• Li T, Zeng Z, Sun S and Sun J. (2024). A novel integrated framework based on multi-view features for multidimensional social bot detection. Journal of Information Science. 50:5. (1148-1169). Online publication date: 1-Oct-2024.

    https://doi.org/10.1177/01655515221116517

  • Saeed M, Ali S, Paudel P, Blackburn J and Stringhini G. Unraveling the Web of Disinformation: Exploring the Larger Context of State-Sponsored Influence Campaigns on Twitter. Proceedings of the 27th International Symposium on Research in Attacks, Intrusions and Defenses. (353-367).

    https://doi.org/10.1145/3678890.3678911

  • Zhang W, Gui L, Procter R and He Y. Multi-Layer Ranking with Large Language Models for News Source Recommendation. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2537-2542).

    https://doi.org/10.1145/3626772.3657966

  • Nguyen H, Nguyen D, Nguyen C, To P, Nguyen D, Nguyen-Gia H, Tran L, Tran A, Dang-Hieu A, Nguyen-Duc A and Quan T. (2024). Supervised learning models for social bot detection. Expert Systems with Applications: An International Journal. 238:PE. Online publication date: 15-Mar-2024.

    https://doi.org/10.1016/j.eswa.2023.122217

  • Gromov V and Kogan A. Spot the Bot: Coarse-Grained Partition of Semantic Paths for Bots and Humans. Pattern Recognition and Machine Intelligence. (348-355).

    https://doi.org/10.1007/978-3-031-45170-6_36

  • Gromov V and Dang Q. Spot the Bot: Distinguishing Human-Written and Bot-Generated Texts Using Clustering and Information Theory Techniques. Pattern Recognition and Machine Intelligence. (20-27).

    https://doi.org/10.1007/978-3-031-45170-6_3

  • Caruccio L, Cimino G, Cirillo S, Desiato D, Polese G and Tortora G. (2023). Malicious Account Identification in Social Network Platforms. ACM Transactions on Internet Technology. 23:4. (1-25). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3625097

  • Shevtsov A, Antonakaki D, Lamprou I, Kontogiorgakis I, Pratikakis P and Ioannidis S. Russo-Ukrainian War: Prediction and explanation of Twitter suspension. Proceedings of the International Conference on Advances in Social Networks Analysis and Mining. (348-355).

    https://doi.org/10.1145/3625007.3627317

  • Gilmary R and Venkatesan A. (2023). Entropy-Based Automation Detection on Twitter Using DNA Profiling. SN Computer Science. 4:6. Online publication date: 4-Nov-2023.

    https://doi.org/10.1007/s42979-023-02324-9

  • Chanti S and Chithralekha T. (2023). RGF-Bot: A Novel Feature Selection Method to Identify Malicious Bot Accounts on Social Networking Sites Using Machine Learning. SN Computer Science. 4:6. Online publication date: 3-Nov-2023.

    https://doi.org/10.1007/s42979-023-02263-5

  • Gong Q, Liu Y, Zhang J, Chen Y, Li Q, Xiao Y, Wang X and Hui P. (2023). Detecting Malicious Accounts in Online Developer Communities Using Deep Learning. IEEE Transactions on Knowledge and Data Engineering. 35:10. (10633-10649). Online publication date: 1-Oct-2023.

    https://doi.org/10.1109/TKDE.2023.3237838

  • Zhou M, Feng W, Zhu Y, Zhang D, Dong Y and Tang J. Semi-Supervised Social Bot Detection with Initial Residual Relation Attention Networks. Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. (207-224).

    https://doi.org/10.1007/978-3-031-43427-3_13

  • Hays C, Schutzman Z, Raghavan M, Walk E and Zimmer P. Simplistic Collection and Labeling Practices Limit the Utility of Benchmark Datasets for Twitter Bot Detection. Proceedings of the ACM Web Conference 2023. (3660-3669).

    https://doi.org/10.1145/3543507.3583214

  • Hayawi K, Saha S, Masud M, Mathew S and Kaosar M. (2023). Social media bot detection with deep learning methods: a systematic review. Neural Computing and Applications. 35:12. (8903-8918). Online publication date: 1-Apr-2023.

    https://doi.org/10.1007/s00521-023-08352-z

  • He Y, Yang P and Cheng P. (2022). Semi-supervised internet water army detection based on graph embedding. Multimedia Tools and Applications. 82:7. (9891-9912). Online publication date: 1-Mar-2023.

    https://doi.org/10.1007/s11042-022-13633-1

  • Gilmary R, Venkatesan A and Vaiyapuri G. (2021). Detection of automated behavior on Twitter through approximate entropy and sample entropy. Personal and Ubiquitous Computing. 27:1. (91-105). Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s00779-021-01647-9

  • Feng S, Tan Z, Wan H, Wang N, Chen Z, Zhang B, Zheng Q, Zhang W, Lei Z, Yang S, Feng X, Zhang Q, Wang H, Liu Y, Bai Y, Wang H, Cai Z, Wang Y, Zheng L, Ma Z, Li J and Luo M. TwiBot-22. Proceedings of the 36th International Conference on Neural Information Processing Systems. (35254-35269).

    /doi/10.5555/3600270.3602825

  • Sharma S and Gupta V. (2022). Role of twitter user profile features in retweet prediction for big data streams. Multimedia Tools and Applications. 81:19. (27309-27338). Online publication date: 1-Aug-2022.

    https://doi.org/10.1007/s11042-022-12815-1

  • Han H, Wang C, Zhao Y, Shu M, Wang W and Min Y. (2022). SSLE: A framework for evaluating the “Filter Bubble” effect on the news aggregator and recommenders. World Wide Web. 25:3. (1169-1195). Online publication date: 1-May-2022.

    https://doi.org/10.1007/s11280-022-01031-4

  • Ye Y, Na J and Oh P. (2022). Are automated accounts driving scholarly communication on Twitter? a case study of dissemination of COVID-19 publications. Scientometrics. 127:5. (2151-2172). Online publication date: 1-May-2022.

    https://doi.org/10.1007/s11192-022-04343-4

  • Alharbi A, Dong H, Yi X, Tari Z and Khalil I. (2021). Social Media Identity Deception Detection. ACM Computing Surveys. 54:3. (1-35). Online publication date: 30-Apr-2022.

    https://doi.org/10.1145/3446372

  • Kavadi D, Sanaboina C, Patan R and Gandomi A. N-Gram-Based Machine Learning Approach for Bot or Human Detection from Text Messages. Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. (80-85).

    https://doi.org/10.1145/3533050.3533063

  • Dokuz A. (2022). Social velocity based spatio-temporal anomalous daily activity discovery of social media users. Applied Intelligence. 52:3. (2745-2762). Online publication date: 1-Feb-2022.

    https://doi.org/10.1007/s10489-021-02535-8

  • Jain R, Jain D, Dharana and Sharma N. (2021). Fake News Classification: A Quantitative Research Description. ACM Transactions on Asian and Low-Resource Language Information Processing. 21:1. (1-17). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3447650

  • Dutta H and Chakraborty T. (2022). Blackmarket-Driven Collusion on Online Media: A Survey. ACM/IMS Transactions on Data Science. 2:4. (1-37). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3517931

  • Feng S, Wan H, Wang N, Li J and Luo M. TwiBot-20: A Comprehensive Twitter Bot Detection Benchmark. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (4485-4494).

    https://doi.org/10.1145/3459637.3482019

  • Pedersen M, Slavkovik M and Smets S. Social Bot Detection as a Temporal Logic Model Checking Problem. Logic, Rationality, and Interaction. (158-173).

    https://doi.org/10.1007/978-3-030-88708-7_13

  • Feng Y, Li J, Jiao L and Wu X. (2021). Towards Learning-Based, Content-Agnostic Detection of Social Bot Traffic. IEEE Transactions on Dependable and Secure Computing. 18:5. (2149-2163). Online publication date: 1-Sep-2021.

    https://doi.org/10.1109/TDSC.2020.3047399

  • Jagirdar S and Reddy V. (2021). Phony News Detection in Reddit Using Natural Language Techniques and Machine Learning Pipelines. International Journal of Natural Computing Research. 10:3. (1-11). Online publication date: 1-Jul-2021.

    https://doi.org/10.4018/IJNCR.2021070101

  • Ferreira G, Santos B, do Ó M, Braz R and Digiampietri L. Social bots detection in Brazilian presidential elections using natural language processing. Proceedings of the XVII Brazilian Symposium on Information Systems. (1-8).

    https://doi.org/10.1145/3466933.3466991

  • Guo B, Ding Y, Sun Y, Ma S, Li K and Yu Z. (2021). The mass, fake news, and cognition security. Frontiers of Computer Science: Selected Publications from Chinese Universities. 15:3. Online publication date: 1-Jun-2021.

    https://doi.org/10.1007/s11704-020-9256-0

  • Pinnaparaju N, Gupta M and Varma V. : Harnessing Text and Temporal Tree Network for Rumor Detection on Twitter. Advances in Knowledge Discovery and Data Mining. (686-700).

    https://doi.org/10.1007/978-3-030-75762-5_54

  • Al-Zoubi A, Alqatawna J, Faris H and Hassonah M. (2021). Spam profiles detection on social networks using computational intelligence methods. Journal of Information Science. 47:1. (58-81). Online publication date: 1-Feb-2021.

    https://doi.org/10.1177/0165551519861599

  • Mendoza M, Tesconi M and Cresci S. (2020). Bots in Social and Interaction Networks. ACM Transactions on Information Systems. 39:1. (1-32). Online publication date: 31-Jan-2021.

    https://doi.org/10.1145/3419369

  • Abulaish M and Fazil M. (2021). A machine learning approach for socialbot targets detection on Twitter. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 40:3. (4115-4133). Online publication date: 1-Jan-2021.

    https://doi.org/10.3233/JIFS-200682

  • Ye Y and Na J. Profiling Bot Accounts Mentioning COVID-19 Publications on Twitter. Digital Libraries at Times of Massive Societal Transition. (297-306).

    https://doi.org/10.1007/978-3-030-64452-9_27

  • Fonseca Abreu J, Ghedini Ralha C and Costa Gondim J. Twitter Bot Detection with Reduced Feature Set. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). (1-6).

    https://doi.org/10.1109/ISI49825.2020.9280525

  • Kouvela M, Dimitriadis I and Vakali A. Bot-Detective. Proceedings of the 12th International Conference on Management of Digital EcoSystems. (55-63).

    https://doi.org/10.1145/3415958.3433075

  • Wu Y, Fang Y, Shang S, Wei L, Jin J and Wang H. Detecting Social Spammers in Sina Weibo Using Extreme Deep Factorization Machine. Web Information Systems Engineering – WISE 2020. (170-182).

    https://doi.org/10.1007/978-3-030-62005-9_13

  • Lingam G, Rout R, Somayajulu D and Das S. Social Botnet Community Detection: A Novel Approach based on Behavioral Similarity in Twitter Network using Deep Learning. Proceedings of the 15th ACM Asia Conference on Computer and Communications Security. (708-718).

    https://doi.org/10.1145/3320269.3384770

  • Cresci S. (2020). A decade of social bot detection. Communications of the ACM. 63:10. (72-83). Online publication date: 23-Sep-2020.

    https://doi.org/10.1145/3409116

  • Li P, Zhao W, Yang J, Sheng Q and Wu J. (2020). Let’s CoRank: trust of users and tweets on social networks. World Wide Web. 23:5. (2877-2901). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s11280-020-00829-4

  • Rezaie B, Zahedi M and Mashayekhi H. (2020). Measuring time-sensitive user influence in Twitter. Knowledge and Information Systems. 62:9. (3481-3508). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s10115-020-01459-y

  • Yada S, Kageura K and Paris C. (2020). Identification of tweets that mention books. International Journal on Digital Libraries. 21:3. (265-287). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s00799-019-00273-4

  • Araujo T, Helberger N, Kruikemeier S and de Vreese C. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society. 35:3. (611-623). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s00146-019-00931-w

  • Braker C, Shiaeles S, Bendiab G, Savage N and Limniotis K. BotSpot: Deep Learning Classification of Bot Accounts Within Twitter. Internet of Things, Smart Spaces, and Next Generation Networks and Systems. (165-175).

    https://doi.org/10.1007/978-3-030-65726-0_16

  • Park S and Lee K. The Gravy Value: A Set of Features for Pinpointing BOT Detection Method. Information Security Applications. (142-153).

    https://doi.org/10.1007/978-3-030-65299-9_11

  • Vesselkov A, Finley B and Vankka J. Russian trolls speaking Russian: Regional Twitter operations and MH17. Proceedings of the 12th ACM Conference on Web Science. (86-95).

    https://doi.org/10.1145/3394231.3397898

  • Adewole K, Han T, Wu W, Song H and Sangaiah A. (2020). Twitter spam account detection based on clustering and classification methods. The Journal of Supercomputing. 76:7. (4802-4837). Online publication date: 1-Jul-2020.

    https://doi.org/10.1007/s11227-018-2641-x

  • Yaqub U, Sharma N, Pabreja R, Chun S, Atluri V and Vaidya J. (2020). Location-based Sentiment Analyses and Visualization of Twitter Election Data. Digital Government: Research and Practice. 1:2. (1-19). Online publication date: 30-Apr-2020.

    https://doi.org/10.1145/3339909

  • Aswani R, Kar A and Ilavarasan P. (2019). Experience. Journal of Data and Information Quality. 12:1. (1-18). Online publication date: 23-Jan-2020.

    https://doi.org/10.1145/3341107

  • Fazil M and Abulaish M. (2020). A socialbots analysis-driven graph-based approach for identifying coordinated campaigns in twitter. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 38:3. (2961-2977). Online publication date: 1-Jan-2020.

    https://doi.org/10.3233/JIFS-182895

  • Vikatos P, Gryllos P and Makris C. (2020). Marketing campaign targeting using bridge extraction in multiplex social network. Artificial Intelligence Review. 53:1. (703-724). Online publication date: 1-Jan-2020.

    https://doi.org/10.1007/s10462-018-9675-6

  • Gong Q, Zhang J, Chen Y, Li Q, Xiao Y, Wang X and Hui P. Detecting Malicious Accounts in Online Developer Communities Using Deep Learning. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (1251-1260).

    https://doi.org/10.1145/3357384.3357971

  • BalaAnand M, Karthikeyan N, Karthik S, Varatharajan R, Manogaran G and Sivaparthipan C. (2019). An enhanced graph-based semi-supervised learning algorithm to detect fake users on Twitter. The Journal of Supercomputing. 75:9. (6085-6105). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s11227-019-02948-w

  • Castillo S, Allende-Cid H, Palma W, Alfaro R, Ramos H, Gonzalez C, Elortegui C and Santander P. Detection of Bots and Cyborgs in Twitter: A Study on the Chilean Presidential Election in 2017. Social Computing and Social Media. Design, Human Behavior and Analytics. (311-323).

    https://doi.org/10.1007/978-3-030-21902-4_22

  • Wirth K, Menchen-Trevino E and Moore R. Bots By Topic. Proceedings of the 10th International Conference on Social Media and Society. (77-82).

    https://doi.org/10.1145/3328529.3328547

  • Paul I, Khattar A, Chopra S, Kumaraguru P and Gupta M. What sets Verified Users apart?. Proceedings of the 10th ACM Conference on Web Science. (215-224).

    https://doi.org/10.1145/3292522.3326026

  • Wei H, Kang X, Wang W and Ying L. (2019). QuickStop. Proceedings of the ACM on Measurement and Analysis of Computing Systems. 3:2. (1-25). Online publication date: 19-Jun-2019.

    https://doi.org/10.1145/3341617.3326156

  • Millimaggi A and Daniel F. On Twitter Bots Behaving Badly: Empirical Study of Code Patterns on GitHub. Web Engineering. (187-202).

    https://doi.org/10.1007/978-3-030-19274-7_14

  • Chaudhary Y. (2019). Delegating Religious Practices to Autonomous Machines, A Reply to "Prayer-Bots and Religious Worship on Twitter. Minds and Machines. 29:2. (341-347). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s11023-019-09499-2

  • Alvari H, Shaabani E, Sarkar S, Beigi G and Shakarian P. Less is More: Semi-Supervised Causal Inference for Detecting Pathogenic Users in Social Media. Companion Proceedings of The 2019 World Wide Web Conference. (154-161).

    https://doi.org/10.1145/3308560.3316500

  • Balestrucci A, De Nicola R, Inverso O and Trubiani C. Identification of credulous users on Twitter. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. (2096-2103).

    https://doi.org/10.1145/3297280.3297486

  • Daniel F, Cappiello C and Benatallah B. (2019). Bots Acting Like Humans: Understanding and Preventing Harm. IEEE Internet Computing. 23:2. (40-49). Online publication date: 1-Mar-2019.

    https://doi.org/10.1109/MIC.2019.2893137

  • Gilani Z, Farahbakhsh R, Tyson G and Crowcroft J. (2019). A Large-scale Behavioural Analysis of Bots and Humans on Twitter. ACM Transactions on the Web. 13:1. (1-23). Online publication date: 28-Feb-2019.

    https://doi.org/10.1145/3298789

  • Adewole K, Anuar N, Kamsin A and Sangaiah A. (2019). SMSAD. Multimedia Tools and Applications. 78:4. (3925-3960). Online publication date: 1-Feb-2019.

    https://doi.org/10.1007/s11042-017-5018-x

  • Kitzie V, Mohammadi E and Karami A. (2019). “Life never matters in the DEMOCRATS MIND”. Proceedings of the Association for Information Science and Technology. 55:1. (254-263). Online publication date: 1-Feb-2019.

    https://doi.org/10.1002/pra2.2018.14505501028

  • Ushigome R, Suzuki M, Ban T, Takahashi T, Inoue D, Matsuda T and Sonoda M. Establishing Trusted and Timely Information Source using Social Media Services. 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC). (1-2).

    https://doi.org/10.1109/CCNC.2019.8651814

  • Agrawal M and Velusamy R. PRISMO: Priority Based Spam Detection Using Multi Optimization. Big Data Analytics. (392-401).

    https://doi.org/10.1007/978-3-030-04780-1_27

  • Chen J, Hossain M, Brust M and Johnson N. A Game Theoretic Analysis of the Twitter Follow-Unfollow Mechanism. Decision and Game Theory for Security. (265-276).

    https://doi.org/10.1007/978-3-030-01554-1_15

  • Savvopoulos A, Vikatos P and Benevenuto F. Socialbots' first words. Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (190-193).

    /doi/10.5555/3382225.3382265

  • Klausen J, Marks C and Zaman T. (2018). Finding Extremists in Online Social Networks. Operations Research. 66:4. (957-976). Online publication date: 1-Aug-2018.

    https://doi.org/10.1287/opre.2018.1719

  • Perna D and Tagarelli A. Learning to Rank Social Bots. Proceedings of the 29th on Hypertext and Social Media. (183-191).

    https://doi.org/10.1145/3209542.3209563

  • Beğenilmiş E and Uskudarli S. Organized Behavior Classification of Tweet Sets using Supervised Learning Methods. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. (1-9).

    https://doi.org/10.1145/3227609.3227665

  • Aswani R, Kar A and Vigneswara Ilavarasan P. (2018). Detection of Spammers in Twitter marketing. Information Systems Frontiers. 20:3. (515-530). Online publication date: 1-Jun-2018.

    https://doi.org/10.1007/s10796-017-9805-8

  • Yaqub U, Sharma N, Pabreja R, Chun S, Atluri V and Vaidya J. Analysis and visualization of subjectivity and polarity of Twitter location data. Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age. (1-10).

    https://doi.org/10.1145/3209281.3209313

  • Llewellyn C, Cram L, Favero A and Hill R. Russian Troll Hunting in a Brexit Twitter Archive. Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. (361-362).

    https://doi.org/10.1145/3197026.3203876

  • Al-Qurishi M, Alhuzami S, Alrubaian M, Hossain M, Alamri A and Rahman M. (2018). User profiling for big social media data using standing ovation model. Multimedia Tools and Applications. 77:9. (11179-11201). Online publication date: 1-May-2018.

    https://doi.org/10.1007/s11042-017-5402-6

  • Jr S, Campos G, Tavares G, Igawa R, Jr M and Guido R. (2018). Detection of Human, Legitimate Bot, and Malicious Bot in Online Social Networks Based on Wavelets. ACM Transactions on Multimedia Computing, Communications, and Applications. 14:1s. (1-17). Online publication date: 2-Apr-2018.

    https://doi.org/10.1145/3183506

  • Fu Q, Feng B, Guo D and Li Q. (2018). Combating the evolving spammers in online social networks. Computers and Security. 72:C. (60-73). Online publication date: 1-Jan-2018.

    https://doi.org/10.1016/j.cose.2017.08.014

  • Garg A, Syal V, Gudlani P and Patel D. Mining Credible and Relevant News from Social Networks. Big Data Analytics. (90-102).

    https://doi.org/10.1007/978-3-319-72413-3_6

  • Shu K, Sliva A, Wang S, Tang J and Liu H. (2017). Fake News Detection on Social Media. ACM SIGKDD Explorations Newsletter. 19:1. (22-36). Online publication date: 1-Sep-2017.

    https://doi.org/10.1145/3137597.3137600

  • Washha M, Qaroush A, Mezghani M and Sedes F. (2017). A Topic-Based Hidden Markov Model for Real-Time Spam Tweets Filtering. Procedia Computer Science. 112:C. (833-843). Online publication date: 1-Sep-2017.

    https://doi.org/10.1016/j.procs.2017.08.075

  • Guzman E, Alkadhi R and Seyff N. (2017). An exploratory study of Twitter messages about software applications. Requirements Engineering. 22:3. (387-412). Online publication date: 1-Sep-2017.

    https://doi.org/10.1007/s00766-017-0274-x

  • Fazil M and Abulaish M. Identifying active, reactive, and inactive targets of socialbots in Twitter. Proceedings of the International Conference on Web Intelligence. (573-580).

    https://doi.org/10.1145/3106426.3106483

  • Li T, Gharibshah J, Papalexakis E and Faloutsos M. TrollSpot. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. (171-175).

    https://doi.org/10.1145/3110025.3110057

  • Moon B. Identifying Bots in the Australian Twittersphere. Proceedings of the 8th International Conference on Social Media & Society. (1-5).

    https://doi.org/10.1145/3097286.3097335

  • Yaqub U, Chun S, Atluri V and Vaidya J. Sentiment based Analysis of Tweets during the US Presidential Elections. Proceedings of the 18th Annual International Conference on Digital Government Research. (1-10).

    https://doi.org/10.1145/3085228.3085285

  • Maruyama M, Robertson S, Douglas S, Raine R and Semaan B. Social Watching a Civic Broadcast. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. (794-807).

    https://doi.org/10.1145/2998181.2998340

  • Adewole K, Anuar N, Kamsin A, Varathan K and Razak S. (2017). Malicious accounts. Journal of Network and Computer Applications. 79:C. (41-67). Online publication date: 1-Feb-2017.

    https://doi.org/10.1016/j.jnca.2016.11.030

  • Liu Y, Pi D, Cui L and Wu J. (2017). Mining Community-Level Influence in Microblogging Network. Complexity. 2017. Online publication date: 1-Jan-2017.

    https://doi.org/10.1155/2017/4783159

  • Alarifi A, Alsaleh M and Al-Salman A. (2016). Twitter turing test. Information Sciences: an International Journal. 372:C. (332-346). Online publication date: 1-Dec-2016.

    https://doi.org/10.1016/j.ins.2016.08.036

  • Singh M, Bansal D and Sofat S. A Novel Technique to Characterize Social Network Users. Proceedings of the 6th International Conference on Communication and Network Security. (75-79).

    https://doi.org/10.1145/3017971.3017977

  • Oentaryo R, Murdopo A, Prasetyo P and Lim E. On Profiling Bots in Social Media. Social Informatics. (92-109).

    https://doi.org/10.1007/978-3-319-47880-7_6

  • Li T, Mueen A, Faloutsos M and Hang H. Comment-Profiler: Detecting Trends and Parasitic Behaviors in Online Comments. Social Informatics. (75-91).

    https://doi.org/10.1007/978-3-319-47880-7_5

  • Hamooni H, Chavoshi N and Mueen A. On URL Changes and Handovers in Social Media. Social Informatics. (58-74).

    https://doi.org/10.1007/978-3-319-47880-7_4

  • Suárez-Serrato P, Roberts M, Davis C and Menczer F. On the Influence of Social Bots in Online Protests. Social Informatics. (269-278).

    https://doi.org/10.1007/978-3-319-47874-6_19

  • Washha M, Qaroush A and Sedes F. Leveraging time for spammers detection on Twitter. Proceedings of the 8th International Conference on Management of Digital EcoSystems. (109-116).

    https://doi.org/10.1145/3012071.3012078

  • Anita , Gupta D and Kumar A. Spam and Sentiment Analysis Model for Twitter Data using Statistical Learning. Proceedings of the Third International Symposium on Computer Vision and the Internet. (54-58).

    https://doi.org/10.1145/2983402.2983404

  • Carapinha F, Khoury J, Neumann S, Hancock M, Calderon F, Drayton M, Easter A, Stapleton E, Vazquez A and Woolfolk D. Modeling of Social Media Behaviors Using Only Account Metadata. Proceedings, Part II, of the 10th International Conference on Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience - Volume 9744. (393-401).

    https://doi.org/10.1007/978-3-319-39952-2_38

  • Silic M and Back A. (2016). The dark side of social networking sites. Computers in Human Behavior. 60:C. (35-43). Online publication date: 1-Jul-2016.

    https://doi.org/10.1016/j.chb.2016.02.050

  • Ji Y, He Y, Jiang X, Cao J and Li Q. (2016). Combating the evasion mechanisms of social bots. Computers and Security. 58:C. (230-249). Online publication date: 1-May-2016.

    https://doi.org/10.1016/j.cose.2016.01.007

  • Igawa R, Barbon Jr S, Paulo K, Kido G, Guido R, Júnior M and Silva I. (2016). Account classification in online social networks with LBCA and wavelets. Information Sciences: an International Journal. 332:C. (72-83). Online publication date: 1-Mar-2016.

    https://doi.org/10.1016/j.ins.2015.10.039

  • Haustein S, Bowman T, Holmberg K, Tsou A, Sugimoto C and Larivière V. (2016). Tweets as impact indicators. Journal of the Association for Information Science and Technology. 67:1. (232-238). Online publication date: 1-Jan-2016.

    https://doi.org/10.1002/asi.23456

  • Cresci S, Di Pietro R, Petrocchi M, Spognardi A and Tesconi M. (2015). Fame for sale. Decision Support Systems. 80:C. (56-71). Online publication date: 1-Dec-2015.

    https://doi.org/10.1016/j.dss.2015.09.003

  • Hicks K, Gerling K, Kirman B, Linehan C and Dickinson P. Exploring Twitter as a Game Platform; Strategies and Opportunities for Microblogging-based Games. Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play. (151-161).

    https://doi.org/10.1145/2793107.2793119

  • Ludu P. Inferring Latent Attributes of an Indian Twitter User using Celebrities and Class Influencers. Proceedings of the 1st ACM Workshop on Social Media World Sensors. (9-15).

    https://doi.org/10.1145/2806655.2806657

  • Freitas C, Benevenuto F, Ghosh S and Veloso A. Reverse Engineering Socialbot Infiltration Strategies in Twitter. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. (25-32).

    https://doi.org/10.1145/2808797.2809292

  • Jiang H, Wang Y and Zhu M. Discrimination of Zombie Fans on Weibo based on Features Extraction and Business-Driven Analysis. Proceedings of the 17th International Conference on Electronic Commerce 2015. (1-5).

    https://doi.org/10.1145/2781562.2781576

  • Dickerson J, Kagan V and Subrahmanian V. Using sentiment to detect bots on Twitter. Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (620-627).

    /doi/10.5555/3191835.3191957

  • Alowibdi J, Buy U, Yu P and Stenneth L. Detecting deception in online social networks. Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (383-390).

    /doi/10.5555/3191835.3191912

  • Martinez-Romo J and Araujo L. (2013). Detecting malicious tweets in trending topics using a statistical analysis of language. Expert Systems with Applications: An International Journal. 40:8. (2992-3000). Online publication date: 1-Jun-2013.

    https://doi.org/10.1016/j.eswa.2012.12.015