• Ma J, Li B and Mostafavi A. (2023). Characterizing urban lifestyle signatures using motif properties in network of places. Environment and Planning B: Urban Analytics and City Science. 10.1177/23998083231206171. 51:4. (889-903). Online publication date: 1-May-2024.

    https://journals.sagepub.com/doi/10.1177/23998083231206171

  • Rashid M, Elfouly T and Chen N. (2023). Travel Motif-Based Learning Scheme for Electric Vehicle Charging Demand Forecasting 2023 IEEE Vehicle Power and Propulsion Conference (VPPC). 10.1109/VPPC60535.2023.10403362. 979-8-3503-4445-5. (1-6).

    https://ieeexplore.ieee.org/document/10403362/

  • Zhao F, Dai Z, Zhang W, Shan Y and Fu C. (2023). Epidemiological-survey-based multidimensional modeling for understanding daily mobility during the COVID-19 pandemic across urban-rural gradient in the Chinese mainland. Geo-spatial Information Science. 10.1080/10095020.2022.2156821. 26:4. (603-615). Online publication date: 2-Oct-2023.

    https://www.tandfonline.com/doi/full/10.1080/10095020.2022.2156821

  • Kim J, Thakur G and Christopher S. A Design of Activity-Based Mobility Intervention. Proceedings of the 18th International Symposium on Spatial and Temporal Data. (131-140).

    https://doi.org/10.1145/3609956.3609970

  • Wang L, Chen Y, Wang Y, Sun X, Wu Y, Peng F, Song G and Esztergár-Kiss D. (2023). Identification and Classification of Bus and Subway Passenger Travel Patterns in Beijing Using Transit Smart Card Data. Journal of Advanced Transportation. 10.1155/2023/6529819. 2023. (1-15). Online publication date: 5-Jan-2023.

    https://www.hindawi.com/journals/jat/2023/6529819/

  • Yin J and Chi G. (2022). A tale of three cities: uncovering human-urban interactions with geographic-context aware social media data. Urban Informatics. 10.1007/s44212-022-00020-2. 1:1.

    https://link.springer.com/10.1007/s44212-022-00020-2

  • Adenaw L and Bachmeier Q. (2022). Generating Activity-Based Mobility Plans from Trip-Based Models and Mobility Surveys. Applied Sciences. 10.3390/app12178456. 12:17. (8456).

    https://www.mdpi.com/2076-3417/12/17/8456

  • Li W, Wang Q, Liu Y, Small M and Gao J. (2022). A spatiotemporal decay model of human mobility when facing large-scale crises. Proceedings of the National Academy of Sciences. 10.1073/pnas.2203042119. 119:33. Online publication date: 16-Aug-2022.

    https://pnas.org/doi/full/10.1073/pnas.2203042119

  • Haeger C, Mümken S, O‘Sullivan J, Spang R, Voigt-Antons J, Stockburger M, Dräger D and Gellert P. (2022). Mobility enhancement among older adults 75 + in rural areas: Study protocol of the MOBILE randomized controlled trial. BMC Geriatrics. 10.1186/s12877-021-02739-0. 22:1.

    https://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-021-02739-0

  • Yang X, Fang Z, Xu Y, Yin L, Li J and Zhao Z. (2021). Revealing temporal stay patterns in human mobility using large‐scale mobile phone location data. Transactions in GIS. 10.1111/tgis.12750. 25:4. (1927-1948). Online publication date: 1-Aug-2021.

    https://onlinelibrary.wiley.com/doi/10.1111/tgis.12750

  • Yin J and Chi G. (2021). Characterizing People’s Daily Activity Patterns in the Urban Environment: A Mobility Network Approach with Geographic Context-Aware Twitter Data. Annals of the American Association of Geographers. 10.1080/24694452.2020.1867498. (1-21).

    https://www.tandfonline.com/doi/full/10.1080/24694452.2020.1867498

  • Mirzaee S and Wang Q. (2020). Urban mobility and resilience: exploring Boston’s urban mobility network through twitter data. Applied Network Science. 10.1007/s41109-020-00316-9. 5:1. Online publication date: 1-Dec-2020.

    https://appliednetsci.springeropen.com/articles/10.1007/s41109-020-00316-9

  • Pesavento J, Chen A, Yu R, Kim J, Kavak H, Anderson T and Züfle A. Data-driven mobility models for COVID-19 simulation. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities. (29-38).

    https://doi.org/10.1145/3423455.3430305

  • Faisal Behadili S, Bertelle C and George L. (2020). MODELING CITY PULSATION VIA MOBILE DATA. International Journal of Engineering Technologies and Management Research. 10.29121/ijetmr.v5.i4.2018.215. 5:4. (115-122).

    https://www.granthaalayahpublication.org/ijetmr-ojms/index.php/ijetmr/article/view/14_IJETMR18_A05_387

  • Fillekes M, Giannouli E, Kim E, Zijlstra W and Weibel R. (2019). Towards a comprehensive set of GPS-based indicators reflecting the multidimensional nature of daily mobility for applications in health and aging research. International Journal of Health Geographics. 10.1186/s12942-019-0181-0. 18:1. Online publication date: 1-Dec-2019.

    https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-019-0181-0

  • Zhang T, Wang J, Cui C, Li Y, He W, Lu Y and Qiao Q. (2019). Integrating Geovisual Analytics with Machine Learning for Human Mobility Pattern Discovery. ISPRS International Journal of Geo-Information. 10.3390/ijgi8100434. 8:10. (434).

    https://www.mdpi.com/2220-9964/8/10/434

  • Parija S, Swayamsiddha S, Sahu P and Singh S. (2019). Profile based location update for cellular network using mobile phone data. Microsystem Technologies. 10.1007/s00542-019-04367-6.

    http://link.springer.com/10.1007/s00542-019-04367-6

  • Büscher S, Batram M and Bauer D. (2019). Using Motifs for Population Synthesis in Multi-agent Mobility Simulation Models. Stochastic Models, Statistics and Their Applications. 10.1007/978-3-030-28665-1_25. (335-349).

    http://link.springer.com/10.1007/978-3-030-28665-1_25

  • Feng Ling , Tianyue Sun , Xinning Zhu , Qingqing Chen , Xiaosheng Tang and Xin Ke . (2016). Mining travel behaviors of tourists with mobile phone data: A case study in Hainan 2016 2nd IEEE International Conference on Computer and Communications (ICCC). 10.1109/CompComm.2016.7924957. 978-1-4673-9026-2. (1524-1529).

    http://ieeexplore.ieee.org/document/7924957/

  • Liu J, Zhao K, Kusy B, Wen J, Zheng K and Jurdak R. (2016). Learning abstract snippet detectors with Temporal embedding in convolutional neural Networks 2016 IEEE 32nd International Conference on Data Engineering (ICDE). 10.1109/ICDE.2016.7498299. 978-1-5090-2020-1. (895-905).

    http://ieeexplore.ieee.org/document/7498299/