• Meher B and Meher P. (2019). Analysis of Systolic Penalties and Design of Efficient Digit-Level Systolic-like Multiplier for Binary Extension Fields. Circuits, Systems, and Signal Processing. 38:2. (774-790). Online publication date: 1-Feb-2019.

    https://doi.org/10.1007/s00034-018-0884-7

  • Gebali F and Ibrahim A. (2016). Low space-complexity and low power semi-systolic multiplier architectures over GF(2m) based on irreducible trinomial. Microprocessors & Microsystems. 40:C. (45-52). Online publication date: 1-Feb-2016.

    https://doi.org/10.1016/j.micpro.2015.11.016

  • Uslu B and Erdem S. (2015). Versatile digit serial multipliers for binary extension fields. Computers and Electrical Engineering. 46:C. (29-45). Online publication date: 1-Aug-2015.

    https://doi.org/10.1016/j.compeleceng.2015.07.006

  • Fan H and Hasan M. (2015). A survey of some recent bit-parallel GF ( 2 n ) multipliers. Finite Fields and Their Applications. 32:C. (5-43). Online publication date: 1-Mar-2015.

    https://doi.org/10.1016/j.ffa.2014.10.008

  • Szu-Chi Chung , Jing-Yu Wu , Hsing-Ping Fu , Jen-Wei Lee , Hsie-Chia Chang and Chen-Yi Lee . (2015). Efficient Hardware Architecture of <inline-formula> <tex-math notation="LaTeX">$\eta_{T}$ </tex-math></inline-formula> Pairing Accelerator Over Characteristic Three. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 23:1. (88-97). Online publication date: 1-Jan-2015.

    https://doi.org/10.1109/TVLSI.2014.2303489

  • Meher B and Meher P. (2013). An Efficient Look-up Table-based Approach for Multiplication over GF(2m) Generated by Trinomials. Circuits, Systems, and Signal Processing. 32:6. (2623-2638). Online publication date: 1-Dec-2013.

    https://doi.org/10.1007/s00034-013-9553-z

  • Nikooghadam M and Zakerolhosseini A. (2013). Utilization of Pipeline Technique in AOP Based Multipliers with Parallel Inputs. Journal of Signal Processing Systems. 72:1. (57-62). Online publication date: 1-Jul-2013.

    https://doi.org/10.1007/s11265-012-0702-6

  • Lee C and Chiou C. (2012). Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector Representation. Journal of Signal Processing Systems. 69:2. (197-211). Online publication date: 1-Nov-2012.

    https://doi.org/10.1007/s11265-011-0654-2

  • Zhou G, Li L and Michalik H. Complexity analysis of finite field digit serial multipliers on FPGAs. Proceedings of the 8th international conference on Reconfigurable Computing: architectures, tools and applications. (126-137).

    https://doi.org/10.1007/978-3-642-28365-9_11

  • Nara R, Togawa N, Yanagisawa M and Ohtsuki T. Scan-based attack against elliptic curve cryptosystems. Proceedings of the 2010 Asia and South Pacific Design Automation Conference. (407-412).

    /doi/10.5555/1899721.1899821

  • Beuchat J, Detrey J, Estibals N, Okamoto E and Rodríguez-Henríquez F. Hardware Accelerator for the Tate Pairing in Characteristic Three Based on Karatsuba-Ofman Multipliers. Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems. (225-239).

    https://doi.org/10.1007/978-3-642-04138-9_17

  • Meher P. (2009). Systolic and non-systolic scalable modular designs of finite field multipliers for reed-solomon codec. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 17:6. (747-757). Online publication date: 1-Jun-2009.

    https://doi.org/10.1109/TVLSI.2008.2006080

  • Meher P. (2009). On efficient implementation of accumulation in finite field over GF(2m) and its applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 17:4. (541-550). Online publication date: 1-Apr-2009.

    https://doi.org/10.1109/TVLSI.2008.2005288

  • Keller M, Byrne A and Marnane W. (2009). Elliptic Curve Cryptography on FPGA for Low-Power Applications. ACM Transactions on Reconfigurable Technology and Systems. 2:1. (1-20). Online publication date: 1-Mar-2009.

    https://doi.org/10.1145/1502781.1502783

  • Järvinen K and Skyttä J. (2008). On parallelization of high-speed processors for elliptic curve cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16:9. (1162-1175). Online publication date: 1-Sep-2008.

    https://doi.org/10.1109/TVLSI.2008.2000728

  • Beuchat J, Brisebarre N, Detrey J, Okamoto E and Rodríguez-Henríquez F. A Comparison between Hardware Accelerators for the Modified Tate Pairing over $\mathbb{F}_{2^m}$ and $\mathbb{F}_{3^m}$. Proceedings of the 2nd international conference on Pairing-Based Cryptography. (297-315).

    https://doi.org/10.1007/978-3-540-85538-5_20

  • Fournaris A and Koufopavlou O. (2008). Versatile multiplier architectures in GF(2k) fields using the Montgomery multiplication algorithm. Integration, the VLSI Journal. 41:3. (371-384). Online publication date: 1-May-2008.

    https://doi.org/10.1016/j.vlsi.2007.07.004

  • Chelton W and Benaissa M. (2008). Fast elliptic curve cryptography on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16:2. (198-205). Online publication date: 1-Feb-2008.

    https://doi.org/10.1109/TVLSI.2007.912228

  • Ansari B and Wu H. (2007). Efficient finite field processor for GF(2<SUP align=right>163</SUP>) and its implementation. International Journal of High Performance Systems Architecture. 1:2. (106-112). Online publication date: 1-Oct-2007.

    https://doi.org/10.1504/IJHPSA.2007.015396

  • Meurice De Dormale G, Bulens P and Quisquater J. Collision Search for Elliptic Curve Discrete Logarithm over GF(2m) with FPGA. Proceedings of the 9th international workshop on Cryptographic Hardware and Embedded Systems. (378-393).

    https://doi.org/10.1007/978-3-540-74735-2_26

  • Beuchat J, Brisebarre N, Detrey J and Okamoto E. Arithmetic Operators for Pairing-Based Cryptography. Proceedings of the 9th international workshop on Cryptographic Hardware and Embedded Systems. (239-255).

    https://doi.org/10.1007/978-3-540-74735-2_17

  • Keller M and Marnane W. Low power elliptic curve cryptography. Proceedings of the 17th international conference on Integrated Circuit and System Design: power and timing modeling, optimization and simulation. (310-319).

    /doi/10.5555/2391795.2391833

  • Keller M, Ronan R, Marnane W and Murphy C. (2007). Hardware architectures for the Tate pairing over GF(2m). Computers and Electrical Engineering. 33:5-6. (392-406). Online publication date: 1-Sep-2007.

    https://doi.org/10.1016/j.compeleceng.2007.05.002

  • Beuchat J, Brisebarre N, Shirase M, Takagi T and Okamoto E. A Coprocessor for the Final Exponentiation of the <em>η</em>TPairing in Characteristic Three. Proceedings of the 1st international workshop on Arithmetic of Finite Fields. (25-39).

    https://doi.org/10.1007/978-3-540-73074-3_4

  • Bayat-Sarmadi S and Hasan M. (2007). On concurrent detection of errors in polynomial basis multiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 15:4. (413-426). Online publication date: 1-Apr-2007.

    https://doi.org/10.1109/TVLSI.2007.893659

  • Beuchat J, Miyoshi T, Oyama Y and Okamoto E. Multiplication over Fpm on FPGA. Proceedings of the 3rd international conference on Reconfigurable computing: architectures, tools and applications. (214-225).

    /doi/10.5555/1764631.1764656

  • Kumar S, Wollinger T and Paar C. (2006). Optimum Digit Serial GF(2^m) Multipliers for Curve-Based Cryptography. IEEE Transactions on Computers. 55:10. (1306-1311). Online publication date: 1-Oct-2006.

    https://doi.org/10.1109/TC.2006.165

  • Reyhani-Masoleh A. (2006). Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases. IEEE Transactions on Computers. 55:1. (34-47). Online publication date: 1-Jan-2006.

    https://doi.org/10.1109/TC.2006.10

  • Kim C, Kwon S, Hong C and Nam I. A new digit-serial systolic mulitplier for high performance GF(2) applications. Proceedings of the First international conference on High Performance Computing and Communications. (560-566).

    https://doi.org/10.1007/11557654_66

  • Kim C, Hong C and Kwon S. (2005). A digit-serial multiplier for finite field GF(2). IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 13:4. (476-483). Online publication date: 1-Apr-2005.

    https://doi.org/10.1109/TVLSI.2004.842923

  • Kim C, Kwon S and Hong C. A fast digit-serial systolic multiplier for finite field GF(2). Proceedings of the 2005 Asia and South Pacific Design Automation Conference. (1268-1271).

    https://doi.org/10.1145/1120725.1121040

  • Kim H, Wollinger T, Choi Y, Chung K and Paar C. Hyperelliptic curve coprocessors on a FPGA. Proceedings of the 5th international conference on Information Security Applications. (360-374).

    https://doi.org/10.1007/978-3-540-31815-6_29

  • Xiao L and Heys H. Hardware performance characterization of block cipher structures. Proceedings of the 2003 RSA conference on The cryptographers' track. (176-182).

    /doi/10.5555/1767011.1767029

  • Gura N, Shantz S, Eberle H, Gupta S, Gupta V, Finchelstein D, Goupy E and Stebila D. An End-to-End Systems Approach to Elliptic Curve Cryptography. Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded Systems. (349-365).

    /doi/10.5555/648255.752742

  • Li H and Zhang C. (2002). Low-complexity versatile finite field multiplier in normal basis. EURASIP Journal on Advances in Signal Processing. 2002:1. (954-960). Online publication date: 1-Jan-2002.

    /doi/10.5555/1283100.1283197

  • Hasan M. (2000). Look-Up Table-Based Large Finite Field Multiplication in Memory Constrained Cryptosystems. IEEE Transactions on Computers. 49:7. (749-758). Online publication date: 1-Jul-2000.

    https://doi.org/10.1109/12.863045

  • Paar C, Fleischmann P and Soria-Rodriguez P. (1999). Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents. IEEE Transactions on Computers. 48:10. (1025-1034). Online publication date: 1-Oct-1999.

    https://doi.org/10.1109/12.805153