• Ju Y and Yu M. (2023). An Innovative Inverse Kinematics for Bionic Robot Arms Based on Directional Tangent Matrix 2023 2nd International Conference on Automation, Robotics and Computer Engineering (ICARCE). 10.1109/ICARCE59252.2024.10492514. 979-8-3503-0834-1. (1-6).

    https://ieeexplore.ieee.org/document/10492514/

  • Grafarend E and Awange J. (2012). Special Problems of Algebraic Regression and Stochastic Estimation. Linear and Nonlinear Models. 10.1007/978-3-642-22241-2_14. (493-525).

    http://link.springer.com/10.1007/978-3-642-22241-2_14

  • Li Y. (2009). An effective hybrid algorithm for computing symbolic determinants. Applied Mathematics and Computation. 215:7. (2495-2501). Online publication date: 1-Dec-2009.

    https://doi.org/10.1016/j.amc.2009.08.056

  • Villard G. Computing Popov and Hermite forms of polynomial matrices. Proceedings of the 1996 international symposium on Symbolic and algebraic computation. (250-258).

    https://doi.org/10.1145/236869.237082

  • González-Vega L and Trujillo G. Implicitization of parametric curves and surfaces by using symmetric functions. Proceedings of the 1995 international symposium on Symbolic and algebraic computation. (180-186).

    https://doi.org/10.1145/220346.220369

  • Emiris I and Rege A. Monomial bases and polynomial system solving (extended abstract). Proceedings of the international symposium on Symbolic and algebraic computation. (114-122).

    https://doi.org/10.1145/190347.190374

  • Emiris I and Canny J. A practical method for the sparse resultant. Proceedings of the 1993 international symposium on Symbolic and algebraic computation. (183-192).

    https://doi.org/10.1145/164081.164122