skip to main content
article

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

Published: 01 August 2003 Publication History

Abstract

The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis.
PACS: 03.67.-a, 03.67.Lx

References

[1]
1. P. W. Shor, Siam J. Comp. 26, 1484 (1997).
[2]
2. L. Grover, ACM Symp. Theory Comp. 1, 212 (1996).
[3]
3. S. Lloyd, Science 273, 1073 (1996).
[4]
4. R. Jozsa, Comp. Sci. Eng. 3, 34 (2001).
[5]
5. A. O. Pittenger, An Introduction to Quantum Computing Algorithms (Birkhauser, Boston, 1999).
[6]
6. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, Phys. Rev. Lett. 86, 1889 (2001).
[7]
7. A. Klappenecker and M. Roettler, Phys. Rev. A 67, 010302-1 (2003).
[8]
8. D. A. Meyer, Comp. Phys. Comm. 146, 295 (2002).
[9]
9. G. Ortiz, E. Knill, and J. E. Gubernatis, Nuc. Phys. B (Proceedings Supplements) 106-107, 151 (2002).
[10]
10. J. Yepez, Comp. Phys. Comm. 146, 277 (2002).
[11]
11. R. Schutzhold, (2002). LANL quant-ph/0208063.
[12]
12. C. A. Trugenberger, Quan. Inf. Proc. 1, 471 (2002).
[13]
13. C. A. Trugenberger, Phys. Rev. Lett. 89, 277903-1 (2002).
[14]
14. J. A. Sidles, (2002). LANL quant-ph/0211108v2.
[15]
15. A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).
[16]
16. R. Orús, J. I. Latorre, and M. A. Martín-Delgado, Quant. Inf. Proc. 1, 283 (2002).
[17]
17. D. Deutsch, Proc. Roy. Soc. Lond. A400, 97 (1985).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Quantum Information Processing
Quantum Information Processing  Volume 2, Issue 4
August 2003
49 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 August 2003

Author Tags

  1. Quantum Fourier transform
  2. quantum algorithms
  3. quantum computing
  4. simulation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media