS Database
Encryption SDK uses the wrapping keys you specify to decrypt at least one encrypted data key.
Then it can decrypt the ciphertext and return a plaintext entry.

For more information about the terms used in the AWS Database Encryption SDK, see AWS
Database Encryption SDK concepts.

Encrypt and sign

At its core, the AWS Database Encryption SDK is a record encryptor that encrypts, signs,
verifies, and decrypts the records in your database. It takes in information about your records
and instructions about which fields to encrypt and sign. It gets the encryption materials, and
instructions on how to use them, from a cryptographic materials manager configured from the

wrapping key you specify.

How it works 13

AWS Database Encryption SDK Developer Guide

The following walkthrough describes how the AWS Database Encryption SDK encrypts and signs
your data entries.

1. The cryptographic materials manager provides the AWS Database Encryption SDK with unique
data encryption keys: one plaintext data key, a copy of the data key encrypted by the specified
wrapping key, and a MAC key.

® Note

You can encrypt the data key under multiple wrapping keys. Each of the wrapping

keys encrypt a separate copy of the data key. The AWS Database Encryption SDK
stores all of the encrypted data keys in the material description. The AWS Database
Encryption SDK adds a new field (aws_dbe_head) to the record that stores the
material description.

A MAC key is derived for each encrypted copy of the data key. The MAC keys are not
stored in the material description. Instead, the decrypt method uses the wrapping keys
to derive the MAC keys again.

2. The encryption method encrypts each field marked as ENCRYPT_AND_SIGN in the
cryptographic actions you specified.

3. The encryption method derives a commitKey from the data key and uses it to generate a key
commitment value, and then discards the data key.

4. The encryption method adds a material description to the record. The material description
contains the encrypted data keys and the other information about the encrypted record. For a
complete list of the information included in the material description, see Material description
format.

5. The encryption method uses the MAC keys returned in Step 1 to calculate Hash-Based
Message Authentication Code (HMAC) values over the canonicalization of the material
description, encryption context, and each field marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in the cryptographic actions. The HMAC
values are stored in a new field (aws_dbe_foot) that the encryption method adds to the

record.

6. The encryption method calculates an ECDSA signature over the canonicalization of the

material description, encryption context, and each field marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT and stores the ECDSA
signatures in the aws_dbe_foot field.

Encrypt and sign 14

AWS Database Encryption SDK Developer Guide

® Note
ECDSA signatures are enabled by default, but are not required.

7. The encryption method stores the encrypted and signed record in your database

Decrypt and verify

1. The cryptographic materials manager (CMM) provides the decryption method with the
decryption materials stored in the material description, including the plaintext data key and
the associated MAC key.

« The CMM decrypts the encrypted data key with the wrapping keys in the specified keyring
and returns the plaintext data key.

2. The decryption method compares and verifies the key commitment value in the material
description.

3. The decryption method verifies the signatures in the signature field.

It identifies which fields are marked ENCRYPT_AND_SIGN, SIGN_ONLY, or
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT from the list of allowed unauthenticated
fields that you defined. The decryption method uses the MAC key returned in Step 1

to recalculate and compare HMAC values for the fields marked ENCRYPT_AND_SIGN,
SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Then, it verifies the ECDSA
signatures using the public key stored in the encryption context.

4. The decryption method uses the plaintext data key to decrypt each value marked
ENCRYPT_AND_SIGN. The AWS Database Encryption SDK then discards the plaintext data key.

5. The decryption method returns the plaintext record.

Supported algorithm suites in the AWS Database Encryption
SDK

Our client-side encryption library was renamed to the AWS Database Encryption SDK. This
developer guide still provides information on the DynamoDB Encryption Client.

Decrypt and verify 15

AWS Database Encryption SDK Developer Guide

An algorithm suite is a collection of cryptographic algorithms and related values. Cryptographic
systems use the algorithm implementation to generate the ciphertext.

The AWS Database Encryption SDK uses an algorithm suite to encrypt and sign the fields in your
database. All supported algorithm suites use the Advanced Encryption Standard (AES) algorithm
with Galois/Counter Mode (GCM), known as AES-GCM, to encrypt raw data. The AWS Database
Encryption SDK supports 256-bit encryption keys. The length of the authentication tag is always
16 bytes.

AWS Database Encryption SDK Algorithm Suites

Algorithm Encryptio Data key Key Symmetric Asymmetri Key
n length (in derivation signature C commitmen
algorithm bits) algorithm algorithm signature t
algorithm
Default AES-GCM 256 HKDF with HMAC- ECDSA HKDF with
SHA-512 SHA-384 with SHA-512
P-384 and
SHA-384
AES-GCM AES-GCM 256 HKDF with HMAC- None HKDF with
without SHA-512 SHA-384 SHA-512
ECDSA
digital
signatures

Encryption algorithm

The name and mode of the encryption algorithm used. Algorithm suites in the AWS Database
Encryption SDK use the Advanced Encryption Standard (AES) algorithm with Galois/Counter
Mode (GCM).

Data key length

The length of the data key in bits. The AWS Database Encryption SDK supports 256-bit data
keys. The data key is used as input to an HMAC-based extract-and-expand key derivation
function (HKDF). The output of the HKDF is used as the data encryption key in the encryption
algorithm.

Supported algorithm suites 16

AWS Database Encryption SDK Developer Guide

Key derivation algorithm

The HMAC-based extract-and-expand key derivation function (HKDF) used to derive the data
encryption key. The AWS Database Encryption SDK uses the HKDF defined in RFC 5869.

« The hash function used is SHA-512
» For the extract step:
» No salt is used. Per the RFC, the salt is set to a string of zeros.
« The input keying material is the data key from the keyring.
» For the expand step:
« The input pseudorandom key is the output from the extract step.

» The key label is the UTF-8-encoded bytes of the DERIVEKEY string in big endian byte
order.

« The input info is a concatenation of the algorithm ID and the key label (in that order).

» The length of the output keying material is the Data key length. This output is used as the
data encryption key in the encryption algorithm.

Symmetric signature algorithm

The Hash-Based Message Authentication Code (HMAC) algorithm used to generate a symmetric
signature. All supported algorithm suites include HMAC verification.

The AWS Database Encryption SDK serializes the material description and all fields marked
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.
Then, it uses HMAC with a cryptographic hash function algorithm (SHA-384) to sign the
canonicalization.

The symmetric HMAC signature is stored in a new field (aws_dbe_foot) that the AWS Database
Encryption SDK adds to the record.

Asymmetric signature algorithm
The signature algorithm used to generate an asymmetric digital signature.

The AWS Database Encryption SDK serializes the material description and all fields marked
ENCRYPT_AND_SIGN, SIGN_ONLY, or SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Then,
it uses the Elliptic Curve Digital Signature Algorithm (ECDSA) with the following specifics to sign
the canonicalization:

» The elliptic curve used is the P-384, as defined in Digital Signature Standard (DSS) (FIPS PUB
186-4).

Supported algorithm suites 17

https://tools.ietf.org/html/rfc5869
http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4

AWS Database Encryption SDK Developer Guide

e The hash function used is SHA-384.

The asymmetric ECDSA signature is stored with the symmetric HMAC signature in the
aws_dbe_foot field.

ECDSA digital signatures are included by default, but not required.

Key commitment

The HMAC-based extract-and-expand key derivation function (HKDF) used to derive the commit
key.

« The hash function used is SHA-512
» For the extract step:
» No salt is used. Per the RFC, the salt is set to a string of zeros.
« The input keying material is the data key from the keyring.
» For the expand step:
« The input ps