skip to main content
research-article

PyDEC: Software and Algorithms for Discretization of Exterior Calculus

Published: 01 November 2012 Publication History

Abstract

This article describes the algorithms, features, and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topological problems on abstract complexes. We describe efficient algorithms for constructing the operators and objects that arise in discrete exterior calculus, lowest-order finite element exterior calculus, and in related topological problems. Our algorithms are formulated in terms of high-level matrix operations which extend to arbitrary dimension. As a result, our implementations map well to the facilities of numerical libraries such as NumPy and SciPy. The availability of such libraries makes Python suitable for prototyping numerical methods. We demonstrate how PyDEC is used to solve physical and topological problems through several concise examples.

References

[1]
Abraham, R., Marsden, J. E., and Ratiu, T. 1988. Manifolds, Tensor Analysis, and Applications 2nd Ed. Springer.
[2]
Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite element exterior calculus, homological techniques, and applications. In Acta Numerica, A. Iserles Ed., vol. 15. Cambridge University Press, 1--155.
[3]
Arnold, D. N., Falk, R. S., and Winther, R. 2009. Geometric decompositions and local bases for spaces of finite element differential forms. In Comput. Meth. Appl. Mech. Engrg. 198, 21--26, 1660--1672.
[4]
Arnold, D. N., Falk, R. S., and Winther, R. 2010. Finite element exterior calculus: From Hodge theory to numerical stability. Bull. Amer. Math. Soc. 47, 2, 281--354.
[5]
Bangerth, W., Hartmann, R., and Kanschat, G. 2007. deal.II -- a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 4, 24/1--24/27.
[6]
Bank, R. and Douglas, C. 1993. Sparse matrix multiplication package (SMMP). Adv. in Comput. Math. 1, 1, 127--137.
[7]
Bell, N. and Hirani, A. N. 2008. PyDEC: A python library for discrete exterior calculus. Google Code.
[8]
Bell, W. N. 2008. Algebraic multigrid for discrete differential forms. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.
[9]
Bochev, P. and Lehoucq, R. B. 2005. On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 1, 50--66.
[10]
Bochev, P. B. and Hyman, J. M. 2006. Principles of mimetic discretizations of differential operators. In Compatible Spatial Discretizations, D. N. Arnold, P. B. Bochev, R. B. Lehoucq, R. A. Nicolaides, and M. Shashkov Eds., The IMA Volumes in Mathematics and Its Applications Series, vol. 142. Springer, 89--119.
[11]
Bochev, P. B. and Robinson, A. C. 2002. Matching algorithms with physics: Exact sequences of finite element spaces. In Collected Lectures on Preservation of Stability Under Discretization, D. Estep and S. Tavener Eds., SIAM, 145--166.
[12]
Boffi, D., Fernandes, P., Gastaldi, L., and Perugia, I. 1999. Computational models of electromagnetic resonators: Analysis of edge element approximation. SIAM J. Numer. Anal. 36, 4, 1264--1290.
[13]
Bossavit, A. 1988. Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. 135, Part A, 8, 493--500.
[14]
Bott, R. and Tu, L. W. 1982. Differential Forms in Algebraic Topology. Springer.
[15]
Castillo, P., Rieben, R., and White, D. 2005. FEMSTER: An object oriented class library of high-order discrete differential forms. ACM Trans. Math. Softw. 31, 4, 425--457.
[16]
de Rham, G., 1955. Variétés Différentiables. Formes, Courants, Formes Harmoniques. Actualités Sci. Ind., no. 1222 = Publ. Inst. Math. Univ. Nancago III. Hermann et Cie, Paris, Paris.
[17]
de Silva, V. and Ghrist, R. 2007. Homological sensor networks. Not. Amer. Math. Soc. 54, 1, 10--17.
[18]
Demlow, A. and Dziuk, G. 2007. An adaptive finite element method for the Laplace--Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 1, 421--442.
[19]
Desbrun, M., Hirani, A. N., Leok, M., and Marsden, J. E. 2005. Discrete exterior calculus. E-print arXiv:math/0508341{math.DG}.
[20]
Dey, T. K., Hirani, A. N., and Krishnamoorthy, B. 2010. Optimal homologous cycles, total unimodularity, and linear programming. In Proceedings of the 42nd ACM Symposium on Theory of Computing. ACM, New York, 221--230.
[21]
Dodziuk, J. 1976. Finite-Difference approach to the Hodge theory of harmonic forms. Amer. J. Math. 98, 1, 79--104.
[22]
Dunfield, N. M. and Hirani, A. N. 2011. The least spanning area of a knot and the optimal bounding chain problem. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG’11). ACM, New York, 135--144.
[23]
Eckmann, B. 1945. Harmonische functionen and randwertaufgaben in ainem komplex. Comment. Math. Helv. 17, 240--255.
[24]
Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Discr. Comput. Geom. 28, 4, 511--533.
[25]
Frankel, T. 2004. The Geometry of Physics 2nd Ed. Cambridge University Press.
[26]
Gillette, A. and Bajaj, C. 2010. A generalization for stable mixed finite elements. In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling. ACM, New York, 41--50.
[27]
Gillette, A. and Bajaj, C. 2011. Dual formulations of mixed finite elements methods with applications. In Comput.-Aided Des. 43 10, 1213--1221.
[28]
Gradinaru, V. and Hiptmair, R. 1999. Whitney elements on pyramids. Electron. Trans. Numer. Anal. 8, 154--168.
[29]
Hildebrandt, K., Polthier, K., and Wardetzky, M. 2006. On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata 123, 89--112.
[30]
Hiptmair, R. 2002. Finite elements in computational electromagnetism. In Acta Numerica, A. Iserles Ed., vol. 11. Cambridge University Press, 237--339.
[31]
Hirani, A. N. 2003. Discrete exterior calculus. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
[32]
Hirani, A. N., Kalyanaraman, K., Wang, H., and Watts, S. 2011a. Cohomologous harmonic cochains. arXiv:1012.2835.
[33]
Hirani, A. N., Kalyanaraman, K., and Watts, S. 2011b. Least squares ranking on graphs. E-print arXiv:1011.1716{cs.NA}.
[34]
Hirani, A. N., Nakshatrala, K. B., and Chaudhry, J. H. 2011c. Numerical method for darcy flow derived using discrete exterior calculus. arXiv:0810.3434{math.NA}.
[35]
Hirani, A. N., Kalyanaraman, K., and VanderZee, E. B. 2012. Delaunay Hodge star. Comput.-Aided Des. 45, 2, 540--544.
[36]
Holst, M. and Stern, A. 2012. Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12, 3, 263--293.
[37]
Hyman, J. M. and Shashkov, M. 1997. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33, 4, 81--104.
[38]
Jiang, X., Lim, L., Yao, Y., and Ye, Y. 2011. Statistical ranking and combinatorial hodge theory. Math. Program. 127, 203--244.
[39]
Jost, J. 2005. Riemannian Geometry and Geometric Analysis 4th Ed. Universitext. Springer.
[40]
Kaczynski, T., Mischaikow, K., and Mrozek, M. 2004. Computational Homology. Applied Mathematical Sciences Series, vol. 157. Springer.
[41]
Leake, R. J. 1976. A method of ranking teams: With an application to college football. In Management Science in Sports, R. E. Machol and S. P. Ladany Eds., TIMS Studies in the Management Sciences Series, vol. 4. North-Holland, 27--46.
[42]
Logg, A. and Mardal, K.-A. 2008. A symbolic engine for finite element exterior calculus. European Finite Element Fair.
[43]
Logg, A. and Wells, G. N. 2010. DOLFIN: Automated finite element computing. ACM Trans. Math. Softw. 37, 20:1--20:28.
[44]
Logg, A., Mardal, K.-A., Wells, G. N., et al. 2012. Automated Solution of Differential Equations by the Finite Element Method. Springer.
[45]
Morita, S. 2001. Geometry of Differential Forms. Translations of Mathematical Monographs Series, vol. 201. Amsterdam Mathematical Society, Providence, RI.
[46]
Munkres, J. R. 1984. Elements of Algebraic Topology. Addison--Wesley.
[47]
Nicolaides, R. A. and Trapp, K. A. 2006. Covolume discretization of differential forms. In Compatible Spatial Discretizations, D. N. Arnold, P. B. Bochev, R. B. Lehoucq, R. A. Nicolaides, and M. Shashkov Eds., The IMA Volumes in Mathematics and its Applications Series, vol. 142. Springer, 161--171.
[48]
Oliphant, T. E. 2007. Python for scientific computing. Comput. Sci. & Engin. 9, 3, 10--20.
[49]
Saad, Y. 2003. Iterative Methods for Sparse Linear Systems 2nd Ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.
[50]
Sen, S. 2003. A cubic Whitney and further developments in geometric discretisation. arXiv:hep-th/0307166.
[51]
Shashkov, M. 1996. Conservative Finite-Difference Methods on General Grids. CRC Press, Boca Raton, FL.
[52]
van der Walt, S., Colbert, S., and Varoquaux, G. 2011. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Engin. 13, 2, 22--30.
[53]
Whitney, H. 1957. Geometric Integration Theory. Princeton University Press, Princeton, NJ.
[54]
Wilson, S. 2007. Cochain algebra on manifolds and convergence under refinement Topol. Appl. 154, 9, 1898--1920.
[55]
Wilson, S. 2008. Conformal cochains. Trans. Amer. Math. Soc. 360, 5247--5264.
[56]
Zomorodian, A. and Carlsson, G. 2005. Computing persistent homology. Discr. Comput. Geom. 33, 2, 249--274.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 39, Issue 1
November 2012
162 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2382585
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2012
Accepted: 01 February 2012
Revised: 01 February 2012
Received: 01 March 2011
Published in TOMS Volume 39, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Discrete exterior calculus
  2. Vietoris-Rips complex
  3. Whitney form
  4. boundary operator
  5. chain
  6. coboundary operator
  7. cochain
  8. computational topology
  9. cubical complex
  10. finite element exterior calculus
  11. simplicial complex

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)76
  • Downloads (Last 6 weeks)21
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media