• Breuer T, Fuhr N and Schaer P. (2024). Validating Synthetic Usage Data in Living Lab Environments. Journal of Data and Information Quality. 16:1. (1-33). Online publication date: 31-Mar-2024.

    https://doi.org/10.1145/3623640

  • Lasri S and Nfaoui E. (2022). Ranking Task in RAS: A Comparative Study of Learning to Rank Algorithms and Interleaving Methods. Digital Technologies and Applications. 10.1007/978-3-031-01942-5_16. (158-168).

    https://link.springer.com/10.1007/978-3-031-01942-5_16

  • Zhou J, Zahiri S, Hughes S, Al Jadda K, Kallumadi S and Agichtein E. De-Biased Modeling of Search Click Behavior with Reinforcement Learning. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. (1637-1641).

    https://doi.org/10.1145/3404835.3463228

  • Lewandowski D, Sünkler S and Schultheiß S. (2020). Studies on Search: Designing Meaningful IIR Studies on Commercial Search Engines. Datenbank-Spektrum. 10.1007/s13222-020-00331-1. 20:1. (5-15). Online publication date: 1-Mar-2020.

    http://link.springer.com/10.1007/s13222-020-00331-1

  • Takanobu R, Zhuang T, Huang M, Feng J, Tang H and Zheng B. Aggregating E-commerce Search Results from Heterogeneous Sources via Hierarchical Reinforcement Learning. The World Wide Web Conference. (1771-1781).

    https://doi.org/10.1145/3308558.3313455

  • Jiang J and Allan J. Adaptive Persistence for Search Effectiveness Measures. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (747-756).

    https://doi.org/10.1145/3132847.3133033

  • Malkevich S, Markov I, Michailova E and de Rijke M. Evaluating and Analyzing Click Simulation in Web Search. Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval. (281-284).

    https://doi.org/10.1145/3121050.3121096

  • Ziak H and Kern R. (2017). Evaluation of Contextualization and Diversification Approaches in Aggregated Search 2017 28th International Workshop on Database and Expert Systems Applications (DEXA). 10.1109/DEXA.2017.37. 978-1-5386-1051-0. (103-107).

    http://ieeexplore.ieee.org/document/8049695/

  • Arguello J. (2017). Aggregated Search. Foundations and Trends in Information Retrieval. 10:5. (365-502). Online publication date: 6-Mar-2017.

    https://doi.org/10.1561/1500000052

  • Arguello J and Capra R. (2016). The Effects of Aggregated Search Coherence on Search Behavior. ACM Transactions on Information Systems. 35:1. (1-30). Online publication date: 31-Jan-2017.

    https://doi.org/10.1145/2935747

  • Kharitonov E, Macdonald C, Serdyukov P and Ounis I. Generalized Team Draft Interleaving. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (773-782).

    https://doi.org/10.1145/2806416.2806477

  • Grotov A, Whiteson S and de Rijke M. Bayesian Ranker Comparison Based on Historical User Interactions. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (273-282).

    https://doi.org/10.1145/2766462.2767730

  • Chuklin A, Schuth A, Zhou K and Rijke M. (2015). A Comparative Analysis of Interleaving Methods for Aggregated Search. ACM Transactions on Information Systems. 33:2. (1-38). Online publication date: 26-Feb-2015.

    https://doi.org/10.1145/2668120

  • Zoghi M, Whiteson S and de Rijke M. MergeRUCB. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. (17-26).

    https://doi.org/10.1145/2684822.2685290

  • Hofmann K. (2015). Online Experimentation for Information Retrieval. Information Retrieval. 10.1007/978-3-319-25485-2_2. (21-41).

    https://link.springer.com/10.1007/978-3-319-25485-2_2

  • Schuth A, Sietsma F, Whiteson S, Lefortier D and de Rijke M. Multileaved Comparisons for Fast Online Evaluation. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (71-80).

    https://doi.org/10.1145/2661829.2661952

  • Chuklin A, Zhou K, Schuth A, Sietsma F and de Rijke M. Evaluating intuitiveness of vertical-aware click models. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (1075-1078).

    https://doi.org/10.1145/2600428.2609513

  • Lv Y, Fuxman A and Chandra A. Evaluation of IR Applications with Constrained Real Estate. Proceedings of the 36th European Conference on IR Research on Advances in Information Retrieval - Volume 8416. (160-171).

    /doi/10.5555/2964060.2964165

  • Zoghi M, Whiteson S, de Rijke M and Munos R. Relative confidence sampling for efficient on-line ranker evaluation. Proceedings of the 7th ACM international conference on Web search and data mining. (73-82).

    https://doi.org/10.1145/2556195.2556256

  • Lv Y, Fuxman A and Chandra A. (2014). Evaluation of IR Applications with Constrained Real Estate. Advances in Information Retrieval. 10.1007/978-3-319-06028-6_14. (160-171).

    http://link.springer.com/10.1007/978-3-319-06028-6_14

  • Schuth A, Hofmann K, Whiteson S and de Rijke M. Lerot. Proceedings of the 2013 workshop on Living labs for information retrieval evaluation. (23-26).

    https://doi.org/10.1145/2513150.2513162