skip to main content
10.1145/1553374.1553534acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Multi-instance learning by treating instances as non-I.I.D. samples

Published: 14 June 2009 Publication History

Abstract

Previous studies on multi-instance learning typically treated instances in the bags as independently and identically distributed. The instances in a bag, however, are rarely independent in real tasks, and a better performance can be expected if the instances are treated in an non-i.i.d. way that exploits relations among instances. In this paper, we propose two simple yet effective methods. In the first method, we explicitly map every bag to an undirected graph and design a graph kernel for distinguishing the positive and negative bags. In the second method, we implicitly construct graphs by deriving affinity matrices and propose an efficient graph kernel considering the clique information. The effectiveness of the proposed methods are validated by experiments.

References

[1]
Amar, R. A., Dooly, D. R., Goldman, S. A., & Zhang, Q. (2001). Multiple-instance learning of real-valued data. Proc. 18th Intl. Conf. Mach. Learn. (pp. 3--10).
[2]
Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learning. In Adv. Neural Inf. Process. Syst. 15, 561--568. Cambridge, MA: MIT Press.
[3]
Auer, P., & Ortner, R. (2004). A boosting approach to multiple instance learning. Proc. 15th Eur. Conf. Mach. Learn. (pp. 63--74).
[4]
Blockeel, H., Page, D., & Srinivasan, A. (2005). Multi-instance tree learning. Proc. 22nd Intl. Conf. Mach. Learn. (pp. 57--64).
[5]
Borgwardt, K. M., & Kriegel, H.-P. (2005). Shortestpath kernels on graphs. Proc. 5th IEEE Intl. Conf. Data Min. (pp. 74--81).
[6]
Chen, Y., Bi, J., & Wang, J. Z. (2006). MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. Patt. Anal. Mach. Intell., 28, 1931--1947.
[7]
Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. J. Mach. Learn. Res., 5, 913--939.
[8]
Cheung, P.-M., & Kwok, J. T. (2006). A regularization framework for multiple-instance learning. Proc. 23rd Intl. Conf. Mach. Learn. (pp. 193--200).
[9]
Chevaleyre, Y., & Zucker, J.-D. (2001). A framework for learning rules from multiple instance data. Proc. 12th Eur. Conf. Mach. Learn. (pp. 49--60).
[10]
Csurka, G., Bray, C., Dance, C., & Fan, L. (2004). Visual categorization with bags of keypoints. ECCV Workshop on Statistical Learning in Computer Vision (pp. 59--74).
[11]
Dietterich, T. G., Lathrop, R. H., & Lozano-Péérez, T. (1997). Solving the multiple-instance problem with axis-parallel rectangles. Artif. Intell., 89, 31--71.
[12]
Fung, G., Dundar, M., Krishnappuram, B., & Rao, R. B. (2007). Multiple instance learning for computer aided diagnosis. In Adv. Neural Inf. Process. Syst. 19, 425--432. Cambridge, MA: MIT Press.
[13]
Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explorations, 5, 49--58.
[14]
Gärtner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (2002). Multi-instance kernels. Proc. 19th Intl. Conf. Mach. Learn. (pp. 179--186).
[15]
Kwok, J. T., & Cheung, P.-M. (2007). Marginalized multi-instance kernels. Proc. 20th Intl. J. Conf. Artif. Intell. (pp. 901--906).
[16]
Maron, O., & Lozano-Péérez, T. (1998). A framework for multiple-instance learning. In Adv. Neural Inf. Process. Syst. 10, 570--576. Cambridge, MA: MIT Press.
[17]
McGovern, A., & Jensen, D. (2003). Identifying predictive structures in relational data using multiple instance learning. Proc. 20th Intl. Conf. Mach. Learn. (pp. 528--535).
[18]
Neuhaus, M., & Bunke, H. (2007). A quadratic programming approach to the graph edit distance problem. Proc. 6th IAPR Workshop on Graph-based Represent. in Patt. Recogn. (pp. 92--102).
[19]
Rahmani, R., & Goldman, S. A. (2006). MISSL: Multiple-instance semi-supervised learning. Proc. 23rd Intl. Conf. Mach. Learn. (pp. 705--712).
[20]
Ray, S., & Craven, M. (2005). Supervised versus multiple instance learning: An empirical comparison. Proc. 22nd Intl. Conf. Mach. Learn. (pp. 697--704).
[21]
Ray, S., & Page, D. (2001). Multiple instance regression. Proc. 18th Intl. Conf. Mach. Learn. (pp. 425--432).
[22]
Ruffo, G. (2000). Learning single and multiple instance decision trees for computer security applications. Doctoral dissertation, CS Dept., Univ. Turin, Torino, Italy.
[23]
Scott, S. D., Zhang, J., & Brown, J. (2003). On generalized multiple-instance learning (Technical Report UNL-CSE-2003-5). CS Dept., Univ. Nebraska, Lincoln, NE.
[24]
Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning. In Adv. Neural Inf. Process. Syst. 20, 1289--1296. Cambridge, MA: MIT Press.
[25]
Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Comm. ACM, 29, 1213--1228.
[26]
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319--2323.
[27]
Viola, P., Platt, J., & Zhang, C. (2006). Multiple instance boosting for object detection. In Adv. Neural Inf. Process. Syst. 18, 1419--1426. Cambridge, MA: MIT Press.
[28]
Wang, H.-Y., Yang, Q., & Zha, H. (2008). Adaptive p-posterior mixture-model kernels for multiple instance learning. Proc. 25th Intl. Conf. Mach. Learn. (pp. 1136--1143).
[29]
Wang, J., & Zucker, J.-D. (2000). Solving the multi-instance problem: A lazy learning approach. Proc. 17th Intl. Conf. Mach. Learn. (pp. 1119--1125).
[30]
Weidmann, N., Frank, E., & Pfahringer, B. (2003). A two-level learning method for generalized multi-instance problem. Proc. 14th Eur. Conf. Mach. Learn. (pp. 468--479).
[31]
Xu, X., & Frank, E. (2004). Logistic regression and boosting for labeled bags of instances. Proc. 8th Pac.-Asia Conf. Knowl. Discov. Data Min. (pp. 272--281).
[32]
Zhang, C., & Viola, P. (2008). Multiple-instance pruning for learning efficient cascade detectors. In Adv. Neural Inf. Process. Syst. 20, 1681--1688. Cambridge, MA: MIT Press.
[33]
Zhang, M.-L., & Zhou, Z.-H. (2006). Adapting RBF neural networks to multi-instance learning. Neural Process. Lett., 23, 1--26.
[34]
Zhang, Q., & Goldman, S. A. (2002). EM-DD: An improved multi-instance learning technique. In Adv. Neural Inf. Process. Syst. 14, 1073--1080. Cambridge, MA: MIT Press.
[35]
Zhang, Q., Yu, W., Goldman, S. A., & Fritts, J. E. (2002). Content-based image retrieval using multiple-instance learning. Proc. 19th Intl. Conf. Mach. Learn. (pp. 682--689).
[36]
Zhou, Z.-H., & Xu, J.-M. (2007). On the relation between multi-instance learning and semi-supervised learning. Proc. 24th Intl. Conf. Mach. Learn. (pp. 1167--1174).
[37]
Zhou, Z.-H., & Zhang, M.-L. (2007). Multi-instance multi-label learning with application to scene classification. In Adv. Neural Inf. Process. Syst. 19, 1609--1616. Cambridge, MA: MIT Press.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
June 2009
1331 pages
ISBN:9781605585161
DOI:10.1145/1553374

Sponsors

  • NSF
  • Microsoft Research: Microsoft Research
  • MITACS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

ICML '09
Sponsor:
  • Microsoft Research

Acceptance Rates

Overall Acceptance Rate 140 of 548 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)65
  • Downloads (Last 6 weeks)2
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media