• Kalai G, Lifshitz N, Minzer D and Ziegler T. (2024). A Dense Model Theorem for the Boolean Slice 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS). 10.1109/FOCS61266.2024.00056. 979-8-3315-1674-1. (797-805).

    https://ieeexplore.ieee.org/document/10756151/

  • Dikstein Y, Dinur I, Filmus Y and Harsha P. (2024). Boolean Function Analysis on High-Dimensional Expanders. Combinatorica. 44:3. (563-620). Online publication date: 1-Jun-2024.

    https://doi.org/10.1007/s00493-024-00084-5

  • Dodos P and Tyros K. (2023). Anticoncentration and Berry–Esseen bounds for random tensors. Probability Theory and Related Fields. 10.1007/s00440-023-01211-x.

    https://link.springer.com/10.1007/s00440-023-01211-x

  • Kwan M, Sah A, Sauermann L and Sawhney M. (2023). Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture. Forum of Mathematics, Pi. 10.1017/fmp.2023.17. 11.

    https://www.cambridge.org/core/product/identifier/S2050508623000173/type/journal_article

  • Braverman M, Khot S, Lifshitz N and Minzer D. (2022). An Invariance Principle for the Multi-slice, with Applications 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). 10.1109/FOCS52979.2021.00030. 978-1-6654-2055-6. (228-236).

    https://ieeexplore.ieee.org/document/9719854/

  • Filmus Y, O’Donnell R and Wu X. Log-Sobolev inequality for the multislice, with applications. Electronic Journal of Probability. 10.1214/22-EJP749. 27:none.

    https://projecteuclid.org/journals/electronic-journal-of-probability/volume-27/issue-none/Log-Sobolev-inequality-for-the-multislice-with-applications/10.1214/22-EJP749.full

  • Keller N and Klein O. (2020). A structure theorem for almost low-degree functions on the slice. Israel Journal of Mathematics. 10.1007/s11856-020-2062-4.

    http://link.springer.com/10.1007/s11856-020-2062-4