• Lin Y, Xu Z and Prasanna V. (2024). xBS-GNN: Accelerating Billion-Scale GNNTraining on FPGA SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SCW63240.2024.00091. 979-8-3503-5554-3. (659-666).

    https://ieeexplore.ieee.org/document/10820595/

  • Xia Y, Zhang Z, Yang D, Hu C, Zhou X, Chen H, Sang Q and Cheng D. Redundancy-Free and Load-Balanced TGNN Training With Hierarchical Pipeline Parallelism. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2024.3432855. 35:11. (1904-1919).

    https://ieeexplore.ieee.org/document/10608434/

  • Han W, Cai C, Guo Y and Peng J. ERL-MR: Harnessing the Power of Euler Feature Representations for Balanced Multi-modal Learning. Proceedings of the 32nd ACM International Conference on Multimedia. (4591-4600).

    https://doi.org/10.1145/3664647.3681215

  • Chen H, Duan Y, Nie F, Wang R and Li X. Fuzzy Clustering From Subset-Clustering to Fullset-Membership. IEEE Transactions on Fuzzy Systems. 10.1109/TFUZZ.2024.3421576. 32:9. (5359-5370).

    https://ieeexplore.ieee.org/document/10587183/

  • Shao Y, Li H, Gu X, Yin H, Li Y, Miao X, Zhang W, Cui B and Chen L. (2024). Distributed Graph Neural Network Training: A Survey. ACM Computing Surveys. 56:8. (1-39). Online publication date: 31-Aug-2024.

    https://doi.org/10.1145/3648358

  • Tan Y, Bai Z, Liu D, Zeng Z, Gan Y, Ren A, Chen X and Zhong K. (2024). BGS. Journal of Systems Architecture: the EUROMICRO Journal. 153:C. Online publication date: 1-Aug-2024.

    https://doi.org/10.1016/j.sysarc.2024.103162

  • Guliyev R, Haldar A and Ferhatosmanoglu H. (2024). D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural Networks. Proceedings of the VLDB Endowment. 17:11. (2764-2777). Online publication date: 1-Jul-2024.

    https://doi.org/10.14778/3681954.3681961

  • Kamath A and Peter S. (2024). (MC) 2 : Lazy MemCopy at the Memory Controller 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA). 10.1109/ISCA59077.2024.00084. 979-8-3503-2658-1. (1112-1128).

    https://ieeexplore.ieee.org/document/10609718/

  • Song Y, Chen P, Lu Y, Abrar N and Kalavri V. In situ neighborhood sampling for large-scale GNN training. Proceedings of the 20th International Workshop on Data Management on New Hardware. (1-5).

    https://doi.org/10.1145/3662010.3663443

  • Lin Y, Chen Y, Gobriel S, Jain N, Jha G and Prasanna V. (2024). ARGO: An Auto-Tuning Runtime System for Scalable GNN Training on Multi-Core Processor 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS57955.2024.00039. 979-8-3503-8711-7. (361-372).

    https://ieeexplore.ieee.org/document/10579147/

  • Huang Y, Fan X, Yan S and Weng C. (2024). Neos: A NVMe-GPUs Direct Vector Service Buffer in User Space 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00289. 979-8-3503-1715-2. (3767-3781).

    https://ieeexplore.ieee.org/document/10598129/

  • Besta M and Hoefler T. Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2023.3303431. 46:5. (2584-2606).

    https://ieeexplore.ieee.org/document/10443519/

  • Helal H, Firoz J, Bilbrey J, Sprueill H, Herman K, Krell M, Murray T, Roldan M, Kraus M, Li A, Das P, Xantheas S and Choudhury S. (2024). Acceleration of Graph Neural Network-Based Prediction Models in Chemistry via Co-Design Optimization on Intelligence Processing Units. Journal of Chemical Information and Modeling. 10.1021/acs.jcim.3c01312. 64:5. (1568-1580). Online publication date: 11-Mar-2024.

    https://pubs.acs.org/doi/10.1021/acs.jcim.3c01312

  • Li S, Gu J, Wang J, Yao T, Liang Z, Shi Y, Li S, Xi W, Li S, Zhou C, Wang Y and Chi X. POSTER: ParGNN: Efficient Training for Large-Scale Graph Neural Network on GPU Clusters. Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. (469-471).

    https://doi.org/10.1145/3627535.3638488

  • Li Z, Jian X, Wang Y, Shao Y and Chen L. (2024). DAHA: Accelerating GNN Training with Data and Hardware Aware Execution Planning. Proceedings of the VLDB Endowment. 17:6. (1364-1376). Online publication date: 1-Feb-2024.

    https://doi.org/10.14778/3648160.3648176

  • Yuan H, Liu Y, Zhang Y, Ai X, Wang Q, Chen C, Gu Y and Yu G. (2024). Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective. Proceedings of the VLDB Endowment. 17:6. (1241-1254). Online publication date: 1-Feb-2024.

    https://doi.org/10.14778/3648160.3648167

  • Gao M and Hu J. Graph Coloring Algorithm Based on Minimal Cost Graph Neural Network. IEEE Access. 10.1109/ACCESS.2024.3439352. 12. (168000-168009).

    https://ieeexplore.ieee.org/document/10623632/

  • Mayta Quispe M, Cruz F and Juarez Vargas J. (2024). How GPUs Kill Threads in Neural Network Training. Digital Technologies and Applications. 10.1007/978-3-031-68660-3_6. (56-65).

    https://link.springer.com/10.1007/978-3-031-68660-3_6

  • Çatalyürek Ü, Devine K, Faraj M, Gottesbüren L, Heuer T, Meyerhenke H, Sanders P, Schlag S, Schulz C, Seemaier D and Wagner D. (2023). More Recent Advances in (Hyper)Graph Partitioning. ACM Computing Surveys. 55:12. (1-38). Online publication date: 31-Dec-2024.

    https://doi.org/10.1145/3571808

  • Balın M and Çatalyürek Ü. Layer-neighbor sampling — defusing neighborhood explosion in GNNs. Proceedings of the 37th International Conference on Neural Information Processing Systems. (25819-25836).

    /doi/10.5555/3666122.3667245

  • Wang R, Chen H, Lu Y, Zhang Q, Nie F and Li X. (2023). Discrete and Balanced Spectral Clustering With Scalability. IEEE Transactions on Pattern Analysis and Machine Intelligence. 45:12. (14321-14336). Online publication date: 1-Dec-2023.

    https://doi.org/10.1109/TPAMI.2023.3311828

  • Lin H, Yan M, Ye X, Fan D, Pan S, Chen W and Xie Y. A Comprehensive Survey on Distributed Training of Graph Neural Networks. Proceedings of the IEEE. 10.1109/JPROC.2023.3337442. 111:12. (1572-1606).

    https://ieeexplore.ieee.org/document/10348966/

  • Besta M, Renc P, Gerstenberger R, Sylos Labini P, Ziogas A, Chen T, Gianinazzi L, Scheidl F, Szenes K, Carigiet A, Iff P, Kwasniewski G, Kanakagiri R, Ge C, Jaeger S, Wąs J, Vella F and Hoefler T. High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-16).

    https://doi.org/10.1145/3581784.3607067

  • Zhou H, Zheng D, Song X, Karypis G and Prasanna V. DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (1-12).

    https://doi.org/10.1145/3581784.3607056

  • Xia Y, Zhang Z, Wang H, Yang D, Zhou X and Cheng D. Redundancy-Free High-Performance Dynamic GNN Training with Hierarchical Pipeline Parallelism. Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing. (17-30).

    https://doi.org/10.1145/3588195.3592990

  • Gerogiannis G, Yesil S, Lenadora D, Cao D, Mendis C and Torrellas J. SPADE: A Flexible and Scalable Accelerator for SpMM and SDDMM. Proceedings of the 50th Annual International Symposium on Computer Architecture. (1-15).

    https://doi.org/10.1145/3579371.3589054

  • Waleffe R, Mohoney J, Rekatsinas T and Venkataraman S. MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks. Proceedings of the Eighteenth European Conference on Computer Systems. (144-161).

    https://doi.org/10.1145/3552326.3567501

  • Lin Y and Prasanna V. (2023). HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 10.1109/IPDPS54959.2023.00062. 979-8-3503-3766-2. (557-567).

    https://ieeexplore.ieee.org/document/10177462/

  • Yang S, Zhang M, Dong W and Li D. Betty: Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning. Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. (103-117).

    https://doi.org/10.1145/3575693.3575725

  • Park Y, Min S and Lee J. (2022). Ginex. Proceedings of the VLDB Endowment. 15:11. (2626-2639). Online publication date: 1-Jul-2022.

    https://doi.org/10.14778/3551793.3551819

  • Lin H, Yan M, Yang X, Zou M, Li W, Ye X and Fan D. (2022). Characterizing and Understanding Distributed GNN Training on GPUs. IEEE Computer Architecture Letters. 21:1. (21-24). Online publication date: 1-Jan-2022.

    https://doi.org/10.1109/LCA.2022.3168067