• Tobioka K, Yamamoto T and Ohshima H. Timing of Aspect Suggestion to Encourage Diverse Information Acquisition in Spoken Conversational Search. Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region. (145-153).

    https://doi.org/10.1145/3673791.3698418

  • Wu H, Zhang Y, Ma C, Lyu F, He B, Mitra B and Liu X. Result Diversification in Search and Recommendation: A Survey. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2024.3382262. 36:10. (5354-5373).

    https://ieeexplore.ieee.org/document/10490254/

  • Sakai T, Kim J and Kang I. (2023). A Versatile Framework for Evaluating Ranked Lists in Terms of Group Fairness and Relevance. ACM Transactions on Information Systems. 42:1. (1-36). Online publication date: 31-Jan-2024.

    https://doi.org/10.1145/3589763

  • Qin X, Dou Z, Zhu Y and Wen J. (2023). GDESA: Greedy Diversity Encoder with Self-attention for Search Results Diversification. ACM Transactions on Information Systems. 41:2. (1-36). Online publication date: 30-Apr-2023.

    https://doi.org/10.1145/3544103

  • Clarke C, Diaz F and Arabzadeh N. Preference-Based Offline Evaluation. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. (1248-1251).

    https://doi.org/10.1145/3539597.3572725

  • Wu Z, Liu Y, Mao J, Zhang M and Ma S. (2022). Leveraging Document-Level and Query-Level Passage Cumulative Gain for Document Ranking. Journal of Computer Science and Technology. 10.1007/s11390-022-2031-y. 37:4. (814-838). Online publication date: 1-Jul-2022.

    https://link.springer.com/10.1007/s11390-022-2031-y

  • Chu Z, Mao J, Zhang F, Liu Y, Sakai T, Zhang M and Ma S. Evaluating Relevance Judgments with Pairwise Discriminative Power. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (261-270).

    https://doi.org/10.1145/3459637.3482428

  • Parapar J and Radlinski F. Towards Unified Metrics for Accuracy and Diversity for Recommender Systems. Proceedings of the 15th ACM Conference on Recommender Systems. (75-84).

    https://doi.org/10.1145/3460231.3474234

  • Draws T, Tintarev N and Gadiraju U. (2021). Assessing Viewpoint Diversity in Search Results Using Ranking Fairness Metrics. ACM SIGKDD Explorations Newsletter. 23:1. (50-58). Online publication date: 26-May-2021.

    https://doi.org/10.1145/3468507.3468515

  • Sakai T and Zeng Z. (2020). Retrieval Evaluation Measures that Agree with Users’ SERP Preferences. ACM Transactions on Information Systems. 39:2. (1-35). Online publication date: 30-Apr-2021.

    https://doi.org/10.1145/3431813

  • Gupta A, Johnson E, Payan J, Roy A, Kobren A, Panda S, Tristan J and Wick M. Online Post-Processing in Rankings for Fair Utility Maximization. Proceedings of the 14th ACM International Conference on Web Search and Data Mining. (454-462).

    https://doi.org/10.1145/3437963.3441724

  • Diaz F, Mitra B, Ekstrand M, Biega A and Carterette B. Evaluating Stochastic Rankings with Expected Exposure. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (275-284).

    https://doi.org/10.1145/3340531.3411962

  • Clarke C, Smucker M and Vtyurina A. Offline Evaluation by Maximum Similarity to an Ideal Ranking. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (225-234).

    https://doi.org/10.1145/3340531.3411915

  • Sakai T and Zeng Z. Good Evaluation Measures based on Document Preferences. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. (359-368).

    https://doi.org/10.1145/3397271.3401115

  • Shajalal M and Aono M. (2020). Coverage-based query subtopic diversification leveraging semantic relevance. Knowledge and Information Systems. 10.1007/s10115-020-01470-3. 62:7. (2873-2891). Online publication date: 1-Jul-2020.

    https://link.springer.com/10.1007/s10115-020-01470-3

  • Togashi R, Fujita S and Sakai T. Automatic Evaluation of Iconic Image Retrieval based on Colour, Shape, and Texture. Proceedings of the 2020 International Conference on Multimedia Retrieval. (346-354).

    https://doi.org/10.1145/3372278.3390741

  • Wu Z, Mao J, Liu Y, Zhan J, Zheng Y, Zhang M and Ma S. Leveraging Passage-level Cumulative Gain for Document Ranking. Proceedings of The Web Conference 2020. (2421-2431).

    https://doi.org/10.1145/3366423.3380305

  • Dietz L and Dalton J. (2020). Humans Optional? Automatic Large-Scale Test Collections for Entity, Passage, and Entity-Passage Retrieval. Datenbank-Spektrum. 10.1007/s13222-020-00334-y. 20:1. (17-28). Online publication date: 1-Mar-2020.

    http://link.springer.com/10.1007/s13222-020-00334-y

  • Sakai T and Zeng Z. Which Diversity Evaluation Measures Are "Good"?. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. (595-604).

    https://doi.org/10.1145/3331184.3331215

  • Dou Z, Yang X, Li D, Wen J and Sakai T. (2019). Low-cost, bottom-up measures for evaluating search result diversification. Information Retrieval Journal. 10.1007/s10791-019-09356-x.

    http://link.springer.com/10.1007/s10791-019-09356-x

  • Kato M, Nishida A, Manabe T, Fujita S and Yamamoto T. (2019). Final Report of the NTCIR-14 OpenLiveQ-2 Task. NII Testbeds and Community for Information Access Research. 10.1007/978-3-030-36805-0_4. (45-56).

    http://link.springer.com/10.1007/978-3-030-36805-0_4

  • Albahem A, Spina D, Scholer F, Moffat A and Cavedon L. Desirable Properties for Diversity and Truncated Effectiveness Metrics. Proceedings of the 23rd Australasian Document Computing Symposium. (1-7).

    https://doi.org/10.1145/3291992.3291996

  • Kato M, Manabe T, Fujita S, Nishida A and Yamamoto T. Challenges of Multileaved Comparison in Practice. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (1515-1518).

    https://doi.org/10.1145/3269206.3269318

  • Jiang Z, Dou Z, Zhao W, Nie J, Yue M and Wen J. Supervised Search Result Diversification via Subtopic Attention. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2018.2810873. 30:10. (1971-1984).

    https://ieeexplore.ieee.org/document/8305531/

  • Amigó E, Spina D and Carrillo-de-Albornoz J. An Axiomatic Analysis of Diversity Evaluation Metrics. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. (625-634).

    https://doi.org/10.1145/3209978.3210024

  • Ren P, Chen Z, Ma J, Wang S, Zhang Z, Ren Z and Ma T. (2018). User session level diverse reranking of search results. Neurocomputing. 274:C. (66-79). Online publication date: 24-Jan-2018.

    https://doi.org/10.1016/j.neucom.2016.05.087

  • Pothirattanachaikul S, Yamamoto T, Fujita S, Tajima A, Tanaka K and Yoshikawa M. (2018). Mining Alternative Actions from Community Q&A Corpus. Journal of Information Processing. 10.2197/ipsjjip.26.427. 26:0. (427-438).

    https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_427/_article

  • Wang X, Wen J, Dou Z, Sakai T and Zhang R. Search Result Diversity Evaluation Based on Intent Hierarchies. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2729559. 30:1. (156-169).

    http://ieeexplore.ieee.org/document/7987038/

  • Wang X, Qi J, Ramamohanarao K, Sun Y, Li B and Zhang R. (2018). A Joint Optimization Approach for Personalized Recommendation Diversification. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-93040-4_47. (597-609).

    https://link.springer.com/10.1007/978-3-319-93040-4_47

  • Sakai T. (2018). Advanced Information Retrieval Measures. Encyclopedia of Database Systems. 10.1007/978-1-4899-7993-3_80705-1. (1-4).

    http://link.springer.com/10.1007/978-1-4899-7993-3_80705-1

  • Sakai T. (2018). Advanced Information Retrieval Measures. Encyclopedia of Database Systems. 10.1007/978-1-4614-8265-9_80705. (70-74).

    http://link.springer.com/10.1007/978-1-4614-8265-9_80705

  • Zehlike M, Bonchi F, Castillo C, Hajian S, Megahed M and Baeza-Yates R. FA*IR. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (1569-1578).

    https://doi.org/10.1145/3132847.3132938

  • Chen Y, Liu Y, Zhang M and Ma S. User Satisfaction Prediction with Mouse Movement Information in Heterogeneous Search Environment. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2739151. 29:11. (2470-2483).

    http://ieeexplore.ieee.org/document/8010344/

  • An X and Huang J. (2017). geNov. Journal of the Association for Information Science and Technology. 68:11. (2620-2635). Online publication date: 1-Nov-2017.

    https://doi.org/10.1002/asi.23958

  • Pothirattanachaikul S, Yamamoto T, Fujita S, Tajima A and Tanaka K. Mining alternative actions from community Q&A corpus for task-oriented web search. Proceedings of the International Conference on Web Intelligence. (607-614).

    https://doi.org/10.1145/3106426.3106461

  • Jiang Z, Wen J, Dou Z, Zhao W, Nie J and Yue M. Learning to Diversify Search Results via Subtopic Attention. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (545-554).

    https://doi.org/10.1145/3077136.3080805

  • Sakai T. The Probability that Your Hypothesis Is Correct, Credible Intervals, and Effect Sizes for IR Evaluation. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (25-34).

    https://doi.org/10.1145/3077136.3080766

  • (2017). An in-depth study on diversity evaluation. Information Processing and Management: an International Journal. 53:4. (799-813). Online publication date: 1-Jul-2017.

    https://doi.org/10.1016/j.ipm.2017.03.001

  • Xu J, Xia L, Lan Y, Guo J and Cheng X. (2017). Directly Optimize Diversity Evaluation Measures. ACM Transactions on Intelligent Systems and Technology. 8:3. (1-26). Online publication date: 22-Apr-2017.

    https://doi.org/10.1145/2983921

  • Dun Y, Wang N, Wang M and Hao T. (2017). Revealing Learner Interests through Topic Mining from Question-Answering Data. International Journal of Distance Education Technologies. 15:2. (18-32). Online publication date: 1-Apr-2017.

    https://doi.org/10.4018/IJDET.2017040102

  • Burghardt K, Alsina E, Girvan M, Rand W, Lerman K and Chialvo D. (2017). The myopia of crowds: Cognitive load and collective evaluation of answers on Stack Exchange. PLOS ONE. 10.1371/journal.pone.0173610. 12:3. (e0173610).

    https://dx.plos.org/10.1371/journal.pone.0173610

  • Shajalal M, Ullah M, Chy A and Aono M. (2016). Query subtopic diversification based on cluster ranking and semantic features 2016 International Conference On Advanced Informatics: Concepts, Theory And Application (ICAICTA). 10.1109/ICAICTA.2016.7803099. 978-1-5090-1636-5. (1-6).

    http://ieeexplore.ieee.org/document/7803099/

  • Mao J, Liu Y, Zhou K, Nie J, Song J, Zhang M, Ma S, Sun J and Luo H. When does Relevance Mean Usefulness and User Satisfaction in Web Search?. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. (463-472).

    https://doi.org/10.1145/2911451.2911507

  • Wang X, Dou Z, Sakai T and Wen J. Evaluating Search Result Diversity using Intent Hierarchies. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. (415-424).

    https://doi.org/10.1145/2911451.2911497

  • Yang G, Sloan M and Wang J. (2016). Dynamic Information Retrieval Modeling. Synthesis Lectures on Information Concepts, Retrieval, and Services. 10.2200/S00718ED1V01Y201605ICR049. 8:3. (1-144). Online publication date: 15-Jun-2016.

    http://www.morganclaypool.com/doi/10.2200/S00718ED1V01Y201605ICR049

  • Sakai T. (2016). Topic set size design. Information Retrieval. 19:3. (256-283). Online publication date: 1-Jun-2016.

    https://doi.org/10.1007/s10791-015-9273-z

  • Kanoulas E. (2016). A Short Survey on Online and Offline Methods for Search Quality Evaluation. Information Retrieval. 10.1007/978-3-319-41718-9_3. (38-87).

    http://link.springer.com/10.1007/978-3-319-41718-9_3

  • Zuccon G. (2016). Understandability Biased Evaluation for Information Retrieval. Advances in Information Retrieval. 10.1007/978-3-319-30671-1_21. (280-292).

    http://link.springer.com/10.1007/978-3-319-30671-1_21

  • Ren P, Chen Z, Ma J, Wang S, Zhang Z and Ren Z. (2015). Mining and ranking users’ intents behind queries. Information Retrieval Journal. 10.1007/s10791-015-9271-1. 18:6. (504-529). Online publication date: 1-Dec-2015.

    http://link.springer.com/10.1007/s10791-015-9271-1

  • Luchen Tan and Clarke C. (2015). A Family of Rank Similarity Measures Based on Maximized Effectiveness Difference. IEEE Transactions on Knowledge and Data Engineering. 27:11. (2865-2877). Online publication date: 1-Nov-2015.

    https://doi.org/10.1109/TKDE.2015.2448541

  • Chen Y, Liu Y, Zhou K, Wang M, Zhang M and Ma S. Does Vertical Bring more Satisfaction?. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1581-1590).

    https://doi.org/10.1145/2806416.2806473

  • Hu S, Dou Z, Wang X, Sakai T and Wen J. Search Result Diversification Based on Hierarchical Intents. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (63-72).

    https://doi.org/10.1145/2806416.2806455

  • Kim J and Yilmaz E. IR Evaluation. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (1129-1132).

    https://doi.org/10.1145/2766462.2767875

  • Tangsomboon A and Leelanupab T. Evaluating Diversity and Redundancy-Based Search Metrics Independently. Proceedings of the 19th Australasian Document Computing Symposium. (42-49).

    https://doi.org/10.1145/2682862.2682881

  • Kong W and Allan J. Extending Faceted Search to the General Web. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (839-848).

    https://doi.org/10.1145/2661829.2661964

  • Yilmaz E, Kanoulas E and Craswell N. Effect of Intent Descriptions on Retrieval Evaluation. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (599-608).

    https://doi.org/10.1145/2661829.2661950

  • Sakai T. Designing Test Collections for Comparing Many Systems. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (61-70).

    https://doi.org/10.1145/2661829.2661893

  • Moreno J, Dias G and Cleuziou G. Query log driven web search results clustering. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (777-786).

    https://doi.org/10.1145/2600428.2609583

  • Golbus P, Zitouni I, Kim J, Hassan A and Diaz F. Contextual and dimensional relevance judgments for reusable SERP-level evaluation. Proceedings of the 23rd international conference on World wide web. (131-142).

    https://doi.org/10.1145/2566486.2568015

  • Zhou K, Zha H, Chang Y and Xue G. (2014). Learning the Gain Values and Discount Factors of Discounted Cumulative Gains. IEEE Transactions on Knowledge and Data Engineering. 26:2. (391-404). Online publication date: 1-Feb-2014.

    https://doi.org/10.1109/TKDE.2012.252

  • Sakai T. (2014). Metrics, Statistics, Tests. Bridging Between Information Retrieval and Databases. 10.1007/978-3-642-54798-0_6. (116-163).

    http://link.springer.com/10.1007/978-3-642-54798-0_6

  • Yu H and Ren F. (2014). Subtopic Mining via Modifier Graph Clustering. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-06608-0_28. (337-347).

    http://link.springer.com/10.1007/978-3-319-06608-0_28

  • Luo J, Wing C, Yang H and Hearst M. The water filling model and the cube test. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (709-714).

    https://doi.org/10.1145/2505515.2523648

  • Zhou K, Lalmas M, Sakai T, Cummins R and Jose J. On the reliability and intuitiveness of aggregated search metrics. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (689-698).

    https://doi.org/10.1145/2505515.2505691

  • Wang Q, Qian Y, Song R, Dou Z, Zhang F, Sakai T and Zheng Q. (2013). Mining subtopics from text fragments for a web query. Information Retrieval. 10.1007/s10791-013-9221-8. 16:4. (484-503). Online publication date: 1-Aug-2013.

    http://link.springer.com/10.1007/s10791-013-9221-8

  • Golbus P, Aslam J and Clarke C. (2013). Increasing evaluation sensitivity to diversity. Information Retrieval. 10.1007/s10791-012-9218-8. 16:4. (530-555). Online publication date: 1-Aug-2013.

    http://link.springer.com/10.1007/s10791-012-9218-8

  • Sakai T and Song R. (2012). Diversified search evaluation: lessons from the NTCIR-9 INTENT task. Information Retrieval. 10.1007/s10791-012-9208-x. 16:4. (504-529). Online publication date: 1-Aug-2013.

    http://link.springer.com/10.1007/s10791-012-9208-x

  • Sakai T, Dou Z and Clarke C. The impact of intent selection on diversified search evaluation. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (921-924).

    https://doi.org/10.1145/2484028.2484105

  • Sakai T, Dou Z, Yamamoto T, Liu Y, Zhang M, Kato M, Song R and Iwata M. Summary of the NTCIR-10 INTENT-2 task. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (761-764).

    https://doi.org/10.1145/2484028.2484104

  • Kong W and Allan J. Extracting query facets from search results. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (93-102).

    https://doi.org/10.1145/2484028.2484097

  • Chandar P and Carterette B. Preference based evaluation measures for novelty and diversity. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (413-422).

    https://doi.org/10.1145/2484028.2484094

  • Golbus P and Aslam J. A mutual information-based framework for the analysis of information retrieval systems. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (683-692).

    https://doi.org/10.1145/2484028.2484073

  • Sakai T and Dou Z. Summaries, ranked retrieval and sessions. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (473-482).

    https://doi.org/10.1145/2484028.2484031

  • Chuklin A, Serdyukov P and de Rijke M. Using intent information to model user behavior in diversified search. Proceedings of the 35th European conference on Advances in Information Retrieval. (1-13).

    https://doi.org/10.1007/978-3-642-36973-5_1

  • Sakai T and Song Y. (2013). On Labelling Intent Types for Evaluating Search Result Diversification. Information Retrieval Technology. 10.1007/978-3-642-45068-6_4. (38-49).

    https://link.springer.com/10.1007/978-3-642-45068-6_4

  • Tsukuda K, Sakai T, Dou Z and Tanaka K. (2013). Estimating Intent Types for Search Result Diversification. Information Retrieval Technology. 10.1007/978-3-642-45068-6_3. (25-37).

    https://link.springer.com/10.1007/978-3-642-45068-6_3

  • Sakai T. (2013). How Intuitive Are Diversified Search Metrics? Concordance Test Results for the Diversity U-Measures. Information Retrieval Technology. 10.1007/978-3-642-45068-6_2. (13-24).

    https://link.springer.com/10.1007/978-3-642-45068-6_2

  • Damien A, Zhang M, Liu Y and Ma S. (2013). Improve Web Search Diversification with Intent Subtopic Mining. Natural Language Processing and Chinese Computing. 10.1007/978-3-642-41644-6_30. (322-333).

    http://link.springer.com/10.1007/978-3-642-41644-6_30

  • Hemayati R, Dehkordi L and Meng W. mNIR. Proceedings of the 13th international conference on Web Information Systems Engineering. (594-608).

    https://doi.org/10.1007/978-3-642-35063-4_43

  • Leelanupab T, Zuccon G and M. Jose J. A comprehensive analysis of parameter settings for novelty-biased cumulative gain. Proceedings of the 21st ACM international conference on Information and knowledge management. (1950-1954).

    https://doi.org/10.1145/2396761.2398550

  • Rajput S, Ekstrand-Abueg M, Pavlu V and Aslam J. Constructing test collections by inferring document relevance via extracted relevant information. Proceedings of the 21st ACM international conference on Information and knowledge management. (145-154).

    https://doi.org/10.1145/2396761.2396783

  • Santos R, Macdonald C and Ounis I. (2011). On the role of novelty for search result diversification. Information Retrieval. 10.1007/s10791-011-9180-x. 15:5. (478-502). Online publication date: 1-Oct-2012.

    http://link.springer.com/10.1007/s10791-011-9180-x

  • Zheng W, Wang X, Fang H and Cheng H. (2011). Coverage-based search result diversification. Information Retrieval. 10.1007/s10791-011-9178-4. 15:5. (433-457). Online publication date: 1-Oct-2012.

    http://link.springer.com/10.1007/s10791-011-9178-4

  • Zhou K, Cummins R, Lalmas M and Jose J. Evaluating aggregated search pages. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. (115-124).

    https://doi.org/10.1145/2348283.2348302

  • Sakai T. Evaluation with informational and navigational intents. Proceedings of the 21st international conference on World Wide Web. (499-508).

    https://doi.org/10.1145/2187836.2187904

  • Macdonald C, Wang J and Clarke C. 2nd international workshop on diversity in document retrieval (DDR 2012). Proceedings of the fifth ACM international conference on Web search and data mining. (769-770).

    https://doi.org/10.1145/2124295.2124395

  • Sakai T, Dou Z, Song R and Kando N. (2012). The Reusability of a Diversified Search Test Collection. Information Retrieval Technology. 10.1007/978-3-642-35341-3_3. (26-38).

    http://link.springer.com/10.1007/978-3-642-35341-3_3

  • Sakai T, Kato M and Song Y. Click the search button and be happy. Proceedings of the 20th ACM international conference on Information and knowledge management. (621-630).

    https://doi.org/10.1145/2063576.2063669

  • Burghardt K, Alsina E, Girvan M, Rand W and Lerman K. The Myopia of Crowds: A Study of Collective Evaluation on Stack Exchange. SSRN Electronic Journal. 10.2139/ssrn.2736568.

    http://www.ssrn.com/abstract=2736568