• Lupton S, Washizaki H, Yoshioka N and Fukazawa Y. Landscape and Taxonomy of Online Parser-Supported Log Anomaly Detection Methods. IEEE Access. 10.1109/ACCESS.2024.3387287. 12. (78193-78218).

    https://ieeexplore.ieee.org/document/10496061/

  • Al-Mazrawe A, Al-Musawi B, Aldahan N and Ramadhan A. (2024). Anomaly Detection in Cloud Network: A Review. BIO Web of Conferences. 10.1051/bioconf/20249700019. 97. (00019).

    https://www.bio-conferences.org/10.1051/bioconf/20249700019

  • Yuan J, Zhou H, Li L, Chen G and Li F. (2023). DeepSipi: A Log Anomaly Detection Method with Events and Variables 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). 10.1109/AUTEEE60196.2023.10407821. 979-8-3503-0562-3. (665-668).

    https://ieeexplore.ieee.org/document/10407821/

  • Lupton S, Washizaki H, Yoshioka N and Fukazawa Y. Log Drift Impact on Online Anomaly Detection Workflows. Product-Focused Software Process Improvement. (267-283).

    https://doi.org/10.1007/978-3-031-49266-2_19

  • Landauer M, Onder S, Skopik F and Wurzenberger M. (2023). Deep learning for anomaly detection in log data: A survey. Machine Learning with Applications. 10.1016/j.mlwa.2023.100470. 12. (100470). Online publication date: 1-Jun-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2666827023000233

  • Lupton S, Washizaki H, Yoshioka N and Fukazawa Y. (2021). Literature Review on Log Anomaly Detection Approaches Utilizing Online Parsing Methodology 2021 28th Asia-Pacific Software Engineering Conference (APSEC). 10.1109/APSEC53868.2021.00068. 978-1-6654-3784-4. (559-563).

    https://ieeexplore.ieee.org/document/9711965/