• Jiang J, Huang H, Zheng Z, Wei Y, Fu F, Li X and Cui B. (2025). Detecting and Analyzing Motifs in Large-Scale Online Transaction Networks. IEEE Transactions on Knowledge and Data Engineering. 37:2. (584-596). Online publication date: 1-Feb-2025.

    https://doi.org/10.1109/TKDE.2024.3511136

  • Fang P, Li Z, Khan A, Luo S, Wang F, Shi Z and Feng D. (2025). Information-Oriented Random Walks and Pipeline Optimization for Distributed Graph Embedding. IEEE Transactions on Knowledge and Data Engineering. 37:1. (408-422). Online publication date: 1-Jan-2025.

    https://doi.org/10.1109/TKDE.2024.3424333

  • Yang Y, Li Q, Jia J, Hong Y and Wang B. Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses. Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security. (2829-2843).

    https://doi.org/10.1145/3658644.3690187

  • Zhao Y, Wang K and Louri A. (2024). OPT-GCN: A Unified and Scalable Chiplet-Based Accelerator for High-Performance and Energy-Efficient GCN Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 43:12. (4827-4840). Online publication date: 1-Dec-2024.

    https://doi.org/10.1109/TCAD.2024.3401543

  • Akturan A. (2024). Yapay Zekânın İşletme Yönetimi ve Liderlik Üzerindeki Etkileri: Bir Literatür İncelemesi. Sinop Üniversitesi Sosyal Bilimler Dergisi. 10.30561/sinopusd.1554856. 8:2. (1305-1348).

    http://dergipark.org.tr/tr/doi/10.30561/sinopusd.1554856

  • Bae J, Choi J, Pasini M, Mehta K, Zhang P and Ibrahim K. (2024). MDLoader: A Hybrid Model-Driven Data Loader for Distributed Graph Neural Network Training SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SCW63240.2024.00145. 979-8-3503-5554-3. (1046-1057).

    https://ieeexplore.ieee.org/document/10820758/

  • Lin Y, Xu Z and Prasanna V. (2024). xBS-GNN: Accelerating Billion-Scale GNNTraining on FPGA SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SCW63240.2024.00091. 979-8-3503-5554-3. (659-666).

    https://ieeexplore.ieee.org/document/10820595/

  • Xia Y, Yang D, Zhou X and Cheng D. Scaling New Heights: Transformative Cross-GPU Sampling for Training Billion-Edge Graphs. Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. (1-15).

    https://doi.org/10.1109/SC41406.2024.00056

  • Wong C, Feng F, Zhang W, Chen H, Vong C and Chen C. (2024). Billion-scale pre-trained knowledge graph model for conversational chatbot. Neurocomputing. 606:C. Online publication date: 14-Nov-2024.

    https://doi.org/10.1016/j.neucom.2024.128353

  • Yin L, Gandham S, Lin M and Zheng H. (2024). SCALE: A Structure-Centric Accelerator for Message Passing Graph Neural Networks 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO). 10.1109/MICRO61859.2024.00050. 979-8-3503-5057-9. (580-593).

    https://ieeexplore.ieee.org/document/10764549/

  • Xia Y, Zhang Z, Yang D, Hu C, Zhou X, Chen H, Sang Q and Cheng D. (2024). Redundancy-Free and Load-Balanced TGNN Training With Hierarchical Pipeline Parallelism. IEEE Transactions on Parallel and Distributed Systems. 35:11. (1904-1919). Online publication date: 1-Nov-2024.

    https://doi.org/10.1109/TPDS.2024.3432855

  • Deng B, Chen J, Hu Y, Xu Z, Chen C and Zhang T. PROSPECT: Learn MLPs on Graphs Robust against Adversarial Structure Attacks. Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. (425-435).

    https://doi.org/10.1145/3627673.3679857

  • Song J, Jang H, Lim H, Jung J, Kim Y and Lee J. GraNNDis: Fast Distributed Graph Neural Network Training Framework for Multi-Server Clusters. Proceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques. (91-107).

    https://doi.org/10.1145/3656019.3676892

  • Sarkar A, Ghosh S, Tallent N and Jannesari A. (2024). MassiveGNN: Efficient Training via Prefetching for Massively Connected Distributed Graphs 2024 IEEE International Conference on Cluster Computing (CLUSTER). 10.1109/CLUSTER59578.2024.00013. 979-8-3503-5871-1. (62-73).

    https://ieeexplore.ieee.org/document/10740911/

  • Lee C, Hewes V, Cerati G, Wang K, Aurisano A, Agrawal A, Choudhary A and Liao W. (2024). Addressing GPU memory limitations for Graph Neural Networks in High-Energy Physics applications. Frontiers in High Performance Computing. 10.3389/fhpcp.2024.1458674. 2.

    https://www.frontiersin.org/articles/10.3389/fhpcp.2024.1458674/full

  • Shao Y, Li H, Gu X, Yin H, Li Y, Miao X, Zhang W, Cui B and Chen L. (2024). Distributed Graph Neural Network Training: A Survey. ACM Computing Surveys. 56:8. (1-39). Online publication date: 31-Aug-2024.

    https://doi.org/10.1145/3648358

  • Zhang Y, Liu X, Wu M, Yan W, Yan M, Ye X and Fan D. Disttack: Graph Adversarial Attacks Toward Distributed GNN Training. Euro-Par 2024: Parallel Processing. (302-316).

    https://doi.org/10.1007/978-3-031-69766-1_21

  • Zheng D, Song X, Zhu Q, Zhang J, Vasiloudis T, Ma R, Zhang H, Wang Z, Adeshina S, Nisa I, Mottini A, Cui Q, Rangwala H, Zeng B, Faloutsos C and Karypis G. GraphStorm: All-in-one Graph Machine Learning Framework for Industry Applications. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (6356-6367).

    https://doi.org/10.1145/3637528.3671603

  • Hang J, Hong Z, Feng X, Wang G, Yang G, Li F, Song X and Zhang D. Paths2Pair: Meta-path Based Link Prediction in Billion-Scale Commercial Heterogeneous Graphs. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (5082-5092).

    https://doi.org/10.1145/3637528.3671563

  • Yan D, Yuan L, Ahmad A, Zheng C, Chen H and Cheng J. Systems for Scalable Graph Analytics and Machine Learning: Trends and Methods. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (6627-6632).

    https://doi.org/10.1145/3637528.3671472

  • Hang J, Hong Z, Feng X, Wang G, Cao D, Qiao J, Wang H and Zhang D. (2024). Complex-Path: Effective and Efficient Node Ranking with Paths in Billion-Scale Heterogeneous Graphs. Proceedings of the VLDB Endowment. 17:12. (3973-3986). Online publication date: 1-Aug-2024.

    https://doi.org/10.14778/3685800.3685820

  • Zhao T, Song X, Li M, Li J, Luo W and Razzak I. Distributed Optimization of Graph Convolutional Network Using Subgraph Variance. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2023.3243904. 35:8. (10764-10775).

    https://ieeexplore.ieee.org/document/10049378/

  • Xue Y, Jin Z and Gao W. (2024). A Data-centric graph neural network for node classification of heterophilic networks. International Journal of Machine Learning and Cybernetics. 10.1007/s13042-024-02100-y. 15:8. (3413-3423). Online publication date: 1-Aug-2024.

    https://link.springer.com/10.1007/s13042-024-02100-y

  • Sheng Z, Zhang W, Tao Y and Cui B. (2024). OUTRE: An OUT-of-Core De-REdundancy GNN Training Framework for Massive Graphs within A Single Machine. Proceedings of the VLDB Endowment. 17:11. (2960-2973). Online publication date: 1-Jul-2024.

    https://doi.org/10.14778/3681954.3681976

  • Guliyev R, Haldar A and Ferhatosmanoglu H. (2024). D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural Networks. Proceedings of the VLDB Endowment. 17:11. (2764-2777). Online publication date: 1-Jul-2024.

    https://doi.org/10.14778/3681954.3681961

  • Huan C, Liu Y, Zhang H, Song S, Pandey S, Chen S, Fang X, Jin Y, Lepers B, Wu Y and Liu H. (2024). TEA+: A Novel Temporal Graph Random Walk Engine with Hybrid Storage Architecture. ACM Transactions on Architecture and Code Optimization. 21:2. (1-26). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3652604

  • Kose H, Nunez-Yanez J, Piechocki R and Pope J. (2024). A Survey of Computationally Efficient Graph Neural Networks for Reconfigurable Systems. Information. 10.3390/info15070377. 15:7. (377).

    https://www.mdpi.com/2078-2489/15/7/377

  • Wang J, Wu Y and Wang D. SC-GNN: A Communication-Efficient Semantic Compression for Distributed Training of GNNs. Proceedings of the 61st ACM/IEEE Design Automation Conference. (1-6).

    https://doi.org/10.1145/3649329.3657383

  • Wang K, Xu Y and Luo S. (2024). TIGER: Training Inductive Graph Neural Network for Large-Scale Knowledge Graph Reasoning. Proceedings of the VLDB Endowment. 17:10. (2459-2472). Online publication date: 1-Jun-2024.

    https://doi.org/10.14778/3675034.3675039

  • Xu X, Wang F, Jiang H, Cheng Y, Feng D and Fang P. (2024). A disk I/O optimized system for concurrent graph processing jobs. Frontiers of Computer Science: Selected Publications from Chinese Universities. 18:3. Online publication date: 1-Jun-2024.

    https://doi.org/10.1007/s11704-023-2361-0

  • Gao S, Li Y, Zhang X, Shen Y, Shao Y and Chen L. (2024). SIMPLE: Efficient Temporal Graph Neural Network Training at Scale with Dynamic Data Placement. Proceedings of the ACM on Management of Data. 2:3. (1-25). Online publication date: 29-May-2024.

    https://doi.org/10.1145/3654977

  • Ding Z, Xiang Y, Wang S, Xie X and Zhou S. (2024). Play like a Vertex: A Stackelberg Game Approach for Streaming Graph Partitioning. Proceedings of the ACM on Management of Data. 2:3. (1-27). Online publication date: 29-May-2024.

    https://doi.org/10.1145/3654965

  • Lin Y, Chen Y, Gobriel S, Jain N, Jha G and Prasanna V. (2024). ARGO: An Auto-Tuning Runtime System for Scalable GNN Training on Multi-Core Processor 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS57955.2024.00039. 979-8-3503-8711-7. (361-372).

    https://ieeexplore.ieee.org/document/10579147/

  • Zhang M, Sun M, Wang P, Fan S, Mo Y, Xu X, Liu H, Yang C and Shi C. GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks. Proceedings of the ACM Web Conference 2024. (1003-1014).

    https://doi.org/10.1145/3589334.3645682

  • Zhang M, Hu Q, Wan C, Wang H, Sun P, Wen Y and Zhang T. (2024). Sylvie: 3D-Adaptive and Universal System for Large-Scale Graph Neural Network Training 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00293. 979-8-3503-1715-2. (3823-3836).

    https://ieeexplore.ieee.org/document/10597750/

  • Li X and Chen L. (2024). Graph Anomaly Detection with Domain-Agnostic Pre-Training and Few-Shot Adaptation 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00209. 979-8-3503-1715-2. (2667-2680).

    https://ieeexplore.ieee.org/document/10597726/

  • Huang X, Lin D, Huang W, Sun S, Wen J and Chen C. (2024). PlatoD2GL: An Efficient Dynamic Deep Graph Learning System for Graph Neural Network Training on Billion-Scale Graphs 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00191. 979-8-3503-1715-2. (2421-2434).

    https://ieeexplore.ieee.org/document/10597951/

  • Abdallah H, Afandi W, Kalnis P and Mansour E. (2024). Task-Oriented GNNs Training on Large Knowledge Graphs for Accurate and Efficient Modeling 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00148. 979-8-3503-1715-2. (1833-1846).

    https://ieeexplore.ieee.org/document/10597998/

  • Li H, Di S, Chen L and Zhou X. (2024). E 2 GCL: Efficient and Expressive Contrastive Learning on Graph Neural Networks 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00071. 979-8-3503-1715-2. (859-873).

    https://ieeexplore.ieee.org/document/10598084/

  • Lin Y, Deng G and Prasanna V. A Unified CPU-GPU Protocol for GNN Training. Proceedings of the 21st ACM International Conference on Computing Frontiers. (155-163).

    https://doi.org/10.1145/3649153.3649191

  • Chen S, Liu J and Shen L. A Survey on Graph Neural Network Acceleration: A Hardware Perspective. Chinese Journal of Electronics. 10.23919/cje.2023.00.135. 33:3. (601-622).

    https://ieeexplore.ieee.org/document/10543244/

  • Yu Z, Liao N and Luo S. (2024). GENTI: GPU-Powered Walk-Based Subgraph Extraction for Scalable Representation Learning on Dynamic Graphs. Proceedings of the VLDB Endowment. 17:9. (2269-2278). Online publication date: 1-May-2024.

    https://doi.org/10.14778/3665844.3665856

  • Lin Y, Zhang B and Prasanna V. (2024). HitGNN: High-Throughput GNN Training Framework on CPU+Multi-FPGA Heterogeneous Platform. IEEE Transactions on Parallel and Distributed Systems. 35:5. (707-719). Online publication date: 1-May-2024.

    https://doi.org/10.1109/TPDS.2024.3371332

  • Besta M and Hoefler T. (2024). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 46:5. (2584-2606). Online publication date: 1-May-2024.

    https://doi.org/10.1109/TPAMI.2023.3303431

  • Mei J, Sun S, Li C, Xu C, Chen C, Liu Y, Wang J, Zhao C, Hou X, Guo M, He B and Cong X. (2024). FlowWalker: A Memory-Efficient and High-Performance GPU-Based Dynamic Graph Random Walk Framework. Proceedings of the VLDB Endowment. 17:8. (1788-1801). Online publication date: 1-Apr-2024.

    https://doi.org/10.14778/3659437.3659438

  • Li Z, Jian X, Wang Y, Shao Y and Chen L. (2024). DAHA: Accelerating GNN Training with Data and Hardware Aware Execution Planning. Proceedings of the VLDB Endowment. 17:6. (1364-1376). Online publication date: 1-Feb-2024.

    https://doi.org/10.14778/3648160.3648176

  • Yuan H, Liu Y, Zhang Y, Ai X, Wang Q, Chen C, Gu Y and Yu G. (2024). Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective. Proceedings of the VLDB Endowment. 17:6. (1241-1254). Online publication date: 1-Feb-2024.

    https://doi.org/10.14778/3648160.3648167

  • Park J, Mailthody V, Qureshi Z and Hwu W. (2024). Accelerating Sampling and Aggregation Operations in GNN Frameworks with GPU Initiated Direct Storage Accesses. Proceedings of the VLDB Endowment. 17:6. (1227-1240). Online publication date: 1-Feb-2024.

    https://doi.org/10.14778/3648160.3648166

  • Zeng L, Chen X, Huang P, Luo K, Zhang X and Zhou Z. (2023). Serving Graph Neural Networks With Distributed Fog Servers for Smart IoT Services. IEEE/ACM Transactions on Networking. 32:1. (550-565). Online publication date: 1-Feb-2024.

    https://doi.org/10.1109/TNET.2023.3293052

  • Zhang H, Wu B, Yuan X, Pan S, Tong H and Pei J. Trustworthy Graph Neural Networks: Aspects, Methods, and Trends. Proceedings of the IEEE. 10.1109/JPROC.2024.3369017. 112:2. (97-139).

    https://ieeexplore.ieee.org/document/10477407/

  • Tang D, Wang J, Chen R, Wang L, Yu W, Zhou J and Li K. (2024). XGNN: Boosting Multi-GPU GNN Training via Global GNN Memory Store. Proceedings of the VLDB Endowment. 17:5. (1105-1118). Online publication date: 1-Jan-2024.

    https://doi.org/10.14778/3641204.3641219

  • Gao S, Li Y, Shen Y, Shao Y and Chen L. (2024). ETC: Efficient Training of Temporal Graph Neural Networks over Large-Scale Dynamic Graphs. Proceedings of the VLDB Endowment. 17:5. (1060-1072). Online publication date: 1-Jan-2024.

    https://doi.org/10.14778/3641204.3641215

  • Yu H, Zhang Y, Zhao J, Liao Y, Huang Z, He D, Gu L, Jin H, Liao X, Liu H, He B and Yue J. (2023). RACE: An Efficient Redundancy-aware Accelerator for Dynamic Graph Neural Network. ACM Transactions on Architecture and Code Optimization. 20:4. (1-26). Online publication date: 31-Dec-2024.

    https://doi.org/10.1145/3617685

  • Wang Q, Chen Y, Wong W and He B. (2023). HongTu: Scalable Full-Graph GNN Training on Multiple GPUs. Proceedings of the ACM on Management of Data. 1:4. (1-27). Online publication date: 8-Dec-2023.

    https://doi.org/10.1145/3626733

  • Chen F, Li P and Wu C. (2023). DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using Graph Partitioning by Chunks. Proceedings of the ACM on Management of Data. 1:4. (1-25). Online publication date: 8-Dec-2023.

    https://doi.org/10.1145/3626724

  • Zhong K, Zeng S, Hou W, Dai G, Zhu Z, Zhang X, Xiao S, Yang H and Wang Y. (2023). CoGNN: An Algorithm-Hardware Co-Design Approach to Accelerate GNN Inference With Minibatch Sampling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 42:12. (4883-4896). Online publication date: 1-Dec-2023.

    https://doi.org/10.1109/TCAD.2023.3279302

  • Lin H, Yan M, Ye X, Fan D, Pan S, Chen W and Xie Y. A Comprehensive Survey on Distributed Training of Graph Neural Networks. Proceedings of the IEEE. 10.1109/JPROC.2023.3337442. 111:12. (1572-1606).

    https://ieeexplore.ieee.org/document/10348966/

  • Xie J, Feng Y and Sun Y. A Sampling Method for Performance Predictor Based on Contrastive Learning. AI 2023: Advances in Artificial Intelligence. (215-226).

    https://doi.org/10.1007/978-981-99-8388-9_18

  • Wang J, Chen Q, Zeng D, Song Z, Chen C and Guo M. (2023). STAG: Enabling Low Latency and Low Staleness of GNN-based Services with Dynamic Graphs 2023 IEEE 41st International Conference on Computer Design (ICCD). 10.1109/ICCD58817.2023.00034. 979-8-3503-4291-8. (170-173).

    https://ieeexplore.ieee.org/document/10361004/

  • Chen C, Gao D, Zhang Y, Wang Q, Fu Z, Zhang X, Zhu J, Gu Y and Yu G. (2023). NeutronStream: A Dynamic GNN Training Framework with Sliding Window for Graph Streams. Proceedings of the VLDB Endowment. 17:3. (455-468). Online publication date: 1-Nov-2023.

    https://doi.org/10.14778/3632093.3632108

  • Yang R, Shi J, Xiao X, Yang Y, Bhowmick S and Liu J. (2023). PANE: scalable and effective attributed network embedding. The VLDB Journal — The International Journal on Very Large Data Bases. 32:6. (1237-1262). Online publication date: 1-Nov-2023.

    https://doi.org/10.1007/s00778-023-00790-4

  • Renz-Wieland A, Kieslinger A, Gericke R, Gemulla R, Kaoudi Z and Markl V. Good Intentions: Adaptive Parameter Management via Intent Signaling. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (2156-2166).

    https://doi.org/10.1145/3583780.3614895

  • An J, Aliaj E and Jun S. Barad-dur: Near-Storage Accelerator for Training Large Graph Neural Networks. Proceedings of the 32nd International Conference on Parallel Architectures and Compilation Techniques. (225-237).

    https://doi.org/10.1109/PACT58117.2023.00027

  • Jin Y, Huan C, Zhang H, Liu Y, Song S, Zhao R, Zhang Y, He C and Chen W. G-Sparse: Compiler-Driven Acceleration for Generalized Sparse Computation for Graph Neural Networks on Modern GPUs. Proceedings of the 32nd International Conference on Parallel Architectures and Compilation Techniques. (137-149).

    https://doi.org/10.1109/PACT58117.2023.00020

  • Li X, Sun L, Ling M and Peng Y. (2023). A survey of graph neural network based recommendation in social networks. Neurocomputing. 549:C. Online publication date: 7-Sep-2023.

    https://doi.org/10.1016/j.neucom.2023.126441

  • Liu Z, Li M, Li M, Liao L and Li K. (2023). An Efficient Hierarchical-Reduction Architecture for Aggregation in Route Travel Time Estimation. IEEE Transactions on Parallel and Distributed Systems. 34:9. (2541-2552). Online publication date: 1-Sep-2023.

    https://doi.org/10.1109/TPDS.2023.3292841

  • Jin H, Chen D, Zheng L, Huang Y, Yao P, Zhao J, Liao X and Jiang W. (2023). Accelerating Graph Convolutional Networks Through a PIM-Accelerated Approach. IEEE Transactions on Computers. 72:9. (2628-2640). Online publication date: 1-Sep-2023.

    https://doi.org/10.1109/TC.2023.3257514

  • Peng J, Chen Z, Shao Y, Shen Y, Chen L and Cao J. SANCUS. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. (6480-6485).

    https://doi.org/10.24963/ijcai.2023/724

  • Xia Y, Zhang Z, Wang H, Yang D, Zhou X and Cheng D. Redundancy-Free High-Performance Dynamic GNN Training with Hierarchical Pipeline Parallelism. Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing. (17-30).

    https://doi.org/10.1145/3588195.3592990

  • Wang H, Yang R, Huang K and Xiao X. Efficient and Effective Edge-wise Graph Representation Learning. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (2326-2336).

    https://doi.org/10.1145/3580305.3599321

  • Zou Y, Ding Z, Shi J, Guo S, Su C and Zhang Y. (2023). EmbedX: A Versatile, Efficient and Scalable Platform to Embed Both Graphs and High-Dimensional Sparse Data. Proceedings of the VLDB Endowment. 16:12. (3543-3556). Online publication date: 1-Aug-2023.

    https://doi.org/10.14778/3611540.3611546

  • Tang Y, Ding Z, Jankov D, Yuan B, Bourgeois D and Jermaine C. Auto-differentiation of relational computations for very large scale machine learning. Proceedings of the 40th International Conference on Machine Learning. (33581-33598).

    /doi/10.5555/3618408.3619806

  • Liu Y, Yang C, Zhao T, Han H, Zhang S, Wu J, Zhou G, Huang H, Wang H and Shi C. GammaGL: A Multi-Backend Library for Graph Neural Networks. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2861-2870).

    https://doi.org/10.1145/3539618.3591891

  • Zhang Y and Kumar A. (2023). Lotan: Bridging the Gap between GNNs and Scalable Graph Analytics Engines. Proceedings of the VLDB Endowment. 16:11. (2728-2741). Online publication date: 1-Jul-2023.

    https://doi.org/10.14778/3611479.3611483

  • Qi J, Zhao Z, Tanin E, Cui T, Nassir N and Sarvi M. (2023). A Graph and Attentive Multi-Path Convolutional Network for Traffic Prediction. IEEE Transactions on Knowledge and Data Engineering. 35:7. (6548-6560). Online publication date: 1-Jul-2023.

    https://doi.org/10.1109/TKDE.2022.3179646

  • Yu W, He T, Wang L, Meng K, Cao Y, Zhu D, Li S and Zhou J. (2023). Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. Proceedings of the ACM on Management of Data. 1:2. (1-27). Online publication date: 13-Jun-2023.

    https://doi.org/10.1145/3589780

  • Li H and Chen L. (2023). EARLY: Efficient and Reliable Graph Neural Network for Dynamic Graphs. Proceedings of the ACM on Management of Data. 1:2. (1-28). Online publication date: 13-Jun-2023.

    https://doi.org/10.1145/3589308

  • Wu W, Tu F, Niu M, Yue Z, Liu L, Wei S, Li X, Hu Y and Yin S. STAR: An STGCN ARchitecture for Skeleton-Based Human Action Recognition. IEEE Transactions on Circuits and Systems I: Regular Papers. 10.1109/TCSI.2023.3254610. 70:6. (2370-2383).

    https://ieeexplore.ieee.org/document/10071710/

  • Molan M, Khan J, Bartolini A, Turra R, Pedrazzi G, Cochez M, Iosup A, Roman D, Rožanec J, Vărbănescu A and Prodan R. (2023). The Graph-Massivizer Approach Toward a European Sustainable Data Center Digital Twin 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). 10.1109/COMPSAC57700.2023.00224. 979-8-3503-2697-0. (1459-1464).

    https://ieeexplore.ieee.org/document/10196815/

  • Zhou Y, Song Y, Leng J, Liu Z, Cui W, Zhang Z, Guo C, Chen Q, Li L and Guo M. AdaptGear. Proceedings of the 20th ACM International Conference on Computing Frontiers. (52-62).

    https://doi.org/10.1145/3587135.3592199

  • Waleffe R, Mohoney J, Rekatsinas T and Venkataraman S. MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks. Proceedings of the Eighteenth European Conference on Computer Systems. (144-161).

    https://doi.org/10.1145/3552326.3567501

  • Huan C, Song S, Pandey S, Liu H, Liu Y, Lepers B, He C, Chen K, Jiang J and Wu Y. TEA: A General-Purpose Temporal Graph Random Walk Engine. Proceedings of the Eighteenth European Conference on Computer Systems. (182-198).

    https://doi.org/10.1145/3552326.3567491

  • Lin Y and Prasanna V. (2023). HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS54959.2023.00062. 979-8-3503-3766-2. (557-567).

    https://ieeexplore.ieee.org/document/10177462/

  • Cen Y, Hou Z, Wang Y, Chen Q, Luo Y, Yu Z, Zhang H, Yao X, Zeng A, Guo S, Dong Y, Yang Y, Zhang P, Dai G, Wang Y, Zhou C, Yang H and Tang J. CogDL: A Comprehensive Library for Graph Deep Learning. Proceedings of the ACM Web Conference 2023. (747-758).

    https://doi.org/10.1145/3543507.3583472

  • Hoang V, Jeon H, You E, Yoon Y, Jung S and Lee O. (2023). Graph Representation Learning and Its Applications: A Survey. Sensors. 10.3390/s23084168. 23:8. (4168).

    https://www.mdpi.com/1424-8220/23/8/4168

  • de Lama Sanchez N, Haase P, Roman D and Prodan R. Boosting the Impact of Extreme and Sustainable Graph Processing for Urgent Societal Challenges in Europe Graph-Massivizer: A Horizon Europe Project. Companion of the 2023 ACM/SPEC International Conference on Performance Engineering. (233-238).

    https://doi.org/10.1145/3578245.3585334

  • Qin X, Sheikh N, Lei C, Reinwald B and Domeniconi G. (2023). SEIGN: A Simple and Efficient Graph Neural Network for Large Dynamic Graphs 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00218. 979-8-3503-2227-9. (2850-2863).

    https://ieeexplore.ieee.org/document/10184567/

  • Gao C, Zheng Y, Li N, Li Y, Qin Y, Piao J, Quan Y, Chang J, Jin D, He X and Li Y. (2023). A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Transactions on Recommender Systems. 1:1. (1-51). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3568022

  • Biswas S. (2023). Graph Neural Network and Its Applications. Concepts and Techniques of Graph Neural Networks. 10.4018/978-1-6684-6903-3.ch002. (19-32).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-6903-3.ch002

  • Zeng L, Yang C, Huang P, Zhou Z, Yu S and Chen X. GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers. IEEE Journal on Selected Areas in Communications. 10.1109/JSAC.2022.3229422. 41:3. (720-739).

    https://ieeexplore.ieee.org/document/9996395/

  • Fang J, Wang X, Zhang A, Liu Z, He X and Chua T. Cooperative Explanations of Graph Neural Networks. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. (616-624).

    https://doi.org/10.1145/3539597.3570378

  • Cai Z, Zhou Q, Yan X, Zheng D, Song X, Zheng C, Cheng J and Karypis G. DSP. Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. (392-404).

    https://doi.org/10.1145/3572848.3577528

  • Wang C, Sun D and Bai Y. PiPAD. Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. (405-418).

    https://doi.org/10.1145/3572848.3577487

  • Yang S, Zhang M, Dong W and Li D. Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning. Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. (103-117).

    https://doi.org/10.1145/3575693.3575725

  • Zhou Y, Leng J, Song Y, Lu S, Wang M, Li C, Guo M, Shen W, Li Y, Lin W, Liu X and Wu H. (2023). uGrapher: High-Performance Graph Operator Computation via Unified Abstraction for Graph Neural Networks ASPLOS '23: 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 10.1145/3575693.3575723. 9781450399166. (878-891). Online publication date: 27-Jan-2023.

    https://dl.acm.org/doi/10.1145/3575693.3575723

  • Jia M, Gabrys B and Musial K. A Network Science Perspective of Graph Convolutional Networks: A Survey. IEEE Access. 10.1109/ACCESS.2023.3268797. 11. (39083-39122).

    https://ieeexplore.ieee.org/document/10105866/

  • Yik J, Kuppannagari S, Zeng H and Prasanna V. (2022). Input Feature Pruning for Accelerating GNN Inference on Heterogeneous Platforms 2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC). 10.1109/HiPC56025.2022.00045. 978-1-6654-9423-6. (282-291).

    https://ieeexplore.ieee.org/document/10106342/

  • Das M, Jatala V and Gupta G. (2022). Joint Partitioning and Sampling Algorithm for Scaling Graph Neural Network 2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC). 10.1109/HiPC56025.2022.00018. 978-1-6654-9423-6. (42-47).

    https://ieeexplore.ieee.org/document/10106346/

  • Xu J, Xi X, Chen J, Sheng V, Ma J and Cui Z. (2022). A Survey of Deep Learning for Electronic Health Records. Applied Sciences. 10.3390/app122211709. 12:22. (11709).

    https://www.mdpi.com/2076-3417/12/22/11709

  • Yang D, Liu J, Qi J and Lai J. WholeGraph. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. (1-14).

    /doi/10.5555/3571885.3571956

  • Yang D, Liu J, Qi J and Lai J. (2022). WholeGraph: A Fast Graph Neural Network Training Framework with Multi-GPU Distributed Shared Memory Architecture SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SC41404.2022.00059. 978-1-6654-5444-5. (1-14).

    https://ieeexplore.ieee.org/document/10046129/

  • Tian T, Zhao L, Wang X, Wu Q, Yuan W and Jin X. (2022). FP-GNN. Future Generation Computer Systems. 136:C. (294-310). Online publication date: 1-Nov-2022.

    https://doi.org/10.1016/j.future.2022.06.010

  • Sindhu K, Seshadri K and Kollengode C. (2022). Workload characterization and synthesis for cloud using generative stochastic processes. The Journal of Supercomputing. 78:17. (18825-18855). Online publication date: 1-Nov-2022.

    https://doi.org/10.1007/s11227-022-04597-y

  • Wan X, Chen K and Zhang Y. (2022). DGS: Communication-Efficient Graph Sampling for Distributed GNN Training 2022 IEEE 30th International Conference on Network Protocols (ICNP). 10.1109/ICNP55882.2022.9940348. 978-1-6654-8234-9. (1-11).

    https://ieeexplore.ieee.org/document/9940348/

  • Lin D, Sun S, Ding J, Ke X, Gu H, Huang X, Song C, Zhang X, Yi L, Wen J and Chen C. PlatoGL: Effective and Scalable Deep Graph Learning System for Graph-enhanced Real-Time Recommendation. Proceedings of the 31st ACM International Conference on Information & Knowledge Management. (3302-3311).

    https://doi.org/10.1145/3511808.3557084

  • Zhou Z, Li C, Wei X, Wang X and Sun G. GNNear. Proceedings of the International Conference on Parallel Architectures and Compilation Techniques. (54-68).

    https://doi.org/10.1145/3559009.3569670

  • Huan C, Song S, Liu Y, Zhang H, Liu H, He C, Chen K, Jiang J and Wu Y. T-GCN. Proceedings of the International Conference on Parallel Architectures and Compilation Techniques. (69-82).

    https://doi.org/10.1145/3559009.3569648

  • Papadias S, Kaoudi Z, Quiané-Ruiz J and Markl V. (2022). Space-efficient random walks on streaming graphs. Proceedings of the VLDB Endowment. 16:2. (356-368). Online publication date: 1-Oct-2022.

    https://doi.org/10.14778/3565816.3565835

  • Lu H, Song Z, Li X, Jing N and Liang X. (2022). GCNTrain: A Unified and Efficient Accelerator for Graph Convolutional Neural Network Training 2022 IEEE 40th International Conference on Computer Design (ICCD). 10.1109/ICCD56317.2022.00112. 978-1-6654-6186-3. (730-737).

    https://ieeexplore.ieee.org/document/9978337/

  • Xu Q, Zhang F, Zhang M, Zhai J, He B, Yang C, Zhang S, Lin J, Liu H and Du X. (2022). Payment behavior prediction on shared parking lots with TR-GCN. The VLDB Journal — The International Journal on Very Large Data Bases. 31:5. (1035-1058). Online publication date: 1-Sep-2022.

    https://doi.org/10.1007/s00778-021-00722-0

  • Balin M, Sancak K and Catalyurek U. MG-GCN: A Scalable multi-GPU GCN Training Framework. Proceedings of the 51st International Conference on Parallel Processing. (1-11).

    https://doi.org/10.1145/3545008.3545082

  • Zhang W, Yin Z, Sheng Z, Li Y, Ouyang W, Li X, Tao Y, Yang Z and Cui B. Graph Attention Multi-Layer Perceptron. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (4560-4570).

    https://doi.org/10.1145/3534678.3539121

  • Park Y, Min S and Lee J. (2022). Ginex. Proceedings of the VLDB Endowment. 15:11. (2626-2639). Online publication date: 1-Jul-2022.

    https://doi.org/10.14778/3551793.3551819

  • Fan W and Tian C. (2022). Incremental Graph Computations: Doable and Undoable. ACM Transactions on Database Systems. 47:2. (1-44). Online publication date: 30-Jun-2022.

    https://doi.org/10.1145/3500930

  • Song S and Jiang P. Rethinking graph data placement for graph neural network training on multiple GPUs. Proceedings of the 36th ACM International Conference on Supercomputing. (1-10).

    https://doi.org/10.1145/3524059.3532384

  • Li S, Niu D, Wang Y, Han W, Zhang Z, Guan T, Guan Y, Liu H, Huang L, Du Z, Xue F, Fang Y, Zheng H and Xie Y. Hyperscale FPGA-as-a-service architecture for large-scale distributed graph neural network. Proceedings of the 49th Annual International Symposium on Computer Architecture. (946-961).

    https://doi.org/10.1145/3470496.3527439

  • Lee Y, Chung J and Rhu M. SmartSAGE. Proceedings of the 49th Annual International Symposium on Computer Architecture. (932-945).

    https://doi.org/10.1145/3470496.3527391

  • Wang Q, Zhang Y, Wang H, Chen C, Zhang X and Yu G. NeutronStar: Distributed GNN Training with Hybrid Dependency Management. Proceedings of the 2022 International Conference on Management of Data. (1301-1315).

    https://doi.org/10.1145/3514221.3526134

  • Shim W and Yu S. GP3D: 3D NAND Based In-Memory Graph Processing Accelerator. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 10.1109/JETCAS.2022.3155654. 12:2. (500-507).

    https://ieeexplore.ieee.org/document/9723044/

  • Wang Z, Que Z, Luk W and Fan H. (2022). Customizable FPGA-based Accelerator for Binarized Graph Neural Networks 2022 IEEE International Symposium on Circuits and Systems (ISCAS). 10.1109/ISCAS48785.2022.9937817. 978-1-6654-8485-5. (1968-1972).

    https://ieeexplore.ieee.org/document/9937817/

  • Peng J, Chen Z, Shao Y, Shen Y, Chen L and Cao J. (2022). Sancus. Proceedings of the VLDB Endowment. 15:9. (1937-1950). Online publication date: 1-May-2022.

    https://doi.org/10.14778/3538598.3538614

  • Li H, Di S, Li Z, Chen L and Cao J. (2022). Black-box Adversarial Attack and Defense on Graph Neural Networks 2022 IEEE 38th International Conference on Data Engineering (ICDE). 10.1109/ICDE53745.2022.00081. 978-1-6654-0883-7. (1017-1030).

    https://ieeexplore.ieee.org/document/9835574/

  • Song Z, Gu Y, Qi J, Wang Z and Yu G. (2022). EC-Graph: A Distributed Graph Neural Network System with Error-Compensated Compression 2022 IEEE 38th International Conference on Data Engineering (ICDE). 10.1109/ICDE53745.2022.00053. 978-1-6654-0883-7. (648-660).

    https://ieeexplore.ieee.org/document/9835576/

  • Huan C, Liu H, Liu M, Liu Y, He C, Chen K, Jiang J, Wu Y and Song S. (2022). TeGraph: A Novel General-Purpose Temporal Graph Computing Engine 2022 IEEE 38th International Conference on Data Engineering (ICDE). 10.1109/ICDE53745.2022.00048. 978-1-6654-0883-7. (578-592).

    https://ieeexplore.ieee.org/document/9835422/

  • Ji Y, Chu G, Wang X, Shi C, Zhao J and Du J. Prohibited Item Detection via Risk Graph Structure Learning. Proceedings of the ACM Web Conference 2022. (1434-1443).

    https://doi.org/10.1145/3485447.3512190

  • Zeng L, Huang P, Luo K, Zhang X, Zhou Z and Chen X. Fograph: Enabling Real-Time Deep Graph Inference with Fog Computing. Proceedings of the ACM Web Conference 2022. (1774-1784).

    https://doi.org/10.1145/3485447.3511982

  • Chen X, Wang Y, Xie X, Hu X, Basak A, Liang L, Yan M, Deng L, Ding Y, Du Z and Xie Y. Rubik: A Hierarchical Architecture for Efficient Graph Neural Network Training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2021.3079142. 41:4. (936-949).

    https://ieeexplore.ieee.org/document/9428002/

  • Yang J, Tang D, Song X, Wang L, Yin Q, Chen R, Yu W and Zhou J. GNNLab. Proceedings of the Seventeenth European Conference on Computer Systems. (417-434).

    https://doi.org/10.1145/3492321.3519557

  • Lin Y, Zhang B and Prasanna V. HP-GNN: Generating High Throughput GNN Training Implementation on CPU-FPGA Heterogeneous Platform. Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. (123-133).

    https://doi.org/10.1145/3490422.3502359

  • Zheng C, Chen H, Cheng Y, Song Z, Wu Y, Li C, Cheng J, Yang H and Zhang S. (2022). ByteGNN. Proceedings of the VLDB Endowment. 15:6. (1228-1242). Online publication date: 1-Feb-2022.

    https://doi.org/10.14778/3514061.3514069

  • Jin H, Qi H, Zhao J, Jiang X, Huang Y, Gui C, Wang Q, Shen X, Zhang Y, Hu A, Chen D, Liu C, Liu H, He H, Ye X, Wang R, Yuan J, Yao P, Zhang Y, Zheng L and Liao X. (2022). Software Systems Implementation and Domain-Specific Architectures towards Graph Analytics. Intelligent Computing. 10.34133/2022/9806758. 2022. Online publication date: 1-Jan-2022.

    https://spj.science.org/doi/10.34133/2022/9806758

  • Zhang Z, Cui P and Zhu W. (2022). Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering. 34:1. (249-270). Online publication date: 1-Jan-2022.

    https://doi.org/10.1109/TKDE.2020.2981333

  • Thu Van D, Khan M, Afridi T, Ullah I, Alam A and Lee Y. GDLL: A Scalable and Share Nothing Architecture Based Distributed Graph Neural Networks Framework. IEEE Access. 10.1109/ACCESS.2022.3148126. 10. (21684-21700).

    https://ieeexplore.ieee.org/document/9698236/

  • Chakaravarthy V, Pandian S, Raje S, Sabharwal Y, Suzumura T and Ubaru S. Efficient scaling of dynamic graph neural networks. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-15).

    https://doi.org/10.1145/3458817.3480858

  • Chen H, Shen M, Xiao N and Lu Y. Krill. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-16).

    https://doi.org/10.1145/3458817.3476159

  • Chen Y, Li X, Cong G, Long C, Bao Z, Liu S, Gu W and Zhang F. (2021). Points-of-interest relationship inference with spatial-enriched graph neural networks. Proceedings of the VLDB Endowment. 15:3. (504-512). Online publication date: 1-Nov-2021.

    https://doi.org/10.14778/3494124.3494134

  • Talati N, Jin D, Ye H, Brahmakshatriya A, Dasika G, Amarasinghe S, Mudge T, Koutra D and Dreslinski R. (2021). A Deep Dive Into Understanding The Random Walk-Based Temporal Graph Learning 2021 IEEE International Symposium on Workload Characterization (IISWC). 10.1109/IISWC53511.2021.00019. 978-1-6654-4173-5. (87-100).

    https://ieeexplore.ieee.org/document/9668298/

  • Chen W, Dong X, Chen H, Wang Q, Yu X and Zhang X. (2021). Performance evaluation of convolutional neural network on Tianhe-3 prototype. The Journal of Supercomputing. 77:11. (12647-12665). Online publication date: 1-Nov-2021.

    https://doi.org/10.1007/s11227-021-03759-8

  • Ji Y, Shi C and Wang X. Prohibited Item Detection on Heterogeneous Risk Graphs. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (3867-3877).

    https://doi.org/10.1145/3459637.3481945

  • Liu Y, Yang S, Lei C, Wang G, Tang H, Zhang J, Sun A and Miao C. Pre-training Graph Transformer with Multimodal Side Information for Recommendation. Proceedings of the 29th ACM International Conference on Multimedia. (2853-2861).

    https://doi.org/10.1145/3474085.3475709

  • Yang Y, Wei Y and Shen T. (2021). A Review of Graph Neural Networks for Recommender Applications 2021 IEEE International Conference on Unmanned Systems (ICUS). 10.1109/ICUS52573.2021.9641274. 978-1-6654-3885-8. (602-607).

    https://ieeexplore.ieee.org/document/9641274/

  • Bai Y, Li C, Lin Z, Wu Y, Miao Y, Liu Y and Xu Y. Efficient Data Loader for Fast Sampling-Based GNN Training on Large Graphs. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2021.3065737. 32:10. (2541-2556).

    https://ieeexplore.ieee.org/document/9376972/

  • Ma Y and Tang J. (2021). Deep Learning on Graphs

    https://www.cambridge.org/core/product/identifier/9781108924184/type/book

  • Zhou C, Ma J, Zhang J, Zhou J and Yang H. Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (3985-3995).

    https://doi.org/10.1145/3447548.3467102

  • Su C, Liang H, Zhang W, Zhao K, Ai B, Shen W and Wang Z. (2021). Graph Sampling with Fast Random Walker on HBM-enabled FPGA Accelerators 2021 31st International Conference on Field-Programmable Logic and Applications (FPL). 10.1109/FPL53798.2021.00042. 978-1-6654-3759-2. (211-218).

    https://ieeexplore.ieee.org/document/9556324/

  • Fan W, He T, Lai L, Li X, Li Y, Li Z, Qian Z, Tian C, Wang L, Xu J, Yao Y, Yin Q, Yu W, Zhou J, Zhu D and Zhu R. (2021). GraphScope. Proceedings of the VLDB Endowment. 14:12. (2879-2892). Online publication date: 1-Jul-2021.

    https://doi.org/10.14778/3476311.3476369

  • Xu J, Bai Z, Fan W, Lai L, Li X, Li Z, Qian Z, Wang L, Wang Y, Yu W and Zhou J. (2021). GraphScope. Proceedings of the VLDB Endowment. 14:12. (2703-2706). Online publication date: 1-Jul-2021.

    https://doi.org/10.14778/3476311.3476324

  • Wang Z, Wang Y, Yuan C, Gu R and Huang Y. (2021). Empirical analysis of performance bottlenecks in graph neural network training and inference with GPUs. Neurocomputing. 10.1016/j.neucom.2021.03.015. 446. (165-191). Online publication date: 1-Jul-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231221003659

  • Wu Y, Ma K, Cai Z, Jin T, Li B, Zheng C, Cheng J and Yu F. Seastar. Proceedings of the Sixteenth European Conference on Computer Systems. (359-375).

    https://doi.org/10.1145/3447786.3456247

  • Wang L, Yin Q, Tian C, Yang J, Chen R, Yu W, Yao Z and Zhou J. FlexGraph. Proceedings of the Sixteenth European Conference on Computer Systems. (67-82).

    https://doi.org/10.1145/3447786.3456229

  • Wong C, Feng F, Zhang W, Vong C, Chen H, Zhang Y, He P, Chen H, Zhao K and Chen H. (2021). Improving Conversational Recommender System by Pretraining Billion-scale Knowledge Graph 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00291. 978-1-7281-9184-3. (2607-2612).

    https://ieeexplore.ieee.org/document/9458937/

  • Zhang W, Wong C, Ye G, Wen B, Zhang W and Chen H. (2021). Billion-scale Pre-trained E-commerce Product Knowledge Graph Model 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00280. 978-1-7281-9184-3. (2476-2487).

    https://ieeexplore.ieee.org/document/9458782/

  • Wu J, Sun J, Sun H and Sun G. (2021). Performance Analysis of Graph Neural Network Frameworks 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 10.1109/ISPASS51385.2021.00029. 978-1-7281-8643-6. (118-127).

    https://ieeexplore.ieee.org/document/9408211/

  • Baruah T, Shivdikar K, Dong S, Sun Y, Mojumder S, Jung K, Abellan J, Ukidave Y, Joshi A, Kim J and Kaeli D. (2021). GNNMark: A Benchmark Suite to Characterize Graph Neural Network Training on GPUs 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 10.1109/ISPASS51385.2021.00013. 978-1-7281-8643-6. (13-23).

    https://ieeexplore.ieee.org/document/9408205/

  • Huang K, Zhai J, Zheng Z, Yi Y and Shen X. Understanding and bridging the gaps in current GNN performance optimizations. Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. (119-132).

    https://doi.org/10.1145/3437801.3441585

  • Scardapane S, Spinelli I and Lorenzo P. Distributed Training of Graph Convolutional Networks. IEEE Transactions on Signal and Information Processing over Networks. 10.1109/TSIPN.2020.3046237. 7. (87-100).

    https://ieeexplore.ieee.org/document/9303371/

  • Miao X, Zhang W, Shao Y, Cui B, Chen L, Zhang C and Jiang J. Lasagne: A Multi-Layer Graph Convolutional Network Framework via Node-aware Deep Architecture. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3103984. (1-1).

    https://ieeexplore.ieee.org/document/9513581/

  • Xu J, Li Z, Zeng W and Huang J. (2021). Graph Computing System and Application Based on Large-Scale Information Network. Space Information Network. 10.1007/978-981-16-1967-0_12. (158-178).

    https://link.springer.com/10.1007/978-981-16-1967-0_12

  • Huang G, Dai G, Wang Y and Yang H. GE-SpMM. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-12).

    /doi/10.5555/3433701.3433796

  • Tripathy A, Yelick K and Buluç A. Reducing communication in graph neural network training. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-17).

    /doi/10.5555/3433701.3433794

  • Xiao W, Ren S, Li Y, Zhang Y, Hou P, Li Z, Feng Y, Lin W and Jia Y. AntMan. Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation. (533-548).

    /doi/10.5555/3488766.3488796

  • Huang G, Dai G, Wang Y and Yang H. (2020). GE-SpMM: General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Networks SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SC41405.2020.00076. 978-1-7281-9998-6. (1-12).

    https://ieeexplore.ieee.org/document/9355302/

  • Tripathy A, Yelick K and Buluc A. (2020). Reducing Communication in Graph Neural Network Training SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SC41405.2020.00074. 978-1-7281-9998-6. (1-14).

    https://ieeexplore.ieee.org/document/9355273/

  • Lin Z, Li C, Miao Y, Liu Y and Xu Y. PaGraph. Proceedings of the 11th ACM Symposium on Cloud Computing. (401-415).

    https://doi.org/10.1145/3419111.3421281

  • Yang R, Shi J, Xiao X, Yang Y, Liu J and Bhowmick S. (2020). Scaling attributed network embedding to massive graphs. Proceedings of the VLDB Endowment. 14:1. (37-49). Online publication date: 1-Sep-2020.

    https://doi.org/10.14778/3421424.3421430

  • Fan W, Jin R, Liu M, Lu P, Tian C and Zhou J. (2020). Capturing associations in graphs. Proceedings of the VLDB Endowment. 13:12. (1863-1876). Online publication date: 1-Aug-2020.

    https://doi.org/10.14778/3407790.3407795

  • Zhang B, Zeng H and Prasanna V. (2020). Hardware Acceleration of Large Scale GCN Inference 2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP). 10.1109/ASAP49362.2020.00019. 978-1-7281-7147-0. (61-68).

    https://ieeexplore.ieee.org/document/9153263/

  • Jiang Z, Gao Z, Lan J, Yang H, Lu Y and Liu X. Task-Oriented Genetic Activation for Large-Scale Complex Heterogeneous Graph Embedding. Proceedings of The Web Conference 2020. (1581-1591).

    https://doi.org/10.1145/3366423.3380230

  • Yan M, Deng L, Hu X, Liang L, Feng Y, Ye X, Zhang Z, Fan D and Xie Y. (2020). HyGCN: A GCN Accelerator with Hybrid Architecture 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). 10.1109/HPCA47549.2020.00012. 978-1-7281-6149-5. (15-29).

    https://ieeexplore.ieee.org/document/9065592/

  • Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C and Sun M. (2020). Graph neural networks: A review of methods and applications. AI Open. 10.1016/j.aiopen.2021.01.001. 1. (57-81).

    https://linkinghub.elsevier.com/retrieve/pii/S2666651021000012

  • Tian T, Zhao L, Wang X, Wu Q, Yuan W and Jin X. Fp-Gnn: Adaptive Fpga Accelerator for Graph Neural Networks. SSRN Electronic Journal. 10.2139/ssrn.4021729.

    https://www.ssrn.com/abstract=4021729