• Jiang M, Jiang J, Wu T, Ma Z, Luo X and Zhou Y. (2024). Understanding Vulnerability Inducing Commits of the Linux Kernel. ACM Transactions on Software Engineering and Methodology. 33:7. (1-28). Online publication date: 30-Sep-2024.

    https://doi.org/10.1145/3672452

  • Lyu Y, Kang H, Widyasari R, Lawall J and Lo D. Evaluating SZZ Implementations: An Empirical Study on the Linux Kernel. IEEE Transactions on Software Engineering. 10.1109/TSE.2024.3406718. 50:9. (2219-2239).

    https://ieeexplore.ieee.org/document/10541859/

  • Suhag V, Dubey S and Sharma B. (2024). Software defect prediction using global and local models. International Journal of System Assurance Engineering and Management. 10.1007/s13198-024-02407-7. 15:8. (4003-4017). Online publication date: 1-Aug-2024.

    https://link.springer.com/10.1007/s13198-024-02407-7

  • Olewicki D, Habchi S and Adams B. (2024). An Empirical Study on Code Review Activity Prediction and Its Impact in Practice. Proceedings of the ACM on Software Engineering. 1:FSE. (2238-2260). Online publication date: 12-Jul-2024.

    https://doi.org/10.1145/3660806

  • Maes-Bermejo M, Serebrenik A, Gallego M, Gortázar F, Robles G and González Barahona J. (2024). Hunting bugs: Towards an automated approach to identifying which change caused a bug through regression testing. Empirical Software Engineering. 10.1007/s10664-024-10479-z. 29:3. Online publication date: 1-May-2024.

    https://link.springer.com/10.1007/s10664-024-10479-z

  • Zhao Y, Li X, Deng W, Li Y, Guo X, Tian Q and Fan Y. (2024). Fine-Grained Bug Localization Based on Rich Context using Attention Tree-GRU 2024 5th International Conference on Computer Engineering and Application (ICCEA). 10.1109/ICCEA62105.2024.10603974. 979-8-3503-8677-6. (640-646).

    https://ieeexplore.ieee.org/document/10603974/

  • Watanabe H, Kondo M, Choi E and Mizuno O. (2024). Benefits and Pitfalls of Token-Level SZZ: An Empirical Study on OSS Projects 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER60148.2024.00084. 979-8-3503-3066-3. (776-786).

    https://ieeexplore.ieee.org/document/10589892/

  • Reid D, Rahkema K and Walden J. Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain. Proceedings of the 19th International Conference on Predictive Models and Data Analytics in Software Engineering. (22-32).

    https://doi.org/10.1145/3617555.3617872

  • Chen X, Xia H, Pei W, Ni C and Liu K. (2023). Boosting multi-objective just-in-time software defect prediction by fusing expert metrics and semantic metrics. Journal of Systems and Software. 10.1016/j.jss.2023.111853. 206. (111853). Online publication date: 1-Dec-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121223002480

  • Eng K, Hindle A and Senchenko A. (2023). Identifying Defect-Inducing Changes in Visual Code 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME58846.2023.00061. 979-8-3503-2783-0. (474-484).

    https://ieeexplore.ieee.org/document/10336342/

  • Wilkes B, Milani A and Storey M. (2023). A Framework for Automating the Measurement of DevOps Research and Assessment (DORA) Metrics 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME58846.2023.00018. 979-8-3503-2783-0. (62-72).

    https://ieeexplore.ieee.org/document/10336287/

  • Nadim M and Roy B. (2022). Utilizing source code syntax patterns to detect bug inducing commits using machine learning models. Software Quality Journal. 10.1007/s11219-022-09611-3. 31:3. (775-807). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s11219-022-09611-3

  • Rosa G, Pascarella L, Scalabrino S, Tufano R, Bavota G, Lanza M and Oliveto R. (2023). A comprehensive evaluation of SZZ Variants through a developer-informed oracle. Journal of Systems and Software. 10.1016/j.jss.2023.111729. 202. (111729). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121223001243

  • Lan J, Gong L, Zhang J and Zhang H. (2023). BTLink : automatic link recovery between issues and commits based on pre-trained BERT model. Empirical Software Engineering. 28:4. Online publication date: 1-Jul-2023.

    https://doi.org/10.1007/s10664-023-10342-7

  • Li J and Ahmed I. (2023). Commit Message Matters: Investigating Impact and Evolution of Commit Message Quality 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00076. 978-1-6654-5701-9. (806-817).

    https://ieeexplore.ieee.org/document/10172825/

  • Bryan J, Moriano P and Thinnukool O. (2023). Graph-based machine learning improves just-in-time defect prediction. PLOS ONE. 10.1371/journal.pone.0284077. 18:4. (e0284077).

    https://dx.plos.org/10.1371/journal.pone.0284077

  • Henderson T, Dorward B, Nickell E, Johnston C and Kondareddy A. (2023). Flake Aware Culprit Finding 2023 IEEE Conference on Software Testing, Verification and Validation (ICST). 10.1109/ICST57152.2023.00041. 978-1-6654-5666-1. (362-373).

    https://ieeexplore.ieee.org/document/10132241/

  • Elmishali A and Kalech M. (2023). Issues-Driven features for software fault prediction. Information and Software Technology. 155:C. Online publication date: 1-Mar-2023.

    https://doi.org/10.1016/j.infsof.2022.107102

  • Liu S, Guo Z, Li Y, Wang C, Chen L, Sun Z, Zhou Y and Xu B. Inconsistent Defect Labels: Essence, Causes, and Influence. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3156787. 49:2. (586-610).

    https://ieeexplore.ieee.org/document/9729569/

  • Zakarea Alshara , Salman H, Shatnawi A and Seriai A. ML-Augmented Automation for Recovering Links Between Pull-Requests and Issues on GitHub. IEEE Access. 10.1109/ACCESS.2023.3236392. 11. (5596-5608).

    https://ieeexplore.ieee.org/document/10015726/

  • Alshara Z, Shatnawi A, Eyal-Salman H, Seriai A and Shatnawi M. PI-Link: A Ground-Truth Dataset of Links Between Pull-Requests and Issues in GitHub. IEEE Access. 10.1109/ACCESS.2022.3232982. 11. (697-710).

    https://ieeexplore.ieee.org/document/10002372/

  • Aladics T, Hegedűs P and Ferenc R. (2023). An AST-Based Code Change Representation and Its Performance in Just-in-Time Vulnerability Prediction. Software Technologies. 10.1007/978-3-031-37231-5_8. (169-186).

    https://link.springer.com/10.1007/978-3-031-37231-5_8

  • Openja M, Morovati M, An L, Khomh F and Abidi M. (2022). Technical debts and faults in open-source quantum software systems. Journal of Systems and Software. 193:C. Online publication date: 1-Nov-2022.

    https://doi.org/10.1016/j.jss.2022.111458

  • Quattrocchi G and Tamburri D. (2022). Predictive maintenance of infrastructure code using “fluid” datasets: An exploratory study on Ansible defect proneness. Journal of Software: Evolution and Process. 10.1002/smr.2480. 34:11. Online publication date: 1-Nov-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/smr.2480

  • Sotto-Mayor B, Elmishali A, Kalech M and Abreu R. (2022). Exploring Design smells for smell-based defect prediction. Engineering Applications of Artificial Intelligence. 115:C. Online publication date: 1-Oct-2022.

    https://doi.org/10.1016/j.engappai.2022.105240

  • Reid D, Jahanshahi M and Mockus A. The extent of orphan vulnerabilities from code reuse in open source software. Proceedings of the 44th International Conference on Software Engineering. (2104-2115).

    https://doi.org/10.1145/3510003.3510216

  • Bludau P and Pretschner A. (2022). PR-SZZ: How pull requests can support the tracing of defects in software repositories 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER53432.2022.00012. 978-1-6654-3786-8. (1-12).

    https://ieeexplore.ieee.org/document/9825853/

  • Oishie N and Roy B. Commit-Checker: A human-centric approach for adopting bug inducing commit detection using machine learning models. Proceedings of the 15th Innovations in Software Engineering Conference. (1-3).

    https://doi.org/10.1145/3511430.3511463

  • Cynthia S, Roy B and Mondal D. Feature Transformation for Improved Software Bug Detection Models. Proceedings of the 15th Innovations in Software Engineering Conference. (1-10).

    https://doi.org/10.1145/3511430.3511444

  • Suhag V, Dubey S and Sharma B. (2022). Software Defect Data Collection Framework for Github 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence). 10.1109/Confluence52989.2022.9734131. 978-1-6654-3701-1. (82-87).

    https://ieeexplore.ieee.org/document/9734131/

  • Pokropiński J, Gasiorek J, Kramarczyk P and Madeyski L. (2022). SZZ Unleashed-RA-C: An Improved Implementation of the SZZ Algorithm and Empirical Comparison with Existing Open Source Solutions. Developments in Information & Knowledge Management for Business Applications. 10.1007/978-3-030-77916-0_7. (181-199).

    https://link.springer.com/10.1007/978-3-030-77916-0_7

  • Eken B, Tufan S, Tunaboylu A, Guler T, Atar R and Tosun A. (2021). Deployment of a change‐level software defect prediction solution into an industrial setting. Journal of Software: Evolution and Process. 33:11. Online publication date: 1-Nov-2021.

    https://doi.org/10.1002/smr.2381

  • Sotto-Mayor B and Kalech M. (2021). Cross-project smell-based defect prediction. Soft Computing. 10.1007/s00500-021-06254-7.

    https://link.springer.com/10.1007/s00500-021-06254-7

  • Elmishali A, Sotto-Mayor B, Roshanski I, Sultan A and Kalech M. (2021). BEIRUT: Repository Mining for Defect Prediction 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE52982.2021.00018. 978-1-6654-2587-2. (47-56).

    https://ieeexplore.ieee.org/document/9700292/

  • Shen B, Zhang W, Yu A, Wei Z, Liang G, Zhao H and Jin Z. (2021). Cross-language Code Coupling Detection: A Preliminary Study on Android Applications 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME52107.2021.00040. 978-1-6654-2882-8. (378-388).

    https://ieeexplore.ieee.org/document/9609127/

  • Bessghaier N, Ouni A and Mkaouer M. (2021). A longitudinal exploratory study on code smells in server side web applications. Software Quality Journal. 10.1007/s11219-021-09567-w.

    https://link.springer.com/10.1007/s11219-021-09567-w

  • An G and Yoo S. Reducing the search space of bug inducing commits using failure coverage. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1459-1462).

    https://doi.org/10.1145/3468264.3473129

  • Paul R. Improving the effectiveness of peer code review in identifying security defects. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1645-1649).

    https://doi.org/10.1145/3468264.3473107

  • Quach S, Lamothe M, Kamei Y and Shang W. (2021). An empirical study on the use of SZZ for identifying inducing changes of non-functional bugs. Empirical Software Engineering. 10.1007/s10664-021-09970-8. 26:4. Online publication date: 1-Jul-2021.

    https://link.springer.com/10.1007/s10664-021-09970-8

  • Paul R, Turzo A and Bosu A. A dataset of vulnerable code changes of the chromium OS project. Proceedings of the 43rd International Conference on Software Engineering: Companion Proceedings. (244-245).

    https://doi.org/10.1109/ICSE-Companion52605.2021.00113

  • Paul R, Turzo A and Bosu A. Why Security Defects Go Unnoticed during Code Reviews?. Proceedings of the 43rd International Conference on Software Engineering. (1373-1385).

    https://doi.org/10.1109/ICSE43902.2021.00124

  • Foundjem A, Eghan E and Adams B. Onboarding vs. Diversity, Productivity, and Quality. Proceedings of the 43rd International Conference on Software Engineering. (1033-1045).

    https://doi.org/10.1109/ICSE43902.2021.00097

  • Rosa G, Pascarella L, Scalabrino S, Tufano R, Bavota G, Lanza M and Oliveto R. Evaluating SZZ Implementations Through a Developer-informed Oracle. Proceedings of the 43rd International Conference on Software Engineering. (436-447).

    https://doi.org/10.1109/ICSE43902.2021.00049

  • Reid D, Eng K, Bogart C and Tutko A. (2021). Tracing Vulnerable Code Lineage 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 10.1109/MSR52588.2021.00087. 978-1-7281-8710-5. (621-623).

    https://ieeexplore.ieee.org/document/9463067/

  • Vandehei B, Costa D and Falessi D. (2021). Leveraging the Defects Life Cycle to Label Affected Versions and Defective Classes. ACM Transactions on Software Engineering and Methodology. 30:2. (1-35). Online publication date: 30-Apr-2021.

    https://doi.org/10.1145/3433928

  • Kang J, Ryu D and Baik J. (2020). Predicting just‐in‐time software defects to reduce post‐release quality costs in the maritime industry . Software: Practice and Experience. 10.1002/spe.2927. 51:4. (748-771). Online publication date: 1-Apr-2021.

    https://onlinelibrary.wiley.com/doi/10.1002/spe.2927

  • Ogino S, Higo Y and Kusumoto S. (2021). Evaluating Bug Prediction under Realistic Settings 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER50967.2021.00052. 978-1-7281-9630-5. (491-495).

    https://ieeexplore.ieee.org/document/9426006/

  • Sohn J, Kamei Y, McIntosh S and Yoo S. (2021). Leveraging Fault Localisation to Enhance Defect Prediction 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER50967.2021.00034. 978-1-7281-9630-5. (284-294).

    https://ieeexplore.ieee.org/document/9425917/

  • Kang J, Kwon S, Ryu D and Baik J. (2021). HASPO: Harmony Search-Based Parameter Optimization for Just-in-Time Software Defect Prediction in Maritime Software. Applied Sciences. 10.3390/app11052002. 11:5. (2002).

    https://www.mdpi.com/2076-3417/11/5/2002

  • Shafiq S, Mashkoor A, Mayr-Dorn C and Egyed A. A Literature Review of Using Machine Learning in Software Development Life Cycle Stages. IEEE Access. 10.1109/ACCESS.2021.3119746. 9. (140896-140920).

    https://ieeexplore.ieee.org/document/9568959/

  • Tian Y, Li N, Tian J and Zheng W. (2020). How Well Just-In-Time Defect Prediction Techniques Enhance Software Reliability? 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). 10.1109/QRS51102.2020.00038. 978-1-7281-8913-0. (212-221).

    https://ieeexplore.ieee.org/document/9282785/

  • Di Penta M, Bavota G and Zampetti F. On the relationship between refactoring actions and bugs: a differentiated replication. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (556-567).

    https://doi.org/10.1145/3368089.3409695

  • Hum Q, Tan W, Tey S, Lenus L, Homoliak I, Lin Y and Sun J. (2020). CoinWatch: A Clone-Based Approach For Detecting Vulnerabilities in Cryptocurrencies 2020 IEEE International Conference on Blockchain (Blockchain). 10.1109/Blockchain50366.2020.00011. 978-0-7381-0495-9. (17-25).

    https://ieeexplore.ieee.org/document/9284650/

  • Grichi M, Eghan E and Adams B. (2020). On the Impact of Multi-language Development in Machine Learning Frameworks 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). 10.1109/ICSME46990.2020.00058. 978-1-7281-5619-4. (546-556).

    https://ieeexplore.ieee.org/document/9240642/

  • Tahmooresi H, Heydarnoori A and Nadri R. (2020). Studying the relationship between the usage of APIs discussed in the crowd and post-release defects. Journal of Systems and Software. 10.1016/j.jss.2020.110724. (110724). Online publication date: 1-Jul-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121220301606