• Mohseni Z, Masiello I and Martins R. (2024). A technical infrastructure for primary education data that contributes to data standardization. Education and Information Technologies. 10.1007/s10639-024-12683-2. 29:16. (21045-21061). Online publication date: 1-Nov-2024.

    https://link.springer.com/10.1007/s10639-024-12683-2

  • Ionescu A, Mouw Z, Aivaloglou E and Katsifodimos A. Key Insights from a Feature Discovery User Study. Proceedings of the 2024 Workshop on Human-In-the-Loop Data Analytics. (1-5).

    https://doi.org/10.1145/3665939.3665961

  • Thorve S, Vullikanti A, Swarup S, Mortveit H and Marathe M. (2022). Modular and Extensible Pipelines for Residential Energy Demand Modeling and Simulation 2022 Winter Simulation Conference (WSC). 10.1109/WSC57314.2022.10015339. 978-1-6654-7661-4. (855-866).

    https://ieeexplore.ieee.org/document/10015339/

  • Mourched B, Hoxha M, Abdelgalil A, Ferko N, Abdallah M, Potams A, Lushi A, Turan H and Vrtagic S. (2022). Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics. Applied Sciences. 10.3390/app12199798. 12:19. (9798).

    https://www.mdpi.com/2076-3417/12/19/9798

  • Okolo C, Dell N and Vashistha A. Making AI Explainable in the Global South: A Systematic Review. Proceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies. (439-452).

    https://doi.org/10.1145/3530190.3534802

  • Sambasivan N and Veeraraghavan R. The Deskilling of Domain Expertise in AI Development. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. (1-14).

    https://doi.org/10.1145/3491102.3517578

  • Thakkar D, Ismail A, Kumar P, Hanna A, Sambasivan N and Kumar N. When is Machine Learning Data Good?: Valuing in Public Health Datafication. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. (1-16).

    https://doi.org/10.1145/3491102.3501868

  • Witayangkurn A, Arai A and Shibasaki R. (2022). Development of Big Data-Analysis Pipeline for Mobile Phone Data with Mobipack and Spatial Enhancement. ISPRS International Journal of Geo-Information. 10.3390/ijgi11030196. 11:3. (196).

    https://www.mdpi.com/2220-9964/11/3/196

  • Sambasivan N, Kapania S, Highfill H, Akrong D, Paritosh P and Aroyo L. “Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. (1-15).

    https://doi.org/10.1145/3411764.3445518

  • Ranjan R, Lekan K and Bhaip V. (2021). Designing the UVA Open Data Initiative: Increasing Engagement for Students, Faculty, Staff Members, and Other Stakeholders 2021 Systems and Information Engineering Design Symposium (SIEDS). 10.1109/SIEDS52267.2021.9483750. 978-1-6654-1250-6. (1-6).

    https://ieeexplore.ieee.org/document/9483750/

  • Brunette W, Larson C, Jain S, Langford A, Low Y, Siew A and Anderson R. Global Goods Software for the Immunization Cold Chain. Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies. (208-218).

    https://doi.org/10.1145/3378393.3402278

  • Diran D and van Veenstra A. (2020). Towards Data-Driven Policymaking for the Urban Heat Transition in The Netherlands: Barriers to the Collection and Use of Data. Electronic Government. 10.1007/978-3-030-57599-1_27. (361-373).

    http://link.springer.com/10.1007/978-3-030-57599-1_27