
CompressGraph

1. Description

This is the open-source implementation for CompressGraph:

CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression”, Zheng Chen, Feng Zhang, Jiawei Guan, Jidong Zhai, Xipeng Shen, Huanchen Zhang,
Wentong Shu, Xiaoyong Du. SIGMOD/PODS '23: Proceedings of the 2023 International Conference on Management of Data. https://dl.acm.org/doi/10.1145/3588684

2. Getting Started

2.1 System Dependency

CMake
OpenMP and C++17
CUDA
Optional(CPU): Ligra
Optional(GPU): Gunrock

2.2 Compilation

git clone https://github.com/ZhengChenCS/CompressGraph.git --recursive

cd CompressGraph

mkdir -p build

cd build

cmake .. -DLIGRA=ON -DGUNROCK=ON

make -j

If you just want to run application on CPU, you can set -DGUNROCK=OFF .

2.3 Graph Input Format

The initial input graph format should be in the adjacency graph format. For example, the SNAP format(edgelist) and the adjacency graph format for a sample graph
are shown below.

SNAP format:

src dst

0 1

0 2

2 0

2 1

Adjacency Graph format:

AdjacencyGraph

3 <The number of vertices>

4 <The number of edges>

0 <o0>

2 <o1>

2 <o2>

1 <e0>

2 <e1>

0 <e2>

1 <e3>

3. CompressGraph Compression

3.1 Data Preparation

The Compression Mudule accepts binary CSR(Compressed Sparse Row) graph data as input, which contains a vlist and a elist array. We provide two programs
for converting graph files from edgelist and adjacency graph format to CSR format. User can invoke them as follows:

Edgelist to CSR

https://dl.acm.org/doi/10.1145/3588684
https://gitlab.kitware.com/cmake/cmake
https://github.com/jshun/ligra.git
https://github.com/gunrock/gunrock.git
https://www.cs.cmu.edu/~pbbs/benchmarks/graphIO.html

edgelist2csr < <edgelist.txt>

Adjacency graph to CSR

adj2csr < <adjgraph.txt>

The two programs will generate two output files in CSR format: csr_vlist.bin and csr_elist.bin in the current directory.

3.2 Graph Compression

The dataset folder provides an example.

To compress a input graph, run:

compress <csr_vlist.bin> <csr_elist.bin>

To filter the rule by the threshold(16 by default), run:

filter <csr_vlist.bin> <csr_elist.bin> <info.bin> 16

The filter program will filter out rules that meet (freq - 1) * (len - 1) - 1 <= threshold; , where freq is the frequency of rules, len is the length of
rules.

We also provide a filtering program filter_decmp that can filter out rules that do not meet the frequency and length requirements separately.

filter_decomp <csr_vlist.bin> <csr_elist.bin> <info.bin> <freq_threshold> <len_threshold>

The filter_decomp will filter out rules that meet freq < freq_threshold || len < len_threshold .

4. ComprassGraph Analytics

We have implemented the CompressGraph analytic engine based on Ligra on CPU and Gunrock on GPU.

4.1 Data Prepareation

Before running the graph analytic program, we need to convert the CSR format to the format required by Ligra. Additionaly, we generate some auxiliary structures,
including order.bin and degree.bin (used in pagerank and hits).

$convert2ligra $csr_vlist $csr_elist > $output

$save_degree $csr_vlist

$gene_rule_order $csr_vlist $csr_elist $info

We provide a script data_prepare.sh and data_prepare_gpu.sh to execute the data prepareation process in script directory.

4.2 Run Applications

Users can execute graph applications using the following approach:

./bfs_cpu -r 1 $file

./cc_cpu $file

./sssp_cpu -r 1 $file

./pagerank_cpu -maxiters 10 -i $info -d $degree -o $order $file

./topo_cpu -i $info $file

./hits_cpu -maxiters 10 -i $info -o $order $file

./bfs_gpu $file 0

./cc_gpu $file

./sssp_gpu $file $info 0

./pagerank_gpu $file

./hits_gpu $file

./topo_gpu $file $info

We provide scripts in script/cpu and script/gpu directory to execute these programs.

https://github.com/jshun/ligra.git
https://github.com/gunrock/gunrock.git

4.3 Run applications with script

cd script

bash data_prepare.sh

cd cpu

bash bfs.sh

bash sssp.sh

bash cc.sh

bash pagerank.sh

bash topo.sh

bash hits.sh

cd gpu

bash bfs.sh

bash sssp.sh

bash cc.sh

bash pagerank.sh

bash topo.sh

bash hits.sh

5. Citation

If you use our code, please cite our paper:

@article{chen2023compressgraph,

 title={CompressGraph: Efficient Parallel Graph Analytics with Rule-Based Compression},

 author={Chen, Zheng and Zhang, Feng and Guan, JiaWei and Zhai, Jidong and Shen, Xipeng and Zhang, Huanchen and Shu, Wentong and Du, Xiaoyong},

 journal={Proceedings of the ACM on Management of Data},

 volume={1},

 number={1},

 pages={1--31},

 year={2023},

 publisher={ACM New York, NY, USA}

}

	CompressGraph
	1. Description
	2. Getting Started
	2.1 System Dependency
	2.2 Compilation
	2.3 Graph Input Format

	3. CompressGraph Compression
	3.1 Data Preparation
	3.2 Graph Compression

	4. ComprassGraph Analytics
	4.1 Data Prepareation
	4.2 Run Applications
	4.3 Run applications with script

	5. Citation

