
A Dataset Statistics

The statistics of datasets used for evaluating TAGE are shown in Table 6.

Table 6: Statistics of multitask datasets used for explanation quality evaluation. The column “Total”
under MoleculeNet indicates the total number of commonly studied tasks from MoleculeNet.

MoleculeNet PPI EPNHIV BBBP BACE Sider Total
# of Graphs 41127 2039 1513 1427 – 24 1

Avg. # of Nodes 25.53 24.05 34.12 33.64 – 56,944 5.86 mn.
Avg. # of Edges 27.48 25.94 36.89 35.36 – 818,716 63.07 mn.

# of Tasks 1 1 1 27 227 121 3

B Implementation Details

Structure of explainer. Our implementation is based on Pytorch [19], Pytorch Geometric [2],
and Dive-into-graphs [14]. We implement the explainer with a linear projection fp that maps the
condition vector p to the same dimension as concatenated embeddings, and a 2-layer MLP with
ReLU activation that maps concatenated embeddings with the mask to the important score.

Implementation of training objectives. We adopt the Jason-Shannon Estimator as the lower bound
for mutual information maximization for the two public datasets. For graph-level tasks, given a
mini-batch of N samples, we consider the embeddings of a graph G and its subgraph Gs as a positive
pair (with N positive pairs in total), and the embeddings of a graph Gi and the subgraph Gj,s of
another sample as a negative pair (with N2 �N pairs in total). For node-level tasks, we still randomly
sample N nodes from the entire graph at each iteration and compute the contrastive losses on original
embeddings of the N nodes, and embedding of the N nodes when the important subgraph is selected,
respectively for each node. Similar to graph-level tasks, we consider embeddings of the same node
(in the original graph or in the subgraph) as a positive pair, and embeddings of node i in the full graph
and node j in the selected subgraph as a negative pair (N2 � N in total).

Impirical observation of Laplace distribution. We show examples of gradient distribution of
multiple tasks in Figure 5. The absolute value of gradients of three tasks are shown in orange, blue,
and green, respectively.

Figure 5: Distribution of downstream model gradient absolute values on three different tasks from
PPI.

Training configurations. We set the hyperparameters in the size regularization term to �s = 0.05 and
�e = 0.002, respectively. For the graph-level explanation on MoleculeNet, we train the embedding
explainer on ZINC-2M with a learning rate of 1e � 4 and mini-batch size of 256 for one epoch. The
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random condition vectors are generated from Laplace distribution Laplace(0, 0.2). For the node-level
explanation on PPI, we train the embedding explainer on PPI without labels with a learning rate
of 5e � 6 and a mini-batch size of 4 for one epoch. The random condition vectors are generated
from Laplace distribution Laplace(0, 0.1). For the EPN dataset, we train the embedding explainer
with InfoNCE loss, learning rate 1e � 4, and mini-batch size 16. The random condition vectors are
generated from Laplace distribution Laplace(0, 0.25). The hyperparameters in the size regularization
term are set to �s = 0.5 and �e = 0 for the stable training with InfoNCE.

Evaluation. In molecule and protein property prediction, we are usually interested in the positive
samples, i.e., the existence of what substructure leads to a certain property. For learning-based
baseline methods, we find it common that only one class of the two has a good explanation, and the
class with higher explanation quality is not necessarily the positive class. For example, PGExplainer
has a near-to-zero fidelity score for the positive class of SIDER. We hence compare only the higher
fidelity score among the two classes for all explanation methods and datasets.

C Fidelity and Sparsity

Given a set of graphs {Gi} and node masks m predicted by the explainer, the fidelity score and the
sparsity score are computed as follows.

Fidelity prob =
1

N

XN

i=1

⇥
f(Gi)ci � f(G1�mi

i )ci

⇤
, (7)

Sparsity =
1

N

XN

i=1
|mi|/|Vi|, (8)

where N denotes the number of graphs or nodes to be explained, f denotes the GNN model associated
with a specific downstream task, ci denotes the class of interest, which can be either the labeled class
or the original predicted class, Gi and G1�mi

i denote the original graph and graph with important
nodes removed, respectively. Explanations with both scores higher are better.

D Additional Results for Universal Explanation Ability

Comparison of explanation performance when trained on different datasets. Specifically for
the MoleculeNet dataset, as there is a larger unlabeled dataset, ZINC, available for the first stage
training of the encoder, the training of our explainer is also performed on the ZINC dataset. For a
more strict comparison with the baseline explainer who is trained on individual MoleculeNet datasets,
we additionally evaluate the explanation quality when the same individual MoleculeNet dataset is
used to train TAGE. The results are shown in Table 7. When trained on the same datasets individually,
TAGE still performs better than the baseline explainer in terms of fidelity scores. In the individual
dataset case, we need to train different explainers, similarly to the training of PGExplainer, as the
datasets for the four tasks are different.

Table 7: An ablation on training TAGE on different datasets (ZINC v.s. individual MoleculeNet
datasets).

Method BACE HIV BBBP SIDER
PGExplainer 0.252 ±0.340 0.473 ±0.404 0.182 ±0.169 0.444 ±0.391
TAGE (individual) 0.402 ±0.281 0.541 ±0.330 0.202 ±0.157 0.516 ±0.292
TAGE (ZINC) 0.378 ±0.293 0.595 ±0.321 0.193 ±0.161 0.521 ±0.278

Comparison with the causality-based explainer GEM. On the BACE dataset and task, we addition-
ally compare TAGE with another recent SOTA learning-based method GEM [12] whose explainer is
trained based on the Granger causality in Table 8. Note that GEM is not originally proposed under our
setting. It assumes that there is a fixed number of important nodes when performing explanation and
hence the final explanation is a boolean selection of nodes. We adapt GEM to compute fidelity scores
under different sparsity scores by varying the threshold when generating explanation ground-truth
with Granger causality.
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Table 8: A comparison between TAGE, GEM, and PGExplainer on BACE in terms of fidelity scores
when fixing the sparsity scores. For GEM, we vary the threshold when generating explanation
ground-truth with Granger causality to obtain explanations with different sparsity scores.

Sparsity 0.90 0.85 0.80 0.75
TAGE 0.3349 0.4992 0.5383 0.5309

GEM [12] 0.2829 0.3607 0.4260 0.4035
PGExplainer 0.2521 0.3207 0.4605 0.5161

E Discussion and additional results of visualizations

While there are no ground-truth explanations for the molecular datasets, the validity of results
produced by TAGE can be evidenced by multiple domain research. Take BACE for example, Jain
and Jadhav [8] study multiple BACE-1 inhibitors that are similar to one presented in our results
(Figure 4 - line 3). Inhibitors in Table 1–3 and 8 of [1] share the common “2-imidazoline” structure
as explained by TAGE, whereas structures such as =O and -OCF3 as explained by GNNE and PGE
are not necessarily in an inhibitor. Moreover, inhibitors studied by Huang et al. [7] share the common
“-C(=O)-C-N(H)-C(OH)-” chain structure as present in the explanation results by TAGE (Figure 4 -
lines 1 and 2), whereas structures explained by other explainers are not necessarily for a molecule to
be a BACE-1 inhibitor. Nevertheless, it’s still fidelity scores that give the most reliable evaluation.

Additional visualization results on HIV and SIDER are shown in Figure 6 and Figure 7, respectively.
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Figure 6: Visualizations on explanations to the GNN model for the HIV task. The top 10% important
edges are highlighted with red shadow. The numbers below molecules are fidelity scores when
masking out the top 10% important edges. The right two columns are explanations for two certain
embedding dimensions without downstream tasks.
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Figure 7: Visualizations on explanations to the GNN model for the SIDER task. The top 10%
important edges are highlighted with red shadow. The numbers below molecules are fidelity scores
when masking out the top 10% important edges. The right two columns are explanations for two
certain embedding dimensions without downstream tasks.

F Experimental studies on the synthetic datasets BA-Shapes

We perform an additional evaluation on the BA-Shapes synthetic datasets used in GNNExplainer [34]
and provided by Pytorch-Geometric [2]. The synthetic dataset is less complicated compared to
real-world datasets. We train a 3-layer GCN for node classification with a training accuracy of
0.95. The AUC score (for importance edges) of TAGE is 0.999 compared to 0.963 and 0.925 of
PGExplainer and GNNExplainer, respectively. Note that the baseline scores are from the PGExplainer
paper. Some re-implementations45 of PGExplainer can also achieve an AUC score of 0.999. Our
purpose to show our score on BA-Shapes is to demonstrate that TAGE is on par with its baselines even
when considering the typical single-task setting. Figure 8 visualizes 20 examples of explanations.
TAGE is able to provide accurate explanations for all 20 examples.

G Discussion of limitations and potential solutions

Inductive learning of explanations. Our study focus on the setting of inductive learning of the
explanation, i.e., to train the explainer on a given dataset and perform inference on new coming data.
There are many work conducted under the inductive setting, such as PGExplainer. All methods under
this setting may have a potential limitation that the explainer may suffer from some dataset bias when
training data and the data to be explained are inconsistent. This is an interesting problem that requires
further investigation. However, we believe that this is a separate problem and applies to all inductive
learning methods. In addition, the size of graph could be inconsistent for training and inference. To

4https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks
5https://openreview.net/forum?id=tt04glo-VrT
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Figure 8: Visualizations on explanations to the synthetic dataset BA-Shapes.

tackle this issue, we obtain the substructure by selecting top k percentage of edges according to their
important scores.

Expressiveness of explainers. The proposed method is the most suitable under the two-stage and
multi-task settings. Our experiments show that even compared on the single task setting and on
common datasets, TAGE can still have the same or better performance than baseline task-specific
explanation methods. However, when the model, task, or datasets to be explained become too
complicated, it is possible that the embedding explainer in TAGE may require more parameters to
have enough expressiveness for the task-specific explanation. In those cases, one may adopt a similar
fine-tuning approach as described by Wang et al. [27], or use task-specific explainers which are more
efficient.

Black-box explanations. Similarly to our baseline method PGExplainer, our explainer relies on node
embeddings as inputs to the explainer. In particular, the node embeddings serve as representations to
allow explainers identify each node. It is required by any (inductively) learning based explanations to
tell neural network-based explainers which edge they are looking at. A limitation of the inductive
methods is that when the node embeddings may become unavailable when explaining a black-box
model. The study of explaining black-box models (where only output is available) is a different
direction of study in scenarios like attacking. Many current SOTA explanation approaches, such as
Grad-Cam, GNN-LRP, and PGExplainer, fail under the black-box setting. However, if one would like
to adapt our approach to the black-box setting, it is still feasible by adopting a surrogate model for the
black-box model and perform explanation on the surrogate model. In addition, as mentioned above,
the node embeddings are mainly used to identify which node the explainer is looking at, we does not
necessarily require the original embedding. When node embedding are unavailable, we can still use
any representation of nodes as long as it can identify the node based on its feature and topology.
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