• Sujatha E, Umarani V, Rekha K, Gopirajan P and Manickavasagan V. (2025). Handling Imbalanced Data for Credit Card Fraudulent Detection: A Machine Learning Approach. Advances in Artificial Intelligence and Machine Learning in Big Data Processing. 10.1007/978-3-031-73068-9_18. (220-233).

    https://link.springer.com/10.1007/978-3-031-73068-9_18

  • Harish S, Lakhanpal C and Jafari A. (2024). Leveraging graph-based learning for credit card fraud detection: a comparative study of classical, deep learning and graph-based approaches. Neural Computing and Applications. 36:34. (21873-21883). Online publication date: 1-Dec-2024.

    https://doi.org/10.1007/s00521-024-10397-7

  • Ebenezer A, Olutayo B, Olumide O O, G A, Emmanuel M and Oluwayemisi Boye F. (2024). Money Laundering Detection and Mitigation Using Decision Tree Ensembles 2024 IEEE SmartBlock4Africa. 10.1109/SmartBlock4Africa61928.2024.10779497. 979-8-3503-7683-8. (1-11).

    https://ieeexplore.ieee.org/document/10779497/

  • Museba T and Vanhoof K. (2024). An Adaptive Heterogeneous Ensemble Learning Model for Credit Card Fraud Detection. Advances in Science, Technology and Engineering Systems Journal. 10.25046/aj090301. 9:3. (1-11).

    https://www.astesj.com/v09/i03/p01/

  • Gandhar A, Gupta K, Pandey A and Raj D. (2024). Fraud Detection Using Machine Learning and Deep Learning. SN Computer Science. 10.1007/s42979-024-02772-x. 5:5.

    https://link.springer.com/10.1007/s42979-024-02772-x

  • Wang S, Ko R, Bai G, Dong N, Choi T and Zhang Y. Evasion Attack and Defense on Machine Learning Models in Cyber-Physical Systems: A Survey. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2023.3344808. 26:2. (930-966).

    https://ieeexplore.ieee.org/document/10366507/

  • Jemai J, Zarrad A and Daud A. Identifying Fraudulent Credit Card Transactions Using Ensemble Learning. IEEE Access. 10.1109/ACCESS.2024.3380823. 12. (54893-54900).

    https://ieeexplore.ieee.org/document/10477993/

  • Vishnumolakala S, Gopu S, Dash J, Tripathy S and Singh S. (2024). Deep Learning Models in Finance: Past, Present, and Future. Machine Learning Approaches in Financial Analytics. 10.1007/978-3-031-61037-0_21. (453-465).

    https://link.springer.com/10.1007/978-3-031-61037-0_21

  • Rajesh P, Shreyanth S, Sarveshwaran R and Nithin Chary V. (2024). Bayesian Optimized Random Forest Classifier for Improved Credit Card Fraud Detection: Overcoming Challenges and Limitations. Accelerating Discoveries in Data Science and Artificial Intelligence I. 10.1007/978-3-031-51167-7_20. (205-214).

    https://link.springer.com/10.1007/978-3-031-51167-7_20

  • Chhabra R, Goswami S and Ranjan R. (2023). A voting ensemble machine learning based credit card fraud detection using highly imbalance data. Multimedia Tools and Applications. 10.1007/s11042-023-17766-9.

    https://link.springer.com/10.1007/s11042-023-17766-9

  • Banirostam H, Banirostam T, Pedram M and Rahmani A. (2023). Providing and evaluating a comprehensive model for detecting fraudulent electronic payment card transactions with a two-level filter based on flow processing in big data. International Journal of Information Technology. 10.1007/s41870-023-01501-6. 15:8. (4161-4166). Online publication date: 1-Dec-2023.

    https://link.springer.com/10.1007/s41870-023-01501-6

  • Islam M, Uddin M, Aryal S and Stea G. (2023). An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes. Journal of Information Security and Applications. 10.1016/j.jisa.2023.103618. 78. (103618). Online publication date: 1-Nov-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2214212623002028

  • John Unogwu O and Youssef Filali . (2023). Fraud Detection and Identification in Credit Card Based on Machine Learning Techniques. Wasit Journal of Computer and Mathematics Science. 10.31185/wjcms.185. 2:3. (15-21).

    https://wjcm.uowasit.edu.iq/index.php/wjcm/article/view/185

  • Maitra S, Mishra V, Verma P, Chopra M and Nath P. (2023). Sampling - Variational Auto Encoder - Ensemble: In the Quest of Explainable Artificial Intelligence 2023 International Conference on Electrical and Information Technology (IEIT). 10.1109/IEIT59852.2023.10335522. 979-8-3503-2729-8. (43-50).

    https://ieeexplore.ieee.org/document/10335522/

  • Swetha P and Rao D. (2023). Effective Feature Selection-Based Meta-heuristics Optimization Approach for Spam Detection. SN Computer Science. 4:5. Online publication date: 5-Sep-2023.

    https://doi.org/10.1007/s42979-023-02126-z

  • Singh I, Aditya N, Srivastava P, Mittal S, Mittal T and Surin N. (2023). Credit Card Fraud Detection using Neural Embeddings and Radial Basis Network with a novel hybrid fruitfly-fireworks algorithm 2023 3rd International Conference on Intelligent Technologies (CONIT). 10.1109/CONIT59222.2023.10205378. 979-8-3503-3860-7. (1-7).

    https://ieeexplore.ieee.org/document/10205378/

  • Fanai H and Abbasimehr H. (2023). A novel combined approach based on deep Autoencoder and deep classifiers for credit card fraud detection. Expert Systems with Applications: An International Journal. 217:C. Online publication date: 1-May-2023.

    https://doi.org/10.1016/j.eswa.2023.119562

  • Strelcenia E and Prakoonwit S. (2023). Improving Classification Performance in Credit Card Fraud Detection by Using New Data Augmentation. AI. 10.3390/ai4010008. 4:1. (172-198).

    https://www.mdpi.com/2673-2688/4/1/8

  • Achary R and Shelke C. (2023). Fraud Detection in Banking Transactions Using Machine Learning 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). 10.1109/IITCEE57236.2023.10091067. 978-1-6654-9260-7. (221-226).

    https://ieeexplore.ieee.org/document/10091067/

  • Peter A, Manoj K and Kumar P. (2023). Blockchain and Machine Learning Approaches for Credit Card Fraud Detection 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT). 10.1109/ICSSIT55814.2023.10060999. 978-1-6654-7467-2. (1034-1041).

    https://ieeexplore.ieee.org/document/10060999/

  • Zou L. (2023). Meta-learning for emerging applications: Finance, building materials, graph neural networks, program synthesis, transportation, recommendation systems, and climate science. Meta-Learning. 10.1016/B978-0-323-89931-4.00004-3. (331-374).

    https://linkinghub.elsevier.com/retrieve/pii/B9780323899314000043

  • Ashwin V, Menon V, Devagopal A, Nived P and Udayan Divya J. (2023). Detection of Fraudulent Credit Card Transactions in Real Time Using SparkML and Kafka. Proceedings of 3rd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications. 10.1007/978-981-19-6088-8_26. (285-295).

    https://link.springer.com/10.1007/978-981-19-6088-8_26

  • Paladini T, Bernasconi de Luca M, Carminati M, Polino M, Trovò F and Zanero S. (2023). Advancing Fraud Detection Systems Through Online Learning. Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. 10.1007/978-3-031-43427-3_17. (275-292).

    https://link.springer.com/10.1007/978-3-031-43427-3_17

  • Wang J. (2023). USMOTE: A Synthetic Data-Set-Based Method Improving Imbalanced Learning. Cyber Security Intelligence and Analytics. 10.1007/978-3-031-31775-0_57. (554-564).

    https://link.springer.com/10.1007/978-3-031-31775-0_57

  • Rajendran S, John A, Suhas B and Sahana B. (2023). Role of ML and DL in Detecting Fraudulent Transactions. Artificial Intelligence for Societal Issues. 10.1007/978-3-031-12419-8_4. (59-82).

    https://link.springer.com/10.1007/978-3-031-12419-8_4

  • Jain N, Chaudhary A and Kumar A. (2022). Credit Card Fraud Detection using Machine Learning Techniques 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART). 10.1109/SMART55829.2022.10047360. 978-1-6654-8732-0. (1451-1455).

    https://ieeexplore.ieee.org/document/10047360/

  • Singh A and Jain A. (2022). An efficient credit card fraud detection approach using cost‐sensitive weak learner with imbalanced dataset. Computational Intelligence. 10.1111/coin.12555. 38:6. (2035-2055). Online publication date: 1-Dec-2022.

    https://onlinelibrary.wiley.com/doi/10.1111/coin.12555

  • Carneiro E, Forster C, Mialaret L, Dias L and da Cunha A. (2022). High-Cardinality Categorical Attributes and Credit Card Fraud Detection. Mathematics. 10.3390/math10203808. 10:20. (3808).

    https://www.mdpi.com/2227-7390/10/20/3808

  • N P and Sugave S. (2022). Ensemble Approach with Hyperparameter Tuning for Credit Worthiness Prediction 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). 10.1109/GCAT55367.2022.9971879. 978-1-6654-6853-4. (1-5).

    https://ieeexplore.ieee.org/document/9971879/

  • Gambo M, Zainal A and Kassim M. (2022). A Convolutional Neural Network Model for Credit Card Fraud Detection 2022 International Conference on Data Science and Its Applications (ICoDSA). 10.1109/ICoDSA55874.2022.9862930. 978-1-6654-8665-1. (198-202).

    https://ieeexplore.ieee.org/document/9862930/

  • Sumanth C, Kalyan P, Ravi B and Balasubramani. S. (2022). Analysis of Credit Card Fraud Detection using Machine Learning Techniques 2022 7th International Conference on Communication and Electronics Systems (ICCES). 10.1109/ICCES54183.2022.9835751. 978-1-6654-9634-6. (1140-1144).

    https://ieeexplore.ieee.org/document/9835751/

  • Alarfaj F, Malik I, Khan H, Almusallam N, Ramzan M and Ahmed M. Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access. 10.1109/ACCESS.2022.3166891. 10. (39700-39715).

    https://ieeexplore.ieee.org/document/9755930/

  • Kansal V and Pandey P. (2022). Deep Digging of Anomalous Transactions in Financial Networks with Imbalanced Data. Deep Learning for Social Media Data Analytics. 10.1007/978-3-031-10869-3_15. (277-299).

    https://link.springer.com/10.1007/978-3-031-10869-3_15

  • Baabdullah T, Rawat D, Liu C and Alzahrani A. (2022). An Ensemble-Based Machine Learning for Predicting Fraud of Credit Card Transactions. Intelligent Computing. 10.1007/978-3-031-10464-0_14. (214-229).

    https://link.springer.com/10.1007/978-3-031-10464-0_14

  • Eketnova Y. (2021). Comparative Analysis of Machine learning Methods to Identify signs of suspicious Transactions of Credit Institutions and Their Clients. Finance: Theory and Practice. 10.26794/2587-5671-2020-25-5-186-199. 25:5. (186-199).

    https://financetp.fa.ru/jour/article/view/1329

  • Wang C, Wang C, Zhu H and Cui J. (2021). LAW: Learning Automatic Windows for Online Payment Fraud Detection. IEEE Transactions on Dependable and Secure Computing. 18:5. (2122-2135). Online publication date: 1-Sep-2021.

    https://doi.org/10.1109/TDSC.2020.3037784

  • Kalbande D, Prabhu P, Gharat A and Rajabally T. (2021). A Fraud Detection System Using Machine Learning 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). 10.1109/ICCCNT51525.2021.9580102. 978-1-7281-8595-8. (1-7).

    https://ieeexplore.ieee.org/document/9580102/

  • Cui J, Yan C and Wang C. ReMEMBeR: Ranking Metric Embedding-Based Multicontextual Behavior Profiling for Online Banking Fraud Detection. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2021.3052950. 8:3. (643-654).

    https://ieeexplore.ieee.org/document/9349748/

  • Forough J and Momtazi S. (2021). Ensemble of deep sequential models for credit card fraud detection. Applied Soft Computing. 10.1016/j.asoc.2020.106883. 99. (106883). Online publication date: 1-Feb-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S1568494620308218

  • Xie Y, Li A, Gao L, Liu Z and Zhong S. (2021). A Heterogeneous Ensemble Learning Model Based on Data Distribution for Credit Card Fraud Detection. Wireless Communications & Mobile Computing. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/2531210

  • Feng H. (2021). Ensemble Learning in Credit Card Fraud Detection Using Boosting Methods 2021 2nd International Conference on Computing and Data Science (CDS). 10.1109/CDS52072.2021.00009. 978-1-6654-0428-0. (7-11).

    https://ieeexplore.ieee.org/document/9463278/

  • Lebichot B, Verhelst T, Le Borgne Y, He-Guelton L, Oble F and Bontempi G. Transfer Learning Strategies for Credit Card Fraud Detection. IEEE Access. 10.1109/ACCESS.2021.3104472. 9. (114754-114766).

    https://ieeexplore.ieee.org/document/9512084/

  • Parmar J, Patel A and Savsani M. (2021). A Novel Approach for Credit Card Fraud Detection Through Deep Learning. Data Science and Intelligent Applications. 10.1007/978-981-15-4474-3_22. (191-200).

    http://link.springer.com/10.1007/978-981-15-4474-3_22

  • Arya M and Sastry G H. (2020). DEAL – ‘Deep Ensemble ALgorithm’ Framework for Credit Card Fraud Detection in Real-Time Data Stream with Google TensorFlow. Smart Science. 10.1080/23080477.2020.1783491. 8:2. (71-83). Online publication date: 2-Apr-2020.

    https://www.tandfonline.com/doi/full/10.1080/23080477.2020.1783491

  • Kalid S, Ng K, Tong G and Khor K. A Multiple Classifiers System for Anomaly Detection in Credit Card Data With Unbalanced and Overlapped Classes. IEEE Access. 10.1109/ACCESS.2020.2972009. 8. (28210-28221).

    https://ieeexplore.ieee.org/document/8985298/

  • Van Belle R, Mitrović S and De Weerdt J. (2020). Representation Learning in Graphs for Credit Card Fraud Detection. Mining Data for Financial Applications. 10.1007/978-3-030-37720-5_3. (32-46).

    http://link.springer.com/10.1007/978-3-030-37720-5_3

  • Zamini M and Montazer G. (2018). Credit Card Fraud Detection using autoencoder based clustering 2018 9th International Symposium on Telecommunications (IST). 10.1109/ISTEL.2018.8661129. 978-1-5386-8274-6. (486-491).

    https://ieeexplore.ieee.org/document/8661129/