Supplementary Material for “Higher-Order Model Checking of
Effect-Handling Programs with Answer-Type Modification”

Taro Sekiyama

August 26, 2024

Contents
I Outline
2 Definitionl
B Trees . . o o e
[2.2 HEPCFA™: PCF with Answer-Type Modification for Algebraic Effects and Handlers|
.2. NEAX[. e
22,2 Demanticsl
[2.2.3 Type System| e e
224 Fffect Treed o o e
2.3 EPCF: PCF with Algebraic Effects|] o
3. NEAX[. e
2.3.2 Demanticsl
[2.3.3 Type System|
R34 Fffect Treesl oo v e
i ATM
B—Proofsl
[3.1 Type Soundness of HEPCFAT™™| = .
8.2 Type Soundness of EPCF| o
8.3 Type Preservation| e
3.4 Semantics Preservation|.o L Lo
List of Theorems
1 Definition (Tree Constructor Signatures)| i
2 Definition (Finitely Branching Infinite Trees)| L o
I Conventionl v oo v v e e e e e
[3_ Definition (Free variables and substitution) o 000
[[Assumption]
4 Definition (Top-Level Operation Signatures)|.o i
5 Definition (Ground Types)|. L
Ig Definition (Semantics)|
7 Definition (Multi-step evaluation)|.
8 Definition (Infinite Evaluation)| L
9 Definition (Nonreducible terms)|. L
10 Definition (Domains of Typing Contexts)| o
11 Definition (Typing Contexts as Functions)| 0 .
12 Definition (Typing)|. o 0 o e e e
13 Definition (Effect Trees for HEPCFA™ Computations)|

14 Definition (Semantics)| L 6
15 Definition (Multi-step evaluation)|. o e 6
16 Definition (Infinite Evaluation)| 6
17 Definition (Nonreducible Germs)| o oo oo 6
18 Definition (Typing)[. o . o o e 6
19 Definition (Effect Trees for EPCF Computations)| 6
20 Definition (CPS Transformation of Types, Values, and Terms)|. 8
21 Definition (CPS Transformation of Effect Trees)| 8
1 Lemma (Weakening)| 10
2 Lemma (Value Substitution)|. L 10
3 Lemma (Canonical Forms)[. 10
4 Lemma (Progress)| 10
b Lemma (Subject ReAUCTION) . « - .« « v o oot e e e e 11
Ig Lemma (Weakening)| L 13
7 Lemma (Value Substitution)|. L 13
8 Lemma (Canonical Forms)[. 13
9 Lemma (Progress)| 14
10 Lemma (Subject Reduction)[. L 14
P2 Definition (Pre-Order on Typing COMBEXES)| . « « o o o v oo e e e 16
23 Definition (Typing of Effect Handlers)l 16
11 Lemma (Type Preservation of the CPS Transformation)| 16
12 Lemma (Substitution is a Homomorphism)| L 19
13 Lemma (Handler and Continuation Substitution)| 21
14 Lemma (Simulation up to Reduction)] 23
15 Lemma (Evaluation in HEPCFA™ is Deterministic)l. 28
16 Lemma (Well-Definedness of HEPCFA™ Effect Trees)| 28
17 Lemma (Evaluation in EPCF is DECermImIStic)| . « - « « « « o o vee e et e e e 28
18 Lemma (Well-Definedness of EPCF Effect Trees)| 28
19 Lemma (Evaluation Preserves Effect Trees in EPCF)| 29
|§0 Lemma (Correspondence between Effect Trees of CPS-Transformed Terms and CPS-Transformed |
[Effect Trees)| o o 29
[I Theorem (Preservation of Effect Trees)|. 31
1 Outline

This is the supplementary material of the paper titled “Higher-Order Model Checking of Effect-Handling Programs
with Answer-Type Modification” published at OOPSLA’24, including all the definitions, lemmas, theorems, and
proofs mentioned in the paper.

2 Definition

2.1 Trees

Definition 1 (Tree Constructor Signatures). A tree constructor signature S is a map from tree constructors,
ranged over by s, to natural numbers that represent the arities of the constructors. We write arg(s) for the arity
of s assigned by S.

Definition 2 (Finitely Branching Infinite Trees). The set Treeg of finitely branching (possibly) infinite trees
generated by a tree constructor signature S is defined coinductively by the following grammar (where s is in the
domain of S):

t o= 1 | S(tl,-“ 7tar5(s)) .

Evaluation rules M
Az.My) Vo — My Va/x] HE_BETA
(fIX x. Vl) Vo — W [fIX x. Vl/.%‘] Vy HE_F1x
case(i; My, -+, M,) — M; (if 0 <i<mn) HE_CASE
letx =return Viin My — Ms[Vy/x] HE_LETV
letz =o(Vi;y. My)inMs — o(Vi;y.lete = My in Ms) (if y & fu(Ma)) HE_LETOP
with H handlereturn V.. — M|V /x] (if returnz — M € H) HE_HANDLEV
with H handleo(V;y. M) — M’[V /x][A\y.with H handle M /k] (if o(a;k) — M’ € H) HE_HANDLEOP
M M HE_LETE M M HE_H E
lets = Myin My — letw = M{in My "' " with @ handle M —> with H handle M’ O

Figure 1: Semantics.

2.2 HEPCFA™: PCF with Answer-Type Modification for Algebraic Effects and Han-
dlers

2.2.1 Syntax

Variables x,y,z, f,h,k Operations o

Base types B = bool |unit]|---
Enum types E == 1]|2]---
Value types T == B|E|T—>C
Computation types C := X T /AN = Afin
Operation signatures Y = {o;: TP" ~ T2/ Alvi o glin}lsisn
Answer types A = T|C
Base constants ¢ = true|false | ()] --
Enum constants ¢ = 1]2]---
Values V = z|cle|lzeM|fixe.V
Terms M == vreturnV |letx = MyinMy | Vi Vo |case(V; My, -+, My,) |
o(V;xz. M) | with H handle M
Handlers H == {returnz — M} W {o;(z;;k;) — M;}Sisn
Typing contexts I' == @ |T,z: T

Convention 1. We write 'y, Ty for the concatenation of T'y and T's. For a computation type C =X T | A™M =
Afi™ e write C.X for the operation signature 3.

Definition 3 (Free variables and substitution). The set fu(M) of free variables in a term M is defined in a
standard manner. Value substitution M|V /x] and V'[V /x] of V for x in M and V', respectively, are defined in a
capture-avoiding manner as usual.

Assumption 1. We assume a function ty that assigns a base type to every constant c.

Definition 4 (Top-Level Operation Signatures). An operation signature ¥ is top-level if, for any o : TP ~
T) AN = Afin ¢ 3 TPar = B for some B, T = E for some E, and A™ = A = T for some T.

Definition 5 (Ground Types). A type T is ground if and only if T = B for some B or T = E for some E.

2.2.2 Semantics

Definition 6 (Semantics). The evaluation relation My — Msy is the smallest relations satisfying the rules in
Figure[1]

Definition 7 (Multi-step evaluation). We write M —" M’ if and only if there exist some terms My, -+ , M,
such that: M = My; Vi <n. M; — M;11; and M,, = M'. We write M —* M’ if and only if M —™ M’ for

some n.

Typing rules ’F}— V: THFI—M: C

0<i<n
Trao:T(a) VAR TT ¢ fy(o) L L-ConsT e HT-ECoNsT
ax: THM:C HT_ABS Txa:T—-CHV:T—C HT Frx
' XeM:T—C T'Hfixe. V:T— C

r-v.rT
F'FretunV:XpT /A=A

FFMliszl/AﬁAl F,IZleMQSEDTQ/AgiA

HT_RETURN

HT L
TFlete = MiinMy:Sp Ty) Ay = A, Bt
DEViiT—C THVaiT DEVin YieLn.TEM:C o
_APP _ E
vy Vy:C I'Fcase(V; My, - M) : C

S350 TP Ay Tari/ gini o gfin Dy ppar [g Taip N[N T/ A= Al
'to(Viz.M): 3> T /A= Afi
H = {returnz — M'} W {o;(xi; ki) — M}ISIS S ={o;: TP ~» T/ Oinl = Cfinylsisn
THM:SoT/CM= ¢ Tg:THM:C® Viec[l,n]. T,a;: TPk« T — ¢ F M, : Cfin

HT_Op

! HT_HANDLE

I' - with H handle M : Cfin

Figure 2: Type system.

Definition 8 (Infinite Evaluation). We write M —* if and only if, for any natural number n, there exists some
term M’ such that M —™ M’'.

Definition 9 (Nonreducible terms). We write M —~ if and only if there is no M’ such that M — M’.

2.2.3 Type System

Definition 10 (Domains of Typing Contexts). Given a typing context T', its domain dom(I") is defined by induction
on I' as follows.

dom (D) L]

dom(Tyz: T) o {z} U dom(T)
Definition 11 (Typing Contexts as Functions). We view I' as a function that maps a variable to a type. T'(x) = T
if and only if x . T €T

Definition 12 (Typing). The typing of values (with judgments of the form T H V : T) and terms (with judgments
of the form T'E M : C) is the smallest relation satisfying the rules in Figure @

2.2.4 Effect Trees

Definition 13 (Effect Trees for HEPCFA™ Computations). Given an operation signature ¥ and a type T, the tree
constructor signature S5 is defined as follows:

Sx o {o:n+1|oc:B~n/A" = AT c ¥} U {retum V:0|0F V:T}UU{C:O}.

where, for a tree constructor s (that is an operation o, return construct return V., or base const(mt ¢), s :m denotes
the pair (s,n), meaning that the arity of s is n. Given a term M such that) = M : X > T / A = A the effect
tree of M, denoted by ET(M), is a tree in Treegs defined by the following (possibly infinite) process:

o if M —*, then ET(M) = 1;

o if M —* return V, then ET(M) = return V; and
e if M —* o(c;z. M') ando : B~ n /A = A € ¥ then ET(M) = o(c, ET(M’[1/z]),--- ,ET(M’'[n/x])).

Evaluation rules €1 — €

Ar.e1)v2 — er]ve/x] E_BETA
(fixx.v1) va — wv[fixz.vy /2] v E_Fix
case(i;e1, - ,€,) —> € (if0<i<n) E_CASE
letz =returnvyines — esfvy/x] E_LETV
letx =o(vi;y.e1)ines — o(v;y.letz =erines) (if y & fo(ez)) E_LETOP
e — €
! L —— (E_LETE)
letx = e ineg —> letz =ejiney
Figure 3: Semantics.
2.3 EPCF: PCF with Algebraic Effects
2.3.1 Syntax
Variables x,y,z, f,hk Operations o
Base types B = bool |unit]---
Enum types EF == 1]|2]---
Types 7 == B|E|mn —7
Operation signatures = := {o;:B; ~ E;}1SISn
Base constants ¢ = true|false | ()] ---
Enum constants ¢ == 1|2]---
Values v = x]c|e]|lx.e]fixzw
Terms e == returnv |letx =ejines | vy v2 | case(v;er, - ,e,) | o(v;x. €)
Typing contexts A == (|Ax:7

For the syntactic operations common in HEPCFA™ and EPCF, we use the same notation (e.g., fv(e) is the set
of free variables in e and e[v/x] is the term obtained by substituting v for = in e).

2.3.2 Semantics

Definition 14 (Semantics). The evaluation relation e — eo is the smallest relations satisfying the rules in
Figure[3

Definition 15 (Multi-step evaluation). We write e —™ ¢’ if and only if there exist some terms ey, - - , €, such
that: e = ep; Vi <n. e — e11; and e, = €. We write e —* ¢ if and only if e —™ ¢’ for some n, and
e —t ¢ if and only if e —™ €' for some n > 0.

Definition 16 (Infinite Evaluation). We write e —* if and only if, for any natural number n, there exists some

term e’ such that e —™ ¢€’.

Definition 17 (Nonreducible terms). We write e — if and only if there is no e’ such that e — €’.

2.3.3 Type System

Definition 18 (Typing). Fiz an operation signature =. Then, the typing of values (with judgments of the form
E| At wv:7) and terms (with judgments of the form Z | A& e : 1) is the smallest relation satisfying the rules in

Figure [}

2.3.4 Effect Trees

Definition 19 (Effect Trees for EPCF Computations). Given an operation signature = and a type T, the tree
constructor signature S= is defined as follows:

52 def {U;n+1|U;B->neE}U{returnv:0|EH@FUIT}UU{CZO}'
C

Typing rules ’E|‘A|_UZTHE|‘A|_€ZT‘

TV T.C 0<i=h qopg
_VAR ———— 1 _CUONST = 1_ ONST
ZlAFx:Alx) E|AFc:ty(e) E]Aki:n
ElAz:imbFein ElAz:n o nbvim o
T_ABS T_Fix
E|AFAze:T = T E|Akrfixzov:m — 1
E|lAFv:T TR ElAFe T ZE|Az:mibe:n TL
_RETURN _LET
E|AbFreturnv: T E|Akletz=einey: 7o
Z|AFv T — ZlAF vy Z|AFwv: Vie[l,n. Z | Ak e:

[’U1H T — Ty [WITnoaoe [! v:n Viell,n]. 2| €T T.CasE
E|AF v T 2| AF case(v;er,- - ,en): T
E30:B~F E|Arv:B Z|Ax:EFe:T

T_Op

ElAFo(v;x.e):T
Figure 4: Type system.

Given a term e such that Z | O 1= e : 7, the effect tree of e, denoted by ET(e), is a tree in Treeg= defined by the
following (possibly infinite) process:

o if e —*, then ET(e) = L;
e if e —* returnv, then ET(e) = return v; and

o ife —* o(c;z.e') and o : B~ n € E, then ET(e) = o(c, ET(e'[1/x]), - ,ET(e'[n/z])).

2.4

CPS Transformation from HEPCFA™ to EPCF

Our CPS transformation is defined using the following shorthand:

A sequence of entities ay, - - ,a, is abbreviated to @, and its length is denoted by |a|. Given @, we write a; to
designate the i-th element of the sequence a.

Given a variable sequence T = x1,--- ,T,, we write AZ.e for the EPCF term Axy.return Azs. - - - return \z,,.e.
Given a term e and values vy, -+, v, (n > 0), we write ev; --- v, for the EPCF term letxg = einletz; =
rourinletxe = xy voin -+ letw,_1 = T,_2 Up_1 in T, _1 v, Where the variables xg, z1,- - x,_1 are assumed to
be fresh.

We also assume that the set of all the operations is totally ordered.

Definition 20 (CPS Transformation of Types, Values, and Terms). CPS Transformation [—] from HEPCFATM ¢o
EPCF is defined in Figure[5, mapping

value types T to EPCF types [T],

computation types C to EPCF types [C],

operation signatures ¥ to functions that, given a EPCF type 7, return the EPCF type [X][7],
values V' to EPCF values [V],

terms M to EPCF values [M], and

terms M to EPCF terms [M][v" | v*] given values vP and v*.

The definition of [M] and [M][v"|v*] assumes that the HEPCFA™ term M to be CPS-transformed is well typed.
In general, given an HEPCFA™ term M typed at a computation type with an operation signature X, the CPS-
transformation result [M] takes the form Ah,k.e for some variables h,k and EPCF term e such that |h| = |3|.
Similarly, [M][v"|v¥] assumes that || values v" are given. The transformation of operation calls assumes that
a called operation o; is the i-th operation in ¥ (under the order of operations). We also write [U'] for the EPCF
typing context obtained by CPS-transforming the types of all the bindings of typing context I'.

Definition 21 (CPS Transformation of Effect Trees). Given an effect tree ET(M) in HEPCFA™ and a value v,
the tree [ET(M)][v] is defined coinductively as follows:

[LI[e] = 1
[return V][v] ef ET(v[V])

[o(c,ET(M,), - . ET(M,)][v] € o(c,[ETM)][v],---,[ET(M,)][v])

for value types

B] ¥ B
[E] € E
[T—C] ¥ [T]-[C]

for computation types
[S> T/A™ = Af] € [S][([T] - [4™]) — [A5])

[X][7] | for operation signatures
def
i = 7
[B{o: T9 s T/ A = ABY][r] (TP ([T = [A™]) = [A™]) — [S][7]
(where o is lower than any operation in X))
for values

def
[
[o] =
[Ax.M] jéi Az.return [M]
[fixz. V] = fixz.[V]
for terms
[M] % M,k [M][R| k]

[M][v" | v*]| for terms with handlers and continuations

kv

h

[return V][vh | v*
lletz = Myin Ma][0" [vk] % [MA][0" | Az [Ma][vP | v¥]]
[Vi Va][vh |
[oh

[case(Vs My, -+, M,)] E case([V; [Mi][0" | o*], -+, [Ma][07 | %))

oi(Viz ol v v} z, h, k. o [k R
(Vi M)][" "IV A@, Bk [M][0 | oK) ok -
(if o; is the i-th operation in ¥ and o; : TP* ~~» T/ Cint = Afin € 3 and |CMLY| = [h])
[os (Vi IO 0] % of [V [MI[0P | o]
(if o; is the i-th operation in ¥ and o; : TP™ ~ T2 / Tini = Afin € 7))
[M][Az1, ky.return [My], -, A&y, k. return [M,,] | Az.return [M']] vP v
(where H = {returnz — M'} W {o;(z;;k;) — M;}ISisn)

]

]

o] E [VA] [Va] oP ok
k

k} def

[with H handle M][vP | %] %'

Figure 5: CPS transformation. In the definition of [M] and [M][v" | v¥], we assume that M is well typed with an
operation signature 3. Furthermore, for sequences % in the definition of [M] and v" in [M][vh | o], |h| = [vP] = |2|.

3 Proofs

3.1 Type Soundness of HEPCFATM
Lemma 1 (Weakening). Assume that dom(I'y) N dom(I'y,T'3) is empty.
o IfT1,T5F V: T, thenTq,To, T V: T.
o IfT,[3F M: C, thenT1,T9, T3+ M : C.
Proof. Straightforward by mutual induction on the typing derivations. O
Lemma 2 (Value Substitution). Assume that Ty b Vg @ Tp.
o IfTy,2: Ty, To b V: T, thenT1,ToF V[Vy/x]: T.
o IfTy,x: To,To- M: C, thenT,Ta - M[Vy/x]: C.

Proof. Straightforward by mutual induction on the typing derivations. The case for (HT_VAR) rests on Lemma
O

Lemma 3 (Canonical Forms). Assume that 9+ V : T.
e If T = B, then V = ¢ for some ¢ such that ty(c) = B.
o If T =n, then V =1 for some i such that 0 < i < n.
o If T=T — C', then V= Xx.M for some x and M, or V = fixz. V' for some x and V'.

Proof. Straightforward by case analysis on the typing derivation. Note that, for any ¢, ty(c) = B for some B by
Assumption [T} O

Lemma 4 (Progress). If+ M : C, then one of the following holds:
o M =return V for some V;
e M =0o(V;x.M') for some o, V, x, and M'; or
o M — M’ for some M'.
Proof. By induction on the typing derivation applied last to derive) - M : C.
Case (HT_RETURN): Obvious.
Case (HT_LET): We are given

@FMllszl/AiAl $ZT1FM2:EDT2/A2:>A
Q)l_letl‘:MlinMQZZDTg/AgﬁAl

for some x, My, My, 3, Ty, Ts, A1, As, and A such that M = (letz = Myin M) and C =X > Ty / Ay = Ay.
By case analysis on the result of the IHon 0 - My : > Ty / A = Ajy.

Case 3 Vq. My = return Vi: By (HE_LETV).
Case 3o, V1,y, M{. My = o(V1;y. M]): By (HE_LETOP).
Case 3M{. M1y — M]: By (HE_LETE).

Case (HT_APp): We are given

(Z)I—VlT%C (Z)"VQT
@FV1V2ZC

for some Vi, Vs, and T such that M = V; V5. By case analysis on the result of applying Lemma |3| to
(Z) = V1 T — C.

10

Case Jz, My. Vi = Az.Mq: By (HE_BETA).
Case Iz, V{. Vi = fixz.V]: By (HE_FIX).

Case (HT_CASE): We are given

0FV:n Vie[l,n.0F M :C
0+ case(V; My, -, M,): C

for some V, n, My, -, M, such that M = case(V; M, --,M,). By Lemma V =i for some i such that
0 < i < n. Thus, we have the conclusion by (HE_CASE).

Case (HT_OP): Obvious.
Case (HT_HANDLE): We are given
H = {returnz — My} W {o;(xs; k) — M;}IS=n Y={o;: T/" ~ T) oint = gfinylsisn

O-M S T/CM=C 2:TFM:C™ Vie[ln]l o TP ki T o ¢ - M, : 0
0 - with H handle M’ : C

9

forsomeH, M/7LL'7 M07017"' yOn, L1 ,Tn kl 7kn7M17"' aMTHE?Ul?"' ;On,y T]f)ara"' 7T£ar, T?ri7"' 7Tr?:ri7
o ... omiscfin .. Cfin T and O™ such that M = with H handle M’. By case analysis on the result of
thelHon) - M': ¥ T/ C™ = C.

Case 3V'. M’ = return V': By (HE_HANDLEV).

Case 3o, V', y, M". M' = o(V';y. M"): By the inversion of § - o(V';y.M") : £ > T /C™ = (C, we have
o = o, for some ¢. Then, we have the conclusion by (HE_HANDLEOP).

Case 3IM". M' — M": By (HE_HANDLEE).

Lemma 5 (Subject Reduction). IfTHM:C and M — M', then T+ M': C.
Proof. By induction on the typing derivation.

Case (HT_RETURN): We have M = return V for some V', but there is a contradiction because there is no evaluation
rule applicable to return V.

Case (HT_LET): We are given

PHM:SeTi /A=A, Ta:TiFMy:So Ty/ Ay = A
Fl—letx:MlinMngDTg/AgéAl

for some x, My, My, 3, Ty, Tz, A1, Ao, and A such that M = (letz = MyjinMs) and C =X > Ty / Ay = A;.
We have letz = My in My — M’. By case analysis on the evaluation rule applied last to derive it.

Case (HE_LETV): We are given
letz = return Vyin My — MV /x]

for some Vj such that M; = return V3 and M’ = M,[V1/x]. Because I' Freturn Vi : ¥ > T/ A = A, its
inversion implies I' = V7 : Ty and A = A;. Thus, Da : Th F My : X > Ty / Ay = A;. By Lemma we have
the conclusion T'+ My[Vy /2] : > To / Ay = Ay

Case (HE_LETOP): We are given
letx = o(Vi;y. M{)in My — o(Vy;y.letz = M{in Ms)

for some o, Vi, y, and M{ such that My = o(Vi;y. M{) and M’ = o(Vi;y.letz = M{in M) and y & fo(Ma).
Because I' F o(Vy;y. M{) : ¥ > Ty / A = Ay, its inversion implies

e g TPar Tari/Aini = Aﬁn c E,

11

o A = Aﬂn7
e TF Vy: TP and
ol y: T¥ kM :XpT) /A= AN
for some TP, T2 Aini and Afin. By Lemma Dyy: T& 2 : Ty F My : X Ty / Ay = A. By (HT_LET),
Dyy: T b lete = M]inMy: S Ty) Ay = A™ .
By (HT_Opr) with 4; = A" we have the conclusion
FFU(Vl;y.Ietx: M{IHMQ) HDIN S TQ/AQ = A1 .

Case (HE_LETE): We are given
M, — Mll

for some M{ such that M’ = (letx = M]inM,). By the IH, T' - M{ : ¥ > T; /A = A;. Therefore, by
(HT_LET), we have the conclusion

Fl—letx:M{inMgzZD TQ/A2:>A1.
Case (HT_App): We are given

TEVi:T—C TFV:T
FFVlI/QSC

for some Vi, Vo, and T such that M = Vi Vo. We have Vi Vo — M’. By case analysis on the evaluation rule
applied last to derive it.

Case (HE_BETA): We are given
(/\l‘Ml) VQ — Ml[Vg/l‘]
for some z and M; such that Vi = Ax. My and M’ = M;[V>/z]. By the inversion of ' - Az.M; : T — C, we
have ',z : T+ My : C. Because I' = V5 : T, we have the conclusion I' - M;[Vy/z] : C by Lemma
Case (HE_F1xX): We are given
(fixz. V]) Vo — V{[fixa. V] /x] Vo

for some z and V] such that Vi = fixz. V] and M’ = V{[fixa.V{/z] V5. By the inversion of T F fixz. V7 :
T — C,wehave ',z : T — C+ V{: T — C. By Lemmal ' - V{[fixz.V{/a] : T — C. Therefore, by
(HT_APP), we have the conclusion

' Vi[fixz. V]/x] Vo : C .

Case (HT_CASE): We are given

'FV:n Vie[l,n.TFM:C
I'kFcase(V; My, -, M,): C

for some V, n, My, -+, M, such that M = case(V; My,---,M,). Because case(V;M,---,M,) — M’', we
have V =i and M’ = M, for some 7 such that 0 < ¢ < n. Because I' - M, : C, we have the conclusion.

Case (HT_Op): We have M = o(V;2z. M") for some o, V, x, and M”, but there is a contradiction because there
is no evaluation rule applicable to o(V;x. M").

Case (HT_HANDLE): We are given

H = {returnz — My} W {o;(xs; k) — M}IS=n Y={o;: T/" ~ T) o = C{‘f}lgign

TEM:S>T/C"=C T,a:TkFM:C™ Vic[l,n]. D,z TP ki T — C) - M, : Of
I' - with H handle M : C

forsomeH, Mé,l’, Mnglv"' 3On, L1 , T kl aknaMl7"' 7Mn727017"' yOn,y Tlpara"' ’T}tL)ar7 Tlaria"' aT:ri7
Ot ... Cini - cfin ... Cfn T and O™ such that M = with H handle M. We have with H handle M, — M’.
By case analysis on the evaluation rule applied last to derive it.

12

Case (HE_HANDLEV): We are given
with H handlereturn V. — My[V /]

for some V such that M} = return V and M’ = My[V /z]. By the inversion of I'Freturn V : X > T/ O™ = C,
we have ' - V : T and C™ = (. By Lemma [2l with ',z : T + M, : C'™, we have the conclusion
T+ M[V/a]: C.

Case (HE_HANDLEOP): We are given
with H handleo;(V;y. M{') — M;[V /x;][A\y.with H handle M /k;]

for some i, V, y, and M’ such that Mg = o;(Viy. My') and M’ = M;[V /x;][Ay.with H handle My'/k;]. By the
inversion of I' - o (V;y. My') : ¥ T / C™ = (', we have

o (= Ciﬁn,

o ' V: TP and

oD y: T FM/:X>T/CM=C
By Lemmal[T]

o I y: T z: TH My: C™ and

eVjc[l,n|.Tyy: TP o TP ki : TP — C
Therefore, by (HT_HANDLE) and (HT_ABS),

ini

i

MM, Cfin,
T+ Ay.with H handle M{ : T# — 1" .
Thus, by Lemma [2|and C' = C’iﬁ“, we have the conclusion
L'+ M;[V /z;][M\y.with H handle M/ /k;] : C .

Case (HE_HANDLEE): We are given Mj — M/ for some M}’ such that M’ = with H handle M. By the IH,
M :Y>T/CM™= C. By (HT_HANDLE), we have the conclusion

' - with H handle M : C .

O
3.2 Type Soundness of EPCF
Lemma 6 (Weakening). Assume that dom(As) N dom (A1, As) is empty.
o IfZ| A, Azt v:T, then Z | Ay, Ag, Agb v :T.
o IfZ| A, Azt e:7, thenE | Ay, Ay, Agte:T.
Proof. Straightforward by mutual induction on the typing derivations. O

Lemma 7 (Value Substitution). Assume that E | Ay F vy : 70.

o IfE| A1,z :70,A b v:T, then 2| Ay, A F v[wp/x] : 7.
o IfE| A,z :719,A0F e: 7, then 2| Ay, Ag b elvg/x] : 7.

Proof. Straightforward by mutual induction on the typing derivations. The case for (T_VAR) rests on Lemma@ O

Lemma 8 (Canonical Forms). Assume thatZ | 0F v : 7.

e If 7= B, then v = ¢ for some ¢ such that ty(c) = B.

o [fT=n, then v =1 for some i such that 0 < i < n.

13

o If T =1 — Ty, then v = Ax.e for some z and e, or v = fixxz.v' for some x and v'.

Proof. Straightforward by case analysis on the typing derivation. Note that, for any ¢, ty(c) = B for some B by
Assumption [T} O

Lemma 9 (Progress). IfZ |0 F e: 7, then one of the following holds:
e ¢ =returnv for some v;
e e =o(v;z.€) for some o, v, z, and €'; or
e ¢ — ¢ for some €.
Proof. By induction on the typing derivation applied last to derive Z | 0 - e : 7.
Case (T_RETURN): Obvious.
Case (T_LET): We are given

E|l0ke:mn E|lz:imbe:T

E|O0Fletz=ejiney: T
for some z, €1, ez, and 71 such that e = (letx = e in e3). By case analysis on the result of the [Hon Z | @+ e; : 7.

Case Ju;. e; = returnv;: By (E_LETV).
Case Jo,v1,y, €. e1 = o(v1;y. e1): By (E_LETOP).
Case Jef. e; — ¢f: By (E_LETE).

Case (T_Aprp): We are given

El0Fv 7T =7 E|0Fv:T

E”(Z)'_Ul’UQZT

for some vy, v9, and 7/ such that e = v; v5. By case analysis on the result of applying Lemma [8|to Z | 0 I v :
=T

Case dz, e1. v1 = A\x.e;: By (E_BETA).
Case Iz, v{. v; = fixx.vy: By (E_FIX).

Case (T_CASE): We are given

E|0Fov:n Vie[l,n].ZE|0Fe:T

E|0F case(v;er, - ,e): T

for some v, n, €1, , e, such that e = case(v;er, -+, e,). By Lemma v = | for some i such that 0 < i < n.
Thus, we have the conclusion by (E_CASE).

Case (T-Op): Obvious.

Lemma 10 (Subject Reduction). If=Z|AFe:7ande — €, thenZE| Ak e : 7.
Proof. By induction on the typing derivation.

Case (T_-RETURN): We have e = returnv for some v, but there is a contradiction because there is no evaluation
rule applicable to return v.

14

Case (T_LET): We are given

E|lAre:n E|Az:imbFe:T

E|Akletz =einey: T

for some x, e1, ez, and 71 such that e = (letz = ejiney). We have letz = e;ines — ¢’. By case analysis on
the evaluation rule applied last to derive it.
Case (E_LETV): We are given

letz = return vy ines —> esfvy /2]

for some vy such that e; = returnv; and e’ = ex[v/x]. Because = | A return v

: 71, its inversion implies
E| At v : 7. By Lemmal7] we have the conclusion Z | A+ epfv; /2] : 7
Case (E_LETOP): We are given

letx = o(v1;y. e;)ines — o(vr;y.letx = e]ine)
for some o, vy, y, and e] such that e; = o(vi;y.€]) and e/ = o(v1;y.letx = ef iney) and y & fv(es). Because
| AFo(v;y.e): 11, its inversion implies
e 0:B~F€EE,
| At v : B, and
|Ay:Ebel:m

[11 [1]

°
°
for some B and E. By Lemma@ E|Ay: E,xz:m F e 7. By (T_LET),

E|Ay:Ebletr =ejines: 7.
By (T_OP), we have the conclusion

E|AFo(v;y.lete =ejiney) : 7.
Case (E_LETE): We are given

er — €
for some e] such that ¢’ = (letx = efiney). By the IH, Z | A+ ef : 7. Therefore, by (T_LET), we have the
conclusion

E|AFletx =ejines : 7.
Case (T_AprpP): We are given

ElAFv T =57 ZE|AF w7

E|lAFv T

for some v, v, and 7’ such that e = v; vo. We have v; v, — ¢’. By case analysis on the evaluation rule applied
last to derive it.
Case (E_BETA): We are given

(Az.e1) va — eq[ve/x]

for some x and e such that v; = Az.e; and e’ = ej[vy/x]. By the inversion of = | A+ Az.e; : 7 — 7, we have

E|A,z:7F e : 7. Because Z | AF vy : 7/, we have the conclusion E | A & e;[vz/2] : 7 by Lemmal [7]
Case (E_FI1X): We are given

(fixz.v]) vo — vj[fixz.vy /2] Vo

for some x and v{ such that v, = fixz.v{ and e’ = v{[fix z.v{ /x] v2. By the inversion of = | A & fixz.v{ : 7/ — T,
we have Z | A,z : 7/ — 7k v : 7/ — 7. By Lemmal[7] 2 | A+ vf[fixz.0{ /2] : 7/ — 7. Therefore, by (T_APP),
we have the conclusion

E| AF v[fixz.o /2] ve T .

15

Case (T_-CASE): We are given

E|lAFv:n Vie[l,n]. E|AFe: T
E|AkFcase(vyer, - ,en): T

for some v, n, €1, ,e, such that e = case(v; ey, - ,e,). Because case(v;e,---,e,) — €', we have v =i
))) b) b) b b))
and e’ = e; for some 7 such that 0 < i < n. Because Z | A} ¢; : 7, we have the conclusion.

Case (T_OP): We have e = o(v;z. e"”) for some o, v, x, and e, but there is a contradiction because there is no
evaluation rule applicable to o(v;x. e).

O

3.3 Type Preservation

Definition 22 (Pre-Order on Typing Contexts). We write Ay = Ag if dom(A1) C dom(Asz) and, for any © €
dom(Al), Al(x) = Ag(x)

Definition 23 (Typing of Effect Handlers). Let ¥ = {o; : TP™ ~» T2/ Alnt = AfInMISiSn for some o1, -+ 0y,

7

TP, ... Thar, Tpri ... Tai Al ... AN and Afin .o ABY sych that o4, 0, are ordered. For a variable
sequence h = hy,--- , hy, we write h : ¥ to denote the typing context that, for each i € [1,n], assigns to the variable
hi the type [TP™] — ([T#] — [AR]) — [Af]. For a value sequence v" = o', -+ ol we write Z | A+ vh . ¥ if,

for eachi € [1,n], 2| Ak ol : [TP"] — ([T#] — [A]) — [Af] holds.
Lemma 11 (Type Preservation of the CPS Transformation). Assume that [I'] < A.
o IfTFV: T, thenZ | AF[V]:[T] for any E.
e fTFM:SpT /A = A and T | Ak oM : S and 2| At 0% : [T] — [A™], then Z | A+ [M][vh] v¥] :
[A""].
e IfTHM:C,thenZ | At [M]:[C] for any =.
Proof. By mutual induction on the typing derivations.
e Assume that I'+ V : T is given. By case analysis on the typing rule applied last to derive it.

Case (HT_VAR): Obvious by (T_VAR).

Case (HT_ConsT): Obvious by (T_CoNsT). Note that ty(c) is base type by Assumption

Case (HT_ECoNST): Obvious by (T_ECONST).

Case (HT_ABS): We are given I' - Az.M : T' — C” for some z, M, T’, and C’ such that V = Az.M and
T=T — C' Byinversion, 'z : T+ M : C’. Because [I'] < A, we have [I'],z : [T'] X A,z : [T].
Therefore, by the TH, Z | A,z : [T'] F [M] : [C']. By (T_-RETURN) and (T_ABS), ZE | A F Az.return [M] :
[T'] — [C’]. By the definition of the CPS transformation, we have the conclusion.

Case (HT_F1x): We are given I' - fixz. V' : T/ — C’ for some z, V', T', and C’ such that V = fixz.V’
and T = T' — C'. By inversion, 'z : T/ — C' + V' : T — (C’. Because [I'] < A, we have [I'],z :
[T'] = [C'] 2 A,z : [T'] — [C']. Therefore, by the IH, E | A,z : [T'] = [C']T+ [V'] : [T'] — [C']
By (T_-FIx), E | A F fixz.[V'] : [T'] — [C']. By the definition of the CPS transformation, we have the
conclusion.

e Assume that T M : X T/ A = A is given. Let ¥ = {0, : TP ~ T2/ Alnt = Afin}ISisn for gome
01y O, TP -on TRar part . pari s glni o Aind and Afin ... Afin guch that oy, -+, 0, are ordered.
By case analysis on the typing rule applied last to derive it.

Case (HT_RETURN): We are given

r-v.rT
FkretunV:3XpT /A= A

16

for some V and A such that M = return V and A™ = Afi" = A, By the IH, = | A+ [V] : [T]. By the
definition, it suffices to show that

EJAF[V]:[4],
which is derived as follows:
EHAFUI(IHTH%HAH ElARV]:[T]
E||A|—vk[[V]}:[[A]]

(T_App)

Case (HT_LET): We are given

FI—M1:Z>T1/A:AHH F,x:Tll—MQ:EDT/Aini:A
FI—Ietx:MlinMQ:ZDT/Aini:>Aﬁn

for some x, My, My, T1, and A such that M = (letz = M;in My). Without loss of generality, we can
assume that x & dom(A). By the definition, it suffices to show that

E | AF [M][oh | Az [Me][0h]v*]] : [A™] .

Because [I'] = A, we have [I'],z : [T1] = A,z : [T1]. By Lemma@7 Z | Az [Ty] F oh: 2 and
E| A,z [Th] F o*: [T] — [A™]. Therefore, by the IH on I,z : Ty = My : X > T/ A™ = A, we have

Z| Az [Th] F [M][oh] o] : [A] .

By (T_ABS), o
E AR [M][v"]v*]: [Th] — [A] -
Therefore, by the IHon I' = M; : ¥ > Ty / A = A", we have the conclusion

Z | A [M][o" | Az [Mo][v" | v*]] : [A] .
Case (HT_Appr): We are given

TV T -S> T /A" = AT TRV, T/
TV, Vo:20p T/AM = Afin

for some Vi, Vo, and T’ such that M = V; V5. By the definition, it suffices to show that
E|AF[VA][Vo] vh ok : [A5] .
Then, it suffices to show that
ElAF][Ve] : [ZIAT] — [4™]) — [A™]] .

which is derived by the IHs and (T_APP).
Case (HT_CASE): We are given

TFV:n Vice[l,n.TFM:S>T/AM™ = A
I'Fcase(V; My, -, M,): S T/ AN = Afin

for some Vi, My, -+, M,, and n such that M = case(V; My,--- , M,). By the definition, it suffices to show
that

E| At case([V]; [Mi][o" [o], [Mu][0P| 0F]) - [A™] .
By the IHs,
—E]AF[V]:nand
—Vie[l,nl. E|AF [M][vh]ok]: [A].

17

Therefore, by (T_CASE), we have the conclusion.
Case (HT_Op): We are given

ini

TV TP Do TP M :SeT/AM= A
Tho(Vie M) : N6 T) AM = A

[

for some V', x, M’, and i such that M = o;(V';2. M’) and A" = Afin. By case analysis on Al
Case 3 CjMi. Aint = Cni: By the definition, it suffices to show that
Z)AF N[V] Az, b kM][0 | 0¥ Rk - [AfR]
where [h| = [CI.E]. Let ¢ = 3 » 77/ C"™ = '™ for some X', 7', '™, and C"™. Let
A=Az [T h 2 ¥k [T'] = [C™]. Because [I] < A, we have [,z : [T/'] < A’. By
Lemma@ E|A Foh:Yand 2| A’ F ok [T] — [A™]. Therefore, by the IHs,
—Z|AE[V]:[TFP*"] and
=) AT M| oK) : O,
By (T-ABS), (T_App), (T_VAR), (T_LET), and (T_RETURN),
2| AF Az, bk M [" |0 Rk [TA] — [CM] .
The conclusion is derived as follows:
ElAF ! [TV = (IT7] = [4M]) = [45°] EJAF[V]:[T7]
D- E1AF VT (2] - [A7]) - [A7]

(T-App)

D E|AF Mg bk [M][oh | o} Rk [T — [CM] Cint — ini
E)AF o [V] A, by kM][0 | o) Rk : [Af]

(T_LET),(T_APP)

Case 3 T/™. AlM = Tini; By the definition, it suffices to show that
AR oM [V Az [M][v" | 0*] : [A5]
Because [[] < A, we have [['],z : [T*] < A,z : [T*]. By Lemmalél7 E| Az [T*]F o : % and
E| Az [T¥]) ok [T] — [A™]. Therefore, by the IHs,
—Z|AF[V]:[TFP*"] and
— E[Az [T F [M][0" | %]« [AP].
By (T_ABS), o
E|AF Az [M)[vh|v"]: [TA]) — [AR] .
The conclusion is derived as follows:
El A [TP] = ([777] = [AP]) =~ [47] S| AF[V]:[TP"]
D- E1AF VT (2] - [A7]) - [A7]

(T-App)

D E|AF e [M][v"] vkL: [T21] — [AR]
Z|AF N[V] Az [M][vP] o] : [ATR]

(T_LET),(T-APP)

Case (HT_HANDLE): We are given

H' = {returnx I»)—> Mo} & {oj(z}; kj) '_)ﬁMjiilijSm
! / /par sarl /111 n <m
TFM YT /™M= Tz T+ M:C™
Vi€ [ml) TPk T ¢ e M O

I' - with H handle M’ : £ > T) A = Afin

18

! / / / / / ypar ypar sari sari
forsome H', M, x, My, o, -+ ;00 @), -, m,kl,--~,km,Ml,~~,Mm,T1 geee, T T T

Ak o™ and ¢/ o/f w77 ¢ and O such that M = with H' handle M’ and Cfin =
Yo T/ AN = Aﬁn By the definition, it suffices to show that

2| AF [M][Az, K return [M]],--- Az’ K. return [M]] | Az.return [My]] v" o* : [AS] .

’I’TL7 m:*

Because [I'] < A, we have [I'],z : [[T’]] < A,z : [T'] and, for each j € [1,m], [[],2} : [T'3"],
[[T’a“]] — [[C’ml]] < Azl [TV k) [[T’;m]] — [[C”ijni]]. Therefore, by the IHs on the typing derivations
OfMO,M1,~-~ [

— 2| Az [T]F [M] : [C™] and

ar ari ini fin

—Viell,ml. Z| A [T K [T57] — [C7] - [M]] - [C7"].
By (T_ABS) and (T_RETURN),

— 2| AF Az.return [Mp] : [T'] — [C™] and

ar ari ini fin

—Vje[l,m]. 2| AFXef, kreturn [M]] : [T'5] — ([T'5"] — [C""]) — [C7;"].

Therefore,
| ANy, Ky return [M{],- -+, Azl kL return [M]] - X .

By the IH on the typing derivation of M’,

2| AF M)Az, k] return [M]], -, Ax),, K., .return [M],] | \x.return [Mp]] : [CF] .

m7 m*

Because € = £ b T /A = A™M and 2 | A+ vP : D and E | A F ok : [T] — [4™], we have the
conclusion.

o Assume that ['H M : X T / A™ = A is given. Let h be a variable sequence such that [h| = [S|. Then, by
the definition of the CPS transformation, it suffices to show that = | A h : X,k : [T] — [A™] F [M][h|k] :
[Af"], which is shown by case (L1)).

O

3.4 Semantics Preservation

Lemma 12 (Substitution is a Homomorphism). For any V' and x, the following holds:
1. For any M, b, and v*, [M][v"|o*][[V']/a] = [M[V'/]][v"[[V']/a] | ([V']/2]].
2. For any M, [M][[V']/x] = [M[V'/x]].
3. For any V, [V]IIV']/x] =[V[V'/x]].

Proof. By mutual induction on M and V.
1. By case analysis on M.

Case 3 V. M = return V: The conclusion is shown as follows:

[M][wP [)[[V']/=]
= [return V][v" | o*][[V'] /2]
K[V /=] [VIITV'] /)
WK[[V']/x] [V[V'/z]] (by the IH)
[return V[V’ /2]][wh([[V'] /]| o*[[V']/2]]
[M[V' 2] [o[V /] | o4 [[V']/]] -

19

Case AM;y, Mo, y. M = (lety = M in My): Without loss of generality, we can assume that y & fo(V') U {z}.
Then, the conclusion is shown as follows:

[M][o" o4][V']/2]

[lety = Myin My [v" | v][[V'] /2]

[M][v" [Ay.[Ma][v" | o* |][[V']/2]

[[V [l [P [V /2] | (hy-[Me][w" [v DI[V']/2]] (by the IH on M)
[[V [l [P [V /2] | Ay-[Me] [v" [v* [V'] /=]

[V /][0 [[V'] /] | Ay [0V /2]l [" [[V'] /2] | o4[[V'] /=]]] (by the IH on Mp)
llety = My [V'/a]in Mp[V' /][[o"[[V'] /2] | X[V'] /2]]

[V /2] [0 [[V'] /]| TV T /1] -

Case 3V, Vo. M = V7 V5: The conclusion is shown as follows:

[M][v"]][V'] /=]

[V Vo][vh]][V'] /2]

(VA [Va] v" o) ([V'] /2]

[Vi[V'/2]] [Vo[V'/z]] vP[[V']/2] v*[[V']/2z] (by the IHs on Vi and V)
[Vi[V'/a] Vo[V' /2]l [P ([V'] /2] | v[[V']/=]]

[V J2]][W ([V] /2] | ([V'] /] -

Case AV, My, -+, M,. M = case(V; My, -, M,): The conclusion is shown as follows:

[M][oh [0)IV] /2]

[ease(V; M, -, Mo)J[WF | o+][[V']/2]

(case([V]; [MA][wP | v¥], -+ [MR][0" [*IDI[V'] /2]

case([VII[V/]/al: [MD[0 [v<) V') /al, -, [Ma] (0% | 0*)([V7] /)

case([V[V /all; [Mu[V' /l)[o"[[V'] /] | oM ([VT /2]], -, [Ma[V! [[0 ([V7] /2] | o[V'] /2])
(by the IHs on V, My, -, M,,)

[case(V[V'/a]; My[V'/a), -, My [V [2])][([V'] /2] | o¥[[V'] /]

[case(Vs My, -, My)[V' /2] [w"[[V'] /2] [v[[V'] /2]

[V][o[V] /] | o [V'] /)] -

Case Joy, V,y,M'. M = 0;(V;y. M’): Without loss of generality, we can assume that y & fo(V’) U {z}.
Furthermore, assume that o" includes a value vih corresponding to ;. Then, the conclusion is shown as
follows:

[M][o | o ([V']/]

[(Vg M) [<) V'] /2]

(v V] /\y,h,k.[[M’]][vh\v'jhk:)[[[V’Mx] B

o IV 1/ [VIIIV'] /2] Xy, b, k. [M][0" [o< ([V'] /2] R K B

o [[V'])/z) [VIV'/z]] My, b, k. [M'[V' [2]][v"[[V']/x] | v*[[V']/x] Rk (by the IHs on V and M')

loi(VIV! Jalsy. M'[V' /2] [v"[[V'] /2] | 04[[V'] /2]

loi(Vsy. MOV /2]l [0 [[V'] /2] | ([V'] /2]]

[MIV!][oM V7] /]| o [V'] /2]

or

[M][o" [0][[V'] /2]

loi(Viy. MO] [| o¥][[V']/2]

(o) [VIxy [M [[DITVD /2]

o [[V'T/2] [VIITV'T/2] Ay [M][0" | o<][[V'] /]

o [Vl [VIV! [2]] Ay [M' [V /][[o"[[V'] /2] | o¥{[[V']/2]] (by the IHs on V and M’)
los(VIV' Jalsy. MV faDI [P [V7] /] | o ([V'] /]

loi(Vsy. MOV /][0 [V'] /] | o4[[V'] /2]

[MV /2] [0 [[V'] /] [(V'] /=] -

20

Note that the value substitution does not influence the operation signature used in typing M.

Case 3H, M'. M = with H handle M': Let H = {returny +— M"}w {o(y:; ki) — M;}1<'=" for some y, M",
Yl yYn, K1y sk, My, -+, M,. Without loss of generality, we can assume that y,y1, -, yn, k1,..., kn
are distinct from the variables in fo(V’) U {z}. Then, the conclusion is shown as follows:

[M][v" [v][[V']/2]
[with H handle M'][v | v*][[V'] /=]
([M')[Ays, ky.return [My], - -+, Ayn, kn.-return [M,,] | Ay.return [M"]] vh o%)[[V'] /2]
[M[V![2ll[Vi, Vi | Ayoreturn [M7[V! /)]] 0P [[V7] /2] o4([[V'] /2]

(where V; % My, k;.return [M;[V' /][, by the IHs on M’, M", My, -+, M,)
[(with handle M*)[V"/]][P[[V7]/] | ([V'] /)]
[V J2]l[W [V] /2] | ([V'] /] -

2. By case .
3. By induction on V.

Case dy. V = y: Obvious.

Case dc. V = ¢: Obvious.

Case dn. V = n: Obvious.

Case dy, M. V = Ay.M: By the ITH.
Case dy, Vy. V = fixy. Vy: By the IH.

Lemma 13 (Handler and Continuation Substitution). Ifx & fu(M), then

[M][o" | v*][v/z] = [M][v"[o/a] | v*[v/a]] .
Proof. By induction on M.
Case 3 V'. M = return V': The conclusion is shown as follows:

[M][v"] v*][v/]
= [[return V[| v*][v/z]
v¥[v/a] [V'][v/2]
vk[v/x] vl (Note that z does not occur free in [V'])
[return V][vP[v/z] | v*[v/z]]
[M][v* /]| v¥[v/a]] -

Case I My, Mo, y. M = (lety = My in Ms): Without loss of generality, we can assume that y & fu(v) U {z}. Then,
the conclusion is shown as follows:

[M][v" | o*][v/a]

[[Iety—MlinMgﬂ[v | v][v/x]
= [M][o" | My [Ma][0" | v¥]][v /]
= [M][v[v/z H(Ay-[[Mzﬂ[U” “Div/z]] (by the IH on M)
= [Mi][o"[v/2] | Xy [Ma][vh | v¥][v/2]]
[

= [M][vP[v/z] [Xy [Ma][vh[v/a] | v¥[v/2]]] (by the TH on Ms)
[lety = My in My][vh[v/z] | v*[v/z]]
= [M][v"[v/x]|v*v/2]] .

21

Case 3V, Vo. M = Vi Vy: The conclusion is shown as follows:

[M]["] v*][v /x}

[V Val[oP | o*][v/x]

([Val [Va] o™ o) [v/a]

[Vi] [Va] v"[v/z] v*[v/z] (Note that = does not occur free in [V;] nor [Va])
[Vi Va][wh(v/a] | v¥[v/z]]

[M][o"v/z] | v [v/a]] .

Case 3 V' My, ,M,. M = case(V’; My,--- ,M,): The conclusion is shown as follows:

[M][v" | o*][v/a]
= [case(V'; My, -+, My)][o" | “Ilv/z]
= (case([V']; [M:i][v hIvk] [Ma][0" | 04]))[v/2]

case([V'][v/x]; [Mi][v | Hv/l’] w [Ma][o] v*][v/2])
case([V']; [Mi][v [v/x}l “l/a]], - [Ma][v"[v /2] v¥[v/2]])

(by the IHs on My, - -+, M,; note that « does not occur free in [V'])
[case(V'; My, -+, My)][v"[v/2]] v*[v/x]]
[M][vP[v/a]| v [v/a]] .

Case o, V',y, M'. M = o,(V';y. M'): Without loss of generality, we can assume that y ¢ fo(v) U {z}. Further-
more, assume that v" includes a value v corresponding to ;. Then, the conclusion is shown as follows:

[M][oF | v¥[v/a]

[o (V5. MO)][VP | o%][v/a]

(o [V A P BT | 0 R/
oPo/a) [V'Tv/a) My, B, K [MT[OP | 0%][o/a] Rk
oflo/r) [V, B R I 0P T0/o] | o{o/a] | ik

fou(V' MO (0] | o4{0]

[M1["o/l | v*[v/a]]

(by the IH on M’; note that x does not occur free in [V'])

or

[M][0"] o*][v/a]
[os(V'5y. MO][w" | 0%][v/2]
(o [V/] Ay IM [wP | 0%])[o /]
uf[v/z] [V')v/2] dy. [M][0" | v¥][v/2]
of[v/z] [V'] My [M'][vP[v/x] | v*[v/2]] (by the IH on M’; note that = does not occur free in [V'])
[[Gz(V’;y- MO][vbh[v/x] | v*[v/z]]
[M][vP[v/a]| v*[v/a]] .

Case 3H,M'. M = with H handle M": Let H = {returny — M"} W {o(y;;k;) — M;}'S<" for some y, M",
Y1y Yn, K1, s kn, My, -+, M,. Without loss of generality, we can assume that y,y1, -, yn, k1,..-,kn
are distinct from the variables in fo(v) U {z}. Then, the conclusion is shown as follows:

[MI[o" | o*v/a]

[[WlthHhandIeM’]][vh|vk][v/z] o

(IM'][Ay1, ky.return [My], - -+, Ayn, kp.return [M,] | Ay.return [M"]] vh k)[v/x]

[M'][Ay1, ky.return [Mi], - -+, AyYn, kp.return [M,] | Ay.return [[M"]]] [x] v¥[v/z]
(by the TH on M’; note that x does not occur free in My, - - - M)

[(with H handle M")][v"[v/z] | v*[v/x]]

[M][v"[v/a] | v [v/2]] .

22

O

Lemma 14 (Simulation up to Reduction). Assume that T M : S T/ A™ = A [f M — M’, then, for

any vP and v* such that |vh| = S|, either of the following holds:
o M —* o(Vo;x. My) and [M][vh | vk] = [o(Vo; z. Mo)][v" | v¥] for some o, Vo, &, and My; or

o M/ —* M" and [M][vP|v*] —t [M"][v"] v¥] for some M".

Proof. By case analysis on the evaluation rule applied to derive M — M’.

Case (HE_BETA): We are given

(Ae.My) Vo — Mi[Va/x]
for some z, My, and Vy such that M = (A\x.M;) Vo and M’ = M;[Va/z]. Because I' = M : > T/ A = Afin)
we have the following derivation for some T":

D,x:T'FM X T /A = Afin
THXe My : T = X T/ AN = Afin
L'F Az M) Vy: S T /A = Afin

(HT_ABS) ,
F=Vve: T

(HT_-App)

Therefore, [M;] can take oM. Then, the conclusion is shown as follows (here we choose the second disjunct of
the conclusion and take M’ = M;[Va/x] as M"):

[MI[h]o*] = [(Aa.My) Va][v" | v¥]

[Az. My] [V2] vh ok

(Az.return [M;]) [Vo] vh vk
(A:C’E? k[[Ml]HE| kD [[VQH E’Uk

i [][R K[V2] /2][o" /R][v* /K]

[Mi[Va/a]][1| k][o"/R][v* /K] (by Lemma[i2)
[M;y[Va/z]][v" | v*] (by Lemma [13)) .

Case (HE_F1X): We are given

(leSUVl) V2 — Vl[fIXZL’ Vl/.’ﬁ] VQ

for some z, Vi, and V5 such that M = (fixz.Vq) Vo and M’ = Vi[fixz. Vi /x] Vo. The conclusion is shown as
follows (here we choose the second disjunct of the conclusion and take M’ = Vy[fixz. Vy/x] Vo as M"):

[M][v" | vk] [(fixz. Vi) Vo] [v | v¥]

[[fix x. Vl]] [[VQ]] ’Uhivk

= (fixz[Vi]) [Ve] ook

— [Wilfixa.[Vi]/a] [Vo] vh o

= [Wi]llfixaz. vi] /2] [V2] v" vk

= [Valfixz. Vi /a]] [Va] vh o (by Lemma [12)
= [Wiffixz. Vy/x] Vo] [vl |vk] .

Case (HE_CASE): We are given

case(i; My,--+ , M,) — M;

for some i, My,---, M, such that 0 < i < n, M = case(i; My, -+, M,) and M’ = M;. The conclusion is shown
as follows (here we choose the second disjunct of the conclusion and take M’ = M; as M"):

[MI[Wh[o*] = [ease(is My, -~ Mu)][eh[o*]
= case([if; [Mi][" | oK), [M][vh | o))
= case(i; [My][v" [v*], -, [Ma][0" | 0])

— [M][oM | k] .

23

Case (HE_LETE): We are given

M, — Mll
letx = Myin My — letz = M in My

for some x, My, My, and M{ such that M = (letx = M;in M5) and M’ = (letx = M{in M,). Because I' - M :
Yo T/ At = A" we have the following derivation for some Ty and A:

TEM N> Ty /A= A" To:TiFMy:SoT/A™ = A
Dhletz =M inMy: X T /A = Afin

(HT_LET)

By case analysis on the result of the IH on M;.

Case Vb, vk, || = [Z] = o, Vo,u, My. M] —* o(Vo;y. Mo) A [Mi][v}] o¥] = [o(Vo;y. Mo)][vh | vk]: By the
TH,
o M{ —* o(Vo;y. My) and
o [Mi][v" | Az [Me][vh|v¥]] = [o(Vosy. Mo)][vh | Aa.[M][v" | v*]]
for some Vp, y, and My. Without loss of generality, we can assume that y ¢ fo(My). By (HE_LETE) and
(HE_LETOP),

M' = (letx = M in M) —* (letx = o(Vo;y. My)in My) — o(Vo;y. letx = Myin Ms) .

By Lemma I'Fo(Vosy. My): > Ty / A= AS®. By its inversion, o is included in . Therefore, oM includes

a value v corresponding to o. Then, the conclusion is shown as follows (here we choose the first disjunct of

the conclusion): if o; : TP* ~ T2/ O = Afin € 3 for some TP, T2, CM) and A, then

[M][vh] o] = [[IetziMlinMgﬂ[ﬁh;k]
= [M][v" [Az [Ma][v"[v*]]
= [o(Vo;y. Mg)]][’l)h|)\le2]H’Uh \ vkl ~ (by the IH)
= o' [Vo])\y,h7k'.[[M0MUh|A$.HM2H[E|Uk}]hk
= o [Vo] My, h, k.Jletz = Myin Ma][vh | v*] bk
= [o(Vo;y.letx = Myin Mo)][v" | v¥] ;

(3

otherwise, if o; : TP* ~ T2t/ Tin = Afin € 3 for some TP, T2, Tt and A", then
[M][vh|0*] = [lete = Myin Mp][o"|v¥]

[M][0" | Az [Ma][v" [0<]]

[o(Vosy. Mo)]][vri)\x.[[Mz]][v'ivk]] (by the TH)

vl [Vo] Ay [Mo] [v" | Az [Ma] [v" [v¢]]

of [Vo] M\y.[letz = Myin Mo][v" | vk]

[o(Vo;y.letx = Myin Mo)][vh | v*] .

Case Vo, o, || = |S| = I M. M] —* M A [Mi][o} |vs] —* [M{][o} | vs]): By the IH,
o M| —* M/ and
o [M][o" | A [Mo][0P [0%]] —F [M{][0P| Aa [Mp][0 | 0¥]]
for some M{’. By (HE_LETE),

M’ = (letz = M{in M) —* (letx = M{'in My) .

Therefore, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take
letz = M| in My as M"):

[M][vh|vk] = lletz = My in Ma][v" vk]
= DI A (o]
—F [M{][" [Az [Ma][v | 0¥]] (by the IH)
= [letw = M/ in Ma][vh|v*] .

24

Case (HE_LETV): We are given
letz = return Vi in My — M| V7 /]
for some x, V7, and Ms such that M = (letz = return V7 in M) and M’ = Ms[V; /z]. Without loss of generality,

we can assume that = ¢ fo(v") U fo(v¥). Then, the conclusion is shown as follows (here we choose the second
disjunct of the conclusion and take M’ = Ms[V1/x] as M"):

[M][v"|vk] = [letz = return Vyin My][v | v¥]
= [return V1MW| Az [Ma][v] vk]]
= O[] [VA]
— D] |+ V)] B
= [My[Vy/x]][v"|vK] (by Lemma note that = does not occur free in v" and v¥) .

Case (HE_LETOP): We are given
letx = o(Vi;y. My)in My — o(Vy;y.lete = My in My)

for some x, y, o, Vi, My, and M, such that y &€ fo(Mz) and M = (letz = U(I@y. Ml)in M) and M' =
o(Vi;y.letx = Myin My). Without loss of generality, we can assume that y & fo(v") U fu(v*). Because I'

M : X T/)A™ = Afin its inversion implies that o is included in X. Therefore, oM includes a value v

corresponding to o. Then, the conclusion is shown as follows (here we choose the first disjunct of the conclusion
if o TP ~s Tt/ Cinl = Afn € % for some TP, T O and AR then

[
h
Y
):

[M][oh[o*] = [letz = o(Visy. My)in Ma][v" | o¥]
[o(Visy. My)[[o" | Az [Ma] [0 | o*]

= o [Vi] Oy, B k[M][0P | da [M)
[

]

]
ﬁwnhk)
vh | v*] h k)

o [Vi] (A\y, b, k.Jletz = M, in My]
[o(Vi;y.letx = Myin Mo)][vh | v

)
otherwise, if o : TP* ~ T2t/ Tini = Afin € 37 for some TP, T2, T and A", then

[M][v"|v%] = [[Ietx:U(Vl;y.iMl)inMQ]][ﬂMk}
[o(Visy. My)[[oh | Az [Ma] [vh | v¥]]
of [Vl Q. [M][o [Az [Mp] [0P | 0%]])
of [Vi] O\y.Jletz = Myin Mp][vh | X))
[o(Vi;y.letx = Myin Mg)]][ﬁ| vk] .

Note that here o(Vy;y.letz = My in Ms) can be typed at the operation signature ¥ by Lemma
Case (HE_HANDLEE): We are given

Mo — Mé
with H handle My — with H handle M}

for some H, My, and M such that M = with H handle My and M’ = with H handle M. Let H = {returnz
MYy W {oi(zi; ki) — M;}SS" for some z, M{/, x1,-++ , @, k1, -+ kn, 01, ,00 My,-++ , M,. Because I -
M :¥ > T/ AM = A" we have the following derivation for some TP, ... Tpar Tai ... pari gini .. ini
Clﬁnﬂ e 707?117 EO? T07 Clm and COHH:

EO — {O'i . Tipar ~ Tiari/ Ciini = C«iﬁn}lgign Cgm -V T/Aini = Aﬁn

THMy:Sos To/ G = Cg" N
D,o: Tob MY : C™ Vie[l,n]. Tya;: TP k- T2 — ¢ F M, - ¢
' F with H handle My : © > T/ A™ = Afin

(HT_HANDLE)

Therefore, we can apply the IH on My. By case analysis on its result. In what follows, let v; = Ax;, k;.return [M;]
for any 7 € [1,n].

25

Case Vvo,vo |v0\ = 3| = o, Vo,y, Mj". Mj —* o(Vo;y. M) A [[Mo]][vo | o] = [o(Vo; . Mé”)]][vig\ ug]:
By the IH,
o My —* o(Vo;y. MJ") and
o [Mo][vi,--+ ,vn | Axreturn [MY]] = [o(Vosy. M)][v1s -+, vn | Az.return [M{']]
for some o, Vy, y, and M}”. By (HE_HANDLEE),

M’ = with H handle M) —* with H handle o(Vp; y. M{") .
By Lemma [5| and the inversion of the typing derivation, o = g; for some i. By (HE_HANDLEOP),
M’ —* with H handle o(Vo; y. M{") — M;[Vy/z;][Ay.with H handle M[" /K] .
Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion):

[M][" | v¥] [with H handle M][v" | v¥]

[Mo][vi,- -, vn | Ax.return [M{']] v" v*

lo(Vosy. MY)D][v1,- -, vn | Az.return [MF']] vP v (by the TH)
v [Vo] Ny, by k. [MG"][w1, - - -, vn | Az.return [MG']] 2o k) vh vk

v; [Vo] (A\y, R, k.[with H handle M;"][]| k]) vh v¥

v; [Vo] [My.with H handle M{"] v" v*

—_>+ return [M;][[Vol/z4][[Ay-with H handle M"] /K] vh v*
= (Mh, k[M;[Vo/z][\y.with H handle My /ki]]][m k) vh ok by Lemma
H* [M;[Vo /2:][My.with H handle MY /k;]][o™ | v%] by Lemma [T3].

Note the following points.

e The term o(Vo;y. M) can be typed at the operation signature Xy by Lemma 5| and assigns to o the
type TP* — Tat /) Cint = Cfm; thus, [o(Vo;y. M§")[vi, -+, vn | Az.return [M{']] involves the term

Ny, by kMY [, v | Az.return [MY]] R k

in the eta-expanded form.
e Because I' - o(Vo;y. MY") : So > To /| CiM = C " by Lemma its inversion implies Cfi* = Cfi* = ¥
T/ A = Afin Because T',a; : TP &, : T2 — C\™ b M, : CF®, [M,] = A, k.[M][| k] can take vF.
Case Vvo,vo. |v0\ = |3o| = I M. Mj —* MJ" A [[Mo]][vé1 |vg] —+ [[Mé”]][vt')‘\ vg]: By the IH,
o My —* My’ and
o [Mo][vi,--+ ,vn | Azreturn [M{]] —F [MY"][v1,- -+, vp | Aw.return [M§']]
for some M{". By (HE_HANDLEE),

M’ = with H handle M) —* with H handle M]" .

Therefore, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take
with H handle M as M"):

[M][v"|vk] = [with H handle My][v | v¥] -
= [Mo][vi,- -, vn| Ax.return [M]] v L
—T MY vi, - v | Awreturn [M{']] v vk (by the IH)

= [with H handle Mg"][v" | v*] .
Case (HE_HANDLEV): We are given

with H handlereturn V. — My[V /]

26

for some H, V, My, and x such that returnz — My € H and M = with H handlereturn V and M’ = My[V /z].

Without loss of generality, we can assume that = & fo(vh) U fu(v¥). Let H = {returnz > My} W {o;(z;; ki)
M; MSSn for some @1, -+ @, k1,0 kn, 01,0+ 00 My, -+, M,,. Furthermore, let v; = Az, k;.return [M;] for
any i € [I,n]. Because ' - M : ¥ > T / A = Af® we have the following derivation for some TP ... Tpar
Tfriv T T;:ria j{ni7 T C;Lni7 Olﬁn7 Tty O7f:1n7 207 TO) Céni7 and Oé:m5

))

So={oi: TP ~ TP) G = CfPYISi=n Gt =% T) A™ = A™
T Freturn V : %o » Ty / CiM = C’gn
D,z: To bk My: C™ Vi€ [L,n]. T,z TP ko TP — C;ni - M; - Cfin
'+ with H handlereturn V : X > 7'/ A = Afin

(HT_HANDLE)

By inversion of T - return V : So > T / CiM = C’gm, we have Ci"' = Cfi", that is, "' = ¥ » T/ AN = Afin,
Because I',x : Ty = My : Ci™, we can find that [Mo] can take v". Then, the conclusion is shown as follows (here
we choose the second disjunct of the conclusion and take M’ = My[V /x] as M"):

[M][vP|vk] = [with H handlereturn V][v" | v¥] B
= [return V][vi, -+, v, [Az.return [Mo]] o vk
= (Azreturn [Mo]) [V] oh ok
= (Ax7ﬁ,k.ﬂMoﬂ[E|kMVﬂ vh ok

—* [Mo] [| k][[V]/][v"/h][v"/k]
= [Mo[V/z]][vP | 0] by Lemmas [I2] and [13] .

Case (HE_HANDLEOP): We are given
with H handleo(V;y. My) — My/'[V /2"][Ay.with H handle M /"]

for some H, V,y, M}, My, ", and k" such that o(z"; k") — M} € H and M = with H handleo(V;y. M) and
M' = M|V /2"][\y.with H handle M{/k"]. Without loss of generality, we can assume that 2, k" & fo(vM)Ufo(v").
Let H = {returnxz ~ My} W {o;(z;;k;) — M;}SS" for some =, My, 1, -+ ,Tpn, ki, -+ kn, 01, ,0n
My, -+, M,. We have some j > 0 such that ¢ = o;, 2’ = z;, ¥’ = k;, and My = M;. Furthermore, let
v; = A\w;, k;.return [M;] for any i € [1,n]. Because ' = M : ¥ > T/ A = Afin we have the following derivation
for some TP ... Tpar Tari ... paigini L gini s ofin o0 Ofin Csg 0 T, G, and Cf:

So = {07 1 TP ~s T2/ Oini o gfimyiSisn gfin _ yyp)/ gini o gfin
Tk o(Viy M) : Sov Ty / O = "
T, Tob My: G Vi€ [Ln) Toay: TPk T8 = 1 - M, 2 ofin
[+ with H handle o (V;y. M) : © > T / AN = Afin

(HT_HANDLE)

By inversion of T' F o(V;y. Mj) : $o> Ty / Civt = Cgm and o = o;, we have Ci" = C]ﬁn, that is, Cjﬁn =

Yo T/A™M = A Because Iya; :)™,k : TP — o™k M; : Cf, we can find that [M;] can take
J

oM. Then, the conclusion is shown as follows (here we choose the second disjunct of the conclusion and take
M' = M;[V /x;][Ay.with H handle M{/k;] as M"):

[M][vP|vk] = [with H handlea(V;y. M{)][v" | v¥] B
= i (Viy. M)][v, -+, vn | Ax.return [My]] vh ok
j o). o

0 [V (A ho, ko-[Mg][o1, -+, vn | Aaz.return [Mo] T ho ko) v" 0¥
v; [V] (Ay, ho, ko.[with H handle Mg] [ho | ko]) vP v

= v [V] [Ay.with H handle M{] vh v* o

= (Aaj, ky B kDGR | B]) [V] [w.with H handle MJ] oF o¥
ot MR KNIV ;) [[g-with H handle Mg /K][0 /][0 /K]

= M;[V /x;][\y.with H handle M{ /k;]][v" | v* by Lemmas [12] and [13]) .

J j 0/

27

Note that the term o(V;y. M) is typed at the operation signature ¥, which assigns to o; the type T]Par — TJ‘»1ri / C}“i = C’?n.
Thus, [o;(Viy. M)][v1,- -, vn | Ax.return [Mp]] involves the term

Y, ho, ko-[Mg][v1, - -+ 5 vp | Am.return [Mo]] ho ko

in the eta-expanded form.

Lemma 15 (Evaluation in HEPCFA™ is Deterministic). If M — M, and M — My, then M; = M,.
Proof. Straightforward by induction on the derivation of M — M;. O

Lemma 16 (Well-Definedness of HEPCFAT™™ Effect Trees). If)F M : X T) A™ = Afn and ¥ is top-level, then
ET(M) is well defined and uniquely determined, and it is in Treegs.

Proof. We show that ET(M) € Tree5§ by coinduction. We proceed by case analysis on the evaluation of M.
Case M —*: Obvious.

Case 3 V. M —* return V: By the definition, ET(M) = return V. By Lemma DFretunV : X T/ AM =
Afin. By its inversion, = V : T. Thus, return V € Trees¥.

Case 3o, V,o,M'. M —* o(V;z.M'): By Lemma DFo(Vie. M'): S T/ Aint = Afin. By its inversion and
Lemma 3]

e 0:B~n/T =T €%,
e V =r¢,and
ex:nkEM:SpT/AM = T

for some B, n, T', and ¢ (note that X is top-level). Then, by the definition,
ET(M) = o(c, ET(M'[1/a]), -, ET(M'[n/a])) .

Thus, by the coinduction principle, it suffices to show that, for any i € [I,n], 0 = M'[i/z] : ¥ > T / A™ = T',
which is shown by Lemma[2 with z :n M': X > T/ A = T and O Fi: n.

Otherwise: Contradictory with Lemmas [5] and

The uniqueness of ET(M) is shown by Lemma O
Lemma 17 (Evaluation in EPCF is Deterministic). If e — e; and e — e, then e; = es.

Proof. Straightforward by induction on the derivation of e — ;. O

Lemma 18 (Well-Definedness of EPCF Effect Trees). IfE | 0 F e : 7, then ET(e) is well defined and uniquely
determined, and it is in Treegs.

Proof. We show that ET(e) € Treeg= by coinduction. We proceed by case analysis on the evaluation of e.
Case e —*: Obvious.

Case Jv. e —* return v: By the definition, ET(e) = return v. By Lemma = | O+ returnv : 7. By its inversion,
E|0F v:7. Thus, returnv € Treegs.

Case Jo,v,z,¢’. ¢ —* o(v;z.€¢'): By Lemmal[l0} Z | 0 - o(v;z. €/) : 7. By its inversion and Lemma [3]

e g:B~necx
e v =, and

eZ|z:nke:T

28

for some B n, and c¢. Then, by the definition, ET(e) = o(c¢, ET(e’'[1/z]),- - ,ET(e’[n/z])). Thus, by the
coinduction principle, it suffices to show that, for any i € [1,n], 2| @ & €[i/z] : 7, which is shown by Lemma [7]
withE|z:ntke :7and E [P Fi:n.

Otherwise: Contradictory with Lemmas [I0] and [9}
The uniqueness of ET(e) is shown by Lemma O
Lemma 19 (Evaluation Preserves Effect Trees in EPCF). IfZ |0 F e: 7 and e —* €', then ET(e) = ET(¢').

Proof. By Lemmas [10] and ET(e), ET(¢') € Treeg=. We show that ET(e) = ET(e’) by case analysis on the
evaluation of e.

Case e —*: By Lemmal[l7, ¢/ —*. Therefore, ET(e) = ET(¢’) = L.
Case Jv. e —* return v: By Lemma e/ —* return v. Therefore, ET(e) = ET(¢’) = return v.

Case Jo,v,x,e9. ¢ —* o(v;2. ep): Because ET(e) is well defined, we have o : B ~» n € Z and v = ¢ for some B,
n, and ¢. By Lemmall7, ¢/ —* o(c;x. ¢p). Therefore, ET(e) = ET(e’') = (¢, ET(eo[1/z]), -+ ,ET(ep[n/x])).

Otherwise: Contradictory with Lemmas [I0] and [0
0

Lemma 20 (Correspondence between Effect Trees of CPS-Transformed Terms and CPS-Transformed Effect Trees).
Let X ={o;: By ~ E; | Ty = T;}'S'<" and Z = {0, : B; ~ E;}'<'<". Assume that) = M : X > T / A = Afin
andoy,--- 0, are ordered. Let vh = of, .- | ol such that, for anyi € [1,n], vf = Az, k.o;(z;y. ky) for some distinct
variables x, k, and y. Also, let v* be a value such that Z | O F v* : [T] — [A™]. Then, ET([M][v"|v¥]) =
[ET(M)][v"].

Proof. First, we show that [ET(M)][v¥] is well defined and is in Treeg= by coinduction. By Lemma ﬁ with

[Afin]

DFM:%p T /A = A" we can find that ET(M) € Treegy. We proceed by case analysis on ET(M).
Case ET(M) = L: Obvious because [ET(M)][v*] = [L][v*] = L.
Case 3 V. ET(M) = return V: Because [ET(M)][v*] = [return V][v*] = ET(v* [V]), it suffices to show that

ET(v[V]) € Treeg=

[afing

Because ET(M) = return V, we have M —* return V. By Lemmal| 0 - return V : £ > T/ A™ = Afn. By its

inversion, § = V : T and A™ = A By Lemmal[ll} = 0 - [V]: [T]. Because Z | 0 - o* : [T] — [A™], we

have Z | 0 - v*[V] : [A™] by (T_App). Thus, by Lemma ET(v*[V]) € Treeg= . Because A™ = Afin)
[Aini]

we have the conclusion.

Case 3o, ¢, My, ,My,. ET(M) = o(¢, ET(M),--- ,ET(M,,)): By the definition of ET(M), we have ¢ = o, for
some ¢ such that E; = m. Because

[ET(M)][v"] = [o3(c, ET(My),- -, ET(Mpn))][0*] = os(c, [ET(M)][0], , [ET(Mp)][v*]) |

it suffices to show that, for any j € [1,m], [ET(M;)][v*] € Treeg= .- By the coinduction hypothesis, it suffices
[afin]
to show that, for any j € [1,m], N
O M X T /A = AT

Let j € [1,m]. Because ET(M) = o;(c, ET(M;),--- ,ET(M,,)) and) - M : ¥ > T /A = A" we have
M —* oi(c;x. M') for some x and M’ such that M; = M'[j/x]. By Lemma DEoi(c;e. M) : S T /AN =
Afin By its inversion, z : m bk M’ : X > T / A = T; and A" = T;. Because § - j: m by (HT_ECONST), we
have O - M'[j/z] : ¥ > T | A™ = T; by Lemma Because Afi® = T, we have the conclusion.

29

Next, we show that ET([M][v" | v¥]) is well defined and is in Treeg= .- We have Z | 0 vh : % because we
[A 1(1]]

can derive Z | O+ Az, k.oi(z;y. ky) : By — (E; — [T3]) — [T:] for any i € [1,n] as follows:

T_VAR) ————— (T V.
SIAFRE ST EHA’I—y:Ei(TiR)
_APP
230,:B,~ E, Z|AkFx: B ElA R ky: [TH] ()
(T_Op)

E|AF oy ky) : [Ti]

(T_ABS),(T_-RETURN)

where A =z : B,k : E; — [T;] and A" = A,y : E;. Note that [B] = B and [E] = E for any B and E. Thus, by
Lemma =[O F [M][v" | %] : [A™]. Therefore, ET([M][o"|v]) € Treeg= by Lemma
[afin]

Finally, we show that ET([M][v" | v*]) = [ET(M)][v¥] by coinduction. We proceed by case analysis on the
evaluation of M.

Case M —“: By Lemmas and [M][v" | vk] —«. Therefore, [ET(M)][v*] = ET([M][v"]|v*]) = L.

|0k [M][v"]|v¥] : [A"] as shown above, we have ET([M][v" | v*]) = ET(v*[V]) by Lemma Because
[ET(M)][v*] = [return V][v*] = ET(v*[V]), we have the conclusion.

Case 3 V. M —* return V: By Lemmas and [M][v" | v%] —* [return V][vP]vk] = v¥ [[Because

Case 30, V,z,M'. M —" o(V;z. M'): Because ET(M) € Treegx by Lemma we have V = c and 0 = o;
for some ¢ and i. By Lemmas and O F oi(c;2. M) - > T /A = A and [M][vh|v%] —*
[oi(c; z. M)][vP | v5]. Thus,

[MI[o" | v*] —* [[Uz(cz M) [0 | o]

oM e Xz [M'][v" | v%] (note that oy : By ~ E;) T; = T; € %)
= (A, koi(w;y. ky)) e Az [MT[vh | v¥]
—* oi(ey. (A [M][v oK) y) -

Let E; = m for some m. Then,

T([M][" | v*]) ET(0i(c;y. (A= [M'J[o" | o))) (by Lemma [19| with Z | § - [M][v" | v*] : [AS])
= 0i(¢, ET((Az. [[MJ][U'“IU D1),- o ET((Az[M][| 0*]) m))
oi(c, BT([M][v" | ¥][1/5]) JET([M'][v" | v][m/2])) (by Lemmal[9)

}

oi(e, ET([M'[1/2]][v" | v*]), - \ET([M’[m/2]][v" | v*])) (by Lemmal[i2)

(note that, for any j € [1,m], (Az.[M'][v" | v])j is well typed by Lemmas n and) On the other hand,

[ET(M)][v*] = [oi(c, ET(M'[L/z]), -+, ET(M'[m/2]))][v*]
= oi(e, [ET(M[1/2)][v*], -, [BT(M'[m/2])][v"]) -

Let j € [1,m]. Now, it suffices to show that

T([M'i/=]][v" | o¥]) = ET(M'[j/2]) .
By the coinduction principle, it suffices to show that
O Mj/z]:Sp T /A™ = A,

It is shown by the inversion of () - o;(c; 2. M) : ¥ > T / A™ = Afin and Lemmalw1th Fj:m.

Otherwise: Contradictory with Lemmas [4 and [5]

30

Theorem 1 (Preservation of Effect Trees). Let ¥ = {0, : B; ~» E; / T} :>7TZ-}19§" and T be a ground type.
Assume that 0 = M : X > T /T = A™ and 0y,--- ,0, are ordered. Let vM = o' .- o' such that, for any

i € [1,n]i}ih = Az, k.o;(x;y. ky) for some distinct variables x, k, and y. Also, let v® = Az.returnz. Then,
ET([M][v"|v*]) = ET(M).

Proof. Let = = {0 : B; ~ E;}!<'=". By (T_VAR), (T_RETURN), and (T_ABS), we have = | 0 - v*: [T] — [T].
Thus, by Lemma ET([M][v"|v¥]) = [ET(M)][v¥]. Then, it suffices to show that
[ET(M)][o] = ET(M) .
We show it by coinduction. By case analysis on the evaluation of M.
Case M —“: Obvious because [ET(M)][v*] = ET(M) = L.

Case 3V. M —* return V: By the definition, ET(M) = return V and [ET(M)][v*] = [return V][v*] = ET(v*[V]) =
return [V]. By Lemmawith DFM:S>T/T = A" wehave) FreturnV : X T/ T = Afin. By its
inversion,) = V : T. Because T is ground, V = ¢ for some ¢, or V =i for some i by Lemma In both cases,

[V] = V. Thus, we have the conclusion.

Case 3o, V, o, M'. M —" o(V;z.M'): Because ET(M) € Treegs by Lemma we have ¢ = ¢; and V = ¢
for some ¢ and ¢. Let E; = m for some m. By the definition, ET(M) = 0;(c, ET(M'[1/x]), - ,ET(M'[m/z]))
and [ET(M)][v*] = o4(c, [ET(M'[L/z])][v*], -, [ET(M'[m/z])][v*]). Let j € [1,m]. It suffices to show that
ET(M'[j/z]) = [ET(M'[j/x])][v¥]. By the coinduction principle, it suffices show that

O Mj/z]: S T/ T = A",
By Lemmawith@l—M:ZD T/T = A and M —* o;(c;z. M), we have) - o;(c;x. M) : X T/ T =

Afin By its inversion, z : mt M’ : £ > T/ T = A"™ (note that A™ = T;). Because 0 - j : m by (HT_ECONST),
we have the conclusion by Lemma [2]

Otherwise: Contradictory with Lemmas [5] and [

31

	Outline
	Definition
	Trees
	HEPCFATM: PCF with Answer-Type Modification for Algebraic Effects and Handlers
	Syntax
	Semantics
	Type System
	Effect Trees

	EPCF: PCF with Algebraic Effects
	Syntax
	Semantics
	Type System
	Effect Trees

	CPS Transformation from HEPCFATM to EPCF

	Proofs
	Type Soundness of HEPCFATM
	Type Soundness of EPCF
	Type Preservation
	Semantics Preservation

