
1 SUPPLEMENTAL MATERIAL
1.1 Problem Set with Instructions and Solutions
1.1.1 Problem One. Finish the function has22 below to return True if there are at least two items in the list nums that are adjacent and both
equal to 2, otherwise return False. For example, return True for has22([1, 2, 2]) since there are two adjacent items equal to 2 (at index
1 and 2) and False for has22([2, 1, 2]) since the 2’s are not adjacent.

The adaptive Parsons problem solution presented to students and the most common student written solution:

def has22 (nums) :
for i in range (len (nums) − 1) :

i f nums [i] == 2 and nums [i +1] == 2 :
return True

return F a l s e

1

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.1.2 Problem Two. Finish the function to define countInRange that returns a count of the number of times that a target value appears in a
list between the start and end indices (inclusive). For example, countInRange(1,2,4,[1, 2, 1, 1, 1, 1]) should return 3 since there are three 1’s
between index 2 and 4 inclusive.

The adaptive Parsons problem solution presented to students:

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i ndex in range (s t a r t , end + 1) :

c u r r e n t = numList [index]
i f c u r r e n t == t a r g e t :

count = count +1
return count

Most common student written solution for participants who solved this problem as a write-code problem first:

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i in range (s t a r t , end + 1) :

i f numList [i] == t a r g e t :
count += 1

return count
OverCode clusters of solutions for students who solved this problem as an adaptive Parsons problem first (see Table ??):

Cluster 1 (n = 7):

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i in range (s t a r t , end + 1) :

c u r r e n t = numList [i]
i f c u r r e n t == t a r g e t :

count += 1
return count

Cluster 2 (n = 6):

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i in range (s t a r t , end + 1) :

i f numList [i] == t a r g e t : ∗
count +=1

return count
Cluster 3 (n = 6):

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for c u r r e n t in numList [s t a r t : end + 1] : ∗

i f c u r r e n t == t a r g e t :
count += 1

return count
Cluster 4 (n = 5):

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i in range (s t a r t , end + 1) :

c u r r e n t = numList [i]
i f c u r r e n t == t a r g e t :

count = count + 1 ∗

Koli 2022, November 17–20, 2022, Koli, Finland

return count
Cluster 5 (n = 2):

def count InRange (t a r g e t , s t a r t , end , numList) :
return numList [s t a r t : end + 1] . count (t a r g e t) ∗

Cluster 6 (n = 2):

def count InRange (t a r g e t , s t a r t , end , numList) :
count = 0
for i in range (len (numList)) : ∗

i f i >= s t a r t and i <= end : ∗
i f numList [i] == t a r g e t : ∗

count += 1
return (count)

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.1.3 Problem Three. Finish the function diffMaxMin to return the difference between the largest and smallest value in the passed list of
numbers (nums). For example, diffMaxMin([1,2,3]) should return 2 since the difference between 3 and 1 is 2.

The adaptive Parsons problem solution presented to students and the most common student written solution:

def di f fMaxMin (nums) :
l a r g e = max (nums)
s m a l l = min (nums)
return l a r g e − s m a l l

Koli 2022, November 17–20, 2022, Koli, Finland

1.1.4 Problem Four. Finish the function total_values that takes a dictionary (dict) and returns the total of the values in the dictionary. For
example, total_values(’red’: 3, ’blue’: 2, ’green’: 20) would return 25.

The adaptive Parsons problem solution presented to students and the most common student written solution:

def t o t a l _ v a l u e s (d i c t) :
t o t a l = 0
for key in d i c t :

t o t a l += d i c t [key]
return t o t a l

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.1.5 Problem Five. Finish the function get_names that takes a list of dictionaries and returns a list of strings with the names from the
dictionaries. The key for the first name is ‘first’ and the key for the last name is ‘last’. Return a list of the full names (first last) as a string. If
the ‘first’ or ‘last’ key is missing in the dictionary use ‘Unknown’. For example, [’first’: ’Ann’, ’last’: ’Brown’, ’first’: ’Darius’] should return
[’Ann Brown’, ’Darius Unknown’].

The adaptive Parsons problem solution presented to students and the most common student written solution:

def get_names (l i s t _ o f _ d i c t) :
n a m e _ l i s t = []
for p _ d i c t in l i s t _ o f _ d i c t :

f i r s t = p _ d i c t . g e t (' f i r s t ' , 'Unknown ')
l a s t = p _ d i c t . g e t (' l a s t ' , 'Unknown ')
name = f i r s t + " ␣ " + l a s t
n a m e _ l i s t . append (name)

return n a m e _ l i s t

Koli 2022, November 17–20, 2022, Koli, Finland

1.2 Introductory Programming Self-Efficacy Scale (IPSES)
We used the Introductory Programming Self-Efficacy Scale (IPSES) 1 [?] to measure students’ beliefs about introductory computer
programming concepts and competences. The scale has 20 items that comprise four factors: tracing program flow (Factor 1); controlling
program flow (Factor 2); using structures and patterns for problem-solving (Factor 3); and persistence, debugging, and problem-solving
competences (Factor 4). It asks respondents to rate their confidence in doing tasks related to these four factors using a 7-point Likert scale
from “strongly disagree” to “strongly agree” and “no answer” if a specific term or task is totally unfamiliar to the respondent. We administered
the scale at the beginning of the semester (January 27th, week 2) and at the end of the semester (April 19th, week 14). We obtained a total
of 143 responses (a 99% response rate) at the beginning and 110 responses (a 76% response rate) at the end (107 were repeat respondents).
We calculated reliability using R’s psych package [?] and report both Cronbach’s 𝛼 and McDonald’s 𝜔 for the both administrations of
the scale given methodological disputes [see ? ?]. We decided to present this because the scale is new and our results add to its validity.
Cronbach’s 𝛼 for the scale was 0.95 and 0.96 respectively; this indicates high test-retest reliability. McDonald’s 𝜔 for the scale was 0.72 and
0.73 respectively. The alpha reliabilities of the scores on the four factors were... tracing program flow (Factor 1) = 0.93, controlling program
flow (Factor 2) = 0.92, using structures and patterns for problem-solving (Factor 3) = 0.90, and persistence, debugging, and problem-solving
competences (Factor 4) = 0.90. These high reliabilities are consistent with Steinhorst et al.’s [?] with the exception that Factor 4 was lower
than 0.95 as recommended [?].

Table 1: Self-Efficacy Clusters

Cluster n Factor 1 Factor 2 Factor 3 Factor 4
1 Low 39 5.709 6.060 2.651 4.855
2 Low Average 26 4.019 4.051 2.915 3.410
3 Average High 43 5.674 6.101 4.600 5.333
4 High 35 6.738 6.829 6.200 6.233

Notes: Factor 1 = Tracing program flow; Factor 2 = Controlling program
flow; Factor 3 = Using structures and patterns for problem-solving; Factor 4
= Persistence, debugging, and problem-solving competences.

1https://go.wwu.de/qpuoe

https://go.wwu.de/qpuoe

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.3 Paas Scale
In solving the proceeding problem, I invested (choose one of the following ratings):

1. very, very low mental effort
2. very low mental effort
3. low mental effort
4. rather low mental effort
5. neither low nor high mental effort
6. rather high mental effort
7. high mental effort
8. very high mental effort
9. very, very high mental effort

Koli 2022, November 17–20, 2022, Koli, Finland

1.4 Prior Programming Experience Survey
Overall Experience
1. How much experience (i.e., months, years) have you had programming?

High School Experience
2. Did you learn to program as part of a high school class (either formal or informal)?
3. If yes, how many semesters did you take courses involving programming?
4. Was this programming experience part of another course (e.g. Math, Business, Science...)?

College Experience
5. Did you learn to program as part of a college course?
6. If yes, how many semesters did you take courses involving programming?
7. Was this programming experience part of another course (e.g. Math, Business, Science...)?

Work Experience
8. Did you program for work or an internship?
9. If yes, was your work programming experience full time, part time, or less than part time?
10. Roughly how long did you have this work and/or internship programming experience?

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.5 Average Task Completion Times for Parsons→Write

Table 2: Task Completion Times for Parsons→ Write

Parsons Problem Write-Code Problem
Problem (Diff.) n M (SD) in seconds M (SD) in seconds
1 has22 (H)≡ 57 73.51 (72.95) 194.14 (297.57)
2 countInRange (M)≡ 29 137.14 (72.02) 93.31 (72.34)
3 diffMaxMin (E)≡ 59 14.58 (12.53) 76.61 (158.41)
4 dictTotal (M)≡ 30 23.50 (6.50) 49.50 (50.88)
5 dictNames (H)≡ 50 117.32 (119.67) 350.18 (481.65)

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol ≡ indicates that
students who solved the adaptive Parsons problem first used the same solution to solve
the equivalent write-code problem.

1.6 Average Task Completion Times for Write→ Parsons

Table 3: Average Task Completion Times for Write→ Parsons

Parsons Problem Write-Code Problem
Problem (Diff.) n M (SD) in seconds M (SD) in seconds
1 has22 (H)≡ 30 40.47 (18.93) 379.47 (465.11)
2 countInRange (M)≡ 61 110.46 (71.80) 257.20 (383.89)
3 diffMaxMin (E)≡ 30 11.40 (7.75) 215.07 (203.98)
4 dictTotal (M)≡ 62 29.11 (24.79) 97.44 (166.43)
5 dictNames (H)≡ 26 58.69 (25.89) 476.77 (455.31)

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol ≡ indicates that
students who solved the adaptive Parsons problem first used the same solution to solve
the equivalent write-code problem.

Koli 2022, November 17–20, 2022, Koli, Finland

1.7 Codebook

Table 4: Codebook One

Code Freq. Definition Example
Help-seeking 14 Using search engines to get help with a problem or

clicking on the “Help Me” button.
“Okay, I got another error that I don’t
really understand. Let me Google this.”

Misconceptions:
Conceptual knowledge 33 Knowledge of specific facts about a programming

language and rules for its use.
“I don’t know what the last error—list index
out of range—means.”

Strategic knowledge 10 The ability to design, code, and test a program to
solve a novel problem. Knowledge of syntactic facts
related to a particular language. Ability to apply
rules of syntax when programming.

Failure to correctly initialize a variable or
merge blocks of code that should be
applied together.

Syntactic knowledge 17 Mismatched parentheses, brackets, or quotation
marks; irresolvable symbols, missing semicolons, and
using illegal start of expressions.

“Maybe it’s a comma, I don’t know to be
honest.”

Problem-Solving Processes:
Reinterpret problem 28 Questioning details of the problem prompt or

problem requirements.
“Where is it counting range start and end
indices inclusive?”

Analogous problem search 2 Identifying similarities between the current problem
and other problems or solutions.

“I’m going to go with the key strategy that
I learned before.”

Adapt solution 1 Identifying how a current or prior solution can help
solve a current or past problem.

“It looks like this is the syntax I probably
should have used for [the previous
problem].”

Evaluate solution 8 Judging the correctness of code. “No. First, I have to iterate through [the
list].”

Self-Regulation Processes:
Planning 32 Expressing intent to perform some task, or

description of a task participants is doing.
“First, I’m going to define the function.”

Process Monitoring 5 Declaring that a programming sub-goal is complete. “I’m going to slice the list into another
list....There we go.”

Comprehension monitoring 36 Reflection about the understanding of code or
problem prompts.

“There’s no value called index yet. Okay, I
have to go inside of loop.”

Management of cognition 2 Decisions about how mental resources are
allocated—when to leave a problem for later or stop
trying to solve it.

“I just don’t know exactly, so I’m just going
to leave it as it is.”

Reflection on cognition 31 Judgments about mental processes, mistakes,
assumptions, or biases.

“I’m pretty bad at this. I mean, assessing
how much effort I actually put in.”

Self-explanation 6 An account of why a decision was correct. “I figure it’s [block 2b] because there’s an
index.”

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.8 Think-Aloud Observations
1.8.1 Logan. Logan was a 20-year-old who identified as male and chose not to indicate his race. He was a senior theatre performance
major who was specializing in acting and he had 5 months of prior programming experience which he gained from a semester taking a
non-computer science college course. On the university’s math placement test, he scored a 22 out of 25 and his overall GPA was 3.7. Based
on his self-efficacy scale ratings, he was grouped into the low average cluster (see Table 1). Of the six participants, Logan had the lowest
score (2.8) for “persistence, debugging, and problem-solving competences” (Factor 3) on the self-efficacy scale (see IPSES for the complete
scale). Students were asked questions such as, “Given the design of a solution and an incorrect program, can you identify the source of the
error?” Logan solved problem two in three hundred and twelve seconds, approximately three minutes slower than the median (Table 2).
When he began to solve problem two, Logan had trouble understanding the prompt. He highlighted countInRange(1, 2, 4, [1, 2, 1,
1, 1, 1]) with his mouse and said, ”I’m trying to understand this whole countInRange thing. [The function] should return three since
there are three ones between index two and four. Where is it counting range start and end indices inclusive? Are they saying these are the
indices? I don’t really understand why it’s three ones since there are four here. Are you able to explain exactly which ones are the indexes
and which ones are the list that they’re referring to?” Logan tried to reinterpret the problem, experienced a conceptual misconception, and
also engaged in help-seeking; he was confused about the parameter values being passed to the function. He then said, “Oh, start and end
indices inclusive. Okay. Zero, one, two, three, four. Yeah, so it’d be three [ones].” He realized the list index started with zero and said, “Wow,
that’s just over-complicating things—in my opinion.”
Logan moved on to select blocks 6 and 3b correctly. But when choosing between blocks 1a and 1b (the two for loops), he grabbed the wrong
block 1a, for index in range(start, end):, indented it incorrectly, and said, “Let’s try this.” He’d forgotten that to be inclusive of the
end he needed to choose the for loop with the default argument end+1. This was both a conceptual and strategic misconception. Logan
then read over blocks 4a current = numList[start] and block 4b current = numList[index], and said, “What the heck is that?” When
prompted by the researcher to explain what he was thinking, Logan said, “[Block 4b is the right one] because we’re starting at the index and
it’s going to iterate through. Actually, it looks like this is the syntax I probably should have used for [the previous problem], which I might
go fix later.” He engaged in self-explanation when prompted and realized something about the previous write-code problem (has22). To
manage his cognition, he had left problem one (has22) incomplete and moved on to this problem. He planned to adapt the current solution
for this Parsons problem two to write-code problem one (has22). Logan then reread blocks 1b and 4b before he chose between blocks 2a and
2b. Without prompting, he engaged in self-explanation and planning. He said, “I figure it’s [block 2b] because there’s an index. I’m going to
make it easy for myself and assign it to current. And if current == target, I can do count = count + 1. Wait, wait, wait...I can’t indent
anymore.” When Logan realized he could not indent block 7b, he reformatted his solution (see 1). This led to a strategic misconception; at
first, Logan initialized the count variable correctly, but then he placed block 3b into the for loop underneath block 1a.

Figure 1: Logan’s Strategic Misconception of Problem 2.

Next, Logan reread blocks 1a and 1b. He then said, in reference to block 1a, “I’m not even sure about this range. I don’t know if that’s right.”
This confirmed that he did experience a conceptual misconception when choosing between the correct for loop block 1b and the distractor
block 1a. Logan then chose block 5 return and clicked “Check”. He received an error message that said, “Highlighted blocks in your program
are wrong or are in the wrong order. This can be fixed by moving, removing, or replacing highlighted blocks.” Block 1a was highlighted. He
said, “It’s probably this one then”—in reference to block 1b. Then he clicked “Check” again and received the same error for block 1a; this

https://go.wwu.de/qpuoe

Koli 2022, November 17–20, 2022, Koli, Finland

error was a conceptual and strategic misconception in that he did not understand that the order of statements would result in assigning
the count variable to zero each time. His solution would not keep track of how many times the target appeared between the start and end
because count would be reset to zero after looping through the list.
Finally, Logan moved block 1b to the correct position before checking his solution again. This time he experienced a syntactic misconception;
Logan had placed the return count (block 5) in the correct order but did not know how it was supposed to be indented. A popup window
appeared that said, “Click on the Help Me button if you want to make the problem easier.” He clicked the “OK” button but did not click the
“Help Me” button; he chose not to seek help. Block 5 return count was then highlighted to suggest that it be indented. Logan indented
block 5, clicked “Check,” and rated investing “neither low nor high effort” in solving the problem.
Logan engaged in help-seeking as soon as he had trouble interpreting the prompt but asked the researcher instead of searching the web and
declined help from the system toward the end; he also engaged in trial-and-error at the start without much planning or comprehension
monitoring. This led Logan to experience several misconceptions; he was misled by the distractor block. This block was meant to teach
students that the loop must change if you want the end of the range to be inclusive. Prior research confirms that novice students who
struggle with computer programming go to tutors instead of trying to understand problems on their own by searching the web as more
advanced students do [?]. And, furthermore, students with significantly low self-efficacy have misconceptions about computer programming
functions [?]. Students like Logan may benefit from guidance in the form of subgoals to help them plan better and from an explanation of
why distractor blocks are incorrect.
When asked about his preferences for adaptive Parsons Problems vs. write-code problems? Logan said, “I prefer adaptive Parsons problems.
They give you what you need syntactically....but when you get to writing portions, it’s that much harder if you’re constantly given these
jumbled up problems....I wish there was a way that not only did you have to [drag-and-drop]...but that you also had to type it. I think the
energy to type it as you put it into the box may help in the long run for [write code problems]. It’s like a transition to the [write-code
problems].”
When asked about the adaptation process? Logan said, “Yeah, I thought [the help-seeking features] were helpful...sometimes it’s annoying....I’m
not a huge fan of combining blocks...I would love to see the contrast....I wish there was a load history for [adaptive Parsons problems] too.”

Koli 2022, November 17–20, 2022, Koli, Finland Haynes-Magyar and Ericson

1.8.2 Radhamani. Radhamani was a 19-year-old Asian who identified as female. She was a junior business administration major who had
three months of prior programming experience in non-computer science college courses. She scored a 25 on the university’s math placement
test; her GPA was 3.8. Like Logan, Radhamani was sorted into the low average cluster based on her self-reported self-efficacy scores; her
score was 3.2 for “persistence, debugging, and problem-solving competences”. It took her two hundred seconds to solve problem two, one
minute and fifteen seconds slower than the median (Table 2).
Radhamani engaged in planning right after reading the prompt. She said, “First, I’m going to define the function.” Then she selected blocks
6 and engaged in self-explanation and comprehension monitoring. Radhamani said, “This [block 6] is the only block with the definition,
and I see the first thing you feed in is the target, then the start index, and the end index, and then the list itself.” Then, she initialized the
count variable—block 3b—and engaged in more planning and comprehension monitoring which prevented her from experiencing a strategic
misconception but not a conceptual misconception. She said, “I’m just looking through the options. Okay, so I want to set current to equal
the item in the list [block 4b]. Oh wait. There’s no value called index yet. Okay, that [block 4b] would have to go inside a loop, so for index in
range start end...I’m debating between these two options [blocks 1a and 1b] right now. I think it’s start end, so this is saying, for any index
in this range, I think the end is inclusive but if that’s wrong, I’ll switch it out.” Radhamani mistakenly selected block 1a just as Logan did.
She understood that the end must be inclusive, but did not understand the range method ends with the end minus one index (i.e., it is not
inclusive).
Finally, Radhamani engaged in some more planning and selected block 4b, then block 2a—which she initially indented incorrectly but caught
it on her own—block 7b, and block 5. She then checked her solution, received an error and replaced block 1a with the correct for loop block
1b. When prompted to rate how much mental effort she invested in solving the problem, she reflected on her cognition and said, “This took
me a lot less effort than that first [problem] just cause I didn’t get stuck on something.” She rated investing “low mental effort” in solving it.
Radhamani engaged in planning, comprehension monitoring, and self-explanation from the start. These processes helped her avoid some
pitfalls. She didn’t get as stuck although she was still distracted by the same for loop [block 1a] as Logan. Prior research on self-regulated
learning in programming shows there is a significant positive correlation between students’ use of metacognitive and resource management
strategies and programming performance [?]. The more students plan, the better they do. Furthermore, researchers posit there is a need for
“consistent, disciplined self-regulation during problem-solving” such as asking students to self-report cognitive load [? , p. 90].
When asked about his preferences for adaptive Parsons Problems vs. write-code problems? Radhamani said, “I think the drag and drop ones
(Parsons problems) are easier. It’s more helpful as a starting point. It’s helps with not having to remember how to actually define the stuff,
but I think actually writing it out helps me learn more because it forces me to Google it and then I actually learn the syntax myself. I prefer
typing it out.”
She valued the solution to Parsons problem two and used it to solve problem one. Radhamani said, “This [problem two’s for num in
range(len(nums) - 1):] kind of taught me that this value is excluded and this one is included. And that help me do what I just did here
with problem one (has22)....excluding the negative one.
When asked about the adaptation process? Radhamani said, “I guess the distractors are more to check your understanding, but first you have
to actually understand it...so removing those blocks is helpful....If I’m really struggling, I might choose to have that distractors removed, but
if I feel like I’m on the verge of solving it, I might prefer to keep them in there and maybe just get a more general hint.”

Koli 2022, November 17–20, 2022, Koli, Finland

1.8.3 Izaan. Izaan was a 19-year-old Asian sophomore who identified as male. He hadn’t declared his major yet. Izaan had one year of prior
programming experience that he gained through two semesters of college courses in computer science. He scored an 18 on the university’s
math placement test and his GPA was 4.0. Izaan had the highest self-reported self-efficacy score (4.4) for belief in ones “persistence, debugging,
and problem-solving competences” (Factor 3). His other scores were: 5.833 (Factor 1), 6 (Factor 2), and 4.833 (Factor 4). This put Izaan in the
average high cluster. He completed the problem in three minutes and forty seconds, one minute and thirty-five seconds slower than the
median (see Table ??).
When Izaan began to solve problem two, he started monitoring his comprehension immediately. He said, “The first parameter is the number
that’s the target value. The second one is the first index to look at and four is the last index.” Then he engaged in planning and self-explanation.
Izaan said, “First, what I’m going to do is define [the function] and there’s only one [block] to define it.” He correctly chose block 6. Next, he
engaged in reinterpreting the problem and comprehension monitoring while choosing between blocks 3a and 3b; he questioned, “so you
probably have to initialize count to zero?...returns a count of the number of times that the target value appears. Let’s try initializing that
first”; he chose block 3b correctly.
Izaan then chose to assign the variable current = numList [start]—the distractor block 4a. He caught this conceptual and strategic
misconception because he stopped to evaluate his solution while planning his next move. He said, “Oh shoot. No. First, I have to iterate
through [the list].” He removed block 4a, and unlike Logan and Radhamani, Izaan chose the correct for loop (block 1b) while engaging in
self-explanation. He said, “For index in range from start to end plus one...end plus one, so you have to add one for the index.” Yet, Izaan
still chose block 4a next, which showed he was still experiencing a conceptual misconception. This block incorrectly passed the start index
parameter from the range method to numList. Izaan continued to engage in planning and comprehension monitoring and caught this
conceptual misconception. He said, “Current is equal to numList at start...if current == target (block 2a). if index == target (block
2b). Current is equal to numList...For index in range...Oh shoot so that should be current == numList[index].”
He chose block 2a and indented it correctly. Then he engaged in more planning and experienced a misconception about how the interface
worked regarding distractor blocks. Izaan said “And then if the current is equal to target [block 2a], indent, then we’re going to do count.
count++ (block 7a) or count = count + 1 (block 7b), should be the same thing—I’m just more comfortable with count = count + 1. And
then at the end, we’re going to want to return count [block 5], which would go outside of [the loop].” He did not realize that the ‘or’
connecting blocks 7a and 7b meant that one of them was a distractor block; he thought they were both correct. Finally, Izaan rated investing
“neither low nor high mental effort” in solving the problem when reflecting on cognition.
When asked about his preferences for adaptive Parsons Problems vs. write-code problems? Izaan said, “Obviously, from a lazy point of view,
I always prefer [adaptive Parsons problems], but in terms of when I’m actually trying to learn a concept, I found that those don’t actually
help you very much, because it’s like a process of elimination at the end of the day and the ones where you actually have to write the code
[are] a lot more challenging and it makes you think a lot harder. Usually, that’s the way I try to...If I’m trying to learn something, I’ll usually
do those problems.”
When asked about the adaptation process? Izaan said, “Usually, it takes a couple blocks out if you have the wrong blocks inside of it or it’ll
combine blocks, which is really helpful....I think if there weren’t distractors in the mix-up code problems they wouldn’t be very helpful at all
because it’s more a test of how many extra things you can put [in order].”
Radhamani and Logan both completed version A of the problem set for extra credit after their think-aloud observation; Izaan didn’t.. In that
version, problem two (countInRange) was presented to them as a write-code problem. They both solved it using a different solution than the
Parsons problem solution (see Figure 2). Each of them had trouble understanding which of the two for loop blocks was inclusive. This could
explain why the students who wrote the code first were more efficient at solving the Parsons problem than the students who solved the
Parsons problem first. Distractors can slow the problem-solving process [?].

Figure 2: Logan’s (left) and Radhamani’s (right) Alternative Solutions to Problem 2.

	1 Supplemental Material
	1.1 Problem Set with Instructions and Solutions
	1.2 Introductory Programming Self-Efficacy Scale (IPSES)
	1.3 Paas Scale
	1.4 Prior Programming Experience Survey
	1.5 Average Task Completion Times for Parsons Write
	1.6 Average Task Completion Times for Write Parsons
	1.7 Codebook
	1.8 Think-Aloud Observations

