skip to main content
10.1145/1772690.1772883acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
poster

Review recommendation with graphical model and EM algorithm

Published: 26 April 2010 Publication History

Abstract

Automatically assessing the quality and helpfulness of consumer reviews is more and more desirable with the evolutionary development of online review systems. Existing helpfulness assessment methodologies make use of the positive vote fraction as a benchmark and heuristically find a "best guess" to estimate the helpfulness of review documents. This benchmarking methodology ignores the voter population size and treats the the same positive vote fraction as the same helpfulness value. We propose a review recommendation approach that make use of the probability density of the review helpfulness as the benchmark and exploit graphical model and Expectation Maximization (EM) algorithm for the inference of review helpfulness. The experimental results demonstrate that the proposed approach is superior to existing approaches.

References

[1]
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1--38, 1977.
[2]
N. Hu, L. Liu and J. J. Zhang. Do online reviews affect product sales? the role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3):201--214, 2008.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '10: Proceedings of the 19th international conference on World wide web
April 2010
1407 pages
ISBN:9781605587998
DOI:10.1145/1772690

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 April 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. helpfulness
  2. online review
  3. recommendation

Qualifiers

  • Poster

Conference

WWW '10
WWW '10: The 19th International World Wide Web Conference
April 26 - 30, 2010
North Carolina, Raleigh, USA

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

ePub

View this article in ePub.

ePub

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media