• Boyar J and Erfurth S. (2025). Folding Schemes with Privacy Preserving Selective Verification. IACR Communications in Cryptology. 10.62056/a0iv4fe-3. 1:4.

    https://cic.iacr.org/p/1/4/12

  • Ait Messaoud A, Ben Mokhtar S and Simonet-Boulogne A. (2025). Tee-based key-value stores: a survey. The VLDB Journal — The International Journal on Very Large Data Bases. 34:1. Online publication date: 1-Jan-2025.

    https://doi.org/10.1007/s00778-024-00877-6

  • DeStefano Z, Ma J, Bonneau J and Walfish M. NOPE: Strengthening domain authentication with succinct proofs. Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles. (673-692).

    https://doi.org/10.1145/3694715.3695962

  • Avizheh S, Nabi M and Safavi-Naini R. Refereed Delegation of Computation Using Smart Contracts. IEEE Transactions on Dependable and Secure Computing. 10.1109/TDSC.2024.3372848. 21:6. (5208-5227).

    https://ieeexplore.ieee.org/document/10458259/

  • Angel S, Ioannidis E, Margolin E, Setty S and Woods J. Reef. Proceedings of the 33rd USENIX Conference on Security Symposium. (3801-3818).

    /doi/10.5555/3698900.3699113

  • Wang P, Paccagnella R, Wahby R and Brown F. Bending microarchitectural weird machines towards practicality. Proceedings of the 33rd USENIX Conference on Security Symposium. (1099-1116).

    /doi/10.5555/3698900.3698962

  • Zhang C, DeStefano Z, Arun A, Bonneau J, Grubbs P and Walfish M. Zombie. Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation. (1917-1935).

    /doi/10.5555/3691825.3691930

  • SUN Y, YANG F, CHEN X, DU X and LIN W. (2024). Research progress of verifiable technologies for outsourcing services. SCIENTIA SINICA Informationis. 10.1360/SSI-2022-0360. 54:3. (514). Online publication date: 1-Mar-2024.

    https://engine.scichina.com/doi/10.1360/SSI-2022-0360

  • Kothapalli A and Setty S. (2024). HyperNova: Recursive Arguments for Customizable Constraint Systems. Advances in Cryptology – CRYPTO 2024. 10.1007/978-3-031-68403-6_11. (345-379).

    https://link.springer.com/10.1007/978-3-031-68403-6_11

  • Ames S, Hazay C, Ishai Y and Venkitasubramaniam M. (2023). Ligero: lightweight sublinear arguments without a trusted setup. Designs, Codes and Cryptography. 10.1007/s10623-023-01222-8. 91:11. (3379-3424). Online publication date: 1-Nov-2023.

    https://link.springer.com/10.1007/s10623-023-01222-8

  • Ozdemir A, Kremer G, Tinelli C and Barrett C. Satisfiability Modulo Finite Fields. Computer Aided Verification. (163-186).

    https://doi.org/10.1007/978-3-031-37703-7_8

  • Chen E, Zhu J, Ozdemir A, Wahby R, Brown F and Zheng W. (2023). Silph: A Framework for Scalable and Accurate Generation of Hybrid MPC Protocols 2023 IEEE Symposium on Security and Privacy (SP). 10.1109/SP46215.2023.10179397. 978-1-6654-9336-9. (848-863).

    https://ieeexplore.ieee.org/document/10179397/

  • Jiang K, Chait-Roth D, DeStefano Z, Walfish M and Wies T. (2023). Less is more: refinement proofs for probabilistic proofs 2023 IEEE Symposium on Security and Privacy (SP). 10.1109/SP46215.2023.10179393. 978-1-6654-9336-9. (1112-1129).

    https://ieeexplore.ieee.org/document/10179393/

  • Kiyoshima S. (2023). No-Signaling Linear PCPs. Journal of Cryptology. 36:2. Online publication date: 1-Apr-2023.

    https://doi.org/10.1007/s00145-023-09448-4

  • Ozdemir A, Wahby R, Brown F and Barrett C. (2023). Bounded Verification for Finite-Field-Blasting. Computer Aided Verification. 10.1007/978-3-031-37709-9_8. (154-175).

    https://link.springer.com/10.1007/978-3-031-37709-9_8

  • Nabi M, Avizheh S and Safavi-Naini R. (2023). Fides: A System for Verifiable Computation Using Smart Contracts. Financial Cryptography and Data Security. FC 2022 International Workshops. 10.1007/978-3-031-32415-4_29. (448-480).

    https://link.springer.com/10.1007/978-3-031-32415-4_29

  • Kattis A, Panarin K and Vlasov A. RedShift. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. (1725-1737).

    https://doi.org/10.1145/3548606.3560657

  • Park J, Cheon J and Kim D. (2022). Efficient verifiable computation over quotient polynomial rings. International Journal of Information Security. 10.1007/s10207-022-00590-x. 21:5. (953-971). Online publication date: 1-Oct-2022.

    https://link.springer.com/10.1007/s10207-022-00590-x

  • Bitansky N, Chiesa A, Ishai Y, Ostrovsky R and Paneth O. (2022). Succinct Non-Interactive Arguments via Linear Interactive Proofs. Journal of Cryptology. 35:3. Online publication date: 1-Jul-2022.

    https://doi.org/10.1007/s00145-022-09424-4

  • Xia Y, Yu X, Butrovich M, Pavlo A and Devadas S. Litmus: Towards a Practical Database Management System with Verifiable ACID Properties and Transaction Correctness. Proceedings of the 2022 International Conference on Management of Data. (1478-1492).

    https://doi.org/10.1145/3514221.3517851

  • Zhang L and Wang H. (2022). Multi-Server Verifiable Computation of Low-Degree Polynomials 2022 IEEE Symposium on Security and Privacy (SP). 10.1109/SP46214.2022.9833792. 978-1-6654-1316-9. (596-613).

    https://ieeexplore.ieee.org/document/9833792/

  • Ozdemir A, Brown F and Wahby R. (2022). CirC: Compiler infrastructure for proof systems, software verification, and more 2022 IEEE Symposium on Security and Privacy (SP). 10.1109/SP46214.2022.9833782. 978-1-6654-1316-9. (2248-2266).

    https://ieeexplore.ieee.org/document/9833782/

  • Chen S, Cheon J, Kim D and Park D. Interactive Proofs for Rounding Arithmetic. IEEE Access. 10.1109/ACCESS.2022.3223136. 10. (122706-122725).

    https://ieeexplore.ieee.org/document/9954370/

  • Kothapalli A, Setty S and Tzialla I. (2022). Nova: Recursive Zero-Knowledge Arguments from Folding Schemes. Advances in Cryptology – CRYPTO 2022. 10.1007/978-3-031-15985-5_13. (359-388).

    https://link.springer.com/10.1007/978-3-031-15985-5_13

  • Li K, Tang Y, Zhang Q, Xu J and Chen J. Authenticated key-value stores with hardware enclaves. Proceedings of the 22nd International Middleware Conference: Industrial Track. (1-8).

    https://doi.org/10.1145/3491084.3491425

  • Shishkin E and Kislitsyn E. (2021). SafeComp: Protocol for Certifying Cloud Computations Integrity. Programming and Computer Software. 10.1134/S0361768821080053. 47:8. (871-881). Online publication date: 1-Dec-2021.

    https://link.springer.com/10.1134/S0361768821080053

  • Rahimi A and Maddah-Ali M. Multi-Party Proof Generation in QAP-Based zk-SNARKs. IEEE Journal on Selected Areas in Information Theory. 10.1109/JSAIT.2021.3102267. 2:3. (931-941).

    https://ieeexplore.ieee.org/document/9506884/

  • XU Z and Chen L. DIV. Proceedings of the 2021 International Conference on Management of Data. (2036-2048).

    https://doi.org/10.1145/3448016.3457248

  • Xu S and Zhou N. (2021). An Efficient HPRA-Based Multiclient Verifiable Computation. Security and Communication Networks. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/6612614

  • Setty S. Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup. Advances in Cryptology – CRYPTO 2020. (704-737).

    https://doi.org/10.1007/978-3-030-56877-1_25

  • Ozdemir A, Wahby R, Whitehat B and Boneh D. Scaling verifiable computation using efficient set accumulators. Proceedings of the 29th USENIX Conference on Security Symposium. (2075-2092).

    /doi/10.5555/3489212.3489329

  • He Y and Zhang L. (2020). Multi-matrix verifiable computation. Cluster Computing. 10.1007/s10586-020-03116-z.

    http://link.springer.com/10.1007/s10586-020-03116-z

  • Bünz B, Fisch B and Szepieniec A. Transparent SNARKs from DARK Compilers. Advances in Cryptology – EUROCRYPT 2020. (677-706).

    https://doi.org/10.1007/978-3-030-45721-1_24

  • Lee J, Nikitin K and Setty S. (2020). Replicated state machines without replicated execution 2020 IEEE Symposium on Security and Privacy (SP). 10.1109/SP40000.2020.00068. 978-1-7281-3497-0. (119-134).

    https://ieeexplore.ieee.org/document/9152807/

  • Maddali L, Thakur M, Vigneswaran R, Rajan M, Kanchanapalli S and Das B. (2020). VeriBlock: A Novel Blockchain Framework based on Verifiable Computing and Trusted Execution Environment 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS). 10.1109/COMSNETS48256.2020.9027414. 978-1-7281-3187-0. (1-6).

    https://ieeexplore.ieee.org/document/9027414/

  • Lee J, Nicopoulos C, Jeong G, Kim J and Oh H. Practical Verifiable Computation by Using a Hardware-Based Correct Execution Environment. IEEE Access. 10.1109/ACCESS.2020.3041308. 8. (216689-216706).

    https://ieeexplore.ieee.org/document/9273052/

  • Choi J, Tian D, Hernandez G, Patton C, Mood B, Shrimpton T, Butler K and Traynor P. A Hybrid Approach to Secure Function Evaluation using SGX. Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. (100-113).

    https://doi.org/10.1145/3321705.3329835

  • Li X, Wang M, Shi S and Qian C. VERID. Proceedings of the International Conference on Internet of Things Design and Implementation. (118-129).

    https://doi.org/10.1145/3302505.3310074

  • Tang Y, Li K and Chen J. (2019). Authenticated LSM Trees with Minimal Trust. Security and Privacy in Communication Networks. 10.1007/978-3-030-37231-6_27. (454-471).

    http://link.springer.com/10.1007/978-3-030-37231-6_27

  • Boneh D, Boyle E, Corrigan-Gibbs H, Gilboa N and Ishai Y. (2019). Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. Advances in Cryptology – CRYPTO 2019. 10.1007/978-3-030-26954-8_3. (67-97).

    http://link.springer.com/10.1007/978-3-030-26954-8_3

  • Ben-Sasson E, Bentov I, Horesh Y and Riabzev M. (2019). Scalable Zero Knowledge with No Trusted Setup. Advances in Cryptology – CRYPTO 2019. 10.1007/978-3-030-26954-8_23. (701-732).

    http://link.springer.com/10.1007/978-3-030-26954-8_23

  • Ben-Sasson E, Chiesa A, Riabzev M, Spooner N, Virza M and Ward N. (2019). Aurora: Transparent Succinct Arguments for R1CS. Advances in Cryptology – EUROCRYPT 2019. 10.1007/978-3-030-17653-2_4. (103-128).

    https://link.springer.com/10.1007/978-3-030-17653-2_4

  • Zhang Y, Papamanthou C and Katz J. (2018). Verifiable Graph Processing. ACM Transactions on Privacy and Security. 21:4. (1-23). Online publication date: 30-Nov-2018.

    https://doi.org/10.1145/3233181

  • Setty S, Angel S, Gupta T and Lee J. Proving the correct execution of concurrent services in zero-knowledge. Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation. (339-356).

    /doi/10.5555/3291168.3291193

  • Ahmad H, Wang L, Hong H, Li J, Dawood H, Ahmed M and Yang Y. (2018). Primitives towards verifiable computation. Frontiers of Computer Science: Selected Publications from Chinese Universities. 12:3. (451-478). Online publication date: 1-Jun-2018.

    https://doi.org/10.1007/s11704-016-6148-4

  • Wahby R, Tzialla I, Shelat A, Thaler J and Walfish M. (2018). Doubly-Efficient zkSNARKs Without Trusted Setup 2018 IEEE Symposium on Security and Privacy (SP). 10.1109/SP.2018.00060. 978-1-5386-4353-2. (926-943).

    https://ieeexplore.ieee.org/document/8418646/

  • Zhang Y, Genkin D, Katz J, Papadopoulos D and Papamanthou C. (2018). vRAM: Faster Verifiable RAM with Program-Independent Preprocessing 2018 IEEE Symposium on Security and Privacy (SP). 10.1109/SP.2018.00013. 978-1-5386-4353-2. (908-925).

    https://ieeexplore.ieee.org/document/8418645/

  • Xu S and Zhang L. (2018). Cryptanalysis of Morillo–Obrador polynomial delegation schemes. IET Information Security. 10.1049/iet-ifs.2017.0259. 12:2. (127-132). Online publication date: 1-Mar-2018.

    https://onlinelibrary.wiley.com/doi/10.1049/iet-ifs.2017.0259

  • Anisimov A and Novokshonov A. (2018). Trusted Computing with Addition Machines. II*. Cybernetics and Systems Analysis. 54:1. (1-10). Online publication date: 1-Feb-2018.

    https://doi.org/10.1007/s10559-018-0002-7

  • Kiyoshima S. (2018). No-signaling Linear PCPs. Theory of Cryptography. 10.1007/978-3-030-03807-6_3. (67-97).

    http://link.springer.com/10.1007/978-3-030-03807-6_3

  • Ben-Sasson E, Chiesa A, Tromer E and Virza M. (2017). Scalable Zero Knowledge Via Cycles of Elliptic Curves. Algorithmica. 79:4. (1102-1160). Online publication date: 1-Dec-2017.

    https://doi.org/10.1007/s00453-016-0221-0

  • Ames S, Hazay C, Ishai Y and Venkitasubramaniam M. Ligero. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. (2087-2104).

    https://doi.org/10.1145/3133956.3134104

  • Wahby R, Ji Y, Blumberg A, Shelat A, Thaler J, Walfish M and Wies T. Full Accounting for Verifiable Outsourcing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. (2071-2086).

    https://doi.org/10.1145/3133956.3133984

  • Song W, Wang B, Wang Q, Shi C, Lou W and Peng Z. Publicly Verifiable Computation of Polynomials Over Outsourced Data With Multiple Sources. IEEE Transactions on Information Forensics and Security. 10.1109/TIFS.2017.2705628. 12:10. (2334-2347).

    http://ieeexplore.ieee.org/document/7931708/

  • Yu X, Yan Z and Vasilakos A. (2017). A Survey of Verifiable Computation. Mobile Networks and Applications. 10.1007/s11036-017-0872-3. 22:3. (438-453). Online publication date: 1-Jun-2017.

    http://link.springer.com/10.1007/s11036-017-0872-3

  • Zhang Y, Genkin D, Katz J, Papadopoulos D and Papamanthou C. (2017). vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases 2017 IEEE Symposium on Security and Privacy (SP). 10.1109/SP.2017.43. 978-1-5090-5533-3. (863-880).

    http://ieeexplore.ieee.org/document/7958614/

  • Xu G, Amariucai G and Guan Y. (2017). Delegation of Computation with Verification Outsourcing. IEEE Transactions on Parallel and Distributed Systems. 28:3. (717-730). Online publication date: 1-Mar-2017.

    https://doi.org/10.1109/TPDS.2016.2598342

  • Ben-Sasson E, Bentov I, Chiesa A, Gabizon A, Genkin D, Hamilis M, Pergament E, Riabzev M, Silberstein M, Tromer E and Virza M. (2017). Computational Integrity with a Public Random String from Quasi-Linear PCPs. Advances in Cryptology – EUROCRYPT 2017. 10.1007/978-3-319-56617-7_19. (551-579).

    http://link.springer.com/10.1007/978-3-319-56617-7_19

  • Demirel D, Schabhüser L and Buchmann J. (2017). Analysis of the State of the Art. Privately and Publicly Verifiable Computing Techniques. 10.1007/978-3-319-53798-6_8. (49-56).

    http://link.springer.com/10.1007/978-3-319-53798-6_8

  • Demirel D, Schabhüser L and Buchmann J. (2017). Proof and Argument Based Verifiable Computing. Privately and Publicly Verifiable Computing Techniques. 10.1007/978-3-319-53798-6_3. (13-22).

    http://link.springer.com/10.1007/978-3-319-53798-6_3

  • Ben-Sasson E, Chiesa A and Spooner N. Interactive Oracle Proofs. Proceedings, Part II, of the 14th International Conference on Theory of Cryptography - Volume 9986. (31-60).

    https://doi.org/10.1007/978-3-662-53644-5_2

  • Samarawickrama R, Ranasinghe D and Sritharan T. (2016). Vemaque: Approximately verifiable remote computation of k-clique and maximum clique problems 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTER.2016.7829909. 978-1-5090-6077-1. (124-131).

    http://ieeexplore.ieee.org/document/7829909/

  • Zhou Z, Zhang T, Chow S, Zhang Y and Zhang K. Efficient Authenticated Multi-Pattern Matching. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. (593-604).

    https://doi.org/10.1145/2897845.2897906

  • Wahby R, Howald M, Garg S, Shelat A and Walfish M. (2016). Verifiable ASICs 2016 IEEE Symposium on Security and Privacy (SP). 10.1109/SP.2016.51. 978-1-5090-0824-7. (759-778).

    http://ieeexplore.ieee.org/document/7546534/

  • Parno B, Howell J, Gentry C and Raykova M. (2016). Pinocchio. Communications of the ACM. 59:2. (103-112). Online publication date: 25-Jan-2016.

    https://doi.org/10.1145/2856449

  • Chabanne H, Keuffer J and Lescuyer R. (2016). Delegating Biometric Authentication with the Sumcheck Protocol. Information Security Theory and Practice. 10.1007/978-3-319-45931-8_15. (236-244).

    http://link.springer.com/10.1007/978-3-319-45931-8_15

  • Zhang Y, Katz J and Papamanthou C. IntegriDB. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. (1480-1491).

    https://doi.org/10.1145/2810103.2813711

  • Zhou J, Cao J, Yao B and Guo M. Fast Proof Generation for Verifying Cloud Search. Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium. (504-513).

    https://doi.org/10.1109/IPDPS.2015.11

  • Costello C, Fournet C, Howell J, Kohlweiss M, Kreuter B, Naehrig M, Parno B and Zahur S. Geppetto. Proceedings of the 2015 IEEE Symposium on Security and Privacy. (253-270).

    https://doi.org/10.1109/SP.2015.23

  • Narayan A, Feldman A, Papadimitriou A and Haeberlen A. Verifiable differential privacy. Proceedings of the Tenth European Conference on Computer Systems. (1-14).

    https://doi.org/10.1145/2741948.2741978

  • Xu G, Amariucai G and Guan Y. Block Programs. Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security. (405-416).

    https://doi.org/10.1145/2714576.2714631

  • Papadopoulos D, Papamanthou C, Tamassia R and Triandopoulos N. (2015). Practical authenticated pattern matching with optimal proof size. Proceedings of the VLDB Endowment. 8:7. (750-761). Online publication date: 1-Feb-2015.

    https://doi.org/10.14778/2752939.2752944

  • Walfish M and Blumberg A. (2015). Verifying computations without reexecuting them. Communications of the ACM. 58:2. (74-84). Online publication date: 28-Jan-2015.

    https://doi.org/10.1145/2641562

  • Chiesa A, Tromer E and Virza M. (2015). Cluster Computing in Zero Knowledge. Advances in Cryptology - EUROCRYPT 2015. 10.1007/978-3-662-46803-6_13. (371-403).

    http://link.springer.com/10.1007/978-3-662-46803-6_13

  • Zhang Y, Papamanthou C and Katz J. ALITHEIA. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. (856-867).

    https://doi.org/10.1145/2660267.2660354

  • Ben-Sasson E, Chiesa A, Tromer E and Virza M. Succinct non-interactive zero knowledge for a von Neumann architecture. Proceedings of the 23rd USENIX conference on Security Symposium. (781-796).

    /doi/10.5555/2671225.2671275

  • Kosba A, Papadopoulos D, Papamanthou C, Sayed M, Shi E and Triandopoulos N. TRUESET. Proceedings of the 23rd USENIX conference on Security Symposium. (765-780).

    /doi/10.5555/2671225.2671274

  • Xu G, Amariucai G and Guan Y. Delegation of Computation with Verification Outsourcing Using GENI Infrastructure. Proceedings of the 2014 Third GENI Research and Educational Experiment Workshop. (49-52).

    https://doi.org/10.1109/GREE.2014.16

  • Ben-Sasson E, Chiesa A, Tromer E and Virza M. (2014). Scalable Zero Knowledge via Cycles of Elliptic Curves. Advances in Cryptology – CRYPTO 2014. 10.1007/978-3-662-44381-1_16. (276-294).

    http://link.springer.com/10.1007/978-3-662-44381-1_16

  • Xu G, Amariucai G and Guan Y. (2014). Verifiable Computation with Reduced Informational Costs and Computational Costs. Computer Security - ESORICS 2014. 10.1007/978-3-319-11203-9_17. (292-309).

    http://link.springer.com/10.1007/978-3-319-11203-9_17

  • Backes M, Fiore D and Reischuk R. Verifiable delegation of computation on outsourced data. Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. (863-874).

    https://doi.org/10.1145/2508859.2516681

  • Papadimitriou A, Zhao M and Haeberlen A. Towards privacy-preserving fault detection. Proceedings of the 9th Workshop on Hot Topics in Dependable Systems. (1-5).

    https://doi.org/10.1145/2524224.2524233

  • Walfish M. Verifying the correctness of remote executions. Proceedings of the 9th Workshop on Hot Topics in Dependable Systems. (1-1).

    https://doi.org/10.1145/2524224.2524225

  • Braun B, Feldman A, Ren Z, Setty S, Blumberg A and Walfish M. Verifying computations with state. Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. (341-357).

    https://doi.org/10.1145/2517349.2522733

  • Vu V, Setty S, Blumberg A and Walfish M. A Hybrid Architecture for Interactive Verifiable Computation. Proceedings of the 2013 IEEE Symposium on Security and Privacy. (223-237).

    https://doi.org/10.1109/SP.2013.48

  • Parno B, Howell J, Gentry C and Raykova M. Pinocchio. Proceedings of the 2013 IEEE Symposium on Security and Privacy. (238-252).

    https://doi.org/10.1109/SP.2013.47

  • Bitansky N, Chiesa A, Ishai Y, Paneth O and Ostrovsky R. Succinct non-interactive arguments via linear interactive proofs. Proceedings of the 10th theory of cryptography conference on Theory of Cryptography. (315-333).

    https://doi.org/10.1007/978-3-642-36594-2_18

  • Thaler J. (2013). Time-Optimal Interactive Proofs for Circuit Evaluation. Advances in Cryptology – CRYPTO 2013. 10.1007/978-3-642-40084-1_5. (71-89).

    http://link.springer.com/10.1007/978-3-642-40084-1_5