skip to main content
research-article

Efficient eigenvalue and singular value computations on shared memory machines

Published: 01 July 1999 Publication History

Abstract

We describe two techniques for speeding up eigenvalue and singular value computations on shared memory parallel computers. Depending on the information that is required, different steps in the overall process can be made more efficient. If only the eigenvalues or singular values are sought then the reduction to condensed form may be done in two or more steps to make best use of optimized level-3 BLAS. If eigenvectors and/or singular vectors are required, too, then their accumulation can be speeded up by another blocking technique. The efficiency of the blocked algorithms depends heavily on the values of certain control parameters. We also present a very simple performance model that allows selecting these parameters automatically.

References

[1]
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, 2nd ed., SIAM, Philadelphia, PA, 1995
[2]
Z. Bai, J. Demmel, On a block implementation of Hessenberg multishift QR iteration, Int. J. High Speed Comput., 1 (1989) 97-112.
[3]
C. Bischof, B. Lang, X. Sun, Parallel tridiagonalization through two-step band reduction, in: Proceedings of the Scalable High-Performance Computing Conference, Knoxville, IEEE, 23-25 May 1994, Washington, DC, pp. 23-27
[4]
C. Bischof, C. VanLoan, The WY representation for products of Householder matrices, SIAM J. Sci. Stat. Comput., 8 (1987) s2-s13.
[5]
C.H. Bischof, B. Lang, X. Sun, A framework for symmetric band reduction, Preprint BUGHW-SC 96/3, Fachbereich Mathematik, Bergische Universität GH Wuppertal, April 1996, submitted
[6]
J. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers, in: Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation, McLean, VA, 19-21 October 1992, IEEE Computer Society Press, Los Alamitos, CA, 1992
[7]
J. Dongarra, G. Henry, D. Watkins, A parallel implementation of the non-symmetric QR algorithm for distributed memory architectures. Technical Report CS-97-352, University of Tennessee at Knoxville, March 1997, LAPACK Working Note #121
[8]
J.J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Soft., 16 (1990) 1-17.
[9]
J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, An extended set of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Soft., 14 (1988) 1-17.
[10]
J.J. Dongarra, S.J. Hammarling, D.C. Sorensen, Block reduction of matrices to condensed forms for eigenvalue computations, J. Comput. Appl. Math., 27 (1989) 215-227.
[11]
A.A. Dubrulle, The multishift QR algorithm: Is is worth the trouble? Technical Report G320-3558+, Palo Alto Scientific Research Center, IBM Corporation, August 1991, Revised May 1992
[12]
J.G.F. Francis, The QR transformation: A unitary analogue to the LR transformations, Parts I and II, Computer J. 4 (1961/62) 265-272; 332-345
[13]
G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996
[14]
B. Lang, A parallel algorithm for reducing symmetric banded matrices to tridiagonal form, SIAM J. Sci. Comput., 14 (1993) 1320-1338.
[15]
B. Lang, Parallel reduction of banded matrices to bidiagonal form, Parallel Comput., 22 (1996) 1-18.
[16]
B. Lang, Using level 3 BLAS in rotation based algorithms, SIAM J. Sci. Comput., 19 (1998) 626-634.
[17]
C.L. Lawson, R.J. Hanson, SIAM, Philadelphia, PA, 1995.
[18]
R. Schreiber, C. VanLoan, A storage-efficient WY representation for products of Householder transformations, SIAM J. Sci. Stat. Comput., 10 (1989) 53-57.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Parallel Computing
Parallel Computing  Volume 25, Issue 7
Special issue on parallelization techniques for numerical modelling
July 1999
141 pages
ISSN:0167-8191
Issue’s Table of Contents

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 July 1999

Author Tags

  1. Blocked algorithms
  2. Eigenvalues and singular values
  3. Hessenberg QR iteration
  4. Linear algebra
  5. Reduction to condensed form

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media