• Ali N and Shabn O. (2024). Customer lifetime value (CLV) insights for strategic marketing success and its impact on organizational financial performance. Cogent Business & Management. 10.1080/23311975.2024.2361321. 11:1. Online publication date: 31-Dec-2025.

    https://www.tandfonline.com/doi/full/10.1080/23311975.2024.2361321

  • Weng Y, Tang X, Xu Z, Lyu F, Liu D, Sun Z and He X. OptDist: Learning Optimal Distribution for Customer Lifetime Value Prediction. Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. (2523-2533).

    https://doi.org/10.1145/3627673.3679712

  • Wang R, Xu H, Cheng Y, He Q, Zhou X, Feng R, Xu W, Huang L and Jiang J. ADSNet: Cross-Domain LTV Prediction with an Adaptive Siamese Network in Advertising. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (5872-5881).

    https://doi.org/10.1145/3637528.3671612

  • Akram N, M S, Kathiriya H, Gottumukkala P, Rathika S and R R. (2024). Evaluating Deep Learning Models for Customer Lifetime Value Forecasting Based on Hybrid DT and Naive Bayes Model 2024 2nd World Conference on Communication & Computing (WCONF). 10.1109/WCONF61366.2024.10692182. 979-8-3503-9532-7. (1-6).

    https://ieeexplore.ieee.org/document/10692182/

  • Kvíčala D, Králová M and Suchánek P. (2024). The impact of online purchase behaviour on customer lifetime value. Journal of Marketing Analytics. 10.1057/s41270-024-00328-9.

    https://link.springer.com/10.1057/s41270-024-00328-9

  • Yan Y and Resnick N. (2023). A high-performance turnkey system for customer lifetime value prediction in retail brands. Quantitative Marketing and Economics. 10.1007/s11129-023-09272-x. 22:2. (169-192). Online publication date: 1-Jun-2024.

    https://link.springer.com/10.1007/s11129-023-09272-x

  • Chen H, Li C and Chen T. Skewness-aware Boosting Regression Trees for Customer Contribution Prediction in Financial Precision Marketing. Companion Proceedings of the ACM Web Conference 2024. (461-470).

    https://doi.org/10.1145/3589335.3648346

  • Sun P, Wang Y, Zhang M, Wu C, Fang Y, Zhu H, Fang Y and Wang M. Collaborative-Enhanced Prediction of Spending on Newly Downloaded Mobile Games under Consumption Uncertainty. Companion Proceedings of the ACM Web Conference 2024. (10-19).

    https://doi.org/10.1145/3589335.3648297

  • Zhou Z, Lin L, Wang H, Zhou X, Wei G and Wang S. A Cross Domain Method for Customer Lifetime Value Prediction in Supply Chain Platform. Proceedings of the ACM Web Conference 2024. (4037-4046).

    https://doi.org/10.1145/3589334.3645391

  • Liu W, Xu G, Ye B, Luo X, He Y and Yin C. (2024). MDAN: Multi-distribution Adaptive Networks for LTV Prediction. Advances in Knowledge Discovery and Data Mining. 10.1007/978-981-97-2259-4_31. (409-420).

    https://link.springer.com/10.1007/978-981-97-2259-4_31

  • Chattopadhyay S, Kayal C and Abrol S. (2023). VAM: Value Propensity Score For User Acquisition Marketing Campaign 2023 IEEE International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW60847.2023.00009. 979-8-3503-8164-1. (8-15).

    https://ieeexplore.ieee.org/document/10411585/

  • Zhang S, Yan X, Yang X, Jia B and Wang S. Out of the Box Thinking: Improving Customer Lifetime Value Modelling via Expert Routing and Game Whale Detection. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (3206-3215).

    https://doi.org/10.1145/3583780.3615002

  • Yi C, Zumwalt D, Ni Z and Chakrabarti S. Progressive Horizon Learning: Adaptive Long Term Optimization for Personalized Recommendation. Proceedings of the 17th ACM Conference on Recommender Systems. (940-946).

    https://doi.org/10.1145/3604915.3608852

  • Gadgil K, Gill S and Abdelmoniem A. (2023). A Meta-learning based Stacked Regression Approach for Customer Lifetime Value Prediction. Journal of Economy and Technology. 10.1016/j.ject.2023.09.001. Online publication date: 1-Sep-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2949948823000045

  • Gao S, Wu F, Qian K, Chen S, Ren J and Lyu F. (2023). Ranking Cellular Internet Card User VIP Values Based on Graph Clustering with Usage Data 2023 IEEE/CIC International Conference on Communications in China (ICCC). 10.1109/ICCC57788.2023.10233659. 979-8-3503-4538-4. (1-6).

    https://ieeexplore.ieee.org/document/10233659/

  • Goti A, Querejeta-Lomas L, Almeida A, de la Puerta J and López-de-Ipiña D. (2023). Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review. Mathematics. 10.3390/math11132943. 11:13. (2943).

    https://www.mdpi.com/2227-7390/11/13/2943

  • Zavali M, Lacka E and de Smedt J. Shopping Hard or Hardly Shopping: Revealing Consumer Segments Using Clickstream Data. IEEE Transactions on Engineering Management. 10.1109/TEM.2021.3070069. 70:4. (1353-1364).

    https://ieeexplore.ieee.org/document/9422915/

  • Yang X, Jia B, Wang S and Zhang S. Feature Missing-aware Routing-and-Fusion Network for Customer Lifetime Value Prediction in Advertising. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. (1030-1038).

    https://doi.org/10.1145/3539597.3570460

  • Zhao S, Wu R, Tao J, Qu M, Zhao M, Fan C and Zhao H. (2023). perCLTV: A General System for Personalized Customer Lifetime Value Prediction in Online Games. ACM Transactions on Information Systems. 41:1. (1-29). Online publication date: 31-Jan-2023.

    https://doi.org/10.1145/3530012

  • Valendin J, Reutterer T, Platzer M and Kalcher K. (2022). Customer base analysis with recurrent neural networks. International Journal of Research in Marketing. 10.1016/j.ijresmar.2022.02.007. 39:4. (988-1018). Online publication date: 1-Dec-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0167811622000180

  • Yılmaz Benk G, Badur B and Mardikyan S. (2022). A New 360° Framework to Predict Customer Lifetime Value for Multi-Category E-Commerce Companies Using a Multi-Output Deep Neural Network and Explainable Artificial Intelligence. Information. 10.3390/info13080373. 13:8. (373).

    https://www.mdpi.com/2078-2489/13/8/373

  • H S Yashaswini and Prabhudeva S . (2022). Customer Lifetime Value Prediction. International Journal of Advanced Research in Science, Communication and Technology. 10.48175/IJARSCT-5162. (805-810).

    http://ijarsct.co.in/june6i.html

  • Badri H and Tran A. Beyond Customer Lifetime Valuation: Measuring the Value of Acquisition and Retention for Subscription Services. Proceedings of the ACM Web Conference 2022. (132-140).

    https://doi.org/10.1145/3485447.3512058

  • Spenrath Y, Hassani M and van Dongen B. (2022). Online Prediction of Aggregated Retailer Consumer Behaviour. Process Mining Workshops. 10.1007/978-3-030-98581-3_16. (211-223).

    https://link.springer.com/10.1007/978-3-030-98581-3_16

  • Maitra S, Rakib Ahamed M, Nazrul Islam M, Abdullah Al Nasim M and Ashraf M. (2021). A Soft Computing Based Customer Lifetime Value Classifier for Digital Retail Businesses 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 10.1109/UEMCON53757.2021.9666546. 978-1-6654-0690-1. (0074-0083).

    https://ieeexplore.ieee.org/document/9666546/

  • Bauer J and Jannach D. (2021). Improved Customer Lifetime Value Prediction With Sequence-To-Sequence Learning and Feature-Based Models. ACM Transactions on Knowledge Discovery from Data. 15:5. (1-37). Online publication date: 31-Oct-2021.

    https://doi.org/10.1145/3441444

  • Reelfs J, Bergmann M, Hohlfeld O and Henckell N. Understanding & Predicting User Lifetime with Machine Learning in an Anonymous Location-Based Social Network. Companion Proceedings of the Web Conference 2021. (324-331).

    https://doi.org/10.1145/3442442.3451887

  • Piao J, Zhang G, Xu F, Chen Z and Li Y. Predicting Customer Value with Social Relationships via Motif-based Graph Attention Networks. Proceedings of the Web Conference 2021. (3146-3157).

    https://doi.org/10.1145/3442381.3449849

  • Zhang G, Li Y, Yuan Y, Xu F, Cao H, Xu Y and Jin D. Community Value Prediction in Social E-commerce. Proceedings of the Web Conference 2021. (2958-2967).

    https://doi.org/10.1145/3442381.3449793

  • Binh T, Thy N and Phuong H. (2021). Measure of CLV Toward Market Segmentation Approach in the Telecommunication Sector (Vietnam). Sage Open. 10.1177/21582440211021584. 11:2. Online publication date: 1-Apr-2021.

    https://journals.sagepub.com/doi/10.1177/21582440211021584

  • Fernández del Río A, Guitart A and Periánẽz Á. (2021). A time series approach to player churn and conversion in videogames. Intelligent Data Analysis. 25:1. (177-203). Online publication date: 1-Jan-2021.

    https://doi.org/10.3233/IDA-194940

  • Guidotti R, Nanni M, Giannotti F, Pedreschi D, Bertoli S, Speciale B and Rapoport H. (2021). Measuring Immigrants Adoption of Natives Shopping Consumption with Machine Learning. Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. 10.1007/978-3-030-67670-4_23. (369-385).

    http://link.springer.com/10.1007/978-3-030-67670-4_23

  • Singh N, Singh P and Gupta M. (2021). An inclusive survey on machine learning for CRM: a paradigm shift. DECISION. 10.1007/s40622-020-00261-7. 47:4. (447-457). Online publication date: 1-Dec-2020.

    http://link.springer.com/10.1007/s40622-020-00261-7

  • Win T and Bo K. (2020). Predicting Customer Class using Customer Lifetime Value with Random Forest Algorithm 2020 International Conference on Advanced Information Technologies (ICAIT). 10.1109/ICAIT51105.2020.9261792. 978-1-7281-8364-0. (236-241).

    https://ieeexplore.ieee.org/document/9261792/

  • Guo L, Lu R, Zhang H, Jin J, Zheng Z, Wu F, Li J, Xu H, Li H, Lu W, Xu J and Gai K. A Deep Prediction Network for Understanding Advertiser Intent and Satisfaction. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (2501-2508).

    https://doi.org/10.1145/3340531.3412681

  • Chamberlain B, Rossi E, Shiebler D, Sedhain S and Bronstein M. Tuning Word2vec for Large Scale Recommendation Systems. Proceedings of the 14th ACM Conference on Recommender Systems. (732-737).

    https://doi.org/10.1145/3383313.3418486

  • Jiang J. A Study of Game Payment Data Mining: Predicting High-Value Users for MMORPGs. Trends and Applications in Knowledge Discovery and Data Mining. (181-192).

    https://doi.org/10.1007/978-3-030-60470-7_17

  • Liu X, Xie M, Wen X, Chen R, Ge Y, Duffield N and Wang N. (2020). Micro- and macro-level churn analysis of large-scale mobile games. Knowledge and Information Systems. 62:4. (1465-1496). Online publication date: 1-Apr-2020.

    https://doi.org/10.1007/s10115-019-01394-7

  • Gong J, Zhao Y, Chen S, Wang H, Du L, Wang S, Bhuiyan M, Peng H and Du B. Hybrid Deep Neural Networks for Friend Recommendations in Edge Computing Environment. IEEE Access. 10.1109/ACCESS.2019.2958599. 8. (10693-10706).

    https://ieeexplore.ieee.org/document/8930557/

  • Zatout C, Guessoum A, Neche C and Daoud A. (2020). Prediction of the Engagement Rate on Algerian Dialect Facebook Pages. Recent Advances in NLP: The Case of Arabic Language. 10.1007/978-3-030-34614-0_9. (163-185).

    http://link.springer.com/10.1007/978-3-030-34614-0_9

  • Jasek P, Vrana L, Sperkova L, Smutny Z and Kobulsky M. (2019). Predictive Performance of Customer Lifetime Value Models in E-Commerce and the Use of Non-Financial Data. Prague Economic Papers. 10.18267/j.pep.714. 28:6. (648-669). Online publication date: 21-Dec-2019.

    http://pep.vse.cz/doi/10.18267/j.pep.714.html

  • Desirena G, Diaz A, Desirena J, Moreno I and Garcia D. (2019). Maximizing Customer Lifetime Value using Stacked Neural Networks: An Insurance Industry Application 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). 10.1109/ICMLA.2019.00101. 978-1-7281-4550-1. (541-544).

    https://ieeexplore.ieee.org/document/8999077/

  • Jasek P, Vrana L, Sperkova L, Smutny Z and Kobulsky M. (2019). COMPARATIVE ANALYSIS OF SELECTED PROBABILISTIC CUSTOMER LIFETIME VALUE MODELS IN ONLINE SHOPPING. Journal of Business Economics and Management. 10.3846/jbem.2019.9597. 20:3. (398-423). Online publication date: 5-Apr-2019.

    https://journals.vilniustech.lt/index.php/JBEM/article/view/9597

  • Wang Q, Xu M and Hussain A. (2018). Large-scale Ensemble Model for Customer Churn Prediction in Search Ads. Cognitive Computation. 10.1007/s12559-018-9608-3. 11:2. (262-270). Online publication date: 1-Apr-2019.

    http://link.springer.com/10.1007/s12559-018-9608-3

  • Yu S, Wu Y, Song Y, Jiang G and Su X. (2019). Application of DeepWalk Based on Hyperbolic Coordinates on Unsupervised Clustering. Science of Cyber Security. 10.1007/978-3-030-34637-9_8. (106-118).

    http://link.springer.com/10.1007/978-3-030-34637-9_8

  • Al_Janabi S and Razaq F. (2019). Intelligent Big Data Analysis to Design Smart Predictor for Customer Churn in Telecommunication Industry. Big Data and Smart Digital Environment. 10.1007/978-3-030-12048-1_26. (246-272).

    http://link.springer.com/10.1007/978-3-030-12048-1_26

  • Karamshuk D and Matthews D. (2019). Learning Cheap and Novel Flight Itineraries. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-030-10997-4_18. (288-304).

    https://link.springer.com/10.1007/978-3-030-10997-4_18

  • Grob G, Cardoso Â, Liu C, Little D and Chamberlain B. (2019). A Recurrent Neural Network Survival Model: Predicting Web User Return Time. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-030-10997-4_10. (152-168).

    https://link.springer.com/10.1007/978-3-030-10997-4_10

  • Chen P, Guitart A, del Rio A and Perianez A. (2018). Customer Lifetime Value in Video Games Using Deep Learning and Parametric Models 2018 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2018.8622151. 978-1-5386-5035-6. (2134-2140).

    https://ieeexplore.ieee.org/document/8622151/

  • Liu X, Xie M, Wen X, Chen R, Ge Y, Duffield N and Wang N. (2018). A Semi-Supervised and Inductive Embedding Model for Churn Prediction of Large-Scale Mobile Games 2018 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2018.00043. 978-1-5386-9159-5. (277-286).

    https://ieeexplore.ieee.org/document/8594852/

  • Zhao K, Li Y, Shuai Z and Yang C. Learning and Transferring IDs Representation in E-commerce. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (1031-1039).

    https://doi.org/10.1145/3219819.3219855

  • Liu C, Chamberlain B, Little D and Cardoso Â. (2017). Generalising Random Forest Parameter Optimisation to Include Stability and Cost. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-71273-4_9. (102-113).

    https://link.springer.com/10.1007/978-3-319-71273-4_9