Supplementary Material for "Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification"

Taro Sekiyama

August 26, 2024

Contents

1	Out	line	2
2	Defi 2.1 2.2 2.3	Trees	2 2 3 3 3 4 4 4 6 6 6 6 6 6 8 8
3	Pro	ofs	10
${f L}$	3.1 3.2 3.3 3.4	Type Soundness of HEPCFATM Type Soundness of EPCF Type Preservation Semantics Preservation of Theorems	13 16
	1	Definition (Tree Constructor Signatures)	2
	2	Definition (Finitely Branching Infinite Trees)	2
	1	Convention	3
	3 1	Assumption	ა 3
	4	Definition (Top-Level Operation Signatures)	3
	5	Definition (Ground Types)	3
	6	Definition (Semantics)	3
	7	Definition (Multi-step evaluation)	3
	8	Definition (Infinite Evaluation)	4
	9	Definition (Nonreducible terms)	4
	10	Definition (Domains of Typing Contexts)	4
	11	Definition (Typing Contexts as Functions)	4
	12 12	Definition (Typing)	4
	1.3	HADDITION (BITTOR I PROGRAM HERCETT COMPUTATIONS)	/

14	Definition (Semantics)
15	Definition (Multi-step evaluation)
16	Definition (Infinite Evaluation)
17	Definition (Nonreducible terms)
18	Definition (Typing)
19	Definition (Effect Trees for EPCF Computations)
20	Definition (CPS Transformation of Types, Values, and Terms)
21	Definition (CPS Transformation of Effect Trees)
1	Lemma (Weakening)
2	Lemma (Value Substitution)
3	Lemma (Canonical Forms)
4	Lemma (Progress)
5	Lemma (Subject Reduction)
6	Lemma (Weakening)
7	Lemma (Value Substitution)
8	Lemma (Canonical Forms)
9	Lemma (Progress)
10	Lemma (Subject Reduction)
22	Definition (Pre-Order on Typing Contexts)
23	Definition (Typing of Effect Handlers)
11	Lemma (Type Preservation of the CPS Transformation)
12	Lemma (Substitution is a Homomorphism)
13	Lemma (Handler and Continuation Substitution)
14	Lemma (Simulation up to Reduction)
15	Lemma (Evaluation in HEPCF ^{ATM} is Deterministic)
16	Lemma (Well-Definedness of HEPCF ^{ATM} Effect Trees)
17	Lemma (Evaluation in EPCF is Deterministic)
18	Lemma (Well-Definedness of EPCF Effect Trees)
19	Lemma (Evaluation Preserves Effect Trees in EPCF)
20	Lemma (Correspondence between Effect Trees of CPS-Transformed Terms and CPS-Transformed
	Effect Trees)
1	Theorem (Preservation of Effect Trees)

1 Outline

This is the supplementary material of the paper titled "Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification" published at OOPSLA'24, including all the definitions, lemmas, theorems, and proofs mentioned in the paper.

2 Definition

2.1 Trees

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from tree constructors, ranged over by s, to natural numbers that represent the arities of the constructors. We write $ar_S(s)$ for the arity of s assigned by S.

Definition 2 (Finitely Branching Infinite Trees). The set \mathbf{Tree}_S of finitely branching (possibly) infinite trees generated by a tree constructor signature S is defined coinductively by the following grammar (where s is in the domain of S):

$$t ::= \perp \mid s(t_1, \cdots, t_{ar_S(s)})$$
.

Evaluation rules $M_1 \longrightarrow M_2$

```
(\lambda x.M_1) V_2 \longrightarrow M_1[V_2/x]
                                                                                                                                                                               HE\_Beta
                        (\operatorname{fix} x. V_1) V_2 \longrightarrow V_1[\operatorname{fix} x. V_1/x] V_2
                                                                                                                                                                               HE_Fix
          \mathsf{case}(\underline{\mathsf{i}}; M_1, \cdots, M_n) \longrightarrow M_i
                                                                                                                               (if 0 < i \le n)
                                                                                                                                                                               HE_CASE
      \mathsf{let}\, x = \mathsf{return}\,\, V_1 \,\mathsf{in}\, M_2
                                                 \longrightarrow M_2[V_1/x]
                                                                                                                                                                               HE_LETV
 \det x = \sigma(V_1; y. \, M_1) \text{ in } M_2 \quad \longrightarrow \quad \sigma(V_1; y. \, \det x = M_1 \text{ in } M_2)  with H handle return V \quad \longrightarrow \quad M[V/x] 
                                                                                                                               (if y \notin fv(M_2))
                                                                                                                                                                               HE_LETOP
                                                                                                                               (if return x \mapsto M \in H)
                                                                                                                                                                              HE_HANDLEV
with H handle \sigma(V; y, M) \longrightarrow M'[V/x][\lambda y] with H handle M/k (if \sigma(x; k) \mapsto M' \in H) HE_HANDLEOP
 \frac{M_1 \,\longrightarrow\, M_1'}{\det x = M_1 \, \mathrm{in}\, M_2 \,\longrightarrow\, \det x = M_1' \, \mathrm{in}\, M_2} \, \mathrm{HE\_LETE}
                                                                                                                                M \longrightarrow M'
                                                                                                     \overline{\operatorname{with} H \operatorname{handle} M} \, \longrightarrow \, \operatorname{with} H \operatorname{handle} M' \\
```

Figure 1: Semantics.

2.2 HEPCF^{ATM}: PCF with Answer-Type Modification for Algebraic Effects and Handlers

2.2.1 Syntax

```
Variables x, y, z, f, h, k
                                                                                                                                                                                      Operations \sigma
                                                                                                                                                                                       ::= bool | unit | · · ·
                                                                      Base types B
                                                             Enum types E ::= 1 \mid 2 \mid \cdots
                                                                                                                                                                                        := B \mid E \mid T \rightarrow C
                                                                                                                                                            T
                                                                Value types
                                                                                                                                                        C ::= \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}
            Computation types
                                                                                                                                                                                       := \{\sigma_i : T_i^{\text{par}} \leadsto T_i^{\text{ari}} / A_i^{\text{ini}} \Rightarrow A_i^{\text{fin}}\}^{1 \le i \le n}
                                                                                                                                                          \sum
Operation signatures
                                                                                                                                                                                        ::= T \mid C
                                                    Answer types
                                                                                                                                                            A
                                                                                                                                                                                           ::= true | false | () | \cdots
                                          Base constants
                                 Enum constants
                                                                                                                                                                                           ::=
                                                                                                                                                                                                                          <u>1</u> | <u>2</u> | · · ·
                                                                                                                                                                                          ::= x \mid c \mid \varepsilon \mid \lambda x.M \mid \text{fix } x.V
                                                                                                     Values
                                                                                                                                                            V
                                                                                                                                                                                        ::= return V \mid \mathsf{let}\, x = M_1 \,\mathsf{in}\, M_2 \mid V_1 \,V_2 \mid \mathsf{case}(\,V; M_1, \cdots, M_n) \mid \mathsf{case}(\,V;
                                                                                                      Terms M
                                                                                                                                                                                                                            \sigma(V; x. M) | with H handle M
                                                                                                                                                                                        := \{ \operatorname{return} x \mapsto M \} \uplus \{ \sigma_i(x_i; k_i) \mapsto M_i \}^{1 \le i \le n}
                                                                                   Handlers H
                                 Typing contexts
                                                                                                                                                         Γ
                                                                                                                                                                                    ::= \emptyset \mid \Gamma, x : T
```

Convention 1. We write Γ_1, Γ_2 for the concatenation of Γ_1 and Γ_2 . For a computation type $C = \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$, we write $C.\Sigma$ for the operation signature Σ .

Definition 3 (Free variables and substitution). The set fv(M) of free variables in a term M is defined in a standard manner. Value substitution M[V/x] and V'[V/x] of V for x in M and V', respectively, are defined in a capture-avoiding manner as usual.

Assumption 1. We assume a function ty that assigns a base type to every constant c.

Definition 4 (Top-Level Operation Signatures). An operation signature Σ is top-level if, for any σ : $T^{\text{par}} \leadsto T^{\text{ari}} / A^{\text{ini}} \Rightarrow A^{\text{fin}} \in \Sigma$, $T^{\text{par}} = B$ for some B, $T^{\text{ari}} = E$ for some E, and $A^{\text{ini}} = A^{\text{fin}} = T$ for some T.

Definition 5 (Ground Types). A type T is ground if and only if T = B for some B or T = E for some E.

2.2.2 Semantics

Definition 6 (Semantics). The evaluation relation $M_1 \longrightarrow M_2$ is the smallest relations satisfying the rules in Figure 1.

Definition 7 (Multi-step evaluation). We write $M \longrightarrow^n M'$ if and only if there exist some terms M_0, \dots, M_n such that: $M = M_0$; $\forall i < n$. $M_i \longrightarrow M_{i+1}$; and $M_n = M'$. We write $M \longrightarrow^* M'$ if and only if $M \longrightarrow^n M'$ for some n.

Typing rules $\Gamma \vdash V : T \Gamma \vdash M : C$

$$\frac{\Gamma \vdash x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} \text{ HT-VAR} \qquad \frac{\Gamma \vdash c : ty(c)}{\Gamma \vdash c : ty(c)} \text{ HT-Const} \qquad \frac{0 < i \leq n}{\Gamma \vdash i : n} \text{ HT-EConst}$$

$$\frac{\Gamma, x : T \vdash M : C}{\Gamma \vdash \lambda x . M : T \to C} \text{ HT-Abs} \qquad \frac{\Gamma, x : T \to C \vdash V : T \to C}{\Gamma \vdash \text{fix} x . V : T \to C} \text{ HT-Fix}$$

$$\frac{\Gamma \vdash V : T}{\Gamma \vdash \text{return} \ V : \Sigma \vdash T / A \Rightarrow A} \text{ HT-RETURN}$$

$$\frac{\Gamma \vdash M_1 : \Sigma \vdash T_1 / A \Rightarrow A_1 \quad \Gamma, x : T_1 \vdash M_2 : \Sigma \vdash T_2 / A_2 \Rightarrow A}{\Gamma \vdash \text{let} \ x = M_1 \text{ in } M_2 : \Sigma \vdash T_2 / A_2 \Rightarrow A_1} \text{ HT-LET}$$

$$\frac{\Gamma \vdash V_1 : T \to C \quad \Gamma \vdash V_2 : T}{\Gamma \vdash V_1 V_2 : C} \text{ HT-APP} \qquad \frac{\Gamma \vdash V : n \quad \forall i \in [1, n]. \ \Gamma \vdash M_i : C}{\Gamma \vdash \text{case}(V; M_1, \cdots, M_n) : C} \text{ HT-Case}$$

$$\frac{\Sigma \ni \sigma : T^{\text{par}} \leadsto T^{\text{ari}} / A^{\text{ini}} \Rightarrow A^{\text{fin}} \quad \Gamma \vdash V : T^{\text{par}} \quad \Gamma, x : T^{\text{ari}} \vdash M : \Sigma \vdash T / A \Rightarrow A^{\text{ini}}}{\Gamma \vdash \sigma(V; x . M) : \Sigma \vdash T / A \Rightarrow A^{\text{fin}}} \text{ HT-OP}$$

$$\frac{\Gamma \vdash \sigma(V; x . M) : \Sigma \vdash T / A \Rightarrow A^{\text{fin}}}{\Gamma \vdash W : \Gamma \vdash M : \Sigma \vdash T / C^{\text{ini}} \Rightarrow C^{\text{fin}}_i} \text{ HT-OP}$$

$$\frac{\Gamma \vdash M : \Sigma \vdash T / C^{\text{ini}} \Rightarrow C^{\text{fin}} \quad \Gamma, x : T \vdash M' : C^{\text{ini}} \quad \forall i \in [1, n]. \ \Gamma, x_i : T^{\text{par}}_i, k_i : T^{\text{rari}}_i \to C^{\text{fin}}_i} \text{ HT-HANDLE}$$

$$\frac{\Gamma \vdash W : \text{H} \text{ Handle} M : C^{\text{fin}}}{\Gamma \vdash W : \text{H} \text{ Handle} M : C^{\text{fin}}} \text{ HT-HANDLE}$$

Figure 2: Type system.

Definition 8 (Infinite Evaluation). We write $M \longrightarrow^{\omega}$ if and only if, for any natural number n, there exists some term M' such that $M \longrightarrow^{n} M'$.

Definition 9 (Nonreducible terms). We write $M \longrightarrow if$ and only if there is no M' such that $M \longrightarrow M'$.

2.2.3 Type System

Definition 10 (Domains of Typing Contexts). Given a typing context Γ , its domain $dom(\Gamma)$ is defined by induction on Γ as follows.

$$\begin{array}{ccc} dom(\emptyset) & \stackrel{\mathrm{def}}{=} & \emptyset \\ dom(\Gamma, x : T) & \stackrel{\mathrm{def}}{=} & \{x\} \cup dom(\Gamma) \end{array}$$

Definition 11 (Typing Contexts as Functions). We view Γ as a function that maps a variable to a type. $\Gamma(x) = T$ if and only if $x : T \in \Gamma$.

Definition 12 (Typing). The typing of values (with judgments of the form $\Gamma \vdash V : T$) and terms (with judgments of the form $\Gamma \vdash M : C$) is the smallest relation satisfying the rules in Figure 2.

2.2.4 Effect Trees

Definition 13 (Effect Trees for HEPCF^{ATM} Computations). Given an operation signature Σ and a type T, the tree constructor signature S_T^{Σ} is defined as follows:

$$S_T^\Sigma \ \stackrel{\mathrm{def}}{=} \ \left\{\sigma: n+1 \mid \sigma: B \leadsto \mathsf{n} \: / \: A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \in \Sigma \right\} \cup \left\{\mathsf{return} \: V: 0 \mid \emptyset \vdash \: V: \: T \right\} \cup \bigcup_c \left\{c: 0\right\} \: .$$

where, for a tree constructor s (that is an operation σ , return construct return V, or base constant c), s:n denotes the pair (s,n), meaning that the arity of s is n. Given a term M such that $\emptyset \vdash M: \Sigma \rhd T / A^{\rm ini} \Rightarrow A^{\rm fin}$, the effect tree of M, denoted by $\mathbf{ET}(M)$, is a tree in $\mathbf{Tree}_{S_{\infty}^{\Sigma}}$ defined by the following (possibly infinite) process:

• if
$$M \longrightarrow^{\omega}$$
, then $\mathbf{ET}(M) = \bot$;

- $\bullet \ \ \textit{if} \ M \ \longrightarrow^* \ \text{return} \ V, \ then \ \mathbf{ET}(M) = \text{return} \ V; \ and$
- $\bullet \ \ \textit{if} \ M \ \longrightarrow^* \ \sigma(c; x. \ M') \ \textit{and} \ \sigma: B \leadsto \mathsf{n} \ / \ A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \in \Sigma, \ \textit{then} \ \mathbf{ET}(M) = \sigma(c, \mathbf{ET}(M'[\underline{1}/x]), \cdots, \mathbf{ET}(M'[\underline{\mathsf{n}}/x])).$

Evaluation rules $e_1 \longrightarrow e_2$

Figure 3: Semantics.

2.3 EPCF: PCF with Algebraic Effects

2.3.1 Syntax

For the syntactic operations common in HEPCF^{ATM} and EPCF, we use the same notation (e.g., fv(e) is the set of free variables in e and e[v/x] is the term obtained by substituting v for x in e).

2.3.2 Semantics

Definition 14 (Semantics). The evaluation relation $e_1 \longrightarrow e_2$ is the smallest relations satisfying the rules in Figure 3.

Definition 15 (Multi-step evaluation). We write $e \longrightarrow^n e'$ if and only if there exist some terms e_0, \dots, e_n such that: $e = e_0$; $\forall i < n$. $e_i \longrightarrow e_{i+1}$; and $e_n = e'$. We write $e \longrightarrow^* e'$ if and only if $e \longrightarrow^n e'$ for some n, and $e \longrightarrow^+ e'$ if and only if $e \longrightarrow^n e'$ for some n > 0.

Definition 16 (Infinite Evaluation). We write $e \longrightarrow^{\omega} if$ and only if, for any natural number n, there exists some term e' such that $e \longrightarrow^{n} e'$.

Definition 17 (Nonreducible terms). We write $e \longrightarrow if$ and only if there is no e' such that $e \longrightarrow e'$.

2.3.3 Type System

Definition 18 (Typing). Fix an operation signature Ξ . Then, the typing of values (with judgments of the form $\Xi \parallel \Delta \vdash v : \tau$) and terms (with judgments of the form $\Xi \parallel \Delta \vdash e : \tau$) is the smallest relation satisfying the rules in Figure 4.

2.3.4 Effect Trees

Definition 19 (Effect Trees for EPCF Computations). Given an operation signature Ξ and a type τ , the tree constructor signature S_{τ}^{Ξ} is defined as follows:

$$S^\Xi_\tau \ \stackrel{\mathrm{def}}{=} \ \left\{\sigma: n+1 \mid \sigma: B \leadsto \mathsf{n} \in \Xi\right\} \cup \left\{\mathsf{return} \ v: 0 \mid \Xi \parallel \emptyset \vdash v: \tau\right\} \cup \bigcup_c \left\{c: 0\right\} \ .$$

Typing rules
$$\boxed{\Xi \parallel \Delta \vdash v : \tau} \boxed{\Xi \parallel \Delta \vdash e : \tau}$$

Figure 4: Type system.

Given a term e such that $\Xi \parallel \emptyset \vdash e : \tau$, the effect tree of e, denoted by $\mathbf{ET}(e)$, is a tree in $\mathbf{Tree}_{S_{\tau}^{\Xi}}$ defined by the following (possibly infinite) process:

- if $e \longrightarrow^{\omega}$, then $\mathbf{ET}(e) = \bot$;
- if $e \longrightarrow^* \text{return } v$, then $\mathbf{ET}(e) = \text{return } v$; and
- if $e \longrightarrow^* \sigma(c; x. e')$ and $\sigma: B \leadsto n \in \Xi$, then $\mathbf{ET}(e) = \sigma(c, \mathbf{ET}(e'[1/x]), \cdots, \mathbf{ET}(e'[n/x]))$.

2.4 CPS Transformation from HEPCF^{ATM} to EPCF

Our CPS transformation is defined using the following shorthand:

- A sequence of entities a_1, \dots, a_n is abbreviated to \overline{a} , and its length is denoted by $|\overline{a}|$. Given \overline{a} , we write a_i to designate the *i*-th element of the sequence \overline{a} .
- Given a variable sequence $\overline{x} = x_1, \dots, x_n$, we write $\lambda \overline{x}.e$ for the EPCF term λx_1 .return $\lambda x_2.\cdots$ return $\lambda x_n.e$.
- Given a term e and values v_1, \dots, v_n (n > 0), we write $e v_1 \dots v_n$ for the EPCF term let $x_0 = e$ in let $x_1 = x_0 v_1$ in let $x_2 = x_1 v_2$ in \dots let $x_{n-1} = x_{n-2} v_{n-1}$ in $x_{n-1} v_n$ where the variables $x_0, x_1, \dots x_{n-1}$ are assumed to be fresh.

We also assume that the set of all the operations is totally ordered.

Definition 20 (CPS Transformation of Types, Values, and Terms). CPS Transformation [-] from HEPCF^{ATM} to EPCF is defined in Figure 5, mapping

- value types T to EPCF types [T],
- computation types C to EPCF types $[\![C]\!]$,
- operation signatures Σ to functions that, given a EPCF type τ , return the EPCF type $[\![\Sigma]\!][\tau]$,
- $values\ V\ to\ \mathsf{EPCF}\ values\ \llbracket V \rrbracket,$
- terms M to EPCF values [M], and
- terms M to EPCF terms $[M][\overline{v^h} | v^k]$ given values $\overline{v^h}$ and v^k .

The definition of $[\![M]\!]$ and $[\![M]\!]$ $[\overline{v^h}\,|\,v^k]$ assumes that the HEPCF^{ATM} term M to be CPS-transformed is well typed. In general, given an HEPCF^{ATM} term M typed at a computation type with an operation signature Σ , the CPS-transformation result $[\![M]\!]$ takes the form $\lambda \overline{h}, k.e.$ for some variables \overline{h}, k and EPCF term e such that $|\overline{h}| = |\Sigma|$. Similarly, $[\![M]\!]$ $[\![v^h]\!]$ assumes that $|\Sigma|$ values $[\![v^h]\!]$ are given. The transformation of operation calls assumes that a called operation σ_i is the i-th operation in Σ (under the order of operations). We also write $[\![\Gamma]\!]$ for the EPCF typing context obtained by CPS-transforming the types of all the bindings of typing context Γ .

Definition 21 (CPS Transformation of Effect Trees). Given an effect tree $\mathbf{ET}(M)$ in $\mathsf{HEPCF}^{\mathsf{ATM}}$ and a value v, the tree $[\![\mathbf{ET}(M)]\!][v]$ is defined coinductively as follows:

 $\llbracket T \rrbracket$ for value types

$$\begin{bmatrix} B \end{bmatrix} \stackrel{\text{def}}{=} B \\
 \begin{bmatrix} E \end{bmatrix} \stackrel{\text{def}}{=} E \\
 \begin{bmatrix} T \to C \end{bmatrix} \stackrel{\text{def}}{=} [T] \to [C]
 \end{bmatrix}$$

 $[\![C]\!]$ for computation types

$$\llbracket \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \rrbracket \ \stackrel{\mathrm{def}}{=} \ \llbracket \Sigma \rrbracket [\, (\llbracket T \rrbracket \to \llbracket A^{\mathrm{ini}} \rrbracket) \to \llbracket A^{\mathrm{fin}} \rrbracket \,]$$

 $\llbracket \Sigma
rbracket{} \llbracket au
rbracket{} \llbracket au
rbracket{}
rbracket{} \llbracket au
rbracket{}
rbracket{} \llbracket au
rbracket{}
rbracket{}$

 $\llbracket V \rrbracket$ for values

$$[\![M]\!] \ \stackrel{\mathrm{def}}{=} \ \lambda \overline{h}, k. [\![M]\!] [\, \overline{h} \, | \, k \,]$$

 $[\![M]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,]$ for terms with handlers and continuations

Figure 5: CPS transformation. In the definition of $\llbracket M \rrbracket$ and $\llbracket M \rrbracket [\overline{v^{\mathsf{h}}} | v^{\mathsf{k}}]$, we assume that M is well typed with an operation signature Σ . Furthermore, for sequences \overline{h} in the definition of $\llbracket M \rrbracket$ and $\overline{v^{\mathsf{h}}}$ in $\llbracket M \rrbracket [\overline{v^{\mathsf{h}}} | v^{\mathsf{k}}], |\overline{h}| = |\overline{v^{\mathsf{h}}}| = |\Sigma|$.

3 Proofs

3.1 Type Soundness of HEPCFATM

Lemma 1 (Weakening). Assume that $dom(\Gamma_2) \cap dom(\Gamma_1, \Gamma_3)$ is empty.

- If $\Gamma_1, \Gamma_3 \vdash V : T$, then $\Gamma_1, \Gamma_2, \Gamma_3 \vdash V : T$.
- If $\Gamma_1, \Gamma_3 \vdash M : C$, then $\Gamma_1, \Gamma_2, \Gamma_3 \vdash M : C$.

Proof. Straightforward by mutual induction on the typing derivations.

Lemma 2 (Value Substitution). Assume that $\Gamma_1 \vdash V_0 : T_0$.

- If $\Gamma_1, x : T_0, \Gamma_2 \vdash V : T$, then $\Gamma_1, \Gamma_2 \vdash V[V_0/x] : T$.
- If $\Gamma_1, x : T_0, \Gamma_2 \vdash M : C$, then $\Gamma_1, \Gamma_2 \vdash M[V_0/x] : C$.

Proof. Straightforward by mutual induction on the typing derivations. The case for (HT_VAR) rests on Lemma 1.

Lemma 3 (Canonical Forms). Assume that $\emptyset \vdash V : T$.

- If T = B, then V = c for some c such that ty(c) = B.
- If T = n, then $V = \underline{i}$ for some i such that $0 < i \le n$.
- If $T = T' \to C'$, then $V = \lambda x.M$ for some x and M, or V = fix x.V' for some x and V'.

Proof. Straightforward by case analysis on the typing derivation. Note that, for any c, ty(c) = B for some B by Assumption 1.

Lemma 4 (Progress). *If* $\emptyset \vdash M : C$, then one of the following holds:

- M = return V for some V;
- $M = \sigma(V; x. M')$ for some $\sigma, V, x,$ and M'; or
- $M \longrightarrow M'$ for some M'.

Proof. By induction on the typing derivation applied last to derive $\emptyset \vdash M : C$.

Case (HT_RETURN): Obvious.

Case (HT_LET): We are given

$$\frac{\emptyset \vdash M_1 : \Sigma \rhd T_1 \mathbin{/} A \Rightarrow A_1 \quad x : T_1 \vdash M_2 : \Sigma \rhd T_2 \mathbin{/} A_2 \Rightarrow A}{\emptyset \vdash \mathsf{let} \ x = M_1 \mathsf{in} \ M_2 : \Sigma \rhd T_2 \mathbin{/} A_2 \Rightarrow A_1}$$

for some x, M_1 , M_2 , Σ , T_1 , T_2 , A_1 , A_2 , and A such that $M = (\text{let } x = M_1 \text{ in } M_2)$ and $C = \Sigma \triangleright T_2 / A_2 \Rightarrow A_1$. By case analysis on the result of the IH on $\emptyset \vdash M_1 : \Sigma \triangleright T_1 / A \Rightarrow A_1$.

Case $\exists V_1$. $M_1 = \text{return } V_1$: By (HE_LETV).

Case $\exists \sigma, V_1, y, M'_1$. $M_1 = \sigma(V_1; y, M'_1)$: By (HE_LETOP).

Case $\exists M_1'$. $M_1 \longrightarrow M_1'$: By (HE_LETE).

Case (HT_APP): We are given

$$\frac{\emptyset \vdash V_1 : T \to C \quad \emptyset \vdash V_2 : T}{\emptyset \vdash V_1 \ V_2 : C}$$

for some V_1 , V_2 , and T such that $M=V_1\,V_2$. By case analysis on the result of applying Lemma 3 to $\emptyset \vdash V_1: T \to C$.

Case $\exists x, M_1$. $V_1 = \lambda x. M_1$: By (HE_BETA).

Case $\exists x, V_1'$. $V_1 = \text{fix } x. V_1'$: By (HE_Fix).

Case (HT_CASE): We are given

$$\frac{\emptyset \vdash V : \mathsf{n} \quad \forall \, i \in [1, n]. \; \emptyset \vdash M_i : C}{\emptyset \vdash \mathsf{case}(\, V ; M_1, \cdots, M_n) : C}$$

for some V, n, M_1, \dots, M_n such that $M = \mathsf{case}(V; M_1, \dots, M_n)$. By Lemma 3, $V = \underline{\mathsf{i}}$ for some i such that $0 < i \le n$. Thus, we have the conclusion by (HE_CASE).

Case (HT_OP): Obvious.

Case (HT_HANDLE): We are given

$$\frac{H = \{\mathsf{return}\, x \,\mapsto\, M_0\} \uplus \{\sigma_i(x_i; k_i) \,\mapsto\, M_i\}^{1 \leq i \leq n} \qquad \Sigma = \{\sigma_i:\, T_i^{\mathsf{par}} \leadsto\, T_i^{\mathsf{ari}} \,/\, C_i^{\mathsf{ini}} \Rightarrow C_i^{\mathsf{fin}}\}^{1 \leq i \leq n}}{\emptyset \vdash M': \Sigma \,\rhd\, T \,/\, C^{\mathsf{ini}} \Rightarrow C \qquad x:\, T \vdash M_0:\, C^{\mathsf{ini}} \qquad \forall\, i \in [1, n].\,\, x_i:\, T_i^{\mathsf{par}}, k_i:\, T_i^{\mathsf{ari}} \to C_i^{\mathsf{ini}} \vdash M_i:\, C_i^{\mathsf{fin}}} \\ \emptyset \vdash \mathsf{with}\, H \,\mathsf{handle}\, M':\, C$$

for some $H, M', x, M_0, \sigma_1, \cdots, \sigma_n, x_1 \cdots, x_n \ k_1 \cdots, k_n, M_1, \cdots, M_n, \Sigma, \sigma_1, \cdots, \sigma_n, T_1^{\operatorname{par}}, \cdots, T_n^{\operatorname{par}}, T_1^{\operatorname{ari}}, \cdots, T_n^{\operatorname{ari}}, C_1^{\operatorname{fin}}, \cdots, C_n^{\operatorname{fin}}, T_n$ and C^{ini} such that $M = \operatorname{with} H$ handle M'. By case analysis on the result of the IH on $\emptyset \vdash M' : \Sigma \rhd T / C^{\operatorname{ini}} \Rightarrow C$.

Case $\exists V'$. M' = return V': By (HE_HANDLEV).

Case $\exists \sigma, V', y, M''$. $M' = \sigma(V'; y, M'')$: By the inversion of $\emptyset \vdash \sigma(V'; y, M'') : \Sigma \triangleright T / C^{\text{ini}} \Rightarrow C$, we have $\sigma = \sigma_i$ for some i. Then, we have the conclusion by (HE_HANDLEOP).

Case $\exists M''$. $M' \longrightarrow M''$: By (HE_HANDLEE).

Lemma 5 (Subject Reduction). If $\Gamma \vdash M : C$ and $M \longrightarrow M'$, then $\Gamma \vdash M' : C$.

Proof. By induction on the typing derivation.

Case (HT_Return): We have M = return V for some V, but there is a contradiction because there is no evaluation rule applicable to return V.

Case (HT_LET): We are given

$$\frac{\Gamma \vdash M_1 : \Sigma \rhd T_1 \mathbin{/} A \Rightarrow A_1 \quad \Gamma, x : T_1 \vdash M_2 : \Sigma \rhd T_2 \mathbin{/} A_2 \Rightarrow A_1}{\Gamma \vdash \mathsf{let} \ x = M_1 \mathsf{ in } M_2 : \Sigma \rhd T_2 \mathbin{/} A_2 \Rightarrow A_1}$$

for some x, M_1 , M_2 , Σ , T_1 , T_2 , A_1 , A_2 , and A such that $M = (\text{let } x = M_1 \text{ in } M_2)$ and $C = \Sigma \triangleright T_2 / A_2 \Rightarrow A_1$. We have $\text{let } x = M_1 \text{ in } M_2 \longrightarrow M'$. By case analysis on the evaluation rule applied last to derive it.

Case (HE_LETV): We are given

$$let x = return V_1 in M_2 \longrightarrow M_2[V_1/x]$$

for some V_1 such that $M_1 = \operatorname{return} V_1$ and $M' = M_2[V_1/x]$. Because $\Gamma \vdash \operatorname{return} V_1 : \Sigma \triangleright T_1 / A \Rightarrow A_1$, its inversion implies $\Gamma \vdash V_1 : T_1$ and $A = A_1$. Thus, $\Gamma, x : T_1 \vdash M_2 : \Sigma \triangleright T_2 / A_2 \Rightarrow A_1$. By Lemma 2, we have the conclusion $\Gamma \vdash M_2[V_1/x] : \Sigma \triangleright T_2 / A_2 \Rightarrow A_1$.

Case (HE_LETOP): We are given

$$let x = \sigma(V_1; y. M_1') in M_2 \longrightarrow \sigma(V_1; y. let x = M_1' in M_2)$$

for some σ , V_1 , y, and M'_1 such that $M_1 = \sigma(V_1; y. M'_1)$ and $M' = \sigma(V_1; y. \text{let } x = M'_1 \text{ in } M_2)$ and $y \notin fv(M_2)$. Because $\Gamma \vdash \sigma(V_1; y. M'_1) : \Sigma \rhd T_1 / A \Rightarrow A_1$, its inversion implies

• $\sigma: T^{\mathrm{par}} \leadsto T^{\mathrm{ari}} / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \in \Sigma$,

- $A_1 = A^{fin}$,
- $\Gamma \vdash V_1 : T^{\operatorname{par}}$, and
- $\Gamma, y: T^{\operatorname{ari}} \vdash M'_1: \Sigma \triangleright T_1 / A \Rightarrow A^{\operatorname{ini}}$

for some T^{par} , T^{ari} , A^{ini} , and A^{fin} . By Lemma 1, Γ , y: T^{ari} , x: $T_1 \vdash M_2$: $\Sigma \triangleright T_2 / A_2 \Rightarrow A$. By (HT_LET),

$$\Gamma, y: T^{\operatorname{ari}} \vdash \operatorname{let} x = M_1' \operatorname{in} M_2: \Sigma \triangleright T_2 / A_2 \Rightarrow A^{\operatorname{ini}}$$
.

By (HT_OP) with $A_1 = A^{fin}$, we have the conclusion

$$\Gamma \vdash \sigma(V_1; y. \operatorname{let} x = M'_1 \operatorname{in} M_2) : \Sigma \triangleright T_2 / A_2 \Rightarrow A_1$$
.

Case (HE_LETE): We are given

$$M_1 \longrightarrow M_1'$$

for some M_1' such that $M' = (\text{let } x = M_1' \text{ in } M_2)$. By the IH, $\Gamma \vdash M_1' : \Sigma \rhd T_1 / A \Rightarrow A_1$. Therefore, by (HT_Let) , we have the conclusion

$$\Gamma \vdash \text{let } x = M_1' \text{ in } M_2 : \Sigma \triangleright T_2 / A_2 \Rightarrow A_1.$$

Case (HT_APP): We are given

$$\frac{\Gamma \vdash V_1 : T \to C \quad \Gamma \vdash V_2 : T}{\Gamma \vdash V_1 \ V_2 : C}$$

for some V_1 , V_2 , and T such that $M = V_1 V_2$. We have $V_1 V_2 \longrightarrow M'$. By case analysis on the evaluation rule applied last to derive it.

Case (HE_Beta): We are given

$$(\lambda x.M_1) V_2 \longrightarrow M_1[V_2/x]$$

for some x and M_1 such that $V_1 = \lambda x. M_1$ and $M' = M_1[V_2/x]$. By the inversion of $\Gamma \vdash \lambda x. M_1 : T \to C$, we have $\Gamma, x : T \vdash M_1 : C$. Because $\Gamma \vdash V_2 : T$, we have the conclusion $\Gamma \vdash M_1[V_2/x] : C$ by Lemma 2.

Case (HE_Fix): We are given

$$(\operatorname{fix} x. V_1') V_2 \longrightarrow V_1'[\operatorname{fix} x. V_1'/x] V_2$$

for some x and V_1' such that $V_1 = \operatorname{fix} x. V_1'$ and $M' = V_1'[\operatorname{fix} x. V_1'/x] V_2$. By the inversion of $\Gamma \vdash \operatorname{fix} x. V_1' : T \to C$, we have $\Gamma, x : T \to C \vdash V_1' : T \to C$. By Lemma 2, $\Gamma \vdash V_1'[\operatorname{fix} x. V_1'/x] : T \to C$. Therefore, by (HT_APP), we have the conclusion

$$\Gamma \vdash V_1'[\operatorname{fix} x. V_1'/x] \ V_2 : C \ .$$

Case (HT_CASE): We are given

$$\frac{\Gamma \vdash V : \mathbf{n} \quad \forall \, i \in [1, n]. \,\, \Gamma \vdash M_i : C}{\Gamma \vdash \mathsf{case}(\, V ; M_1, \cdots, M_n) : C}$$

for some V, n, M_1, \dots, M_n such that $M = \mathsf{case}(V; M_1, \dots, M_n)$. Because $\mathsf{case}(V; M_1, \dots, M_n) \longrightarrow M'$, we have $V = \underline{\mathsf{i}}$ and $M' = M_i$ for some i such that $0 < i \le n$. Because $\Gamma \vdash M_i : C$, we have the conclusion.

Case (HT_OP): We have $M = \sigma(V; x. M'')$ for some σ, V, x , and M'', but there is a contradiction because there is no evaluation rule applicable to $\sigma(V; x. M'')$.

Case (HT_HANDLE): We are given

$$\frac{H = \{\mathsf{return}\, x \, \mapsto \, M_0\} \uplus \{\sigma_i(x_i; k_i) \, \mapsto \, M_i\}^{1 \leq i \leq n} \qquad \Sigma = \{\sigma_i: \, T_i^{\mathsf{par}} \leadsto \, T_i^{\mathsf{ari}} \, / \, C_i^{\mathsf{ini}} \Rightarrow \, C_i^{\mathsf{fin}}\}^{1 \leq i \leq n}}{\Gamma \vdash M_0': \, \Sigma \, \trianglerighteq \, T \, / \, C^{\mathsf{ini}} \Rightarrow \, C \qquad \Gamma, x: \, T \vdash M_0: \, C^{\mathsf{ini}} \qquad \forall \, i \in [1, n]. \, \Gamma, x_i: \, T_i^{\mathsf{par}}, k_i: \, T_i^{\mathsf{ari}} \to \, C_i^{\mathsf{ini}} \vdash M_i: \, C_i^{\mathsf{fin}}} \\ \Gamma \vdash \mathsf{with} \, H \, \mathsf{handle} \, M_0': \, C$$

for some $H, M_0', x, M_0, \sigma_1, \cdots, \sigma_n, x_1 \cdots, x_n \ k_1 \cdots, k_n, M_1, \cdots, M_n, \Sigma, \sigma_1, \cdots, \sigma_n, T_1^{\operatorname{par}}, \cdots, T_n^{\operatorname{par}}, T_1^{\operatorname{ari}}, \cdots, T_n^{\operatorname{ari}}, C_1^{\operatorname{ini}}, \cdots, C_n^{\operatorname{ini}}, C_1^{\operatorname{fin}}, \cdots, C_n^{\operatorname{fin}}, T$, and C^{ini} such that $M = \operatorname{with} H$ handle M_0' . We have with H handle $M_0' \longrightarrow M'$. By case analysis on the evaluation rule applied last to derive it.

Case (HE_HANDLEV): We are given

with
$$H$$
 handle return $V \longrightarrow M_0[V/x]$

for some V such that $M_0' = \operatorname{return} V$ and $M' = M_0[V/x]$. By the inversion of $\Gamma \vdash \operatorname{return} V : \Sigma \rhd T / C^{\operatorname{ini}} \Rightarrow C$, we have $\Gamma \vdash V : T$ and $C^{\operatorname{ini}} = C$. By Lemma 2 with $\Gamma, x : T \vdash M_0 : C^{\operatorname{ini}}$, we have the conclusion $\Gamma \vdash M_0[V/x] : C$.

Case (HE_HANDLEOP): We are given

with
$$H$$
 handle $\sigma_i(V; y. M_0'') \longrightarrow M_i[V/x_i][\lambda y.$ with H handle $M_0''/k_i]$

for some i, V, y, and M_0'' such that $M_0' = \sigma_i(V; y, M_0'')$ and $M' = M_i[V/x_i][\lambda y.$ with H handle $M_0''/k_i]$. By the inversion of $\Gamma \vdash \sigma_i(V; y, M_0'') : \Sigma \triangleright T / C^{\text{ini}} \Rightarrow C$, we have

- $C = C_i^{fin}$,
- $\Gamma \vdash V : T_i^{\text{par}}$, and
- $\Gamma, y: T_i^{\text{ari}} \vdash M_0'': \Sigma \triangleright T / C^{\text{ini}} \Rightarrow C_i^{\text{ini}}$.

By Lemma 1,

- $\Gamma, y: T_i^{\mathrm{ari}}, x: T \vdash M_0: C^{\mathrm{ini}}$ and
- $\bullet \ \forall \, j \in [1,n]. \ \Gamma, y: T_i^{\operatorname{ari}}, x_i: T_i^{\operatorname{par}}, k_i: T_i^{\operatorname{ari}} \to C_i^{\operatorname{ini}} \vdash M_i: C_i^{\operatorname{fin}}.$

Therefore, by (HT_HANDLE) and (HT_ABS),

$$\Gamma \vdash \lambda y$$
.with H handle $M_0'': T_i^{\text{ari}} \to C_i^{\text{ini}}$.

Thus, by Lemma 2 and $C = C_i^{fin}$, we have the conclusion

$$\Gamma \vdash M_i[V/x_i][\lambda y.$$
 with H handle $M_0''/k_i]: C$.

Case (HE_HANDLEE): We are given $M_0' \longrightarrow M_0''$ for some M_0'' such that $M' = \text{with } H \text{ handle } M_0''$. By the IH, $\Gamma \vdash M_0'' : \Sigma \triangleright T / C^{\text{ini}} \Rightarrow C$. By (HT_HANDLE), we have the conclusion

 $\Gamma \vdash \mathsf{with}\ H\ \mathsf{handle}\ M''_0 : C\ .$

3.2 Type Soundness of EPCF

Lemma 6 (Weakening). Assume that $dom(\Delta_2) \cap dom(\Delta_1, \Delta_3)$ is empty.

- If $\Xi \parallel \Delta_1, \Delta_3 \vdash v : \tau$, then $\Xi \parallel \Delta_1, \Delta_2, \Delta_3 \vdash v : \tau$.
- If $\Xi \parallel \Delta_1, \Delta_3 \vdash e : \tau$, then $\Xi \parallel \Delta_1, \Delta_2, \Delta_3 \vdash e : \tau$.

Proof. Straightforward by mutual induction on the typing derivations.

Lemma 7 (Value Substitution). Assume that $\Xi \parallel \Delta_1 \vdash v_0 : \tau_0$.

- If $\Xi \parallel \Delta_1, x : \tau_0, \Delta_2 \vdash v : \tau$, then $\Xi \parallel \Delta_1, \Delta_2 \vdash v[v_0/x] : \tau$.
- If $\Xi \parallel \Delta_1, x : \tau_0, \Delta_2 \vdash e : \tau$, then $\Xi \parallel \Delta_1, \Delta_2 \vdash e[v_0/x] : \tau$.

Proof. Straightforward by mutual induction on the typing derivations. The case for (T_VAR) rests on Lemma 6. \Box

Lemma 8 (Canonical Forms). Assume that $\Xi \parallel \emptyset \vdash v : \tau$.

- If $\tau = B$, then v = c for some c such that ty(c) = B.
- If $\tau = n$, then $v = \underline{i}$ for some i such that $0 < i \le n$.

• If $\tau = \tau_1 \to \tau_2$, then $v = \lambda x.e$ for some x and e, or v = fix x.v' for some x and v'.

Proof. Straightforward by case analysis on the typing derivation. Note that, for any c, ty(c) = B for some B by Assumption 1.

Lemma 9 (Progress). *If* $\Xi \parallel \emptyset \vdash e : \tau$, then one of the following holds:

- e = return v for some v;
- $e = \sigma(v; x. e')$ for some σ, v, x , and e'; or
- $e \longrightarrow e'$ for some e'.

Proof. By induction on the typing derivation applied last to derive $\Xi \parallel \emptyset \vdash e : \tau$.

Case (T_RETURN): Obvious.

Case (T_LET): We are given

$$\frac{\Xi \parallel \emptyset \vdash e_1 : \tau_1 \quad \Xi \parallel x : \tau_1 \vdash e_2 : \tau}{\Xi \parallel \emptyset \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : \tau}$$

for some x, e_1 , e_2 , and τ_1 such that $e = (\text{let } x = e_1 \text{ in } e_2)$. By case analysis on the result of the IH on $\Xi \parallel \emptyset \vdash e_1 : \tau_1$.

Case $\exists v_1$. $e_1 = \text{return } v_1$: By (E_LETV).

Case $\exists \sigma, v_1, y, e'_1$. $e_1 = \sigma(v_1; y, e'_1)$: By (E_LETOP).

Case $\exists e'_1. e_1 \longrightarrow e'_1$: By (E_LETE).

Case (T_APP): We are given

$$\frac{\Xi \parallel \emptyset \vdash v_1 : \tau' \to \tau \quad \Xi \parallel \emptyset \vdash v_2 : \tau'}{\Xi \parallel \emptyset \vdash v_1 \ v_2 : \tau}$$

for some v_1 , v_2 , and τ' such that $e = v_1 v_2$. By case analysis on the result of applying Lemma 8 to $\Xi \parallel \emptyset \vdash v_1 : \tau' \to \tau$.

Case $\exists x, e_1. v_1 = \lambda x.e_1$: By (E_BETA).

Case $\exists x, v'_1$. $v_1 = \text{fix } x.v'_1$: By (E_Fix).

Case (T_-CASE): We are given

$$\frac{\Xi \parallel \emptyset \vdash v : \mathsf{n} \quad \forall \, i \in [1, n]. \; \Xi \parallel \emptyset \vdash e_i : \tau}{\Xi \parallel \emptyset \vdash \mathsf{case}(v; e_1, \cdots, e_n) : \tau}$$

for some v, n, e_1, \dots, e_n such that $e = \mathsf{case}(v; e_1, \dots, e_n)$. By Lemma 8, $v = \underline{\mathsf{i}}$ for some i such that $0 < i \le n$. Thus, we have the conclusion by (E_CASE).

Case (T_OP) : Obvious.

Lemma 10 (Subject Reduction). If $\Xi \parallel \Delta \vdash e : \tau \text{ and } e \longrightarrow e', \text{ then } \Xi \parallel \Delta \vdash e' : \tau.$

Proof. By induction on the typing derivation.

Case (T_Return): We have e = return v for some v, but there is a contradiction because there is no evaluation rule applicable to return v.

Case (T_LET): We are given

$$\frac{\Xi \parallel \Delta \vdash e_1 : \tau_1 \quad \Xi \parallel \Delta, x : \tau_1 \vdash e_2 : \tau}{\Xi \parallel \Delta \vdash \operatorname{let} x = e_1 \operatorname{in} e_2 : \tau}$$

for some x, e_1 , e_2 , and τ_1 such that $e = (\text{let } x = e_1 \text{ in } e_2)$. We have $\text{let } x = e_1 \text{ in } e_2 \longrightarrow e'$. By case analysis on the evaluation rule applied last to derive it.

Case (E_LETV): We are given

$$let x = return v_1 in e_2 \longrightarrow e_2[v_1/x]$$

for some v_1 such that $e_1 = \operatorname{return} v_1$ and $e' = e_2[v_1/x]$. Because $\Xi \parallel \Delta \vdash \operatorname{return} v_1 : \tau_1$, its inversion implies $\Xi \parallel \Delta \vdash v_1 : \tau_1$. By Lemma 7, we have the conclusion $\Xi \parallel \Delta \vdash e_2[v_1/x] : \tau$.

Case (E_LETOP): We are given

$$let x = \sigma(v_1; y. e'_1) in e_2 \longrightarrow \sigma(v_1; y. let x = e'_1 in e_2)$$

for some σ , v_1 , y, and e'_1 such that $e_1 = \sigma(v_1; y. e'_1)$ and $e' = \sigma(v_1; y. \text{let } x = e'_1 \text{ in } e_2)$ and $y \notin fv(e_2)$. Because $\Xi \parallel \Delta \vdash \sigma(v_1; y. e'_1) : \tau_1$, its inversion implies

- $\sigma: B \leadsto E \in \Xi$,
- $\Xi \parallel \Delta \vdash v_1 : B$, and
- $\Xi \parallel \Delta, y : E \vdash e'_1 : \tau_1$

for some B and E. By Lemma 6, $\Xi \parallel \Delta, y : E, x : \tau_1 \vdash e_2 : \tau$. By (T_LET),

$$\Xi \parallel \Delta, y : E \vdash \mathsf{let} \, x = e_1' \mathsf{in} \, e_2 : \tau$$
.

By (T₋O_P), we have the conclusion

$$\Xi \parallel \Delta \vdash \sigma(v_1; y. \operatorname{let} x = e'_1 \operatorname{in} e_2) : \tau$$
.

Case (E_LETE): We are given

$$e_1 \longrightarrow e'_1$$

for some e_1' such that $e' = (\text{let } x = e_1' \text{ in } e_2)$. By the IH, $\Xi \parallel \Delta \vdash e_1' : \tau_1$. Therefore, by (T_LET), we have the conclusion

$$\Xi \parallel \Delta \vdash \operatorname{let} x = e'_1 \operatorname{in} e_2 : \tau.$$

Case (T_APP) : We are given

$$\frac{\Xi \parallel \Delta \vdash v_1 : \tau' \to \tau \quad \Xi \parallel \Delta \vdash v_2 : \tau'}{\Xi \parallel \Delta \vdash v_1 v_2 : \tau}$$

for some v_1 , v_2 , and τ' such that $e = v_1 v_2$. We have $v_1 v_2 \longrightarrow e'$. By case analysis on the evaluation rule applied last to derive it.

Case (E_Beta): We are given

$$(\lambda x.e_1) v_2 \longrightarrow e_1[v_2/x]$$

for some x and e_1 such that $v_1 = \lambda x.e_1$ and $e' = e_1[v_2/x]$. By the inversion of $\Xi \parallel \Delta \vdash \lambda x.e_1 : \tau' \to \tau$, we have $\Xi \parallel \Delta, x : \tau' \vdash e_1 : \tau$. Because $\Xi \parallel \Delta \vdash v_2 : \tau'$, we have the conclusion $\Xi \parallel \Delta \vdash e_1[v_2/x] : \tau$ by Lemma 7.

Case (E_FIX): We are given

$$(\operatorname{fix} x.v_1') v_2 \longrightarrow v_1' [\operatorname{fix} x.v_1'/x] v_2$$

for some x and v_1' such that $v_1 = \operatorname{fix} x.v_1'$ and $e' = v_1'[\operatorname{fix} x.v_1'/x]v_2$. By the inversion of $\Xi \parallel \Delta \vdash \operatorname{fix} x.v_1': \tau' \to \tau$, we have $\Xi \parallel \Delta, x: \tau' \to \tau \vdash v_1': \tau' \to \tau$. By Lemma 7, $\Xi \parallel \Delta \vdash v_1'[\operatorname{fix} x.v_1'/x]: \tau' \to \tau$. Therefore, by (T_APP), we have the conclusion

$$\Xi \parallel \Delta \vdash v_1'[\mathsf{fix}\,x.v_1'/x]\,v_2:\tau$$
.

Case (T_CASE): We are given

$$\frac{\Xi \parallel \Delta \vdash v : \mathbf{n} \quad \forall \, i \in [1, n]. \; \Xi \parallel \Delta \vdash e_i : \tau}{\Xi \parallel \Delta \vdash \mathsf{case}(v; e_1, \cdots, e_n) : \tau}$$

for some v, n, e_1, \dots, e_n such that $e = \mathsf{case}(v; e_1, \dots, e_n)$. Because $\mathsf{case}(v; e_1, \dots, e_n) \longrightarrow e'$, we have $v = \underline{\mathsf{i}}$ and $e' = e_i$ for some i such that $0 < i \le n$. Because $\Xi \parallel \Delta \vdash e_i : \tau$, we have the conclusion.

Case (T_OP): We have $e = \sigma(v; x, e'')$ for some σ, v, x , and e'', but there is a contradiction because there is no evaluation rule applicable to $\sigma(v; x. e'')$.

3.3 Type Preservation

Definition 22 (Pre-Order on Typing Contexts). We write $\Delta_1 \leq \Delta_2$ if $dom(\Delta_1) \subseteq dom(\Delta_2)$ and, for any $x \in$ $dom(\Delta_1), \ \Delta_1(x) = \Delta_2(x).$

 $T_1^{\mathrm{par}}, \dots, T_n^{\mathrm{par}}, T_1^{\mathrm{ari}}, \dots, T_n^{\mathrm{ari}}, A_{1}^{\mathrm{ini}}, \dots, A_n^{\mathrm{ini}}, and A_1^{\mathrm{fin}}, \dots, A_n^{\mathrm{fin}}$ such that $\sigma_1, \dots, \sigma_n$ are ordered. For a variable sequence $\overline{h} = h_1, \dots, h_n$, we write $\overline{h} : \Sigma$ to denote the typing context that, for each $i \in [1, n]$, assigns to the variable $\begin{array}{l} h_i \text{ the type } \llbracket T_i^{\mathrm{par}} \rrbracket \rightarrow (\llbracket T_i^{\mathrm{ari}} \rrbracket) \rightarrow \llbracket A_i^{\mathrm{ini}} \rrbracket) \rightarrow \llbracket A_i^{\mathrm{fin}} \rrbracket. \text{ For a value sequence } \overline{v^{\mathsf{h}}} = v_1^{\mathsf{h}}, \cdots, v_n^{\mathsf{h}}, \text{ we write } \Xi \Vdash \Delta \vdash \overline{v^{\mathsf{h}}} : \Sigma \text{ if, for each } i \in [1, n], \; \Xi \Vdash \Delta \vdash v_i^{\mathsf{h}} : \llbracket T_i^{\mathrm{par}} \rrbracket \rightarrow (\llbracket T_i^{\mathrm{ari}} \rrbracket) \rightarrow \llbracket A_i^{\mathrm{ini}} \rrbracket) \rightarrow \llbracket A_i^{\mathrm{fin}} \rrbracket \text{ holds.} \end{array}$

Lemma 11 (Type Preservation of the CPS Transformation). Assume that $\llbracket \Gamma \rrbracket \preceq \Delta$.

- If $\Gamma \vdash V : T$, then $\Xi \parallel \Delta \vdash \llbracket V \rrbracket : \llbracket T \rrbracket$ for any Ξ .
- If $\Gamma \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}} \ \ and \ \Xi \parallel \Delta \vdash \overline{v^{\mathsf{h}}} : \Sigma \ \ and \ \Xi \parallel \Delta \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \rightarrow \llbracket A^{\text{ini}} \rrbracket, \ then \ \Xi \parallel \Delta \vdash \llbracket M \rrbracket \lceil \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rceil : \Gamma \upharpoonright A^{\text{ini}} \rrbracket = \Gamma \upharpoonright A^{\text{ini}} \rrbracket$ $[A^{\text{fin}}]$.
- If $\Gamma \vdash M : C$, then $\Xi \parallel \Delta \vdash \llbracket M \rrbracket : \llbracket C \rrbracket$ for any Ξ .

Proof. By mutual induction on the typing derivations.

- Assume that $\Gamma \vdash V : T$ is given. By case analysis on the typing rule applied last to derive it.
 - Case (HT_VAR): Obvious by (T_VAR).
 - Case (HT_CONST): Obvious by (T_CONST). Note that ty(c) is base type by Assumption 1.
 - Case (HT_ECONST): Obvious by (T_ECONST).
 - Case (HT_ABS): We are given $\Gamma \vdash \lambda x.M : T' \to C'$ for some x, M, T', and C' such that $V = \lambda x.M$ and $T = T' \to C'$. By inversion, $\Gamma, x : T' \vdash M : C'$. Because $\llbracket \Gamma \rrbracket \preceq \Delta$, we have $\llbracket \Gamma \rrbracket, x : \llbracket T' \rrbracket \preceq \Delta, x : \llbracket T' \rrbracket$. Therefore, by the IH, $\Xi \parallel \Delta, x : \llbracket T' \rrbracket \vdash \llbracket M \rrbracket : \llbracket C' \rrbracket$. By (T_RETURN) and (T_ABS), $\Xi \parallel \Delta \vdash \lambda x$.return $\llbracket M \rrbracket$: $[T'] \to [C']$. By the definition of the CPS transformation, we have the conclusion.
 - Case (HT_Fix): We are given $\Gamma \vdash \text{fix } x. V' : T' \to C'$ for some x, V', T', and C' such that V = fix x. V'and $T = T' \to C'$. By inversion, $\Gamma, x : T' \to C' \vdash V' : T' \to C'$. Because $\llbracket \Gamma \rrbracket \preceq \Delta$, we have $\llbracket \Gamma \rrbracket, x : T' \to C'$. $[\![T']\!] \to [\![C']\!] \preceq \Delta, x : [\![T']\!] \to [\![C']\!]$. Therefore, by the IH, $\Xi [\![L]\!] \Delta, x : [\![T']\!] \to [\![C']\!] \vdash [\![V']\!] : [\![T']\!] \to [\![C']\!]$. By (T_FIX) , $\Xi \parallel \Delta \vdash \text{fix } x. \llbracket V' \rrbracket : \llbracket T' \rrbracket \to \llbracket C' \rrbracket$. By the definition of the CPS transformation, we have the conclusion.
- Assume that $\Gamma \vdash M : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ is given. Let $\Sigma = \{\sigma_i : T_i^{\text{par}} \leadsto T_i^{\text{ari}} / A_i^{\text{ini}} \Rightarrow A_i^{\text{fin}}\}^{1 \le i \le n}$ for some $\sigma_1, \cdots, \sigma_n, T_1^{\text{par}}, \cdots, T_n^{\text{par}}, T_1^{\text{ari}}, \cdots, T_n^{\text{ari}}, A_1^{\text{ini}}, \cdots, A_n^{\text{ini}}, \text{ and } A_1^{\text{fin}}, \cdots, A_n^{\text{fin}} \text{ such that } \sigma_1, \cdots, \sigma_n \text{ are ordered.}$ By case analysis on the typing rule applied last to derive it.

Case (HT_RETURN): We are given

$$\frac{\Gamma \vdash V : T}{\Gamma \vdash \mathsf{return} \ V : \Sigma \rhd \ T \, / \, A \Rightarrow A}$$

for some V and A such that M = return V and $A^{\text{ini}} = A^{\text{fin}} = A$. By the IH, $\Xi \parallel \Delta \vdash \llbracket V \rrbracket : \llbracket T \rrbracket$. By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash v^{\mathsf{k}} \llbracket V \rrbracket : \llbracket A \rrbracket ,$$

which is derived as follows:

$$\frac{\Xi \parallel \Delta \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \to \llbracket A \rrbracket \qquad \Xi \parallel \Delta \vdash \llbracket V \rrbracket : \llbracket T \rrbracket}{\Xi \parallel \Delta \vdash v^{\mathsf{k}} \llbracket V \rrbracket : \llbracket A \rrbracket} \ (\mathsf{T}_{\mathsf{APP}})$$

Case (HT_LET): We are given

$$\frac{\Gamma \vdash M_1 : \Sigma \rhd T_1 \, / \, A \Rightarrow A^{\mathrm{fin}} \quad \Gamma, x : T_1 \vdash M_2 : \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A}{\Gamma \vdash \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2 : \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}}$$

for some x, M_1 , M_2 , T_1 , and A such that $M = (\text{let } x = M_1 \text{ in } M_2)$. Without loss of generality, we can assume that $x \notin dom(\Delta)$. By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash \llbracket M_1 \rrbracket \llbracket \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket \llbracket \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \, \rrbracket \, \rrbracket : \llbracket A^\mathrm{fin} \rrbracket \ .$$

Because $\llbracket \Gamma \rrbracket \preceq \Delta$, we have $\llbracket \Gamma \rrbracket, x : \llbracket T_1 \rrbracket \preceq \Delta, x : \llbracket T_1 \rrbracket$. By Lemma 6, $\Xi \Vdash \Delta, x : \llbracket T_1 \rrbracket \vdash \overline{v^{\mathsf{h}}} : \Sigma$ and $\Xi \Vdash \Delta, x : \llbracket T_1 \rrbracket \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \to \llbracket A^{\mathrm{ini}} \rrbracket$. Therefore, by the IH on $\Gamma, x : T_1 \vdash M_2 : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow A$, we have

$$\Xi \parallel \Delta, x : \llbracket T_1 \rrbracket \vdash \llbracket M_2 \rrbracket \lceil \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rceil : \llbracket A \rrbracket \ .$$

By (T_ABS) ,

$$\Xi \parallel \Delta \vdash \lambda x. \llbracket M_2 \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \, \rrbracket : \llbracket T_1 \rrbracket \to \llbracket A \rrbracket \, .$$

Therefore, by the IH on $\Gamma \vdash M_1 : \Sigma \triangleright T_1 / A \Rightarrow A^{\text{fin}}$, we have the conclusion

$$\Xi \parallel \Delta \vdash \llbracket M_1 \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid \lambda x. \llbracket M_2 \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket \rrbracket : \llbracket A^{\mathrm{fin}} \rrbracket \ .$$

Case (HT_APP): We are given

$$\frac{\Gamma \vdash V_1 : T' \to \Sigma \triangleright T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \quad \Gamma \vdash V_2 : T'}{\Gamma \vdash V_1 \, V_2 : \Sigma \triangleright T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}}$$

for some V_1, V_2 , and T' such that $M = V_1 V_2$. By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash \llbracket \, V_1 \rrbracket \, \llbracket \, V_2 \rrbracket \, \overline{v^\mathsf{h}} \, v^\mathsf{k} : \llbracket A^\mathrm{fin} \rrbracket \, \, .$$

Then, it suffices to show that

$$\Xi \parallel \Delta \vdash \llbracket V_1 \rrbracket \, \llbracket V_2 \rrbracket : \llbracket \Sigma \rrbracket [\, (\llbracket T \rrbracket \to \llbracket A^{\mathrm{ini}} \rrbracket) \to \llbracket A^{\mathrm{fin}} \rrbracket \,] \,\, ,$$

which is derived by the IHs and (T_APP).

Case (HT_Case): We are given

$$\frac{\Gamma \vdash V : \mathbf{n} \quad \forall \, i \in [1, n]. \; \Gamma \vdash M_i : \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}}{\Gamma \vdash \mathsf{case}(\, V ; M_1, \cdots, M_n) : \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}}$$

for some V_1, M_1, \dots, M_n , and n such that $M = \mathsf{case}(V; M_1, \dots, M_n)$. By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash \mathsf{case}(\llbracket V \rrbracket; \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,], \cdots, \llbracket M_n \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) : \llbracket A^\mathrm{fin} \rrbracket \; .$$

By the IHs,

$$\Xi \parallel \Delta \vdash \llbracket \, V \rrbracket : \mathsf{n}$$
 and

$$- \ \forall \, i \in [1,n]. \ \Xi \parallel \Delta \vdash [\![M_i]\!] [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] : [\![A^\mathrm{fin}]\!].$$

Therefore, by (T₋CASE), we have the conclusion.

Case (HT_OP): We are given

$$\frac{\Gamma \vdash V' : T_i^{\text{par}} \quad \Gamma, x : T_i^{\text{ari}} \vdash M' : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A_i^{\text{ini}}}{\Gamma \vdash \sigma_i(V'; x.M') : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A_i^{\text{fin}}}$$

for some V', x, M', and i such that $M = \sigma_i(V'; x, M')$ and $A^{\text{fin}} = A_i^{\text{fin}}$. By case analysis on A_i^{ini} . Case $\exists C_i^{\text{ini}}$. $A_i^{\text{ini}} = C_i^{\text{ini}}$: By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash v_i^\mathsf{h} \, \llbracket \, V' \rrbracket \, \lambda x, \overline{h}, k. \llbracket M' \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, \lVert \, v^\mathsf{k} \, \rrbracket \, \overline{h} \, k : \llbracket A_i^\mathrm{fin} \rrbracket$$

where $|\overline{h}| = |C_i^{\text{ini}}.\Sigma|$. Let $C_i^{\text{ini}} = \Sigma' \triangleright T' / {C'}^{\text{ini}} \Rightarrow {C'}^{\text{fin}}$ for some Σ' , T', ${C'}^{\text{ini}}$, and ${C'}^{\text{fin}}$. Let $\Delta' = \Delta, x : [\![T_i^{\text{ari}}]\!], \overline{h} : \Sigma', k : [\![T']\!] \rightarrow [\![C']^{\text{ini}}]\!]$. Because $[\![\Gamma]\!] \preceq \Delta$, we have $[\![\Gamma]\!], x : [\![T_i^{\text{ari}}]\!] \preceq \Delta'$. By Lemma $6, \Xi |\![\Delta' \vdash \overline{v^{\text{h}}} : \Sigma \text{ and } \Xi |\![\Delta' \vdash \overline{v^{\text{k}}} : [\![T]\!] \rightarrow [\![A^{\text{ini}}]\!]$. Therefore, by the IHs,

$$-\Xi \parallel \Delta \vdash \llbracket V' \rrbracket : \llbracket T_i^{\text{par}} \rrbracket \text{ and }$$

$$- \, \Xi \, \| \, \Delta' \vdash \llbracket M' \rrbracket [\, \overline{v^{\mathsf{h}}} \, | \, v^{\mathsf{k}} \,] : \llbracket C_i^{\mathrm{ini}} \rrbracket$$

By (T_ABS), (T_APP), (T_VAR), (T_LET), and (T_RETURN),

$$\Xi \parallel \Delta \vdash \lambda x, \overline{h}, k. \llbracket M' \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket \overline{h} \, k : \llbracket T_i^{\operatorname{ari}} \rrbracket \to \llbracket C_i^{\operatorname{ini}} \rrbracket .$$

The conclusion is derived as follows:

$$\mathcal{D} = \frac{\Xi \parallel \Delta \vdash v_i^{\mathsf{h}} : \llbracket T_i^{\mathsf{par}} \rrbracket \to (\llbracket T_i^{\mathsf{ari}} \rrbracket \to \llbracket A_i^{\mathsf{ini}} \rrbracket) \to \llbracket A_i^{\mathsf{fin}} \rrbracket \qquad \Xi \parallel \Delta \vdash \llbracket V' \rrbracket : \llbracket T_i^{\mathsf{par}} \rrbracket}{\Xi \parallel \Delta \vdash v_i^{\mathsf{h}} \llbracket V' \rrbracket : (\llbracket T_i^{\mathsf{ari}} \rrbracket \to \llbracket A_i^{\mathsf{ini}} \rrbracket) \to \llbracket A_i^{\mathsf{fin}} \rrbracket} \ (\mathsf{T}_{-}\mathsf{App})$$

$$\frac{\mathcal{D} \qquad \Xi \parallel \Delta \vdash \lambda x, \overline{h}, k. \llbracket M' \rrbracket \llbracket \, \overline{v^{\mathsf{h}}} \, | \, v^{\mathsf{k}} \, \rrbracket \, \overline{h} \, k : \llbracket \, T_i^{\operatorname{ari}} \rrbracket \to \llbracket \, C_i^{\operatorname{ini}} \rrbracket \qquad C_i^{\operatorname{ini}} = A_i^{\operatorname{ini}} \\ \Xi \parallel \Delta \vdash v_i^{\mathsf{h}} \llbracket \, V' \rrbracket \, \lambda x, \overline{h}, k. \llbracket M' \rrbracket \llbracket \, \overline{v^{\mathsf{h}}} \, | \, v^{\mathsf{k}} \, \rrbracket \, \overline{h} \, k : \llbracket A_i^{\operatorname{fin}} \rrbracket \qquad (\text{T_Let}), (\text{T_App})$$

Case $\exists T_i^{\text{ini}}$. $A_i^{\text{ini}} = T_i^{\text{ini}}$: By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash v_i^\mathsf{h} \, \llbracket \, V' \rrbracket \, \lambda x. \llbracket M' \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, \lVert \, v^\mathsf{k} \, \rrbracket : \llbracket A_i^\mathrm{fin} \rrbracket \, \, .$$

Because $\llbracket \Gamma \rrbracket \preceq \Delta$, we have $\llbracket \Gamma \rrbracket, x : \llbracket T_i^{\operatorname{ari}} \rrbracket \preceq \Delta, x : \llbracket T_i^{\operatorname{ari}} \rrbracket$. By Lemma 6, $\Xi \Vdash \Delta, x : \llbracket T_i^{\operatorname{ari}} \rrbracket \vdash \overline{v^{\mathsf{h}}} : \Sigma$ and $\Xi \Vdash \Delta, x : \llbracket T_i^{\operatorname{ari}} \rrbracket \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \to \llbracket A^{\operatorname{ini}} \rrbracket$. Therefore, by the IHs,

$$-\Xi \|\Delta \vdash [V']: [T_i^{\mathrm{par}}] \text{ and }$$

$$- \exists \| \Delta, x : \| T_i^{\operatorname{ari}} \| \vdash \| M' \| [\overline{v^{\mathsf{h}}} | v^{\mathsf{k}}] : \| A_i^{\operatorname{ini}} \|$$

By (T_ABS) ,

$$\Xi \parallel \Delta \vdash \lambda x. \llbracket M' \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \, \rrbracket : \llbracket \, T_i^{\operatorname{ari}} \rrbracket \to \llbracket A_i^{\operatorname{ini}} \rrbracket \, \, .$$

The conclusion is derived as follows:

$$\mathcal{D} = \frac{\Xi \parallel \Delta \vdash v_i^{\mathsf{h}} : \llbracket T_i^{\mathsf{par}} \rrbracket \to (\llbracket T_i^{\mathsf{ari}} \rrbracket \to \llbracket A_i^{\mathsf{ini}} \rrbracket) \to \llbracket A_i^{\mathsf{fin}} \rrbracket \quad \Xi \parallel \Delta \vdash \llbracket V' \rrbracket : \llbracket T_i^{\mathsf{par}} \rrbracket}{\Xi \parallel \Delta \vdash v_i^{\mathsf{h}} \llbracket V' \rrbracket : (\llbracket T_i^{\mathsf{ari}} \rrbracket \to \llbracket A_i^{\mathsf{ini}} \rrbracket) \to \llbracket A_i^{\mathsf{fin}} \rrbracket} \quad (\mathsf{T}_{-}\mathsf{App})$$

$$\frac{\mathcal{D}}{\Xi \parallel \Delta \vdash \lambda x \cdot \llbracket M' \rrbracket [\overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}}] : \llbracket T_i^{\mathsf{ari}} \rrbracket \to \llbracket A_i^{\mathsf{ini}} \rrbracket}{\Xi \parallel \Delta \vdash v_i^{\mathsf{h}} \llbracket V' \rrbracket \lambda x \cdot \llbracket M' \rrbracket [\overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}}] : \llbracket A_i^{\mathsf{fin}} \rrbracket} \quad (\mathsf{T}_{-}\mathsf{Let}), (\mathsf{T}_{-}\mathsf{App})$$

Case (HT_HANDLE): We are given

$$\begin{split} H' &= \{ \operatorname{return} x \, \mapsto \, M_0 \} \uplus \{ \sigma'_j(x'_j; k'_j) \, \mapsto \, M'_j \}^{1 \leq j \leq m} \\ \Sigma' &= \{ \sigma'_j : \, T'_j^{\operatorname{par}} \, \leadsto \, T'_j^{\operatorname{rir}} / \, C'_j^{\operatorname{rin}} \, \Rightarrow \, C'_j^{\operatorname{fin}} \}^{1 \leq j \leq m} \\ \Gamma \vdash M' : \Sigma' \rhd \, T' / \, C^{\operatorname{ini}} \, \Rightarrow \, C^{\operatorname{fin}} \quad \Gamma, x : \, T' \vdash M_0 : \, C^{\operatorname{ini}} \\ \forall \, j \in [1, m]. \, \Gamma, x'_j : \, T'_j^{\operatorname{par}}, k'_j : \, T'_j^{\operatorname{ari}} \, \to \, C'_j^{\operatorname{ini}} \vdash M'_j : \, C'_j^{\operatorname{fin}} \\ \Gamma \vdash \operatorname{with} H' \, \operatorname{handle} M' : \, \Sigma \rhd \, T / \, A^{\operatorname{ini}} \, \Rightarrow \, A^{\operatorname{fin}} \end{split}$$

for some $H', M', x, M_0, \sigma'_1, \cdots, \sigma'_m, x'_1, \cdots, x'_m, k'_1, \cdots, k'_m, M'_1, \cdots, M'_m, T'^{\mathrm{par}}_1, \cdots, T'^{\mathrm{par}}_m, T'^{\mathrm{ari}}_1, \cdots, T'^{\mathrm{ari}}_m, C'^{\mathrm{ini}}_1, \cdots, C'^{\mathrm{ini}}_m, \text{ and } C'^{\mathrm{fin}}_1, \cdots, C'^{\mathrm{fin}}_m, \Sigma', T', C^{\mathrm{ini}}_n, \text{ and } C^{\mathrm{fin}}_n \text{ such that } M = \text{with } H' \text{ handle } M' \text{ and } C^{\mathrm{fin}} = \Sigma \triangleright T / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}$. By the definition, it suffices to show that

$$\Xi \parallel \Delta \vdash \llbracket M' \rrbracket \llbracket \lambda x_1', k_1'.\mathsf{return} \ \llbracket M_1' \rrbracket, \cdots, \lambda x_m', k_m'.\mathsf{return} \ \llbracket M_m' \rrbracket \mid \lambda x.\mathsf{return} \ \llbracket M_0 \rrbracket \ \rrbracket \ \overline{v^\mathsf{h}} \ v^\mathsf{k} : \llbracket A^\mathrm{fin} \rrbracket \ .$$

Because $\llbracket \Gamma \rrbracket \preceq \Delta$, we have $\llbracket \Gamma \rrbracket, x : \llbracket T' \rrbracket \preceq \Delta, x : \llbracket T' \rrbracket$ and, for each $j \in [1, m]$, $\llbracket \Gamma \rrbracket, x'_j : \llbracket T'^{\text{par}}_j \rrbracket, k'_j : \llbracket T'^{\text{par}}_j \rrbracket, k'_j : \llbracket T'^{\text{par}}_j \rrbracket \to \llbracket C'^{\text{ini}}_j \rrbracket \to \llbracket C'^{\text{ini}}_j \rrbracket$. Therefore, by the IHs on the typing derivations of M_0, M'_1, \cdots, M'_m ,

- $-\Xi \parallel \Delta, x : \llbracket T' \rrbracket \vdash \llbracket M_0 \rrbracket : \llbracket C^{\text{ini}} \rrbracket \text{ and }$
- $-\ \forall\, j\in[1,m].\ \Xi\parallel\Delta, x_j':[\![\,T'^{\mathrm{par}}_{\ j}]\!], k_j':[\![\,T'^{\mathrm{ari}}_{\ j}]\!]\to[\![\,C'^{\mathrm{ini}}_{\ j}]\!]\vdash[\![\,M_j']\!]:[\![\,C'^{\mathrm{fin}}_{\ j}]\!].$

By (T_ABS) and (T_RETURN),

- $-\Xi \parallel \Delta \vdash \lambda x.\mathsf{return} \llbracket M_0 \rrbracket : \llbracket T' \rrbracket \to \llbracket C^{\mathrm{ini}} \rrbracket \text{ and }$
- $\ \forall j \in [1, m]. \ \exists \ \| \ \Delta \vdash \lambda x_i', k_i'.\mathsf{return} \ [\![M_i']\!] : [\![T'_i^{\mathsf{par}}]\!] \rightarrow ([\![T'_i^{\mathsf{ari}}]\!] \rightarrow [\![C'_i^{\mathsf{ini}}]\!]) \rightarrow [\![C'_i^{\mathsf{fin}}]\!].$

Therefore,

$$\Xi \parallel \Delta \vdash \lambda x_1', k_1'.\mathsf{return} \, \llbracket M_1' \rrbracket, \cdots, \lambda x_m', k_m'.\mathsf{return} \, \llbracket M_m' \rrbracket : \Sigma' \; .$$

By the IH on the typing derivation of M',

$$\Xi \parallel \Delta \vdash \llbracket M' \rrbracket [\, \lambda x_1', k_1'.\mathsf{return} \, \llbracket M_1' \rrbracket, \cdots, \lambda x_m', k_m'.\mathsf{return} \, \llbracket M_m' \rrbracket \, | \, \lambda x.\mathsf{return} \, \llbracket M_0 \rrbracket \,] : \llbracket C^{\mathrm{fin}} \rrbracket \, \, .$$

Because $C^{\mathrm{fin}} = \Sigma \triangleright T / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}$ and $\Xi \parallel \Delta \vdash \overline{v^{\mathsf{h}}} : \Sigma$ and $\Xi \parallel \Delta \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \rightarrow \llbracket A^{\mathrm{ini}} \rrbracket$, we have the conclusion.

• Assume that $\Gamma \vdash M : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ is given. Let \overline{h} be a variable sequence such that $|\overline{h}| = |\Sigma|$. Then, by the definition of the CPS transformation, it suffices to show that $\Xi \parallel \Delta, \overline{h} : \Sigma, k : \llbracket T \rrbracket \to \llbracket A^{\text{ini}} \rrbracket \vdash \llbracket M \rrbracket \llbracket \overline{h} \mid k \rrbracket : \llbracket A^{\text{fin}} \rrbracket$, which is shown by case (11).

3.4 Semantics Preservation

Lemma 12 (Substitution is a Homomorphism). For any V' and x, the following holds:

- 1. For any M, $\overline{v^h}$, and v^k , $[\![M]\!][\overline{v^h} \mid v^k][\![[\![V']\!]/x] = [\![M[V'/x]\!][\![\overline{v^h}[\![V']\!]/x]\!] \mid v^k[\![[\![V']\!]/x]\!]]$.
- 2. For any M, $[\![M]\!][\![V']\!]/x] = [\![M[V'/x]]\!]$.
- $3. \ \ For \ any \ \ V, \ [\![V]\!][[\![V']\!]/x] = [\![V[V'/x]]\!].$

Proof. By mutual induction on M and V.

1. By case analysis on M.

Case $\exists V. M = \text{return } V$: The conclusion is shown as follows:

$$\begin{split} & & [\![M]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][\![\,V']\!]/x] \\ &= & [\![\mathsf{return}}\,\,V]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][\![\,V']\!]/x] \\ &= & v^{\mathsf{k}}[\![\,V']\!]/x]\,[\![\,V]\!][\![\,V']\!]/x] \\ &= & v^{\mathsf{k}}[\![\,V']\!]/x]\,[\![\,V[\,V']\!]x] \quad \text{(by the IH)} \\ &= & [\![\mathsf{return}}\,\,V[\,V']\!/x]]]\,[\,v^{\mathsf{h}}[\![\,V']\!]/x]\,|\,v^{\mathsf{k}}[\![\,V']\!]/x]\,] \\ &= & [\![M[\,V'/x]]\!][\,v^{\mathsf{h}}[\![\,V']\!]/x]\,|\,v^{\mathsf{k}}[\![\,V']\!]/x]\,] \,. \end{split}$$

Case $\exists M_1, M_2, y$. $M = (\text{let } y = M_1 \text{ in } M_2)$: Without loss of generality, we can assume that $y \notin fv(V') \cup \{x\}$. Then, the conclusion is shown as follows:

Case $\exists V_1, V_2$. $M = V_1 V_2$: The conclusion is shown as follows:

Case $\exists V, M_1, \dots, M_n$. $M = \mathsf{case}(V; M_1, \dots, M_n)$: The conclusion is shown as follows:

```
 \begin{split} & [\![M]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x] \\ &= [\![\mathsf{case}(\,V;\,M_1,\cdots,M_n)]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x] \\ &= (\mathsf{case}([\![\,V]\!];\,[\![M_1]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,],\cdots,[\![M_n]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,]))[[\![\,V']\!]/x] \\ &= \mathsf{case}([\![\,V]\!][[\![\,V']\!]/x];\,[\![M_1]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x],\cdots,[\![\,M_n]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x]) \\ &= \mathsf{case}([\![\,V[\,V'/x]\!];\,[\![M_1[\,V'/x]\!]][\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]],\cdots,[\![\,M_n[\,V'/x]\!]][\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]]) \\ &= [\![\,\mathsf{case}(\,V[\,V'/x];\,M_1[\,V'/x],\cdots,M_n)[\,V'/x]]][\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]] \\ &= [\![\,\mathsf{case}(\,V;\,M_1,\cdots,M_n)[\,V'/x]]][\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]] \\ &= [\![\,M[\,V'/x]]][\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]]\,. \end{split}
```

Case $\exists \sigma_i, V, y, M'$. $M = \sigma_i(V; y, M')$: Without loss of generality, we can assume that $y \notin fv(V') \cup \{x\}$. Furthermore, assume that $\overline{v^h}$ includes a value v_i^h corresponding to σ_i . Then, the conclusion is shown as follows:

Note that the value substitution does not influence the operation signature used in typing M.

Case $\exists H, M'$. M = with H handle M': Let $H = \{\text{return } y \mapsto M''\} \uplus \{\sigma(y_i; k_i) \mapsto M_i\}^{1 \leq i \leq n} \text{ for some } y, M'', y_1, \dots, y_n, k_1, \dots, k_n, M_1, \dots, M_n.$ Without loss of generality, we can assume that $y, y_1, \dots, y_n, k_1, \dots, k_n$ are distinct from the variables in $f(V) \cup \{x\}$. Then, the conclusion is shown as follows:

$$\begin{split} & & \|M\|[\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x] \\ &= & \|\text{with H handle $M']}[\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][[\![\,V']\!]/x] \\ &= & ([\![M']\!][\,\lambda y_1,k_1.\text{return }[\![M_1]\!],\cdots,\lambda y_n,k_n.\text{return }[\![M_n]\!]\,|\,\lambda y.\text{return }[\![M'']\!]\,]\,\overline{v^{\mathsf{h}}}\,v^{\mathsf{k}})[[\![\,V']\!]/x] \\ &= & \|M'[\,V'/x]]\|[\,V_1,\cdots,V_n\,|\,\lambda y.\text{return }[\![M''[\,V'/x]\!]]\,\,v^{\mathsf{h}}[[\![\,V']\!]/x]\,\,v^{\mathsf{k}}[[\![\,V']\!]/x] \\ & & (\text{where V_i} \stackrel{\text{def}}{=} \lambda y_i,k_i.\text{return }[\![M_i[\,V'/x]\!]], \text{ by the IHs on M',M'',M_1,\cdots,M_n)} \\ &= & \|(\text{with H handle M'})[\,V'/x]\|[\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]\,] \\ &= & \|M[\,V'/x]\|[\,\overline{v^{\mathsf{h}}[[\![\,V']\!]/x]}\,|\,v^{\mathsf{k}}[[\![\,V']\!]/x]\,] \;. \end{split}$$

- 2. By case (1).
- 3. By induction on V.

Case $\exists y$. V = y: Obvious.

Case $\exists c. V = c$: Obvious.

Case $\exists \underline{\mathbf{n}}$. $V = \underline{\mathbf{n}}$: Obvious.

Case $\exists y, M. \ V = \lambda y.M$: By the IH.

Case $\exists y, V_0$. $V = \text{fix } y. V_0$: By the IH.

Lemma 13 (Handler and Continuation Substitution). If $x \notin fv(M)$, then

$$[\![M]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,][v/x] = [\![M]\!][\,\overline{v^\mathsf{h}[v/x]}\,|\,v^\mathsf{k}[v/x]\,]\ .$$

Proof. By induction on M.

Case $\exists V'$. M = return V': The conclusion is shown as follows:

Case $\exists M_1, M_2, y$. $M = (\text{let } y = M_1 \text{ in } M_2)$: Without loss of generality, we can assume that $y \notin fv(v) \cup \{x\}$. Then, the conclusion is shown as follows:

Case $\exists V_1, V_2. M = V_1 V_2$: The conclusion is shown as follows:

$$\begin{split} & \llbracket M \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket [v/x] \\ &= \llbracket V_1 \ V_2 \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket [v/x] \\ &= (\llbracket V_1 \rrbracket \llbracket V_2 \rrbracket \overline{v^{\mathsf{h}}} v^{\mathsf{k}}) \llbracket v/x \rrbracket \\ &= \llbracket V_1 \rrbracket \llbracket V_2 \rrbracket \overline{v^{\mathsf{h}}} v^{\mathsf{k}} v/x \rrbracket \quad \text{(Note that } x \text{ does not occur free in } \llbracket V_1 \rrbracket \text{ nor } \llbracket V_2 \rrbracket) \\ &= \llbracket V_1 \ V_2 \rrbracket [\overline{v^{\mathsf{h}}} v/x] \mid v^{\mathsf{k}} [v/x] \rrbracket \\ &= \llbracket M \rrbracket \llbracket \overline{v^{\mathsf{h}}} v/x \rrbracket \mid v^{\mathsf{k}} [v/x] \rrbracket . \end{split}$$

Case $\exists V', M_1, \dots, M_n$. $M = \mathsf{case}(V'; M_1, \dots, M_n)$: The conclusion is shown as follows:

```
 \begin{split} & \| M \| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,] [v/x] \\ = & \| \mathsf{case}(\,V';\, M_1, \cdots, M_n) \| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,] [v/x] \\ = & (\mathsf{case}(\|\,V'\|; \|M_1\| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,], \cdots, \|M_n\| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,])) [v/x] \\ = & \mathsf{case}(\|\,V'\|; \|M_1\| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,] [v/x], \cdots, \|M_n\| [\,\overline{v^{\mathsf{h}}} \,|\, v^{\mathsf{k}} \,] [v/x]) \\ = & \mathsf{case}(\|\,V'\|; \|M_1\| [\,\overline{v^{\mathsf{h}}} [v/x] \,|\, v^{\mathsf{k}} [v/x] \,], \cdots, \|M_n\| [\,\overline{v^{\mathsf{h}}} [v/x] \,|\, v^{\mathsf{k}} [v/x] \,]) \\ & (\mathsf{by the IHs on }\, M_1, \cdots, M_n; \, \mathsf{note that }\, x \, \mathsf{does not occur free in }\, \|\,V'\|) \\ = & \| \mathsf{case}(\,V'; M_1, \cdots, M_n) \| [\,\overline{v^{\mathsf{h}}} [v/x] \,|\, v^{\mathsf{k}} [v/x] \,] \\ = & \|M\| \|\,\overline{v^{\mathsf{h}}} [v/x] \,|\, v^{\mathsf{k}} [v/x] \,] \,. \end{split}
```

Case $\exists \sigma_i, V', y, M'$. $M = \sigma_i(V'; y, M')$: Without loss of generality, we can assume that $y \notin fv(v) \cup \{x\}$. Furthermore, assume that $\overline{v^h}$ includes a value v_i^h corresponding to σ_i . Then, the conclusion is shown as follows:

or

Case $\exists H, M'$. M = with H handle M': Let $H = \{\text{return } y \mapsto M''\} \uplus \{\sigma(y_i; k_i) \mapsto M_i\}^{1 \leq i \leq n} \text{ for some } y, M'', y_1, \dots, y_n, k_1, \dots, k_n, M_1, \dots, M_n.$ Without loss of generality, we can assume that $y, y_1, \dots, y_n, k_1, \dots, k_n$ are distinct from the variables in $fv(v) \cup \{x\}$. Then, the conclusion is shown as follows:

```
 \begin{split} & [\![M]\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][v/x] \\ &= [\![\mathsf{with}\,H\,\mathsf{handle}\,M']\!][\,\overline{v^{\mathsf{h}}}\,|\,v^{\mathsf{k}}\,][v/x] \\ &= ([\![M']\!][\,\lambda y_1,k_1.\mathsf{return}\,[\![M_1]\!],\cdots,\lambda y_n,k_n.\mathsf{return}\,[\![M_n]\!]\,|\,\lambda y.\mathsf{return}\,[\![M'']\!]\,]\,\overline{v^{\mathsf{h}}}\,v^{\mathsf{k}})[v/x] \\ &= [\![M']\!][\,\lambda y_1,k_1.\mathsf{return}\,[\![M_1]\!],\cdots,\lambda y_n,k_n.\mathsf{return}\,[\![M_n]\!]\,|\,\lambda y.\mathsf{return}\,[\![M'']\!]\,]\,\overline{v^{\mathsf{h}}[v/x]}\,v^{\mathsf{k}}[v/x] \\ &= (\mathsf{by}\,\,\mathsf{the}\,\,\mathsf{IH}\,\,\mathsf{on}\,\,M';\,\,\mathsf{note}\,\,\mathsf{that}\,\,x\,\,\mathsf{does}\,\,\mathsf{not}\,\,\mathsf{occur}\,\,\mathsf{free}\,\,\mathsf{in}\,\,M_1,\cdots,M_n,M'') \\ &= [\![(\mathsf{with}\,H\,\mathsf{handle}\,M')]\!][\,\overline{v^{\mathsf{h}}[v/x]}\,|\,v^{\mathsf{k}}[v/x]\,] \\ &= [\![M]\!][\,\overline{v^{\mathsf{h}}[v/x]}\,|\,v^{\mathsf{k}}[v/x]\,]\,\,. \end{split}
```

Lemma 14 (Simulation up to Reduction). Assume that $\Gamma \vdash M : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. If $M \longrightarrow M'$, then, for any $\overline{v^h}$ and v^k such that $|\overline{v^h}| = |\Sigma|$, either of the following holds:

- $M' \longrightarrow^* \sigma(V_0; x. M_0)$ and $[\![M]\!][\overline{v^h} \mid v^k] = [\![\sigma(V_0; x. M_0)]\!][\overline{v^h} \mid v^k]$ for some σ , V_0 , x, and M_0 ; or
- $M' \longrightarrow^* M''$ and $[\![M]\!][\overline{v^h} \mid v^k] \longrightarrow^+ [\![M'']\!][\overline{v^h} \mid v^k]$ for some M''.

Proof. By case analysis on the evaluation rule applied to derive $M \longrightarrow M'$.

Case (HE_Beta): We are given

$$(\lambda x. M_1) V_2 \longrightarrow M_1[V_2/x]$$

for some x, M_1 , and V_2 such that $M = (\lambda x. M_1) V_2$ and $M' = M_1[V_2/x]$. Because $\Gamma \vdash M : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$, we have the following derivation for some T':

$$\frac{\Gamma, x: T' \vdash M_1: \Sigma \rhd T \, / \, A^{\text{ini}} \Rightarrow A^{\text{fin}}}{\Gamma \vdash \lambda x. M_1: T' \to \Sigma \rhd T \, / \, A^{\text{ini}} \Rightarrow A^{\text{fin}}} \, \left(\text{HT_ABS} \right)}{\Gamma \vdash \left(\lambda x. M_1 \right) \, V_2: \Sigma \rhd T \, / \, A^{\text{ini}} \Rightarrow A^{\text{fin}}} \, \left(\text{HT_APP} \right)} \quad \left(\text{HT_APP} \right)$$

Therefore, $[\![M_1]\!]$ can take $\overline{v^h}$. Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = M_1[V_2/x]$ as M''):

Case (HE_FIX): We are given

$$(\operatorname{fix} x. V_1) \ V_2 \longrightarrow V_1[\operatorname{fix} x. V_1/x] \ V_2$$

for some x, V_1 , and V_2 such that $M = (\text{fix } x. V_1) V_2$ and $M' = V_1[\text{fix } x. V_1/x] V_2$. The conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = V_1[\text{fix } x. V_1/x] V_2$ as M''):

Case (HE_CASE): We are given

$$case(i; M_1, \cdots, M_n) \longrightarrow M_i$$

for some i, M_1, \dots, M_n such that $0 < i \le n, M = \mathsf{case}(\underline{i}; M_1, \dots, M_n)$ and $M' = M_i$. The conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = M_i$ as M''):

$$\begin{split} \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] &= \quad \llbracket \mathsf{case}(\underline{\mathbf{i}}; M_1, \cdots, M_n) \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \\ &= \quad \mathsf{case}(\, \llbracket \underline{\mathbf{i}} \rrbracket; \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,], \cdots, \llbracket M_n \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) \\ &= \quad \mathsf{case}(\underline{\mathbf{i}}; \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,], \cdots, \llbracket M_n \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) \\ &\longrightarrow \quad \llbracket M_i \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \;. \end{split}$$

Case (HE_LETE): We are given

$$\frac{M_1 \,\longrightarrow\, M_1'}{ \det x = M_1 \, \mathrm{in} \, M_2 \,\longrightarrow\, \det x = M_1' \, \mathrm{in} \, M_2}$$

for some x, M_1 , M_2 , and M_1' such that $M=(\operatorname{let} x=M_1\operatorname{in} M_2)$ and $M'=(\operatorname{let} x=M_1'\operatorname{in} M_2)$. Because $\Gamma\vdash M:$ $\Sigma \triangleright T / A^{\operatorname{ini}} \Rightarrow A^{\operatorname{fin}}$, we have the following derivation for some T_1 and A:

$$\frac{\Gamma \vdash M_1 : \Sigma \rhd T_1 \, / \, A \Rightarrow A^{\text{fin}} \qquad \Gamma, x : T_1 \vdash M_2 : \Sigma \rhd T \, / \, A^{\text{ini}} \Rightarrow A}{\Gamma \vdash \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2 : \Sigma \rhd T \, / \, A^{\text{ini}} \Rightarrow A^{\text{fin}}} \, (\mathsf{HT_LET})$$

By case analysis on the result of the IH on M_1 .

Case $\forall \overline{v_0^{\mathsf{h}}}, v_0^{\mathsf{k}}. |\overline{v_0^{\mathsf{h}}}| = |\Sigma| \Longrightarrow \exists \sigma, V_0, y, M_0. M_1' \longrightarrow^* \sigma(V_0; y. M_0) \land \llbracket M_1 \rrbracket \llbracket \overline{v_0^{\mathsf{h}}} | v_0^{\mathsf{k}} \rrbracket = \llbracket \sigma(V_0; y. M_0) \rrbracket \llbracket \overline{v_0^{\mathsf{h}}} | v_0^{\mathsf{k}} \rrbracket$: By the IH,

- $M_1' \longrightarrow^* \sigma(V_0; y. M_0)$ and
- $\bullet \ \ \llbracket M_1 \rrbracket \llbracket \ \overline{v^{\mathsf{h}}} \ | \ \lambda x. \llbracket M_2 \rrbracket \llbracket \ \overline{v^{\mathsf{h}}} \ | \ v^{\mathsf{k}} \ \rrbracket \ \rrbracket = \llbracket \sigma(\ V_0; y.\ M_0) \rrbracket \llbracket \ \overline{v^{\mathsf{h}}} \ | \ \lambda x. \llbracket M_2 \rrbracket \llbracket \ \overline{v^{\mathsf{h}}} \ | \ v^{\mathsf{k}} \ \rrbracket \ \rrbracket$

for some V_0 , y, and M_0 . Without loss of generality, we can assume that $y \notin fv(M_2)$. By (HE_LETE) and (HE_LETOP),

$$M' = (\operatorname{let} x = M_1' \operatorname{in} M_2) \longrightarrow^* (\operatorname{let} x = \sigma(V_0; y. M_0) \operatorname{in} M_2) \longrightarrow \sigma(V_0; y. \operatorname{let} x = M_0 \operatorname{in} M_2) \ .$$

By Lemma 5, $\Gamma \vdash \sigma(V_0; y.\ M_0) : \Sigma \rhd T_1 / A \Rightarrow A^{\text{fin}}$. By its inversion, σ is included in Σ . Therefore, $\overline{v^{\mathsf{h}}}$ includes a value v_i^{h} corresponding to σ . Then, the conclusion is shown as follows (here we choose the first disjunct of the conclusion): if $\sigma_i : T_i^{\text{par}} \leadsto T_i^{\text{ari}} / C_i^{\text{ini}} \Rightarrow A_i^{\text{fin}} \in \Sigma$ for some T_i^{par} , T_i^{ari} , C_i^{ini} , and A_i^{fin} , then

$$\begin{split} \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] &= \quad \llbracket \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \\ &= \quad \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x . \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \\ &= \quad \llbracket \sigma (\, V_0; \, y . \, M_0) \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x . \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \\ &= \quad v_i^\mathsf{h} \, \llbracket \, V_0 \rrbracket \, \lambda y , \overline{h} , k . \llbracket M_0 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x . \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \, \overline{h} \, k \\ &= \quad v_i^\mathsf{h} \, \llbracket \, V_0 \rrbracket \, \lambda y , \overline{h} , k . \llbracket \mathsf{let} \, x = M_0 \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \, \overline{h} \, k \\ &= \quad \llbracket \sigma (\, V_0; \, y . \, \mathsf{let} \, x = M_0 \, \mathsf{in} \, M_2) \, \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \, ; \end{split}$$

otherwise, if $\sigma_i: T_i^{\mathrm{par}} \leadsto T_i^{\mathrm{ari}} / T_i^{\mathrm{ini}} \Rightarrow A_i^{\mathrm{fin}} \in \Sigma$ for some $T_i^{\mathrm{par}}, T_i^{\mathrm{ari}}, T_i^{\mathrm{ini}}$, and A_i^{fin} , then

 $\text{Case }\forall \, \overline{v_0^\mathsf{h}}, v_0^\mathsf{k}. \ |\overline{v_0^\mathsf{h}}| = |\Sigma| \Longrightarrow \exists \, M_1''. \ M_1' \longrightarrow^* \ M_1'' \ \land \ [\![M_1]\!] [\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] \longrightarrow^+ \ [\![M_1'']\!] [\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] \colon \text{ By the IH,}$

- $M_1' \longrightarrow^* M_1''$ and
- $\bullet \ \ \llbracket M_1 \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \, \rrbracket \, \rrbracket \, \longrightarrow^+ \ \ \llbracket M_1'' \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket \llbracket \, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \, \rrbracket \, \rrbracket$

for some M_1'' . By (HE_LETE),

$$M' = (\operatorname{let} x = M'_1 \operatorname{in} M_2) \longrightarrow^* (\operatorname{let} x = M''_1 \operatorname{in} M_2)$$
.

Therefore, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take let $x = M_1''$ in M_2 as M''):

$$\begin{split} \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] &= & \llbracket \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \\ &= & \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x . \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \\ &\longrightarrow^+ & \llbracket M_1'' \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x . \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \quad \text{(by the IH)} \\ &= & \llbracket \mathsf{let} \, x = M_1'' \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,. \end{split}$$

Case (HE_LETV): We are given

$$let x = return V_1 in M_2 \longrightarrow M_2[V_1/x]$$

for some x, V_1 , and M_2 such that $M = (\text{let } x = \text{return } V_1 \text{ in } M_2)$ and $M' = M_2[V_1/x]$. Without loss of generality, we can assume that $x \notin fv(\overline{v^h}) \cup fv(v^k)$. Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = M_2[V_1/x]$ as M''):

$$\begin{split} \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] &= & \llbracket \mathsf{let} \, x = \mathsf{return} \, V_1 \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \\ &= & \llbracket \mathsf{return} \, V_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \\ &= & (\lambda x. \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) \, \llbracket \, V_1 \rrbracket \\ &\longrightarrow & \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \, [\llbracket \, V_1 \rrbracket / x] \\ &= & \llbracket M_2 [\, V_1 / x] \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \quad \text{(by Lemma 12; note that x does not occur free in $\overline{v^\mathsf{h}}$ and v^k)} \, . \end{split}$$

Case (HE_LETOP): We are given

$$let x = \sigma(V_1; y. M_1) in M_2 \longrightarrow \sigma(V_1; y. let x = M_1 in M_2)$$

for some x, y, σ, V_1, M_1 , and M_2 such that $y \notin fv(M_2)$ and $M = (\text{let } x = \sigma(V_1; y, M_1) \text{ in } M_2)$ and $M' = \sigma(V_1; y, \text{let } x = M_1 \text{ in } M_2)$. Without loss of generality, we can assume that $y \notin fv(\overline{v^h}) \cup fv(v^k)$. Because $\Gamma \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$, its inversion implies that σ is included in Σ . Therefore, $\overline{v^h}$ includes a value v_i^h corresponding to σ . Then, the conclusion is shown as follows (here we choose the first disjunct of the conclusion): if $\sigma: T_i^{\text{par}} \leadsto T_i^{\text{ari}} / C_i^{\text{ini}} \Rightarrow A_i^{\text{fin}} \in \Sigma$ for some $T_i^{\text{par}}, T_i^{\text{ari}}, C_i^{\text{ini}}$, and A_i^{fin} , then

$$\begin{split} \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] &= \quad \llbracket \mathsf{let} \, x = \sigma(\, V_1; y.\, M_1) \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \\ &= \quad \llbracket \sigma(\, V_1; y.\, M_1) \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \\ &= \quad v_i^\mathsf{h} \, \llbracket \, V_1 \rrbracket \, (\lambda y, \overline{h}, k. \llbracket M_1 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, \lambda x. \llbracket M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \,] \, \overline{h} \, k) \\ &= \quad v_i^\mathsf{h} \, \llbracket \, V_1 \rrbracket \, (\lambda y, \overline{h}, k. \llbracket \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2 \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \, \overline{h} \, k) \\ &= \quad \llbracket \sigma(\, V_1; \, y. \, \mathsf{let} \, x = M_1 \, \mathsf{in} \, M_2) \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \, ; \end{split}$$

otherwise, if $\sigma: T_i^{\mathrm{par}} \leadsto T_i^{\mathrm{ari}} / T_i^{\mathrm{ini}} \Rightarrow A_i^{\mathrm{fin}} \in \Sigma$ for some $T_i^{\mathrm{par}}, \ T_i^{\mathrm{ari}}, \ T_i^{\mathrm{ini}}$, and A_i^{fin} , then

$$\begin{split} [\![M]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,] &= & [\![\det x = \sigma(V_1;y.\,M_1) \, \mathsf{in}\, M_2]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,] \\ &= & [\![\sigma(V_1;y.\,M_1)]\!][\,\overline{v^\mathsf{h}}\,|\,\lambda x.[\![M_2]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,]\,] \\ &= & v_i^\mathsf{h}\,[\![V_1]\!]\,(\lambda y.[\![M_1]\!][\,\overline{v^\mathsf{h}}\,|\,\lambda x.[\![M_2]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,]\,]) \\ &= & v_i^\mathsf{h}\,[\![V_1]\!]\,(\lambda y.[\![\det x = M_1 \, \mathsf{in}\, M_2]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,]\,) \\ &= & [\![\sigma(V_1;y.\, \mathsf{let}\, x = M_1 \, \mathsf{in}\, M_2)]\!][\,\overline{v^\mathsf{h}}\,|\,v^\mathsf{k}\,]\,. \end{split}$$

Note that here $\sigma(V_1; y. \text{ let } x = M_1 \text{ in } M_2)$ can be typed at the operation signature Σ by Lemma 5.

Case (HE_HANDLEE): We are given

$$\frac{M_0 \,\longrightarrow\, M_0'}{\text{with H handle M_0} \,\longrightarrow\, \text{with H handle M_0'}}$$

for some H, M_0 , and M_0' such that M= with H handle M_0 and M'= with H handle M_0' . Let H= {return $x\mapsto M_0''$ } $\exists \{\sigma_i(x_i;k_i)\mapsto M_i\}^{1\leq i\leq n}$ for some x, M_0'' , x_1,\cdots,x_n , k_1,\cdots,k_n , σ_1,\cdots,σ_n , M_1,\cdots,M_n . Because $\Gamma\vdash M:\Sigma \vdash T/A^{\text{ini}}\Rightarrow A^{\text{fin}}$, we have the following derivation for some $T_1^{\text{par}},\cdots,T_n^{\text{par}},T_1^{\text{ari}},\cdots,T_n^{\text{ari}},C_1^{\text{ini}},\cdots,C_n^{\text{ini}},C_1^{\text{fin}},\cdots,C_n^{\text{fin}},C_1^{\text{f$

$$\begin{split} \Sigma_0 &= \{\sigma_i: T_i^{\mathrm{par}} \leadsto T_i^{\mathrm{ari}} \, / \, C_i^{\mathrm{ini}} \Rightarrow C_i^{\mathrm{fin}} \}^{1 \leq i \leq n} \qquad C_0^{\mathrm{fin}} = \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \\ &\qquad \qquad \Gamma \vdash M_0: \Sigma_0 \rhd T_0 \, / \, C_0^{\mathrm{ini}} \Rightarrow C_0^{\mathrm{fin}} \\ &\qquad \qquad \Gamma_i \times T_0 \vdash M_0'': C_0^{\mathrm{ini}} \qquad \forall \, i \in [1, n]. \ \Gamma_i \times T_i^{\mathrm{par}}, \\ &\qquad \qquad k_i: T_i^{\mathrm{par}} \to C_i^{\mathrm{ini}} \vdash M_i: C_i^{\mathrm{fin}} \\ &\qquad \qquad \Gamma \vdash \mathrm{with} \, H \, \mathrm{handle} \, M_0: \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \end{split} \quad (\mathrm{HT_HANDLE}) \end{split}$$

Therefore, we can apply the IH on M_0 . By case analysis on its result. In what follows, let $v_i = \lambda x_i, k_i$.return $[\![M_i]\!]$ for any $i \in [1, n]$.

 $\text{Case } \forall \, \overline{v_0^\mathsf{h}}, v_0^\mathsf{k}. \, \, |\overline{v_0^\mathsf{h}}| = |\Sigma_0| \Longrightarrow \exists \, \sigma, \, V_0, y, M_0'''. \, M_0' \longrightarrow^* \, \sigma(\, V_0; y. \, M_0''') \, \wedge \, [\![M_0]\!][\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] = [\![\sigma(\, V_0; y. \, M_0''')]\!][\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] : \\ \text{By the IH,}$

- $M'_0 \longrightarrow^* \sigma(V_0; y. M'''_0)$ and
- $\llbracket M_0 \rrbracket \llbracket v_1, \cdots, v_n \mid \lambda x.$ return $\llbracket M_0'' \rrbracket \rrbracket \rrbracket = \llbracket \sigma(V_0; y. M_0''') \rrbracket \llbracket v_1, \cdots, v_n \mid \lambda x.$ return $\llbracket M_0'' \rrbracket \rrbracket \rrbracket$

for some σ , V_0 , y, and M_0''' . By (HE_HANDLEE),

$$M' = \text{with } H \text{ handle } M'_0 \longrightarrow^* \text{with } H \text{ handle } \sigma(V_0; y. M'''_0)$$
.

By Lemma 5 and the inversion of the typing derivation, $\sigma = \sigma_i$ for some i. By (HE_HANDLEOP),

$$M' \longrightarrow^* \text{ with } H \text{ handle } \sigma(V_0; y.\ M_0''') \longrightarrow M_i[V_0/x_i][\lambda y. \text{with } H \text{ handle } M_0'''/k_i]$$
.

Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion):

Note the following points.

• The term $\sigma(V_0; y. M_0''')$ can be typed at the operation signature Σ_0 by Lemma 5, and Σ_0 assigns to σ the type $T_i^{\text{par}} \to T_i^{\text{ari}} / C_i^{\text{ini}} \Rightarrow C_i^{\text{fin}}$; thus, $[\![\sigma(V_0; y. M_0''')]\!][v_1, \cdots, v_n \mid \lambda x. \text{return} [\![M_0'']\!]]$ involves the term

$$\lambda y, \overline{h}, k. \llbracket M_0''' \rrbracket \llbracket v_1, \cdots, v_n \mid \lambda x. \text{return } \llbracket M_0'' \rrbracket \rrbracket \rrbracket \overline{h} k$$

in the eta-expanded form.

• Because $\Gamma \vdash \sigma(V_0; y.\ M_0'''): \Sigma_0 \triangleright T_0 / C_0^{\text{ini}} \Rightarrow C_0^{\text{fin}}$ by Lemma 5, its inversion implies $C_i^{\text{fin}} = C_0^{\text{fin}} = \underline{\Sigma} \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. Because $\Gamma, x_i : T_i^{\text{par}}, k_i : T_i^{\text{ari}} \rightarrow C_i^{\text{ini}} \vdash M_i : C_i^{\text{fin}}, [\![M_i]\!] = \lambda \overline{h}, k.[\![M_i]\!] [\![\overline{h} \mid k]\!]$ can take $\overline{v^{\mathsf{h}}}$.

 $\text{Case }\forall \, \overline{v_0^\mathsf{h}}, v_0^\mathsf{k}. \, \, |\overline{v_0^\mathsf{h}}| = |\Sigma_0| \Longrightarrow \exists \, M_0'''. \, M_0' \longrightarrow^* \, M_0''' \, \wedge \, [\![M_0]\!] [\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] \, \longrightarrow^+ \, [\![M_0''']\!] [\, \overline{v_0^\mathsf{h}} \, | \, v_0^\mathsf{k} \,] \colon \text{ By the IH,}$

- $M_0' \longrightarrow^* M_0'''$ and
- $\bullet \hspace{0.2cm} \llbracket M_0 \rrbracket \llbracket \hspace{0.05cm} [\hspace{0.05cm} v_1, \cdots, v_n \hspace{0.1cm} | \hspace{0.05cm} \lambda x. \mathsf{return} \hspace{0.2cm} \llbracket M_0''' \rrbracket \hspace{0.05cm}] \hspace{0.2cm} \longrightarrow^+ \hspace{0.2cm} \llbracket M_0''' \rrbracket \llbracket \hspace{0.05cm} [\hspace{0.05cm} v_1, \cdots, v_n \hspace{0.1cm} | \hspace{0.05cm} \lambda x. \mathsf{return} \hspace{0.2cm} \llbracket M_0'' \rrbracket \hspace{0.05cm}] \hspace{0.2cm}]$

for some $M_0^{\prime\prime\prime}$. By (HE_HANDLEE),

$$M' = \text{with } H \text{ handle } M'_0 \longrightarrow^* \text{with } H \text{ handle } M'''_0$$
.

Therefore, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take with H handle M_0''' as M''):

Case (HE_HANDLEV): We are given

with
$$H$$
 handle return $V \longrightarrow M_0[V/x]$

for some H, V, M_0 , and x such that return $x \mapsto M_0 \in H$ and M = with H handle return V and $M' = M_0[V/x]$. Without loss of generality, we can assume that $x \notin fv(\overline{v^{\mathsf{h}}}) \cup fv(v^{\mathsf{k}})$. Let $H = \{\text{return } x \mapsto M_0\} \uplus \{\sigma_i(x_i; k_i) \mapsto M_i\}^{1 \le i \le n}$ for some $x_1, \cdots, x_n, k_1, \cdots, k_n, \sigma_1, \cdots, \sigma_n M_1, \cdots, M_n$. Furthermore, let $v_i = \lambda x_i, k_i.$ return $[\![M_i]\!]$ for any $i \in [1, n]$. Because $\Gamma \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$, we have the following derivation for some $T_1^{\text{par}}, \cdots, T_n^{\text{par}}, T_1^{\text{rii}}, \cdots, T_n^{\text{rii}}, C_1^{\text{cini}}, \cdots, C_n^{\text{fin}}, C_1^{\text{fin}}, \cdots, C_n^{\text{fin}}, \Sigma_0, T_0, C_0^{\text{cini}}, \text{and } C_0^{\text{fin}}$:

$$\begin{split} \Sigma_0 &= \{\sigma_i: T_i^{\mathrm{par}} \leadsto T_i^{\mathrm{ari}} \, / \, C_i^{\mathrm{ini}} \Rightarrow C_i^{\mathrm{fin}} \}^{1 \leq i \leq n} \qquad C_0^{\mathrm{fin}} = \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \\ &\quad \Gamma \vdash \mathsf{return} \, V: \Sigma_0 \rhd T_0 \, / \, C_0^{\mathrm{ini}} \Rightarrow C_0^{\mathrm{fin}} \\ &\frac{\Gamma, x: T_0 \vdash M_0: C_0^{\mathrm{ini}} \qquad \forall \, i \in [1, n]. \, \Gamma, x_i: T_i^{\mathrm{par}}, k_i: T_i^{\mathrm{ari}} \to C_i^{\mathrm{ini}} \vdash M_i: C_i^{\mathrm{fin}}}{\Gamma \vdash \mathsf{with} \, H \, \mathsf{handle} \, \mathsf{return} \, V: \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \end{split} \quad (\mathsf{HT_HANDLE}) \end{split}$$

By inversion of $\Gamma \vdash \text{return } V : \Sigma_0 \triangleright T_0 / C_0^{\text{ini}} \Rightarrow C_0^{\text{fin}}$, we have $C_0^{\text{ini}} = C_0^{\text{fin}}$, that is, $C_0^{\text{ini}} = \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. Because $\Gamma, x : T_0 \vdash M_0 : C_0^{\text{ini}}$, we can find that $[\![M_0]\!]$ can take $\overline{v^{\text{h}}}$. Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = M_0[V/x]$ as M''):

Case (HE_HANDLEOP): We are given

with
$$H$$
 handle $\sigma(V; y. M_0') \longrightarrow M_0''[V/x''][\lambda y. \text{with } H \text{ handle } M_0'/k'']$

for some $H, V, y, M'_0, M''_0, x''$, and k'' such that $\sigma(x''; k'') \mapsto M''_0 \in H$ and $M = \text{with } H \text{ handle } \sigma(V; y. M'_0)$ and $M' = M''_0[V/x''][\lambda y. \text{with } H \text{ handle } M'_0/k'']$. Without loss of generality, we can assume that $x'', k'' \notin fv(\overline{v^h}) \cup fv(v^k)$. Let $H = \{\text{return } x \mapsto M_0\} \uplus \{\sigma_i(x_i; k_i) \mapsto M_i\}^{1 \le i \le n} \text{ for some } x, M_0, x_1, \cdots, x_n, k_1, \cdots, k_n, \sigma_1, \cdots, \sigma_n M_1, \cdots, M_n$. We have some j > 0 such that $\sigma = \sigma_j, x'' = x_j, k'' = k_j$, and $M''_0 = M_j$. Furthermore, let $v_i = \lambda x_i, k_i.\text{return } [M_i]$ for any $i \in [1, n]$. Because $\Gamma \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$, we have the following derivation for some $T_1^{\text{par}}, \cdots, T_n^{\text{par}}, T_1^{\text{ari}}, \cdots, T_n^{\text{rari}}, C_1^{\text{ini}}, \cdots, C_n^{\text{fin}}, C_1^{\text{fin}}, \cdots, C_n^{\text{fin}}, \Sigma_0, T_0, C_0^{\text{ini}}, \text{ and } C_0^{\text{fin}}$:

$$\begin{split} \Sigma_0 &= \{\sigma_i: T_i^{\mathrm{par}} \leadsto T_i^{\mathrm{ari}} \, / \, C_i^{\mathrm{ini}} \Rightarrow C_i^{\mathrm{fin}} \}^{1 \leq i \leq n} \qquad C_0^{\mathrm{fin}} = \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}} \\ &\quad \Gamma \vdash \sigma(V; y. \, M_0'): \Sigma_0 \rhd T_0 \, / \, C_0^{\mathrm{ini}} \Rightarrow C_0^{\mathrm{fin}} \\ &\frac{\Gamma, x: T_0 \vdash M_0: \, C_0^{\mathrm{ini}} \qquad \forall \, i \in [1, n]. \, \Gamma, x_i: \, T_i^{\mathrm{par}}, k_i: \, T_i^{\mathrm{ari}} \rightarrow C_i^{\mathrm{ini}} \vdash M_i: \, C_i^{\mathrm{fin}}}{\Gamma \vdash \mathrm{with} \, H \, \mathrm{handle} \, \sigma(V; y. \, M_0'): \Sigma \rhd T \, / \, A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}} \end{split} \label{eq:def_problem} \tag{HT_HANDLE}$$

By inversion of $\Gamma \vdash \sigma(V; y. M_0'): \Sigma_0 \triangleright T_0 / C_0^{\text{ini}} \Rightarrow C_0^{\text{fin}}$ and $\sigma = \sigma_j$, we have $C_0^{\text{fin}} = C_j^{\text{fin}}$, that is, $C_j^{\text{fin}} = \sum P \mid T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. Because $\Gamma, x_j : T_j^{\text{par}}, k : T_j^{\text{ari}} \to C_j^{\text{ini}} \vdash M_j : C_j^{\text{fin}}$, we can find that $[\![M_j]\!]$ can take $\overline{v^{\text{h}}}$. Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take $M' = M_j [V/x_j] [\lambda y. \text{with } H \text{ handle } M_0'/k_j]$ as M''):

Note that the term $\sigma(V; y. M'_0)$ is typed at the operation signature Σ_0 , which assigns to σ_j the type $T_j^{\text{par}} \to T_j^{\text{ari}} / C_j^{\text{ini}} \Rightarrow C_j^{\text{fin}}$. Thus, $[\![\sigma_i(V; y. M'_0)]\!][v_1, \cdots, v_n \mid \lambda x.\text{return} [\![M_0]\!]]$ involves the term

$$\lambda y, \overline{h_0}, k_0. \llbracket M_0' \rrbracket \llbracket v_1, \cdots, v_n \mid \lambda x. \text{return } \llbracket M_0 \rrbracket \rrbracket \rrbracket \overline{h_0} k_0$$

in the eta-expanded form.

Lemma 15 (Evaluation in HEPCFATM is Deterministic). If $M \longrightarrow M_1$ and $M \longrightarrow M_2$, then $M_1 = M_2$.

Proof. Straightforward by induction on the derivation of $M \longrightarrow M_1$.

Lemma 16 (Well-Definedness of HEPCF^{ATM} Effect Trees). If $\emptyset \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ and Σ is top-level, then $\mathbf{ET}(M)$ is well defined and uniquely determined, and it is in $\mathbf{Tree}_{S_{\mathcal{T}}^{\Sigma}}$.

Proof. We show that $\mathbf{ET}(M) \in \mathbf{Tree}_{S_{\infty}^{\infty}}$ by coinduction. We proceed by case analysis on the evaluation of M.

Case $M \longrightarrow^{\omega}$: Obvious.

Case $\exists V. M \longrightarrow^*$ return V: By the definition, $\mathbf{ET}(M) = \text{return } V$. By Lemma 5, $\emptyset \vdash \text{return } V : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. By its inversion, $\emptyset \vdash V : T$. Thus, return $V \in \mathbf{Tree}_{S_{\pi}^{\Sigma}}$.

Case $\exists \sigma, V, x, M'$. $M \longrightarrow^* \sigma(V; x. M')$: By Lemma 5, $\emptyset \vdash \sigma(V; x. M') : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$. By its inversion and Lemma 3,

- $\sigma: B \leadsto \mathsf{n} / T' \Rightarrow T' \in \Sigma$,
- V = c, and
- $x : \mathsf{n} \vdash M' : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow T'$

for some B, n, T', and c (note that Σ is top-level). Then, by the definition,

$$\mathbf{ET}(M) = \sigma(c, \mathbf{ET}(M'[1/x]), \cdots, \mathbf{ET}(M'[n/x]))$$
.

Thus, by the coinduction principle, it suffices to show that, for any $i \in [1, n]$, $\emptyset \vdash M'[\underline{i}/x] : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow T'$, which is shown by Lemma 2 with $x : \mathsf{n} \vdash M' : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow T'$ and $\emptyset \vdash \mathsf{i} : \mathsf{n}$.

Otherwise: Contradictory with Lemmas 5 and 4.

The uniqueness of $\mathbf{ET}(M)$ is shown by Lemma 15.

Lemma 17 (Evaluation in EPCF is Deterministic). If $e \longrightarrow e_1$ and $e \longrightarrow e_2$, then $e_1 = e_2$.

Proof. Straightforward by induction on the derivation of $e \longrightarrow e_1$.

Lemma 18 (Well-Definedness of EPCF Effect Trees). If $\Xi \parallel \emptyset \vdash e : \tau$, then $\mathbf{ET}(e)$ is well defined and uniquely determined, and it is in $\mathbf{Tree}_{S\Xi}$.

Proof. We show that $\mathbf{ET}(e) \in \mathbf{Tree}_{S^{\Xi}}$ by coinduction. We proceed by case analysis on the evaluation of e.

Case $e \longrightarrow^{\omega}$: Obvious.

Case $\exists v. e \longrightarrow^* \text{ return } v$: By the definition, $\mathbf{ET}(e) = \text{return } v$. By Lemma 10, $\Xi \parallel \emptyset \vdash \text{ return } v : \tau$. By its inversion, $\Xi \parallel \emptyset \vdash v : \tau$. Thus, $\text{return } v \in \mathbf{Tree}_{S_{\overline{\tau}}^{\Xi}}$.

Case $\exists \sigma, v, x, e'. e \longrightarrow^* \sigma(v; x. e')$: By Lemma 10, $\Xi \parallel \emptyset \vdash \sigma(v; x. e') : \tau$. By its inversion and Lemma 8,

- $\sigma: B \leadsto \mathbf{n} \in \Xi$,
- v = c, and
- $\bullet \ \ \Xi \parallel x : \mathsf{n} \vdash e' : \tau$

for some B n, and c. Then, by the definition, $\mathbf{ET}(e) = \sigma(c, \mathbf{ET}(e'[\underline{1}/x]), \cdots, \mathbf{ET}(e'[\underline{n}/x]))$. Thus, by the coinduction principle, it suffices to show that, for any $i \in [1, n], \exists \parallel \emptyset \vdash e'[\underline{i}/x] : \tau$, which is shown by Lemma 7 with $\exists \parallel x : \mathsf{n} \vdash e' : \tau$ and $\exists \parallel \emptyset \vdash \underline{i} : \mathsf{n}$.

Otherwise: Contradictory with Lemmas 10 and 9.

The uniqueness of $\mathbf{ET}(e)$ is shown by Lemma 17.

Lemma 19 (Evaluation Preserves Effect Trees in EPCF). If $\Xi \parallel \emptyset \vdash e : \tau$ and $e \longrightarrow^* e'$, then $\mathbf{ET}(e) = \mathbf{ET}(e')$.

Proof. By Lemmas 10 and 18, $\mathbf{ET}(e)$, $\mathbf{ET}(e') \in \mathbf{Tree}_{S_{\tau}^{\Xi}}$. We show that $\mathbf{ET}(e) = \mathbf{ET}(e')$ by case analysis on the evaluation of e.

Case $e \longrightarrow^{\omega}$: By Lemma 17, $e' \longrightarrow^{\omega}$. Therefore, $\mathbf{ET}(e) = \mathbf{ET}(e') = \bot$.

Case $\exists v. e \longrightarrow^* \text{ return } v$: By Lemma 17, $e' \longrightarrow^* \text{ return } v$. Therefore, $\mathbf{ET}(e) = \mathbf{ET}(e') = \text{return } v$.

Case $\exists \sigma, v, x, e_0. \ e \longrightarrow^* \sigma(v; x. e_0)$: Because $\mathbf{ET}(e)$ is well defined, we have $\sigma : B \leadsto \mathsf{n} \in \Xi$ and v = c for some B, $\underline{\mathsf{n}}$, and c. By Lemma 17, $e' \longrightarrow^* \sigma(c; x. e_0)$. Therefore, $\mathbf{ET}(e) = \mathbf{ET}(e') = \sigma(c, \mathbf{ET}(e_0[\underline{\mathsf{n}}/x]), \cdots, \mathbf{ET}(e_0[\underline{\mathsf{n}}/x]))$.

Otherwise: Contradictory with Lemmas 10 and 9.

Lemma 20 (Correspondence between Effect Trees of CPS-Transformed Terms and CPS-Transformed Effect Trees). Let $\Sigma = \{\sigma_i : B_i \leadsto E_i \mid T_i \Rightarrow T_i\}^{1 \le i \le n}$ and $\Xi = \{\sigma_i : B_i \leadsto E_i\}^{1 \le i \le n}$. Assume that $\emptyset \vdash M : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ and $\sigma_1, \cdots, \sigma_n$ are ordered. Let $\overline{v^{\mathsf{h}}} = v_1^{\mathsf{h}}, \cdots, v_n^{\mathsf{h}}$ such that, for any $i \in [1, n]$, $v_i^{\mathsf{h}} = \lambda x, k.\sigma_i(x; y. ky)$ for some distinct variables x, k, and y. Also, let v^{k} be a value such that $\Xi \parallel \emptyset \vdash v^{\mathsf{k}} : \llbracket T \rrbracket \to \llbracket A^{\text{ini}} \rrbracket$. Then, $\mathbf{ET}(\llbracket M \rrbracket \lceil \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rceil) = \llbracket \mathbf{ET}(M) \rrbracket \lceil v^{\mathsf{k}} \rceil$.

Proof. First, we show that $[\![\mathbf{ET}(M)]\!][v^k]$ is well defined and is in $\mathbf{Tree}_{S^\Xi_{[\![A^{\mathrm{fin}}]\!]}}$ by coinduction. By Lemma 16 with $\emptyset \vdash M : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}$, we can find that $\mathbf{ET}(M) \in \mathbf{Tree}_{S^\Xi_{\Xi}}$. We proceed by case analysis on $\mathbf{ET}(M)$.

Case $\mathbf{ET}(M) = \bot$: Obvious because $[\![\mathbf{ET}(M)]\!][v^k] = [\![\bot]\!][v^k] = \bot$.

Case $\exists V. \mathbf{ET}(M) = \text{return } V$: Because $[\![\mathbf{ET}(M)]\!][v^k] = [\![\text{return } V]\!][v^k] = \mathbf{ET}(v^k[\![V]\!])$, it suffices to show that

$$\mathbf{ET}(v^{\mathsf{k}} \llbracket V \rrbracket) \in \mathbf{Tree}_{S^\Xi_{\llbracket A^{\mathrm{fin}} \rrbracket}}$$
.

Because $\mathbf{ET}(M) = \operatorname{return} V$, we have $M \longrightarrow^* \operatorname{return} V$. By Lemma 5, $\emptyset \vdash \operatorname{return} V : \Sigma \rhd T / A^{\operatorname{ini}} \Rightarrow A^{\operatorname{fin}}$. By its inversion, $\emptyset \vdash V : T$ and $A^{\operatorname{ini}} = A^{\operatorname{fin}}$. By Lemma 11, $\Xi \parallel \emptyset \vdash \llbracket V \rrbracket : \llbracket T \rrbracket$. Because $\Xi \parallel \emptyset \vdash v^k : \llbracket T \rrbracket \to \llbracket A^{\operatorname{ini}} \rrbracket$, we have $\Xi \parallel \emptyset \vdash v^k \llbracket V \rrbracket : \llbracket A^{\operatorname{ini}} \rrbracket$ by (T_APP) . Thus, by Lemma 18, $\mathbf{ET}(v^k \llbracket V \rrbracket) \in \mathbf{Tree}_{S^\Xi_{\llbracket A^{\operatorname{ini}} \rrbracket}}$. Because $A^{\operatorname{ini}} = A^{\operatorname{fin}}$, we have the conclusion.

Case $\exists \sigma, c, M_1, \dots, M_m$. $\mathbf{ET}(M) = \sigma(c, \mathbf{ET}(M_1), \dots, \mathbf{ET}(M_m))$: By the definition of $\mathbf{ET}(M)$, we have $\sigma = \sigma_i$ for some i such that $E_i = \mathbf{m}$. Because

$$\llbracket \mathbf{ET}(M) \rrbracket \llbracket v^{\mathsf{k}} \rrbracket = \llbracket \sigma_i(c, \mathbf{ET}(M_1), \cdots, \mathbf{ET}(M_m)) \rrbracket \llbracket v^{\mathsf{k}} \rrbracket = \sigma_i(c, \llbracket \mathbf{ET}(M_1) \rrbracket \llbracket v^{\mathsf{k}} \rrbracket, \cdots, \llbracket \mathbf{ET}(M_m) \rrbracket \llbracket v^{\mathsf{k}} \rrbracket) ,$$

it suffices to show that, for any $j \in [1, m]$, $[ET(M_j)][v^k] \in Tree_{S_{[A^{fin}]}^{\Xi}}$. By the coinduction hypothesis, it suffices to show that, for any $j \in [1, m]$,

$$\emptyset \vdash M_i : \Sigma \rhd T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$$
.

Let $j \in [1, m]$. Because $\mathbf{ET}(M) = \sigma_i(c, \mathbf{ET}(M_1), \cdots, \mathbf{ET}(M_m))$ and $\emptyset \vdash M : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}$, we have $M \longrightarrow^* \sigma_i(c; x. M')$ for some x and M' such that $M_j = M'[\underline{j}/x]$. By Lemma 5, $\emptyset \vdash \sigma_i(c; x. M') : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow A^{\mathrm{fin}}$. By its inversion, $x : \mathsf{m} \vdash M' : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow T_i$ and $A^{\mathrm{fin}} = T_i$. Because $\emptyset \vdash \underline{j} : \mathsf{m}$ by (HT_ECONST), we have $\emptyset \vdash M'[\underline{j}/x] : \Sigma \rhd T / A^{\mathrm{ini}} \Rightarrow T_i$ by Lemma 2. Because $A^{\mathrm{fin}} = T_i$, we have the conclusion.

Next, we show that $\mathbf{ET}(\llbracket M \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket)$ is well defined and is in $\mathbf{Tree}_{S_{\llbracket A^{\mathrm{fin}} \rrbracket}^{\Xi}}$. We have $\Xi \parallel \emptyset \vdash \overline{v^{\mathsf{h}}} : \Sigma$ because we can derive $\Xi \parallel \emptyset \vdash \lambda x, k.\sigma_i(x; y.k.y) : B_i \to (E_i \to \llbracket T_i \rrbracket) \to \llbracket T_i \rrbracket$ for any $i \in [1, n]$ as follows:

$$\frac{\Xi \parallel \Delta' \vdash k : E_i \to \llbracket T_i \rrbracket \ \, (\text{T_VAR}) \ \, \frac{\Xi \parallel \Delta' \vdash y : E_i}{\Xi \parallel \Delta' \vdash y : E_i} \ \, (\text{T_APP}) }{\Xi \parallel \Delta \vdash x : B_i} \frac{\Xi \parallel \Delta' \vdash k : E_i \to \llbracket T_i \rrbracket \ \, (\text{T_APP}) }{\Xi \parallel \Delta' \vdash k : E_i \to \llbracket T_i \rrbracket } \frac{(\text{T_VAR}) }{(\text{T_APP})} \frac{\Xi \parallel \Delta \vdash \sigma_i(x; y. \, k \, y) : \llbracket T_i \rrbracket }{\Xi \parallel \emptyset \vdash \lambda x, k. \sigma_i(x; y. \, k \, y) : B_i \to (E_i \to \llbracket T_i \rrbracket) \to \llbracket T_i \rrbracket} \frac{(\text{T_APP}) }{(\text{T_ABS}), (\text{T_RETURN})}$$

where $\Delta = x : B_i, k : E_i \xrightarrow{} \llbracket T_i \rrbracket$ and $\Delta' = \Delta, y : E_i$. Note that $\llbracket B \rrbracket = B$ and $\llbracket E \rrbracket = E$ for any B and E. Thus, by Lemma 11, $\Xi \Vdash \emptyset \vdash \llbracket M \rrbracket [\overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}}] : \llbracket A^{\mathrm{fin}} \rrbracket$. Therefore, $\mathbf{ET}(\llbracket M \rrbracket [\overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}}]) \in \mathbf{Tree}_{S_{\llbracket A^{\mathrm{fin}} \rrbracket}^{\Xi}}$ by Lemma 18.

Finally, we show that $\mathbf{ET}(\llbracket M \rrbracket \llbracket \overline{v^h} \mid v^k \rrbracket) = \llbracket \mathbf{ET}(M) \rrbracket \llbracket v^k \rrbracket$ by coinduction. We proceed by case analysis on the evaluation of M.

 $\text{Case } M \longrightarrow^{\omega} : \text{ By Lemmas 5, 15, and 14, } \llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,] \longrightarrow^{\omega} . \text{ Therefore, } \llbracket \mathbf{ET}(M) \rrbracket [\, v^\mathsf{k} \,] = \mathbf{ET}(\llbracket M \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) = \bot.$

Case $\exists V. M \longrightarrow^* \text{return } V$: By Lemmas 5, 15 and 14, $\llbracket M \rrbracket \llbracket \overline{v^\mathsf{h}} \mid v^\mathsf{k} \rrbracket \longrightarrow^* \llbracket \text{return } V \rrbracket \llbracket \overline{v^\mathsf{h}} \mid v^\mathsf{k} \rrbracket = v^\mathsf{k} \llbracket V \rrbracket$. Because $\Xi \parallel \emptyset \vdash \llbracket M \rrbracket \llbracket \overline{v^\mathsf{h}} \mid v^\mathsf{k} \rrbracket : \llbracket A^{\text{fin}} \rrbracket$ as shown above, we have $\mathbf{ET}(\llbracket M \rrbracket \llbracket \overline{v^\mathsf{h}} \mid v^\mathsf{k} \rrbracket) = \mathbf{ET}(v^\mathsf{k} \llbracket V \rrbracket)$ by Lemma 19. Because $\llbracket \mathbf{ET}(M) \rrbracket \llbracket v^\mathsf{k} \rrbracket = \llbracket \text{return } V \rrbracket \llbracket v^\mathsf{k} \rrbracket = \mathbf{ET}(v^\mathsf{k} \llbracket V \rrbracket)$, we have the conclusion.

Case $\exists \sigma, V, z, M'$. $M \longrightarrow^* \sigma(V; z. M')$: Because $\mathbf{ET}(M) \in \mathbf{Tree}_{S_T^{\Sigma}}$ by Lemma 16, we have V = c and $\sigma = \sigma_i$ for some c and i. By Lemmas 5, 15, and 14, $\emptyset \vdash \sigma_i(c; z. M') : \Sigma \vartriangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ and $\llbracket M \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket \longrightarrow^* \llbracket \sigma_i(c; z. M') \rrbracket \llbracket \overline{v^{\mathsf{h}}} \mid v^{\mathsf{k}} \rrbracket$. Thus,

$$\begin{split} \llbracket M \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k} \,] & \longrightarrow^* \quad \llbracket \sigma_i(c;z.\,M') \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k} \,] \\ & = \quad v_i^\mathsf{h} \, c \, \lambda z. \llbracket M' \rrbracket [\, v^\mathsf{h} \,|\, v^\mathsf{k} \,] \quad \text{(note that } \sigma_i : B_i \leadsto E_i \,/\, T_i \Rightarrow T_i \in \Sigma \text{)} \\ & = \quad (\lambda x, k. \sigma_i(x;y.\,k\,y)) \, c \, \lambda z. \llbracket M' \rrbracket [\, \overline{v^\mathsf{h}} \,|\, v^\mathsf{k} \,] \\ & \longrightarrow^* \quad \sigma_i(c;y.\, (\lambda z. \llbracket M' \rrbracket [\, \overline{v^\mathsf{h}} \,|\, v^\mathsf{k} \,]) \, y \text{)} \, . \end{split}$$

Let $E_i = \mathbf{m}$ for some m. Then,

$$\begin{split} \mathbf{ET}(\llbracket M \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}]) &= \mathbf{ET}(\sigma_i(c; y.\, (\lambda z. \llbracket M' \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}])\, y)) \quad \text{(by Lemma 19 with $\Xi \,\|\, \emptyset \vdash \llbracket M \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}]\, \colon \llbracket A^{\text{fin}} \rrbracket)$}\\ &= \sigma_i(c, \mathbf{ET}((\lambda z. \llbracket M' \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}])\, \underline{1}), \cdots, \mathbf{ET}((\lambda z. \llbracket M' \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}])\, \underline{\mathbf{m}}))\\ &= \sigma_i(c, \mathbf{ET}(\llbracket M' \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}] [\underline{1}/z]), \cdots, \mathbf{ET}(\llbracket M' \rrbracket [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}] [\underline{\mathbf{m}}/z])) \quad \text{(by Lemma 19)}\\ &= \sigma_i(c, \mathbf{ET}(\llbracket M' [\underline{1}/z]] [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}]), \cdots, \mathbf{ET}(\llbracket M' [\underline{\mathbf{m}}/z] [\overline{v^\mathsf{h}} \,|\, v^\mathsf{k}])) \quad \text{(by Lemma 12)} \end{split}$$

(note that, for any $j \in [1, m]$, $(\lambda z. \llbracket M' \rrbracket \llbracket \overline{v^h} \mid v^k \rrbracket)$ j is well typed by Lemmas 10 and 7). On the other hand,

$$\begin{split} \llbracket \mathbf{ET}(M) \rrbracket [\, v^{\mathsf{k}} \,] &= \llbracket \sigma_i(c, \mathbf{ET}(M'[\underline{1}/z]), \cdots, \mathbf{ET}(M'[\underline{\mathsf{m}}/z])) \rrbracket [\, v^{\mathsf{k}} \,] \\ &= \sigma_i(c, \llbracket \mathbf{ET}(M'[\underline{1}/z]) \rrbracket [\, v^{\mathsf{k}} \,], \cdots, \llbracket \mathbf{ET}(M'[\underline{\mathsf{m}}/z]) \rrbracket [\, v^{\mathsf{k}} \,]) \; . \end{aligned}$$

Let $j \in [1, m]$. Now, it suffices to show that

$$\mathbf{ET}(\llbracket M'[\underline{\mathbf{j}}/z] \rrbracket [\, \overline{v^\mathsf{h}} \, | \, v^\mathsf{k} \,]) = \mathbf{ET}(M'[\underline{\mathbf{j}}/z]) \ .$$

By the coinduction principle, it suffices to show that

$$\emptyset \vdash M'[j/z] : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$$
.

It is shown by the inversion of $\emptyset \vdash \sigma_i(c; z. M') : \Sigma \triangleright T / A^{\text{ini}} \Rightarrow A^{\text{fin}}$ and Lemma 2 with $\emptyset \vdash j : m$.

Otherwise: Contradictory with Lemmas 4 and 5.

Theorem 1 (Preservation of Effect Trees). Let $\Sigma = \{\sigma_i : B_i \leadsto E_i / T_i \Rightarrow \underline{T}_i\}^{1 \le i \le n}$ and T be a ground type. Assume that $\emptyset \vdash M : \Sigma \rhd T / T \Rightarrow A^{\text{fin}}$ and $\sigma_1, \cdots, \sigma_n$ are ordered. Let $\overline{v^{\mathsf{h}}} = v_1^{\mathsf{h}}, \cdots, v_n^{\mathsf{h}}$ such that, for any $i \in [1, n], v_i^{\mathsf{h}} = \lambda x, k.\sigma_i(x; y. ky)$ for some distinct variables x, k, and y. Also, let $v^{\mathsf{k}} = \lambda x$.return x. Then, $\mathbf{ET}(\llbracket M \rrbracket \lceil v^{\mathsf{h}} \mid v^{\mathsf{k}} \rceil) = \mathbf{ET}(M)$.

Proof. Let $\Xi = \{\sigma_i : B_i \leadsto E_i\}^{1 \le i \le n}$. By (T_VAR), (T_RETURN), and (T_ABS), we have $\Xi \parallel \emptyset \vdash v^k : \llbracket T \rrbracket \to \llbracket T \rrbracket$. Thus, by Lemma 20, $\mathbf{ET}(\llbracket M \rrbracket \lceil \overline{v^h} \mid v^k \rceil) = \llbracket \mathbf{ET}(M) \rrbracket \lceil v^k \rceil$. Then, it suffices to show that

$$\llbracket \mathbf{ET}(M) \rrbracket [v^{\mathsf{k}}] = \mathbf{ET}(M) .$$

We show it by coinduction. By case analysis on the evaluation of M.

Case $M \longrightarrow^{\omega}$: Obvious because $[\mathbf{ET}(M)][v^k] = \mathbf{ET}(M) = \bot$.

Case $\exists \ V.\ M \longrightarrow^* \text{ return } V$: By the definition, $\mathbf{ET}(M) = \text{return } V$ and $[\![\mathbf{ET}(M)]\!][v^k] = [\![\mathbf{return }\ V]\!][v^k] = \mathbf{ET}(v^k[\![V]\!]) = \text{return } [\![V]\!]$. By Lemma 5 with $\emptyset \vdash M : \Sigma \rhd T / T \Rightarrow A^{\text{fin}}$, we have $\emptyset \vdash \text{return } V : \Sigma \rhd T / T \Rightarrow A^{\text{fin}}$. By its inversion, $\emptyset \vdash V : T$. Because T is ground, V = c for some c, or $V = \underline{i}$ for some i by Lemma 3. In both cases, $[\![V]\!] = V$. Thus, we have the conclusion.

Case $\exists \sigma, V, x, M'$. $M \longrightarrow^* \sigma(V; x. M')$: Because $\mathbf{ET}(M) \in \mathbf{Tree}_{S_T^{\Sigma}}$ by Lemma 16, we have $\sigma = \sigma_i$ and V = c for some i and c. Let $E_i = \mathsf{m}$ for some m. By the definition, $\mathbf{ET}(M) = \sigma_i(c, \mathbf{ET}(M'[\underline{1}/x]), \cdots, \mathbf{ET}(M'[\underline{m}/x]))$ and $[\![\mathbf{ET}(M)]\!][v^k] = \sigma_i(c, [\![\mathbf{ET}(M'[\underline{1}/x])]\!][v^k], \cdots, [\![\mathbf{ET}(M'[\underline{m}/x])]\!][v^k])$. Let $j \in [1, m]$. It suffices to show that $\mathbf{ET}(M'[j/x]) = [\![\mathbf{ET}(M'[j/x])]\!][v^k]$. By the coinduction principle, it suffices show that

$$\emptyset \vdash M'[j/x] : \Sigma \triangleright T / T \Rightarrow A^{fin}$$
.

By Lemma 5 with $\emptyset \vdash M : \Sigma \triangleright T / T \Rightarrow A^{\text{fin}}$ and $M \longrightarrow^* \sigma_i(c; x. M')$, we have $\emptyset \vdash \sigma_i(c; x. M') : \Sigma \triangleright T / T \Rightarrow A^{\text{fin}}$. By its inversion, $x : \mathsf{m} \vdash M' : \Sigma \triangleright T / T \Rightarrow A^{\text{fin}}$ (note that $A^{\text{fin}} = T_i$). Because $\emptyset \vdash \underline{\mathsf{j}} : \mathsf{m}$ by (HT_ECONST), we have the conclusion by Lemma 2.

Otherwise: Contradictory with Lemmas 5 and 4.