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A. DYNAMIC PROGRAMMING FOR EFFICIENT CREDIBILITY COMPUTATION

In this section, we will describe how we compute the credibility efficiently by
dynamic programming. Specifically, Prob(|Ci(s)| = j | K min

ad ) can be calculated
by a dynamic programming approach. Before describing how to make use of a
dynamic programming approach, we define the following events. Let Fi be the
event that 0 ≤ |Ci(s)| ≤ �ni

l �. Let Gi be the event that �ni
l � + 1 ≤ |Ci(s)| ≤ ni.

Let Hi be the event that 0 ≤ |Ci(s)| ≤ ni.
We illustrate the events in Figure 12. We can see that Fi ∪ Gi = Hi.
The aim is to evaluate Prob(|Ci(s)| = j | K min

ad ).

Prob(|Ci(s)| = j | K min
ad )

= Prob(|Ci(s)| = j | at least one Ck among C1, C2, . . . , Cp violates l -diversity)

Since the event that at least one Ck among C1, C2, . . . , Cp violates l -diversity is
equal to the event that at least one Gk occurs among G1, G2, . . . , G p, we have

Prob(|Ci(s)| = j | K min
ad )

= Prob(|Ci(s)| = j | at least one Gk occurs among G1, G2, . . . , G p)

= total no. of cases that |Ci(s)| = j and at least one Gk occurs among G1, . . . , G p

total no. of cases that at least one Gk occurs among G1, G2, . . . , G p
.

Let A be the numerator (i.e., total number of cases that |Ci(s)| = j and at
least one Gk occurs among G1, . . . , G p). Let B be the denominator (i.e., total
number of cases that at least one Gk occurs among G1, G2, . . . , G p).

In the following, we consider the number of cases in the records in
C1, C2, . . . , Cp only. Let there be x sensitive values in C1, C2, . . . , Cp. Suppose
that from dynamic programming, the total number of cases in the records in
C1, C2, . . . , Cp is equal to Q . We can easily obtain the total number of cases in
the records in all classes (i.e., C1, C2, . . . , Cp, Cp+1, . . . , Cu) by multiplying Q by
CN

ns−x , where N is the total number of records in Cp+1, Cp+2, . . . , Cu and ns is
the total number of sensitive values in the total dataset.
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Fig. 12. Illustration of some events.

Fig. 13. Illustration of n([a, b], x), m([a, b], x), and u([a, b], x).

For dynamic programming, we make use of three variables for the computa-
tion of A and B.

(1) n([a, b], x) is the number of cases where at least one Gk occurs among Ga,
Ga+1, . . . , Gb when there are x sensitive values in Ca, Ca+1, . . . , Cb, for
a, b = 1, 2, . . . , p and x = 1, 2, . . . , ns.

(2) m([a, b], x) is the number of cases where Ha, Ha+1, . . . . and Hb occur when
there are x sensitive values in Ca, Ca+1, . . . , Cb, for a, b = 1, 2, . . . , p and
x = 1, 2, . . . , ns.

(3) u([a, b], x) is the number of cases where Fa, Fa+1, . . . and Fb occur when
there are x sensitive values in Ca, Ca+1, . . . , Cb, for a, b = 1, 2, . . . , p and
x = 1, 2, . . . , ns.

Consider m([a, b], x). Among Ca, Ca+1, . . . , Cb, we divide the classes into two
parts, {Ca} and {Ca+1, . . . , Cb}. See Figure 13. Suppose we allocate r sensitive
values to Ca and x − r sensitive values to Ca+1, . . . , Cb. The number of cases
where there are r sensitive values in class Ca of size na is equal to Cna

r . The
number of cases where Ga+1, . . . , Gb occur when the number of sensitive values
allocated to them is equal to x − r is equal to m([a + 1, b], x − r). Thus, for a
given r, the total number of cases is equal to Cna

r × m([a + 1, b], x − r).

m([a, b], x) =
na∑

r=0

Cna
r × m([a + 1, b], x − r)

We define the base cases of m([a, b], x) as follows. The base case happens when
a = b. It is impossible that the number of sensitive values allocated to Ca is
greater than the class size of Ca or smaller than 0. Thus the term should be
set to 0 in both cases. If the number of sensitive values allocated to Ca ranges
from 0 to na, the term is the number of possible combinations where there are
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Fig. 14. Illustration of A(x).

x sensitive values in class Ca of size na (i.e., Cna
x ).

m([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x > na

0 if x < 0
Cna

x if 0 ≤ x ≤ na

The term u([a, b], x) is the same as m([a, b], x) except that the upper boundary of
term Fi is equal to �na

l �, instead of na. Similarly, we have the following formula.

u([a, b], x) =
� na

l �∑
r=0

Cna
r × u([a + 1, b], x − r)

u([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x ≥ �na
l � + 1

0 if x < 0
Cna

x if 0 ≤ x ≤ �na
l �

Next consider n([a, b], x). Let r be the number of tuples with s in Ca. We can also
derive n([a, b], x) as follows similarly by considering two cases: (1) �na

l � + 1 ≤
r ≤ na and (2) 0 ≤ r ≤ �na

l �.

n([a, b], x) =
na∑

r=� na
l �+1

Cna
r × m([a + 1, b], x − r) +

� na
l �∑

r=0

Cna
r × n([a + 1, b], x − r)

The base cases of n([a, b], x) can also be easily derived as follows.

n([a, a], x) =

⎧⎪⎨
⎪⎩

0 if x > na

0 if 0 ≤ x ≤ �na
l �

Cna
x if �na

l � + 1 ≤ x ≤ na

Now, consider A. Recall that A is the total number of cases that; (1) at least
one Gk occurs among G1, G2, . . . , G p and (2) there are j sensitive values in Ci.

Let A(x) be the total number of aforesaid cases provided that there are x
sensitive values in C1, C2, . . . , Cp.

We consider the number of cases involving all classes (i.e., C1, . . . , Cp,
Cp+1, . . . , Cu). Suppose we allocate x sensitive values in C1, C2, . . . , Cp and
ns − x sensitive values in Cp+1, Cp+2, . . . , Cu. Recall that Ci contains j sen-
sitive values. Within C1, C2, . . . , Cp, we further allocate: (1) r sensitive values
to C1, C2, . . . , Ci−1, (2) j sensitive values to Ci, and (3) x −r − j sensitive values
to Ci+1, Ci+2, . . . , Cp. See Figure 14.
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There are two cases.
Case 1. �ni

l � + 1 ≤ j ≤ ni, that is, Gi occurs. This means that the number
of sensitive values in a class Ck (|Ck(s)|) of C1, C2, . . . , Ci−1 or Ci+1, Ci+2, . . . , Cp
ranges from 0 to nk .

The number of cases that |Ck(s)| for a class Ck of C1, C2, . . . , Ci−1 ranges from
0 to nk is equal to m([1, i −1], r). Similarly, the number of cases that |Ck(s)| for a
class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk is equal to m([i+1, p], x−r− j ).
Thus, if we consider all possible values of r from 0 to x − j , the total number of
these cases is equal to

∑x− j
r=0 m([1, i − 1], r) × m([i + 1, p], x − r − j ).

Note that the number of cases that there are j sensitive values in Ci of size
ni is equal to Cni

j . Also, the number of cases that there are ns − x sensitive
values in N tuples in classes Cp+1, Cp+2, . . . , Cu is equal to CN

ns−x . Thus, A(x) =
CN

ns−x × Cni
j × ∑x− j

r=0 m([1, i − 1], r) × m([i + 1, p], x − r − j ) in this case.
Case 2. 0 ≤ j ≤ �ni

l �, that is, Gi does not occur. There are the following
subcases.

Case 2(a). At least one Gk occurs among G1, G2, . . . , Gi−1, In this case, the
number of sensitive values in a class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk .

The number of cases that at least one Gk occurs among G1, G2, . . . , Gi−1 is
equal to n([1, i −1], r). The number of cases that the number of sensitive values
in a class Ck of Ci+1, Ci+2, . . . , Cp ranges from 0 to nk is equal to m([i +1, p], x −
r − j ). Thus, the total number of these cases is equal to n([1, i − 1], r) × m([i +
1, p], x − r − j ).

Case 2(b). All Gk among G1, G2, . . . , Gi−1 does not occur. In other words, all
F1, F2, . . . , Fi−1 occur. Besides, we should also know that there is at least one
Gk occuring among Gi+1, Gi+2, . . . , G p.

The number of cases that all F1, F2, . . . , Fi−1 occur is equal to u([1, i − 1], r).
The number of cases that at least one Gk occurs among Gi+1, Gi+2, . . . , G p is
equal to n([i + 1, p], x − r − j )]. Thus, the total number of these cases is equal
to u([1, i − 1], r) × n([i + 1, p], x − r − j ).

By combining Case 2(a) and Case 2(b) and considering all possible values r
from 0 to x − j , we obtain the total number of cases equal to

∑x− j
r=0 [n([1, i −

1], r) × m([i + 1, p], x − r − j ) + u([1, i − 1], r) × n([i + 1, p], x − r − j ).
Similarly, the number of cases that there are j sensitive values in Ci of size ni

is equal to Cni
j . Also, the number of cases that there are ns−x sensitive values in

N tuples in classes Cp+1, Cp+2, . . . , Cu is equal to CN
ns−x . Thus, the total number

of cases in Case (2) is equal to CN
nx−x ×Cni

j ×∑x− j
r=0 [n([1, i−1], r)×m([i+1, p], x −

r − j ) + u([1, i − 1], r) × n([i + 1, p], x − r − j )].
We obtain A(x) as follows.
A(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CN
ns−x × Cni

j × ∑x− j
r=0 m([1, i − 1], r)

×m([i + 1, p], x − r − j ) if �ni
l � + 1 ≤ j ≤ ni

CN
ns−x × Cni

j × ∑x− j
r=0 [n([1, i − 1], r)

× m([i + 1, p], x − r − j ) if 0 ≤ j ≤ �ni
l �

+ u([1, i − 1], r) × n([i + 1, p], x − r − j )]
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By considering all possible values of x from �n1
l � + 1 to ns, A is equal to the

following. (Note that it is impossible that x < �n1
l � + 1 because it means that

there is no need for generalization.)

A =
ns∑

x=� n1
l �+1

A(x)

Consider B where B is the total number of cases where at least one Gk occurs
among G1, G2, . . . , G p. By considering all possible values x from �n1

l � + 1 to ns,
we obtain the following formula.

B =
ns∑

x=� n1
l �

n([1, p], x) × CN
ns−x

Algorithm. Algorithm 2 shows the computation of the credibility by dy-
namic programming. It involves two phases. In phase 1, we compute the
variables n([a, b], x), m([a, b], x) and u([a, b], x). In phase 2, we compute
Credibility(o, s, K min

ad ) where o ∈ Ci for i = 1, 2, . . . , p by using the variables
used in phase 1, namely n([a, b], x), m([a, b], x), and u([a, b], x).

Let |T | be the number of tuples in T . Algorithm 2 runs in polynomial time in
|T |, p, ns, and l . It is easy to verify that phase 1 takes O(|T | + p2ns). Consider
phase 2. Computing one instance of A and computing one instance of B take
O(n2

s ) and O(ns), respectively. Since there are O(pnp) iterations, phase 2 takes
O(pnpn2

s ). Since np = O(nsl ), the complexity of phase 2 becomes O(pn3
s l ). Thus,

the running time of Algorithm 2 is O(|T | + p2ns + pn3
s l ).

THEOREM 6. Algorithm 2 runs in O(|T | + p2ns + pn3
s l ) time.

The previous theorem means that computing the credibility of an individual
only takes polynomial time in |T |, p, nS , and l . In other words, this kind of
attack is highly feasible.

B. PROOF OF LEMMAS/THEOREMS

PROOF OF THEOREM 1. We will prove that the credibility as computed by the
formulae for credibility is exactly the ratio of the sensitive tuples to the total
number of tuples in the generalized QID-EC by first considering a class Q in
T ∗ where only two QID values in T e, namely q1 and q2, are generalized to Q .
Then, we relax the proof by considering a class Q where multiple QID values
are generalized to Q .

Consider a QID value Q in T ∗. Suppose q1 and q2 (in T e) are generalized to Q
in T ∗. Let n1 and n2 be the number of tuples with value q1 and q2, respectively.
Let x be the total number of sensitive tuples in Q .

Consider four cases. Case 1: x ≤ n1 and x ≤ n2. Without loss of gener-
ality, we consider Credibility(o, s, K min

ad ) where o has a QID value on q1. We
further consider a number of subcases. Case (a): x = 1. We have the sensitive
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Algorithm. 2 Algorithm for Computing Credibility

1: // Phase 1(a): Initialization
2: obtain ni for all i
3: for a = 1 to p do
4: for x = 0 to ns do
5: initialize n([a, a], x), m([a, a], x) and u([a, a], x)
6: end for
7: end for
8: // Phase 1(b): Recursion
9: // Compute m([a, b], x) and u([a, b], x)

10: for x = 0 to ns do
11: for a = p downto 1 do
12: for b = a + 1 to p do
13: m([a, b], x) ← 0
14: for r = 0 to na do
15: if x − r ≥ 0 then
16: m([a, b], x) ← m([a, b], x) + Cna

r × m([a + 1, b], x − r)
17: end if
18: end for
19: u([a, b], x) ← 0
20: for r = 0 to 
na/l� do
21: if x − r ≥ 0 then
22: u([a, b], x) ← u([a, b], x) + Cna

r × u([a + 1, b], x − r)
23: end if
24: end for
25: end for
26: end for
27: end for
28: // Compute n([a, b], x)
29: for x = 0 to ns do
30: for a = p downto 1 do
31: for b = a + 1 to p do
32: n([a, b], x) ← 0
33: for r = �na/l� + 1 to na do
34: if x − r ≥ 0 then
35: n([a, b], x) ← n([a, b], x) + Cna

r × m([a + 1, b], x − r)
36: end if
37: end for
38: for r = 0 to �na/l� do
39: if x − r ≥ 0 then
40: n([a, b], x) ← n([a, b], x) + Cna

r × n([a + 1, b], x − r)
41: end if
42: end for
43: end for
44: end for
45: end for
46: // Phase 2: Computing credibility Credibility(o, s, K min

ad )
47: Let credi be Credibility(o, s, K min

ad ) where o ∈ Ci
48: for i = 1 to p do
49: credi ← 0
50: for j = 1 to ni do
51 calculate A and B according to n([a, b], x), m([a, b], x) and u([a, b], x)
52: credi ← credi + A

B × j
ni

53: end for
54: end for
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Table XXIII. Possible Combinations of Number of
Sensitive Tuples when x = 1

Number of sensitive tuples
q1 q2

Total number
of cases

(a) 0 1 Cn1
0 × Cn2

1
(b) 1 0 Cn1

1 × Cn2
0

Table XXIV. Possible Combinations of Number of
Sensitive Tuples when x = 2

Number of sensitive tuples
q1 q2

Total number
of cases

(a) 0 2 Cn1
0 × Cn2

2
(b) 1 1 Cn1

1 × Cn2
1

(c) 2 0 Cn1
2 × Cn2

0

tuple distribution table as shown in Table XXIII. It is easy to see that

Credibility(o, s, K min
ad ) = total number of cases for Scenario (b)

total number of all possible cases
× 1

n1

= Cn1
1 × Cn2

0

Cn1
0 × Cn2

1 + Cn1
1 × Cn2

0
× 1

n1

= n1

n2 + n1
× 1

n1

= 1
n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

Case (b): x = 2. Similarly, we have the sensitive tuple distribution table as
shown in Table XXIV. We have

Credibility(o, s, K min
ad ) = total number of cases for Scenario (b)

total number of all possible cases
× 1

n1

+ total number of cases for Scenario (c)
total number of all possible cases

× 2
n1

= Cn1
1 × Cn2

1

Cn1
0 × Cn2

2 + Cn1
1 × Cn2

1 + Cn1
2 × Cn2

0
× 1

n1

+ Cn1
2 × Cn2

0

Cn1
0 × Cn2

2 + Cn1
1 × Cn2

1 + Cn1
2 × Cn2

0
× 2

n1

= n1n2
n2(n2−1)

2 + n1n2 + n1(n1−1)
2

× 1
n1

+
n1(n1−1)

2
n2(n2−1)

2 + n1n2 + n1(n1−1)
2

× 2
n1

= 2(n1 + n2 − 1)
n2

1 + n2
2 + 2n1n2 − n1 − n2
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= 2(n1 + n2 − 1)
(n1 + n2)(n1 + n2 − 1)

= 2
n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

Case (c): x > 2. Inductively, we can also derive that

Credibility(o, s, K min
ad ) = x

n1 + n2

which is equal to the ratio of the sensitive tuples to the total number of tuples
in the generalized QID-EC Q .

We consider the other three cases. Case 2: x ≤ n1 and x > n2, Case 3: x > n1
and x ≤ n2, and Case 4: x > n1 and x > n2. With similar arguments, we also
conclude that

Credibility(o, s, K min
ad ) = x

n1 + n2
.

Now, we consider the class Q where multiple QID values are generalized to Q .
Since the idea is similar and the key idea is no exclusion of any scenarios in
the sensitive tuple distribution table, we obtain that the credibility is exactly
the ratio of the sensitive tuples to the total number of tuples in the generalized
QID-EC.

PROOF OF LEMMA 2. To prove this lemma, we give an example where 2 QID’s
q1 and q2 are generalized to Q . There are 4 tuples of q1 and 2 tuples of q2.
In total, there are 3 occurrences of the sensitive value set s in the 6 tuples. If
2-diversity is the goal, then we can exclude the case of 2 sensitive q1 tuple and
1 sensitive q2 tuple. After the exclusion, the credibility of any linkage between
any individual to s still does not exceed 0.5.

PROOF OF THEOREM 2. We shall transform the problem of Exact Cover by 3-
Sets (X3C) [Holyer 1981] to the m-confidentiality anonymization problem. X3C
is defined by: Given a set X with |X | = 3q and a collection C of 3-element
subsets of X . Does C contain an exact cover for X , namely a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′?

Given an instance of X3C, we transform it to an instance of optimal m-
confidentiality under global recoding as follows. Create a table T with two
attributes Q and S, where Q is a QID attribute and S is a sensitive attribute
that may contain sensitive values. For S, there is only one sensitive value sv
and one nonsensitive value sn. We set weight(Q) = 1. For each element x in X ,
create a tuple with Q = x and S = sv. Hence, each value of x appears in exactly
one tuple. Let the elements in C be c1, . . . , cN . For each element ci = (x, y , z) in
C, create a taxonomy Ti. Ti contains ground elements of x, y , z, ni1, ni2, and ni3,
which are children of a root node ri. Create 3 tuples with Q = nij and S = sn,
for j = 1, 2, 3.

The remaining of the proof is to show: C contains an exact cover for X
if and only if there is a solution T ∗ for the 2-confidentiality problem with
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Dist(T, T ∗) = e where e = 2q
q+N . Firstly, we prove that if C contains an exact

cover for X , then there is a solution T ∗ for the 2-confidentiality problem with
Dist(T, T ∗) = 2q

q+N . Let C′ be the exact cover for X . We know that every ele-
ment of X occurs in exactly one member of C′. Then, for each ci = (x, y , z) ∈ C′,
the correspondence taxonomy Ti is used for the generalization of x, y , and z
together with ni1, ni2, and ni3 because with global recoding all occurrences of
an attribute value are recoded to the same value. Thus, for each generalization
from Ti, the information loss of these six tuples in T ∗ are 6. Since |C′| = q,
the total information loss among all tuples (i.e.,

∑
t∗∈T ∗ IL(t∗)) is equal to 6q.

Since Dist(T, T ∗) =
∑

t∗∈T∗ IL(t∗)
|T ∗| and the total number of tuples in T ∗ is equal to

3q +3N , we have Dist(T, T ∗) = 6q
3q+3N = 2q

q+N . Besides, note that the adversary
cannot launch a minimality attack since each QID value appears only in one
tuple in the set of tuples. The adversary cannot exclude any possible combina-
tion of the table of sensitive tuple distribution. From Theorem 1, minimality
attack is not possible. Besides, the frequency of each QID-EC with sv in T ∗ is
at most 0.5. Thus, there is a solution T ∗ for the 2-confidentiality problem with
Dist(T, T ∗) = 2q

q+N .
Now, we prove that if there is a solution T ∗ for the 2-confidentiality problem

with Dist(T, T ∗) = 2q
q+N , then C contains an exact cover for X . Similarly, since

each QID value appears only in one tuple, it is impossible for the adversary to
exclude any possible combination of the table of sensitive tuple distribution.
From Theorem 1, minimality attack is not possible. Since the frequency of each
QID-EC with sv in T ∗ is at most 0.5 and Dist(T, T ∗) = 2q

q+N , T ∗ is a result of
the generalizations by using exactly q taxonomies Ti containing disjoint ground
values. Otherwise, either the frequency of some QID-EC’s in T ∗ is greater than
0.5 or Dist(T, T ∗) >

2q
q+N , that is, each tuple with value s is generalized by ex-

actly one generalization taxonomy. In other words, each element in X occurs in
exactly one member of the set C′ ⊆ C such that |C′| = q and each c ∈ C′ corre-
sponds to Ti used for generalization. Thus, C contains an exact cover C′ for X .

Besides, it is easy to see that the reduction runs in polynomial time. From
Theorem 6 (in Section 4), we know that we can compute the credibility of
each individual in polynomial time. Thus, we can verify problem optimal m-
confidentiality in polynomial time. So, problem optimal m-confidentiality under
global recoding is NP-complete.

PROOF OF THEOREM 3. We shall transform the problem of Partition into 4-
Cliques [Holyer 1981] to the m-confidentiality anonymization problem. Par-
tition into 4-Cliques is defined by: Given a simple graph G = (V , E), with
|E| = 6k for some integer k, can the edges of G be partitioned into k edge-
disjoint 4-cliques?

Given an instance of Edge Partition into 4-Cliques. Set m = 6. For each ver-
tex v ∈ V , construct a QID attribute. For each edge e ∈ E, where e = (v1, v2),
create a record rv1,v2 in which the QID attribute values v1 and v2 are equal
to 1 and all other QID attribute values equal to 0. Besides, we associate each
record with a sensitive attribute S. We generate sensitive attribute values of all
records as follows. If two edges share a common vertex, the sensitive attribute
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values of their corresponding records are different. The aforesaid principle can
be accomplished with the following steps. Firstly, the sensitive values of all
records are set to 0. Then, we randomly find a record r where the correspond-
ing edge is e. Let A be the set of all records where the corresponding vertices
have a common vertex with e. Then, we can obtain a set A′ containing the sen-
sitive values of all records in A. Find the smallest positive value which does
not occur in A′. Assign this value as the sensitive attribute value of record r.
Repeat the previous steps for each of the remaining records with sensitive value
= 0. It is noted that the preceding process resembles a process of edge coloring.
However, since the aforesaid process does not require that the edges are col-
ored with a limited (or optimal) number of colors, it can be done in polynomial
time.

We define the cost in the 6-confidentiality problem to be the number of sup-
pressions applied in the dataset. We show that this cost is at most 24k if and
only if E can be partitioned into a collection of k edge-disjoint 4-cliques.

Suppose E can be partitioned into a collection of k disjoint 4-cliques. Con-
sider a 4-clique Q with vertices v1, v2, v3, and v4. If we suppress the attributes
v1, v2, v3, and v4 in the 6 records corresponding to the edges in Q , then a cluster
of these 6 records are formed where each modified record has four *’s. Note that
the the frequency of each sensitive value in this cluster is at most 1/6. Simi-
lar to Theorem 2, the adversary cannot launch a minimality attack since each
QID value appears only in one tuple in the cluster. Thus, the dataset satisfies
6-confidentiality. The cost of the 6-confidentiality is equal to 6 × 4 × k = 24k.

Suppose the cost for the 6-confidentiality problem is at most 24k. As G is
a simple graph, any six records should have at least four different attributes.
So each record should have at least four *’s in the solution of 6-confidentiality.
Then, the cost of 6-confidentiality is at least 6 × 4 × k = 24k. Combining with
the proposition that the cost is at most 24k, we find that the cost is exactly
equal to 24k and thus each record should have exactly four *’s in the solution.
Each cluster should have exactly 6 records (with different sensitive values).
Suppose the six modified records contain four *’s in attributes v1, v2, v3, and v4,
the records contain 0’s in all other nonsensitive attributes. This corresponds to
a 4-clique with vertices v1, v2, v3 and v4. Thus, we conclude that the solution
corresponds to a partition into a collection of k edge-disjoint 4-cliques.

Similar to Theorem 2, it is easy to see that the reduction runs in polyno-
mial time. From Theorem 6 (in Section 4), we know that we can compute the
credibility of each individual in polynomial time. Thus, we can verify prob-
lem optimal m-confidentiality in polynomial time. We conclude that optimal
m-confidentiality under local recoding is NP-complete.

PROOF OF THEOREM 4. In order to prove that T ∗ generated by algorithm MASK
is m-confidential, we analyze how the adversary performs an attack, given
that the adversary knowledge contains not only the knowledge described in
Assumption 3 but also the mechanism of algorithm MASK. In the following, we
show that the credibility computed is at most 1/m. Let the privacy require-
ment considered be R (i.e., m-confidentiality). Let the privacy requirement
for k-anonymity be Rk . From T ∗, the adversary knows that, in T ∗, for each
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QID-EC Qi, the size of Qi is at least k and the frequency of each sensitive
value (in fraction) is at most 1/m. We consider two cases.

Case 1. The published table T ∗ is equal to the minimal k-anonymous table T k

generated in step 1 of algorithm MASK; that is, |V| is equal to ∅. We know that
algorithm MASK generates T ∗ such that the information loss of T ∗ is minimal
with respect to the QID attributes. Note that T ∗ is a result of generalization for
privacy requirement Rk (instead of privacy requirement R). However, at the
same time, T ∗ also satisfies m-diversity.

We prove that T ∗ also satisfies R in the following. Similar to Section 4, we
can also compute the credibility by constructing the sensitive tuple distribution
table with condition (1) and condition (2) (but not condition (3)) of Definition 10
accordingly in this case. It is noted that we do not need to consider condition (3)
since the generalization step for generating T ∗ is caused by “unequal” QID val-
ues in the original table T (without the consideration of the sensitive attribute).
In other words, the generalization is performed for Rk (instead of m-diversity).
Since condition (3) is not considered, there is no exclusion of any combination
of the number of sensitive tuples in the sensitive tuple distribution table in
the adversary’s analysis of this case. (However, the existence of the exclusion
used in Section 4 is due to the fact that the generalization is caused by the
consideration of both QID attributes and the sensitive attribute; that is, the
generalization is performed for m-diversity instead of Rk where condition (3) is
involved during the generation of the sensitive tuple distribution table.)

Since there is no exclusion of any combination in the sensitive tuple dis-
tribution table in this case, by Theorem 1, the credibility as computed by the
formulae for credibility is exactly the ratio of the sensitive tuples to the total
number of tuples in the generalized QID-EC. Besides, in T ∗, for each QID-EC
Qi, the frequency of each sensitive value (in fraction) is at most 1/m. We deduce
that Credibility(o, s, K min

ad ) is at most 1/m for any individual o and any sensitive
value set s. So, T ∗ satisfies R.

Case 2. The published table T ∗ is not equal to T k ; that is, |V| is not equal to
∅. Then, the adversary knows that step 2(a) of algorithm MASK is performed.
We consider two subcases.

Subcase (a). The total number of QID-EC’s which satisfy m-diversity in T k

is smaller than u(= (m−1)×|V |). This case is impossible because T ∗ is already
published.

Subcase (b). The total number of QID-EC’s which satisfy m-diversity in T k is
equal to or greater than u. The analysis of the credibility in this case is different
from Case 1. This analysis involves two major steps. The first step is that the
adversary deduces that some of the nonsensitive values in T ∗ originally come
from sensitive values in T . This is because some sensitive values are distorted
or modified to become nonsensitive values in step 4 of algorithm MASK. The
second step is similar to Section 4 and Case (1). Specifically, according to the
sensitive values deduced in the first step, the adversary can compute the cred-
ibility by the sensitive tuple distribution table with condition (1) and condition
(2) but not condition (3) of Definition 10 accordingly. Again, it is noted that we
do not need to consider condition (3) since the generalization step for generating
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T ∗ is caused by “unequal” QID values in the original table T (without the con-
sideration of the sensitive attribute).

In the following, we will show that it is difficult for the adversary to achieve
the first step. Then, with this result, we assume that we only need to con-
sider the sensitive values in T ∗ to calculate the credibility in the second
step.

For the first step, it is infeasible for the adversary to figure out what are the
original sensitive values because the adversary does not have the knowledge
about: (1) the size of V, (2) the original frequency of the sensitive tuples in each
QID-EC ∈ V, and (3) which QID-EC’s in T ∗ come from V. It may be argued that
the adversary can first consider all possible choices of the aforesaid knowledge,
compute the credibility for each choice with the second step, and finally com-
pute the final credibility with all choices. This approach does not work because
without sufficient knowledge, we do not know the probability that each choice
occurs. Assuming a random world assumption (i.e., all such probabilities have
the same values) is also not reasonable. This is because, for example, the ad-
versary cannot tell whether the probability that |V| = 1 occurs is equal to the
probability that |V| = 2 occurs or not. With this reasoning, the deduction of the
original sensitive values is impossible.

For the second step, we assume that the sensitive values considered come
from T ∗. By similar arguments as Case 1, since there is no exclusion of any com-
bination, the credibility as computed by the formulae for credibility is exactly
the ratio of the sensitive tuples to the total number of tuples in the generalized
QID-EC. Besides, in T ∗, for each QID-EC Qi, the frequency of each sensitive
value (in fraction) is at most 1/m. Credibilityx(o, s, K min

ad ) is at most 1/m for
any individual o and any sensitive value set s. So, T ∗ satisfies R.
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