skip to main content
10.1145/3594806.3594825acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Small Data, Big Challenges: Pitfalls and Strategies for Machine Learning in Fatigue Detection

Published: 10 August 2023 Publication History

Abstract

This research addresses the pitfalls and strategies for machine learning with small data sets in the context of sensor-based fatigue detection. It is shown that many existing studies in this area rely on small data sets and that classification results can vary considerably depending on the evaluation method. Our analysis is based on a study with 46 subjects performing multiple sets of squat exercises in a laboratory setting. Data from ratings of perceived exertion, inertial measurement units, and pose estimation were used to train and compare different classifiers. Our findings suggest that commonly used evaluation methods, such as leave-one-subject-out, should be used with caution and may not lead to generalizable classifiers. Furthermore, challenges related to imbalanced data and oversampling are discussed.

References

[1]
Andrés Aguirre, Maria J. Pinto, Carlos A. Cifuentes, Oscar Perdomo, Camilo A. R. Díaz, and Marcela Múnera. 2021. Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise. Sensors 21, 15 (2021). https://doi.org/10.3390/s21155006
[2]
Wim Ament and Gijsbertus J. Verkerke. 2009. Exercise and Fatigue. Sports Med. 39, 5 (2009), 389–422. https://doi.org/10.2165/00007256-200939050-00005
[3]
D. Anguita, A. Ghio, L. Oneto, X. Parra, and Jorge Luis Reyes-Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition using Smartphones. In Esann.
[4]
Amir Baghdadi, Fadel M. Megahed, Ehsan T. Esfahani, and Lora A. Cavuoto. 2018. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task. Ergonomics 61, 8 (2018), 1116–1129. https://doi.org/10.1080/00140139.2018.1442936 arXiv:https://doi.org/10.1080/00140139.2018.1442936PMID: 29452575.
[5]
Konstantinos Balaskas and Kostas Siozios. 2021. Fatigue Detection Using Deep Long Short-Term Memory Autoencoders. In 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST). 1–4. https://doi.org/10.1109/MOCAST52088.2021.9493378
[6]
Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grundmann. 2020. BlazePose: On-device Real-time Body Pose tracking. CoRR abs/2006.10204 (2020). arXiv:2006.10204https://arxiv.org/abs/2006.10204
[7]
Daniel Berrar. 2019. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology, Shoba Ranganathan, Michael Gribskov, Kenta Nakai, and Christian Schönbach (Eds.). Academic Press, Oxford, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
[8]
A. Bevilacqua, B. Huang, R. Argent, B. Caulfield, and T. Kechadi. 2018. Automatic classification of knee rehabilitation exercises using a single inertial sensor: A case study. In 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 21–24. https://doi.org/10.1109/bsn.2018.8329649
[9]
Gürkan Bilgin, İ. Ethem Hindistan, Y. Gül Özkaya, Etem Köklükaya, Övünç Polat, and Ömer H. Çolak. 2015. Determination of Fatigue Following Maximal Loaded Treadmill Exercise by Using Wavelet Packet Transform Analysis and MLPNN from MMG-EMG Data Combinations. Journal of Medical Systems 39, 10 (Aug. 2015). https://doi.org/10.1007/s10916-015-0304-5
[10]
Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. 2021. Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. CoRR abs/2103.04922 (2021). arXiv:2103.04922https://arxiv.org/abs/2103.04922
[11]
G. A. Borg. 1982. Psychophysical bases of perceived exertion. Medicine and science in sports and exercise 14, 5 (1982), 377–381. https:// .ncbi.nlm.nih.gov/7154893 7154893[pmid].
[12]
Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer. 2011. SMOTE: Synthetic Minority Over-sampling Technique. CoRR abs/1106.1813 (2011). arXiv:1106.1813http://arxiv.org/abs/1106.1813
[13]
Louise Brennan, Antonio Bevilacqua, Tahar Kechadi, and Brian Caulfield. 2020. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems. Journal of Rehabilitation and Assistive Technologies Engineering 7 (Jan. 2020), 205566832091537. https://doi.org/10.1177/2055668320915377
[14]
Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M. Buhmann. 2010. The Balanced Accuracy and Its Posterior Distribution. In 2010 20th International Conference on Pattern Recognition. 3121–3124. https://doi.org/10.1109/ICPR.2010.764
[15]
C. Buckley, M.A. O’Reilly, D. Whelan, A. Vallely Farrell, L. Clark, V. Longo, M.D. Gilchrist, and B. Caulfield. 2017. Binary classification of running fatigue using a single inertial measurement unit. In 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 197–201. https://doi.org/10.1109/BSN.2017.7936040
[16]
Achim Buerkle, Harveen Matharu, Ali Al-Yacoub, Niels Lohse, Thomas Bamber, and Pedro Ferreira. 2021. An adaptive human sensor framework for human–robot collaboration. The International Journal of Advanced Manufacturing Technology 119, 1-2 (Nov. 2021), 1233–1248. https://doi.org/10.1007/s00170-021-08299-2
[17]
Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors. ACM Comput. Surv. 46, 3, Article 33 (Jan. 2014), 33 pages. https://doi.org/10.1145/2499621
[18]
Christos Chalitsios, Thomas Nikodelis, Vasileios Konstantakos, and Iraklis Kollias. 2022. Sensitivity of movement features to fatigue during an exhaustive treadmill run. European Journal of Sport Science 22, 9 (2022), 1374–1382. https://doi.org/10.1080/17461391.2021.1955015 arXiv:https://doi.org/10.1080/17461391.2021.1955015PMID: 34256682.
[19]
Yeok Tatt Cheah, Ka Wing Frances Wan, and Joanne Yip. 2022. Prediction of Muscle Fatigue During Dynamic Exercises based on Surface Electromyography Signals Using Gaussian Classifier. In Physical Ergonomics and Human Factors. AHFE International. https://doi.org/10.54941/ahfe1002597
[20]
Xilai Chen, Meiqin Liu, and Senlin Zhang. 2021. An LSTM-Attention-based Method to Muscle Fatigue Detection by Integrating Multi-Source sEMG Signals. In 2021 40th Chinese Control Conference (CCC). 8475–8480. https://doi.org/10.23919/CCC52363.2021.9549359
[21]
Mohamed Elshafei, Diego Elias Costa, and Emad Shihab. 2021. On the Impact of Biceps Muscle Fatigue in Human Activity Recognition. Sensors 21, 4 (2021). https://doi.org/10.3390/s21041070
[22]
Elena Escobar-Linero, Manuel Domínguez-Morales, and José Luis Sevillano. 2022. Worker’s physical fatigue classification using neural networks. Expert Systems with Applications 198 (2022), 116784. https://doi.org/10.1016/j.eswa.2022.116784
[23]
Julian J. Faraway and Nicole H. Augustin. 2018. When small data beats big data. Statistics & Probability Letters 136 (2018), 142–145. https://doi.org/10.1016/j.spl.2018.02.031 The role of Statistics in the era of big data.
[24]
Alberto Fernández, Salvador García, Francisco Herrera, and Nitesh V. Chawla. 2018. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary. J. Artif. Int. Res. 61, 1 (jan 2018), 863–905.
[25]
Thomas Fontanari, Tiago Comassetto Fróes, and Mariana Recamonde-Mendoza. 2022. Cross-validation Strategies for Balanced and Imbalanced Datasets. In Intelligent Systems, João Carlos Xavier-Junior and Ricardo Araújo Rios (Eds.). Springer International Publishing, Cham, 626–640.
[26]
Yuri Gordienko, Sergii Stirenko, Yuriy Kochura, Oleg Alienin, Michail Novotarskiy, and Nikita Gordienko. 2018. Deep Learning for Fatigue Estimation on the Basis of Multimodal Human-Machine Interactions. https://doi.org/10.48550/ARXIV.1801.06048
[27]
M. Guaitolini, L. Truppa, A. M. Sabatini, A. Mannini, and C. Castagna. 2020. Sport-induced fatigue detection in gait parameters using inertial sensors and support vector machines. In 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 170–174. https://doi.org/10.1109/BioRob49111.2020.9224449
[28]
Xiaole Guan, Yanfei Lin, Qun Wang, Zhiwen Liu, and Chengyi Liu. 2021. Sports fatigue detection based on deep learning. In 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 1–6. https://doi.org/10.1109/CISP-BMEI53629.2021.9624395
[29]
Hao Guo, Li Ke, Qiang Du, and Song Guo. 2022. Muscle fatigue state classification based on blood flow bioimpedance. In 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 1–6. https://doi.org/10.1109/CISP-BMEI56279.2022.9980152
[30]
Xiaonan Guo, Jian Liu, and Yingying Chen. 2020. When your wearables become your fitness mate. Smart Health 16 (May 2020), 100114. https://doi.org/10.1016/j.smhl.2020.100114
[31]
Eric B. Hekler, Predrag Klasnja, Guillaume Chevance, Natalie M. Golaszewski, Dana Lewis, and Ida Sim. 2019. Why we need a small data paradigm. BMC Medicine 17, 1 (July 2019). https://doi.org/10.1186/s12916-019-1366-x
[32]
Fauzani.N Jamaluddin, Siti A. Ahmad, Samsul Bahari Mohd Noor, Wan Zuha Wan Hassan, and E.F Shair. 2018. Performance of Different Threshold Estimation Methods on SEMG Wavelet De-noising in Prolonged Fatigue Identification. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). 293–296. https://doi.org/10.1109/IECBES.2018.8626599
[33]
Yanran Jiang, Vincent Hernandez, Gentiane Venture, Dana Kulić, and Bernard K. Chen. 2021. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate. Sensors 21, 4 (2021). https://doi.org/10.3390/s21041499
[34]
Yanran Jiang, Peter Malliaras, Bernard Chen, and Dana Kulic. [n. d.]. Real-time forecasting of exercise-induced fatigue from wearable sensors. 148 ([n. d.]), 105905. https://doi.org/10.1016/j.compbiomed.2022.105905
[35]
P.A. Karthick, Diptasree Maitra Ghosh, and S. Ramakrishnan. 2018. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Computer Methods and Programs in Biomed. 154 (2018), 45–56. https://doi.org/10.1016/j.cmpb.2017.10.024
[36]
Swapnali Karvekar, Masoud Abdollahi, and Ehsan Rashedi. 2019. A Data-Driven Model to Identify Fatigue Level Based on the Motion Data from a Smartphone. bioRxiv (2019). https://doi.org/10.1101/796854 arXiv:https://www.biorxiv.org/content/early/2019/10/08/796854.full.pdf
[37]
Swapnali Karvekar, Masoud Abdollahi, and Ehsan Rashedi. 2021. Smartphone-based human fatigue level detection using machine learning approaches. Ergonomics 64, 5 (2021), 600–612. https://doi.org/10.1080/00140139.2020.1858185 arXiv:https://doi.org/10.1080/00140139.2020.1858185PMID: 33393439.
[38]
Rob Kitchin and Tracey Lauriault. 2015. Small data in the era of big data. GeoJournal 80 (08 2015), 463–475. https://doi.org/10.1007/s10708-014-9601-7
[39]
Yousef Kowsar, Masud Moshtaghi, Eduardo Velloso, Lars Kulik, and Christopher Leckie. 2016. Detecting Unseen Anomalies in Weight Training Exercises. In Proceedings of the 28th Australian Conference on Computer-Human Interaction (Launceston, Tasmania, Australia) (OzCHI ’16). Association for Computing Machinery, New York, NY, USA, 517–526. https://doi.org/10.1145/3010915.3010941
[40]
Jan Kuschan and Jörg Krüger. 2021. Fatigue recognition in overhead assembly based on a soft robotic exosuit for worker assistance. CIRP Annals 70, 1 (2021), 9–12. https://doi.org/10.1016/j.cirp.2021.04.034
[41]
Arsalan Lambay, Ying Liu, Phillip Morgan, and Ze Ji. 2021. A Data-Driven Fatigue Prediction using Recurrent Neural Networks. In 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 1–6. https://doi.org/10.1109/HORA52670.2021.9461377
[42]
Dujuan Li and Caixia Chen. 2022. Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion. BMC Medical Informatics and Decision Making 22, 1 (March 2022). https://doi.org/10.1186/s12911-022-01808-7
[43]
J. F. Lin, M. Karg, and D. Kulić. 2016. Movement Primitive Segmentation for Human Motion Modeling: A Framework for Analysis. IEEE Transactions on Human-Machine Systems 46, 3 (2016), 325–339. https://doi.org/10.1109/thms.2015.2493536
[44]
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[45]
Luca Marotta, Bouke L. Scheltinga, Robbert van Middelaar, Wichor M. Bramer, Bert-Jan F. van Beijnum, Jasper Reenalda, and Jaap H. Buurke. 2022. Accelerometer-Based Identification of Fatigue in the Lower Limbs during Cyclical Physical Exercise: A Systematic Review. Sensors 22, 8 (2022). https://doi.org/10.3390/s22083008
[46]
Neusa R. Adão Martins, Simon Annaheim, Christina M. Spengler, and René M. Rossi. 2021. Fatigue Monitoring Through Wearables: A State-of-the-Art Review. Frontiers in Physiology 12 (Dec. 2021). https://doi.org/10.3389/fphys.2021.790292
[47]
V.F. Milanez, M.C. Spiguel Lima, C.A. Gobatto, L.A. Perandini, F.Y. Nakamura, and L.F.P. Ribeiro. 2011. Correlates of session-rate of perceived exertion (RPE) in a karate training session. Science & Sports 26, 1 (2011), 38–43. https://doi.org/10.1016/j.scispo.2010.03.009
[48]
Ahmad Moniri, Dan Terracina, Jesus Rodriguez-Manzano, Paul H. Strutton, and Pantelis Georgiou. 2021. Real-Time Forecasting of sEMG Features for Trunk Muscle Fatigue Using Machine Learning. IEEE Transactions on Biomedical Engineering 68, 2 (2021), 718–727. https://doi.org/10.1109/TBME.2020.3012783
[49]
Dan Morris, T. Scott Saponas, Andrew Guillory, and Ilya Kelner. 2014. RecoFit. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Acm. https://doi.org/10.1145/2556288.2557116
[50]
Farnad Nasirzadeh, Mostafa Mir, Sadiq Hussain, Mohammad Tayarani Darbandy, Abbas Khosravi, Saeid Nahavandi, and Brad Aisbett. 2020. Physical Fatigue Detection Using Entropy Analysis of Heart Rate Signals. Sustainability 12, 7 (2020). https://doi.org/10.3390/su12072714
[51]
Tim Op De Beéck, Wannes Meert, Kurt Schütte, Benedicte Vanwanseele, and Jesse Davis. 2018. Fatigue Prediction in Outdoor Runners Via Machine Learning and Sensor Fusion. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (London, United Kingdom) (KDD ’18). Association for Computing Machinery, New York, NY, USA, 606–615. https://doi.org/10.1145/3219819.3219864
[52]
Michalis Papakostas, Varun Kanal, Maher Abujelala, Konstantinos Tsiakas, and Fillia Makedon. [n. d.]. Physical fatigue detection through EMG wearables and subjective user reports: a machine learning approach towards adaptive rehabilitation. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments (Rhodes Greece, 2019-06-05). ACM, 475–481. https://doi.org/10.1145/3316782.3322772
[53]
Kun Peng. 2022. Training Fatigue and Recovery of Throwing Athletes Based on the Comprehensive Environmental Test of the Field. Wireless Communications and Mobile Computing 2022 (Aug. 2022), 1–10. https://doi.org/10.1155/2022/7993666
[54]
Ross O. Phillips. 2015. A review of definitions of fatigue – And a step towards a whole definition. Transportation Research Part F: Traffic Psychology and Behaviour 29 (2015), 48–56. https://doi.org/10.1016/j.trf.2015.01.003
[55]
Neelam Rout, Debahuti Mishra, and Manas Kumar Mallick. 2018. Handling Imbalanced Data: A Survey. In International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications, M. Sreenivasa Reddy, K. Viswanath, and Shiva Prasad K.M. (Eds.). Springer Singapore, Singapore, 431–443.
[56]
ZahraAlizadeh Sani, MohammadTayarani Darbandy, Mozhdeh Rostamnezhad, Sadiq Hussain, Abbas Khosravi, and Saeid Nahavandi. 2020. A new approach to detect the physical fatigue utilizing heart rate signals. Research in Cardiovascular Medicine 9, 1 (2020), 23. https://doi.org/10.4103/rcm.rcm_8_20
[57]
Yutaka Sasaki. 2007. The truth of the F-measure. Teach Tutor Mater (01 2007).
[58]
Gerd Schmitz. 2020. Moderators of Perceived Effort in Adolescent Rowers During a Graded Exercise Test. International Journal of Environmental Research and Public Health 17, 21 (Nov. 2020), 8063. https://doi.org/10.3390/ijerph17218063
[59]
Zahra Sedighi Maman, Ying-Ju Chen, Amir Baghdadi, Seamus Lombardo, Lora A. Cavuoto, and Fadel M. Megahed. 2020. A data analytic framework for physical fatigue management using wearable sensors. Expert Systems with Applications 155 (2020), 113405. https://doi.org/10.1016/j.eswa.2020.113405
[60]
M. Seiffert, F. Holstein, R. Schlosser, and J. Schiller. 2017. Next Generation Cooperative Wearables: Generalized Activity Assessment Computed Fully Distributed Within a Wireless Body Area Network. IEEE Access 5 (2017), 16793–16807. https://doi.org/10.1109/access.2017.2749005
[61]
Song Shi, Ziping Cao, Hengheng Li, Chengming Du, Qiang Wu, and Yahui Li. 2022. Recognition System of Human Fatigue State Based on Hip Gait Information in Gait Patterns. Electronics 11, 21 (2022). https://doi.org/10.3390/electronics11213514
[62]
Vimalraj S Spelmen and R Porkodi. 2018. A Review on Handling Imbalanced Data. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). 1–11. https://doi.org/10.1109/ICCTCT.2018.8551020
[63]
Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel. 2009. Classification of imbalanced data: a review. International Journal of Pattern Recognition and Artificial Intelligence 23, 04 (June 2009), 687–719. https://doi.org/10.1142/s0218001409007326
[64]
Mamello Thinyane. 2017. Investigating an Architectural Framework for Small Data Platforms. In Data for societal challenges-17th European Conference on Digital Government (ECDG 2017). 220–227.
[65]
Andreas Triantafyllopoulos, Sandra Ottl, Alexander Gebhard, Esther Rituerto-González, Mirko Jaumann, Steffen Hüttner, Valerie Dieter, Patrick Schneeweiß, Inga Krauß, Maurice Gerczuk, Shahin Amiriparian, and Björn W. Schuller. 2022. Fatigue Prediction in Outdoor Running Conditions using Audio Data. https://doi.org/10.48550/ARXIV.2205.04343
[66]
Bin Wang and Dongzhi He. 2021. Prediction method of running fatigue based on depth image. In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Vol. 4. 271–275. https://doi.org/10.1109/IMCEC51613.2021.9482204
[67]
Guodong Wang, Xiaokun Mao, Qiuxia Zhang, and Aming Lu. [n. d.]. Fatigue Detection in Running with Inertial Measurement Unit and Machine Learning. In 2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB) (Hangzhou, China, 2022-05-13). IEEE, 85–90. https://doi.org/10.1109/ICBCB55259.2022.9802471
[68]
Zhongwan Yang and Huijie Ren. 2019. Feature Extraction and Simulation of EEG Signals During Exercise-Induced Fatigue. IEEE Access 7 (2019), 46389–46398. https://doi.org/10.1109/ACCESS.2019.2909035
[69]
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2016. Understanding deep learning requires rethinking generalization. https://doi.org/10.48550/ARXIV.1611.03530
[70]
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2021. Understanding Deep Learning (Still) Requires Rethinking Generalization. Commun. ACM 64, 3 (feb 2021), 107–115. https://doi.org/10.1145/3446776
[71]
Fan Zhang and Feng Wang. 2020. Exercise Fatigue Detection Algorithm Based on Video Image Information Extraction. 8 (2020), 199696–199709. https://doi.org/10.1109/ACCESS.2020.3023648
[72]
Jian Zhang, Thurmon E. Lockhart, and Rahul Soangra. 2013. Classifying Lower Extremity Muscle Fatigue During Walking Using Machine Learning and Inertial Sensors. Annals of Biomedical Engineering 42, 3 (Oct. 2013), 600–612. https://doi.org/10.1007/s10439-013-0917-0
[73]
Haiyan Zhu, Yuelong Ji, Baiyang Wang, and Yuyun Kang. 2022. Exercise fatigue diagnosis method based on short-time Fourier transform and convolutional neural network. Frontiers in Physiology 13 (Aug. 2022), 12 pages. https://doi.org/10.3389/fphys.2022.965974
[74]
Min Zhu, Jing Xia, Xiaoqing Jin, Molei Yan, Guolong Cai, Jing Yan, and Gangmin Ning. 2018. Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data. IEEE Access 6 (2018), 4641–4652. https://doi.org/10.1109/ACCESS.2018.2789428

Index Terms

  1. Small Data, Big Challenges: Pitfalls and Strategies for Machine Learning in Fatigue Detection

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments
      July 2023
      797 pages
      ISBN:9798400700699
      DOI:10.1145/3594806
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 10 August 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. IMU
      2. RPE
      3. class distribution
      4. exercise
      5. fatigue detection
      6. imbalanced data
      7. machine learning
      8. model evaluation
      9. oversampling
      10. pose estimation
      11. small data
      12. sports
      13. squats
      14. wearable sensors

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      PETRA '23

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 82
        Total Downloads
      • Downloads (Last 12 months)40
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 27 Jan 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media