
Online Appendix to:
Simplify: A Theorem Prover for Program Checking

GREG NELSON AND JAMES B. SAXE

Hewlett-Packard

This short document describes two automatic theorem-prover test suites: the “front-
end test suite” and the “small test suite”. These tests were used to study performance
of the automatic theorem prover Simplify [Detlefs et al. 2005, Sec. 9]. The files
in the test suites are in the input format of the Simplify theorem prover [Detlefs
et al. 2005]. This document aims to describe the syntax and semantics of the test
suite files at a sufficient level of detail to allow readers to translate them into forms
suitable for input to other provers.

The frontend test suite consists of 207 files containing 2331 valid verification
conditions generated by applying the Extended Static Checker for Java (ESC/Java)
[Flanagan et al. 2002] to its own front end.

The small test suite consists of 18 files, each containing a single valid conjecture.
Five of these are verification conditions generated by ESC/Modula-3 [Detlefs et al.
1998] (addh1.sx, cat.sx, fastclose.sx, frd-seek.sx, and simplex.sx). Two are artificial
tests (domino6x4x.sx and domino6x6x.sx) that reduce the well-known problem of
tiling a mutilated checkerboard with l-by-2 dominos into test cases that exercise
case splitting and reasoning about equality. The remaining eleven are verification
conditions taken from the frontend test suite.

This document is about the test suites, not about Simplify. We intentionally
omit descriptions of several features of Simplify’s input language that are not used
in the test suites. For the features of Simplify that we do describe, we generally
ignore nuances that are not relevant for the test suites. When we mention that some
expression is logically equivalent to some other expression, we do not address the
pragmatic impact on Simplify’s efficiency or the efficacy of using one expression
in place of the other.

Each file contains a sequence of S-expressions. Each expression is either a
formula to be proved or a directive that modifies the context in which subsequent
proofs are carried out.

S-Expressions

An S-expression is either leaf symbol or a parenthesized list of S-expressions.
A leaf symbol is an identifier or a literal decimal integer constant (optionally

including a sign).
There are three forms of identifiers. The first form is a sequence of

letters, digits, and underscores, beginning with a letter. The second form is a se-
quence of characters from the following set:

! # $ % & ∗ + − . / : < = > ? @ [] ∧ { } ∼
The third form is a sequence of ordinary characters or escape sequences, surrounded
by vertical bars. An ordinary character is any printing character (including the space

Journal of the ACM, Vol. 52, No. 3, May 2005, pp. 1–4.

2 G. NELSON AND J. B. SAXE

character) except “|” or “\”. We don’t describe the permitted escape sequences here;
none of them occur in the test suites. The vertical bars in the third form of identifier
delimit the identifier, but are not part of it. Thus the identifiers “abc” and “|abc|”
are considered identical.

A semicolon, other than one occurring in an identifier delimited by vertical
bars, begins a comment which continues until the end of the line. Comments are
equivalent to white space.

Formulas

Simplify draws a strict distinction between formulas and terms. The identifiers
TRUE and FALSE are formulas. The formula

(FORALL (id 1 . . . id n) (PATS . . .) F)

is true if the formula F is true for any values of the identifiers id 1 . . . id n. The
subexpression “(PATS . . .)” is an optional clause that is of heuristic significance
only. We omit the description of its internal syntax.

The formula

(EXISTS (id 1 . . . id n) (PATS . . .) F)

is true if the formula F is true for some values of the identifiers id 1 . . . id n. The
subexpression “(PATS . . .)” is an optional clause that is of heuristic significance
only. We omit the description of its internal syntax.

The built-in boolean connectives

AND OR NOT IMPLIES IFF EXPLIES

take formulas as arguments and produce formulas. The formula

(EXPLIES Q P)

is equivalent to (IMPLIES P Q). AND and OR may take any number of arguments.
The built-in relations

EQ NEQ < <= > >= DISTINCT

take terms as arguments and produce formulas. The formula

(DISTINCT t 1 . . . t n)

where the t’s are terms, asserts that the t’s are distinct. Arguments to
arithmetic relations are implicitly integral, regardless of whether the relation holds.
For example, Simplify considers the conjecture (OR (<= × 3) (>= × 4)) to be
valid.

Formulas of the forms

(LBLPOS L F)
(LBLNEG L F)
(LBL L F),

where L is an identifier and F is a formula, are logically equivalent to F.
If F and G are binary quasi-relations (description follows), then the formula

(ORDER F G)

Simplify: A Theorem Prover for Program Checking 3

asserts that F and G are the irreflexive and reflexive versions of some partial order,
respectively. There are no occurences of ORDER in the frontend test suite.

Terms

Integer literals are terms. The built-in functions

+ − ∗ select store

take terms as arguments and produce terms. The functions “select” and “store” are
predefined to satisfy the following axioms:

(FORALL (a i x)
(EQ (select (store a i x) i)

x)

(FORALL (a i j x)
(OR (EQ i j)

(EQ (select (store a i x) j)
(select a j)))).

If an identifier that is not predefined is used as a term, it denotes an arbitrary
value. If an identifier that is not predefined is used as a formula, then it denotes a
unknown Boolean value. If an identifier that is not predefined is usen as a function
symbol in a term, it denotes an uninterpreted function. There is no way for a user to
introduce new relation symbols, but the directives DEFPRED and DEFPREDMAP,
described in the following, offer a similar capability.

Pushing and Popping

The directive

(BG PUSH F 1 . . . F n),

where the F’s are formulas, adds the F’s to the background predicate where they
are implicit assumptions to be used in future proofs.

The directive

(BG POP)

restores the background predicate to its state prior to the matching BG PUSH.

DEFPRED and DEFPREDMAP

Simplify makes a strict distinction between formulas and terms. Because this is
sometimes inconvenient, Simplify allows the directive

(DEFPRED (R x 1 . . . x n)),

where R and the x’s are identifiers which declares R to be a “quasi-relation” that
takes n arguments. This means that R is a function symbol but that a term of the
form

(R t 1 . . . t n)

4 G. NELSON AND J. B. SAXE

is allowed to appear in a position where a formula is expected, in which case, it
will be desugared to

(EQ |@true| (R t 1 · · · t n)).

That is, the constant “|@true|” is used to model the propositional value TRUE in
the term space.

The DEFPRED directive has a second version:

(DEFPRED (R x 1 · · · x n) F),

where F is a formula. In addition to declaring R to be a quasi-relation with n
arguments, this version of the directive adds the assumption

(FORALL (x 1 · · · x n)
(IFF (EQ (R x 1 · · · x n |@true |)

F))

to the background predicate
The directive

(DEFPREDMAP (R x 1 . . . x n) i)

where R, the x’s, and i are identifiers, allows a term of the form

(select (R t 1 . . . t n) ind)

to appear where a formula is expected, in which case, it will be desugared to

(EQ (select (R t 1 . . . t n) ind) |@true|).
The DEFPREDMAP directive has a second version:

(DEFPREDMAP (R x 1 . . . x n) i F),

where F is a formula. This has the additional effect of adding the assumption

(FORALL (x l . . . x n i)
(IFF (EQ (select (R x l . . . x n) i) |@true|)

F))

to the background predicate.
There are no occurrences of the DEFPREDMAP directrive in the

frontend test suite.

REFERENCES

DAVID, L., DETLEFS, D. L., LEINO, K. R. M., NELSON, G., AND SAXE, J. B. 1998. Extended
static checking. Compaq Systems Research Center, Research Rep. 159. Available at http://
gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/abstracts/src-
rr-159.html or http://new-az.hpl.hp.com/techpubs/Compaq-DEC/SRC-RR-159.html.

DETLEFS, D., NELSON, G., AND SAXE, J. B. 2005. Simplify: A theorem prover for program checking.
JACM 52, 3, 000–000.

FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002.
Extended static checking for Java. Conference on Programming Language Design and Implementation.
234–245.

Journal of the ACM, Vol. 52, No. 3, May 2005.

