• Hsu A, Wu C, Ng H, Chuang C, Huang C, Wu C and Chao Y. (2024). Classification of mindfulness experiences from gamma-band effective connectivity. Computer Methods and Programs in Biomedicine. 257:C. Online publication date: 1-Dec-2024.

    https://doi.org/10.1016/j.cmpb.2024.108446

  • Kang H, Choi J and Kim B. Cascading Global and Sequential Temporal Representations with Local Context Modeling for EEG-Based Emotion Recognition. Pattern Recognition. (305-320).

    https://doi.org/10.1007/978-3-031-78201-5_20

  • Wang Y, Zhang B and Di L. (2024). Research Progress of EEG-Based Emotion Recognition: A Survey. ACM Computing Surveys. 56:11. (1-49). Online publication date: 30-Nov-2024.

    https://doi.org/10.1145/3666002

  • Hosseini I, Hossain M, Zhang Y and Rahman S. (2024). Deep learning model for simultaneous recognition of quantitative and qualitative emotion using visual and bio-sensing data. Computer Vision and Image Understanding. 248:C. Online publication date: 1-Nov-2024.

    https://doi.org/10.1016/j.cviu.2024.104121

  • Huang W, Chen Y, Jiang X, Gao C, Chen Q, Zhang T, Yan B, Wang Y and Yang J. Correlation-Driven Multi-Modality Graph Decomposition for Cross-Subject Emotion Recognition. Proceedings of the 32nd ACM International Conference on Multimedia. (2272-2281).

    https://doi.org/10.1145/3664647.3681579

  • Chaurasia A, Fallahi M, Strufe T, Terhörst P and Cabarcos P. (2024). NeuroIDBench. Journal of Information Security and Applications. 85:C. Online publication date: 1-Sep-2024.

    https://doi.org/10.1016/j.jisa.2024.103832

  • Kim M and Im C. (2024). HiRENet. Computers in Biology and Medicine. 178:C. Online publication date: 1-Aug-2024.

    https://doi.org/10.1016/j.compbiomed.2024.108788

  • Fan C, Wang J, Huang W, Yang X, Pei G, Li T and Lv Z. (2024). Light-weight residual convolution-based capsule network for EEG emotion recognition. Advanced Engineering Informatics. 61:C. Online publication date: 1-Aug-2024.

    https://doi.org/10.1016/j.aei.2024.102522

  • Cang X, Guerra R, Guta B, Bucci P, Rodgers L, Mah H, Feng Q, Agrawal A and MacLean K. (2024). FEELing (key)Pressed: Implicit Touch Pressure Bests Brain Activity for Modeling Emotion Dynamics in the Space Between Stressed & Relaxed. IEEE Transactions on Haptics. 17:3. (310-318). Online publication date: 1-Jul-2024.

    https://doi.org/10.1109/TOH.2023.3308059

  • Yang L, Wang Y, Ouyang R, Niu X, Yang X and Zheng C. (2024). Electroencephalogram-based emotion recognition using factorization temporal separable convolution network. Engineering Applications of Artificial Intelligence. 133:PA. Online publication date: 1-Jul-2024.

    https://doi.org/10.1016/j.engappai.2024.108011

  • Shi X, She Q, Fang F, Meng M, Tan T and Zhang Y. (2024). Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning. Computers in Biology and Medicine. 174:C. Online publication date: 1-May-2024.

    https://doi.org/10.1016/j.compbiomed.2024.108445

  • Houssein E, Hammad A, Emam M and Ali A. (2024). An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition. Computers in Biology and Medicine. 173:C. Online publication date: 1-May-2024.

    https://doi.org/10.1016/j.compbiomed.2024.108329

  • Wang Z, Li S, Zhang J and Liang C. (2024). Emotion recognition based on phase-locking value brain functional network and topological data analysis. Neural Computing and Applications. 36:14. (7903-7922). Online publication date: 1-May-2024.

    https://doi.org/10.1007/s00521-024-09479-3

  • Hu L, Tan C, Xu J, Qiao R, Hu Y and Tian Y. (2024). Decoding emotion with phase–amplitude fusion features of EEG functional connectivity network. Neural Networks. 172:C. Online publication date: 1-Apr-2024.

    https://doi.org/10.1016/j.neunet.2024.106148

  • Huang W, Chen Y, Jiang X, Zhang T and Chen Q. (2023). GJFusion: A Channel-Level Correlation Construction Method for Multimodal Physiological Signal Fusion. ACM Transactions on Multimedia Computing, Communications, and Applications. 20:2. (1-23). Online publication date: 29-Feb-2024.

    https://doi.org/10.1145/3617503

  • Tibermacine I, Tibermacine A, Guettala W, NAPOLI C and Russo S. Enhancing Sentiment Analysis on SEED-IV Dataset with Vision Transformers: A Comparative Study. Proceedings of the 2023 11th International Conference on Information Technology: IoT and Smart City. (238-246).

    https://doi.org/10.1145/3638985.3639024

  • García-Pavioni A and López B. (2024). Dimensionality reduction and features visual representation based on conditional probabilities applied to activity classification. Computers in Biology and Medicine. 167:C. Online publication date: 1-Dec-2023.

    https://doi.org/10.1016/j.compbiomed.2023.107595

  • Ezzameli K and Mahersia H. (2023). Emotion recognition from unimodal to multimodal analysis. Information Fusion. 99:C. Online publication date: 1-Nov-2023.

    https://doi.org/10.1016/j.inffus.2023.101847

  • Cui D, Xuan H, Liu J, Gu G and Li X. (2022). Emotion Recognition on EEG Signal Using ResNeXt Attention 2D-3D Convolution Neural Networks. Neural Processing Letters. 55:5. (5943-5957). Online publication date: 1-Oct-2023.

    https://doi.org/10.1007/s11063-022-11120-0

  • Sweeney L, Smeaton A and Healy G. Memories in the Making: Predicting Video Memorability with Encoding Phase EEG. Proceedings of the 20th International Conference on Content-based Multimedia Indexing. (183-187).

    https://doi.org/10.1145/3617233.3617266

  • Kuang D, Michoski C, Li W and Guo R. (2023). From gram to attention matrices: a monotonicity constrained method for eeg-based emotion classification. Applied Intelligence. 53:18. (20690-20709). Online publication date: 1-Sep-2023.

    https://doi.org/10.1007/s10489-023-04561-0

  • Duan Y, Wang Z, Li Y, Tang J, Wang Y and Lin C. (2023). Cross task neural architecture search for EEG signal recognition. Neurocomputing. 545:C. Online publication date: 7-Aug-2023.

    https://doi.org/10.1016/j.neucom.2023.126260

  • Kamble K and Sengupta J. (2023). A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals. Multimedia Tools and Applications. 82:18. (27269-27304). Online publication date: 1-Jul-2023.

    https://doi.org/10.1007/s11042-023-14489-9

  • Wang Z, Chen Z and Zhang J. (2022). EEG emotion recognition based on PLV-rich-club dynamic brain function network. Applied Intelligence. 53:14. (17327-17345). Online publication date: 1-Jul-2023.

    https://doi.org/10.1007/s10489-022-04366-7

  • She Q, Shi X, Fang F, Ma Y and Zhang Y. (2023). Cross-subject EEG emotion recognition using multi-source domain manifold feature selection. Computers in Biology and Medicine. 159:C. Online publication date: 1-Jun-2023.

    https://doi.org/10.1016/j.compbiomed.2023.106860

  • Moin A, Aadil F, Ali Z and Kang D. (2023). Emotion recognition framework using multiple modalities for an effective human–computer interaction. The Journal of Supercomputing. 79:8. (9320-9349). Online publication date: 1-May-2023.

    https://doi.org/10.1007/s11227-022-05026-w

  • Li X, Zhang Y, Tiwari P, Song D, Hu B, Yang M, Zhao Z, Kumar N and Marttinen P. (2022). EEG Based Emotion Recognition: A Tutorial and Review. ACM Computing Surveys. 55:4. (1-57). Online publication date: 30-Apr-2023.

    https://doi.org/10.1145/3524499

  • Huang W, Wu W, Lucas M, Huang H, Wen Z and Li Y. (2023). Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation. IEEE Transactions on Affective Computing. 14:2. (998-1011). Online publication date: 1-Apr-2023.

    https://doi.org/10.1109/TAFFC.2021.3134183

  • Li C, Zhang Z, Song R, Cheng J, Liu Y and Chen X. (2023). EEG-Based Emotion Recognition via Neural Architecture Search. IEEE Transactions on Affective Computing. 14:2. (957-968). Online publication date: 1-Apr-2023.

    https://doi.org/10.1109/TAFFC.2021.3130387

  • Zhao Y, Cao X, Lin J, Yu D and Cao X. (2023). Multimodal Affective States Recognition Based on Multiscale CNNs and Biologically Inspired Decision Fusion Model. IEEE Transactions on Affective Computing. 14:2. (1391-1403). Online publication date: 1-Apr-2023.

    https://doi.org/10.1109/TAFFC.2021.3093923

  • Tavares A, Silva J and Ventura R. Physiologically Attentive User Interface for Improved Robot Teleoperation. Proceedings of the 28th International Conference on Intelligent User Interfaces. (776-789).

    https://doi.org/10.1145/3581641.3584084

  • Tao W, Li C, Song R, Cheng J, Liu Y, Wan F and Chen X. (2023). EEG-Based Emotion Recognition via Channel-Wise Attention and Self Attention. IEEE Transactions on Affective Computing. 14:1. (382-393). Online publication date: 1-Jan-2023.

    https://doi.org/10.1109/TAFFC.2020.3025777

  • Ajmeria R, Mondal M, Banerjee R, Halder T, Deb P, Mishra D, Nayak P, Misra S, Pal S and Chakravarty D. (2023). A Critical Survey of EEG-Based BCI Systems for Applications in Industrial Internet of Things. IEEE Communications Surveys & Tutorials. 25:1. (184-212). Online publication date: 1-Jan-2023.

    https://doi.org/10.1109/COMST.2022.3232576

  • Zheng Z, Yin Z, Wang Y and Zhang J. (2023). Inter-subject cognitive workload estimation based on a cascade ensemble of multilayer autoencoders. Expert Systems with Applications: An International Journal. 211:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.eswa.2022.118694

  • Bai Z, Liu J, Hou F, Chen Y, Cheng M, Mao Z, Song Y and Gao Q. (2023). Emotion recognition with residual network driven by spatial-frequency characteristics of EEG recorded from hearing-impaired adults in response to video clips. Computers in Biology and Medicine. 152:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.compbiomed.2022.106344

  • Rahman M, Sarkar A, Hossain M and Moni M. (2022). EEG-based emotion analysis using non-linear features and ensemble learning approaches. Expert Systems with Applications: An International Journal. 207:C. Online publication date: 30-Nov-2022.

    https://doi.org/10.1016/j.eswa.2022.118025

  • Cheng W, Gao R, Suganthan P and Yuen K. (2022). EEG-based emotion recognition using random Convolutional Neural Networks. Engineering Applications of Artificial Intelligence. 116:C. Online publication date: 1-Nov-2022.

    https://doi.org/10.1016/j.engappai.2022.105349

  • Anders C and Arnrich B. (2022). Wearable electroencephalography and multi-modal mental state classification. Computers in Biology and Medicine. 150:C. Online publication date: 1-Nov-2022.

    https://doi.org/10.1016/j.compbiomed.2022.106088

  • Pham N, Jia H, Tran M, Dinh T, Bui N, Kwon Y, Ma D, Nguyen P, Mascolo C and Vu T. PROS. Proceedings of the 28th Annual International Conference on Mobile Computing And Networking. (661-675).

    https://doi.org/10.1145/3495243.3560533

  • Ye Z, Xie X, Liu Y, Wang Z, Chen X, Zhang M and Ma S. Brain Topography Adaptive Network for Satisfaction Modeling in Interactive Information Access System. Proceedings of the 30th ACM International Conference on Multimedia. (90-100).

    https://doi.org/10.1145/3503161.3548258

  • Guo W, Xu G and Wang Y. (2022). Horizontal and vertical features fusion network based on different brain regions for emotion recognition. Knowledge-Based Systems. 247:C. Online publication date: 8-Jul-2022.

    https://doi.org/10.1016/j.knosys.2022.108819

  • Dadebayev D, Goh W and Tan E. (2022). EEG-based emotion recognition. Journal of King Saud University - Computer and Information Sciences. 34:7. (4385-4401). Online publication date: 1-Jul-2022.

    https://doi.org/10.1016/j.jksuci.2021.03.009

  • Joshi V and Ghongade R. (2022). IDEA. Journal of King Saud University - Computer and Information Sciences. 34:7. (4433-4447). Online publication date: 1-Jul-2022.

    https://doi.org/10.1016/j.jksuci.2020.10.007

  • Chen X, Tao X, Wang F and Xie H. (2022). Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Computing and Applications. 34:14. (11295-11333). Online publication date: 1-Jul-2022.

    https://doi.org/10.1007/s00521-020-05588-x

  • Park C and Nojoumian M. Social Acceptability of Autonomous Vehicles: Unveiling Correlation of Passenger Trust and Emotional Response. HCI in Mobility, Transport, and Automotive Systems. (402-415).

    https://doi.org/10.1007/978-3-031-04987-3_27

  • Wu D, Li J, Pan Z, Kim Y and Miguel J. uBrain. Proceedings of the 49th Annual International Symposium on Computer Architecture. (468-481).

    https://doi.org/10.1145/3470496.3527401

  • Li H, Zhang X and Xia Y. EEG Emotion Recognition Based on Dynamically Organized Graph Neural Network. MultiMedia Modeling. (344-355).

    https://doi.org/10.1007/978-3-030-98355-0_29

  • Pandey P and Seeja K. (2022). Subject independent emotion recognition from EEG using VMD and deep learning. Journal of King Saud University - Computer and Information Sciences. 34:5. (1730-1738). Online publication date: 1-May-2022.

    https://doi.org/10.1016/j.jksuci.2019.11.003

  • Ashraf Kiyani I and Razaq A. (2022). A Comprehensive Review on Sentiment Perception Using Electroencephalography (EEG). SN Computer Science. 3:3. Online publication date: 1-May-2022.

    https://doi.org/10.1007/s42979-022-01155-4

  • Li C, Wang B, Zhang S, Liu Y, Song R, Cheng J and Chen X. (2022). Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism. Computers in Biology and Medicine. 143:C. Online publication date: 1-Apr-2022.

    https://doi.org/10.1016/j.compbiomed.2022.105303

  • Ngai W, Xie H, Zou D and Chou K. (2022). Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources. Information Fusion. 77:C. (107-117). Online publication date: 1-Jan-2022.

    https://doi.org/10.1016/j.inffus.2021.07.007

  • Li R, Wang Y and Lu B. A Multi-Domain Adaptive Graph Convolutional Network for EEG-based Emotion Recognition. Proceedings of the 29th ACM International Conference on Multimedia. (5565-5573).

    https://doi.org/10.1145/3474085.3475697

  • Jia Z, Lin Y, Wang J, Feng Z, Xie X and Chen C. HetEmotionNet. Proceedings of the 29th ACM International Conference on Multimedia. (1047-1056).

    https://doi.org/10.1145/3474085.3475583

  • Chen J, Qian H and Gong X. Bayesian Graph Neural Networks for EEG-Based Emotion Recognition. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. (24-33).

    https://doi.org/10.1007/978-3-030-90874-4_3

  • Rahman M, Sarkar A, Hossain M, Hossain M, Islam M, Hossain M, Quinn J and Moni M. (2021). Recognition of human emotions using EEG signals. Computers in Biology and Medicine. 136:C. Online publication date: 1-Sep-2021.

    https://doi.org/10.1016/j.compbiomed.2021.104696

  • Sakalle A, Tomar P, Bhardwaj H, Acharya D and Bhardwaj A. (2021). A LSTM based deep learning network for recognizing emotions using wireless brainwave driven system. Expert Systems with Applications: An International Journal. 173:C. Online publication date: 1-Jul-2021.

    https://doi.org/10.1016/j.eswa.2020.114516

  • G M and Dharavath R. (2021). DSSAE-BBOA: deep learning-based weather big data analysis and visualization. Multimedia Tools and Applications. 80:18. (27471-27493). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s11042-021-11059-9

  • Zhang X, Du T and Zhang Z. EEG Emotion Recognition Based on Channel Attention for E-Healthcare Applications. MultiMedia Modeling. (159-169).

    https://doi.org/10.1007/978-3-030-67835-7_14

  • Opałka S, Stasiak B, Wosiak A, Dura A and Wojciechowski A. EEG-Based Emotion Recognition – Evaluation Methodology Revisited. Computational Science – ICCS 2021. (525-539).

    https://doi.org/10.1007/978-3-030-77964-1_40

  • Xing T, Garcia L, Cerutti F, Kaplan L, Preece A and Srivastava M. DeepSQA. Proceedings of the International Conference on Internet-of-Things Design and Implementation. (106-118).

    https://doi.org/10.1145/3450268.3453529

  • Arya R, Singh J and Kumar A. (2021). A survey of multidisciplinary domains contributing to affective computing. Computer Science Review. 40:C. Online publication date: 1-May-2021.

    https://doi.org/10.1016/j.cosrev.2021.100399

  • Zhang J, Yuan G, Lu H, Liu G and Panetsos F. (2021). Recognition of the Impulse of Love at First Sight Based on Electrocardiograph Signal. Computational Intelligence and Neuroscience. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/6631616

  • Pan S and Nguyen P. Opportunities in the Cross-Scale Collaborative Human Sensing of 'Developing' Device-Free and Wearable Systems. Proceedings of the 2nd ACM Workshop on Device-Free Human Sensing. (16-21).

    https://doi.org/10.1145/3427772.3429394

  • Jia X, Zhang T, Philip Chen C, Liu Z, Chen L, Wen G and Hu B. Multi-Channel EEG Based Emotion Recognition Using Temporal Convolutional Network and Broad Learning System. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). (2452-2457).

    https://doi.org/10.1109/SMC42975.2020.9283159

  • Gao Q, Wang C, Wang Z, Song X, Dong E and Song Y. (2020). EEG based emotion recognition using fusion feature extraction method. Multimedia Tools and Applications. 79:37-38. (27057-27074). Online publication date: 1-Oct-2020.

    https://doi.org/10.1007/s11042-020-09354-y

  • Kim T, Bae S and Kim S. Facial Expression Emotion through BCI-based Personal Traits and Emotion Classification. The 9th International Conference on Smart Media and Applications. (337-341).

    https://doi.org/10.1145/3426020.3426118

  • Munoz R, Olivares R, Taramasco C, Villarroel R, Soto R, Alonso-Sánchez M, Merino E and de Albuquerque V. (2020). RETRACTED ARTICLE: A new EEG software that supports emotion recognition by using an autonomous approach. Neural Computing and Applications. 32:15. (11111-11127). Online publication date: 1-Aug-2020.

    https://doi.org/10.1007/s00521-018-3925-z

  • Gao Z, Li Y, Yang Y, Wang X, Dong N and Chiang H. (2020). A GPSO-optimized convolutional neural networks for EEG-based emotion recognition. Neurocomputing. 380:C. (225-235). Online publication date: 7-Mar-2020.

    https://doi.org/10.1016/j.neucom.2019.10.096

  • Rached T, Vieira M, Santos D, Perkusich A and Almeida H. (2020). Recognition of human emotions based on user context and brain signals applied to electrical power systems operators evaluation. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 39:1. (987-1003). Online publication date: 1-Jan-2020.

    https://doi.org/10.3233/JIFS-191923

  • Xu T, Zhou Y, Hou Z, Zhang W and Yuan Y. (2020). Decode Brain System. Complexity. 2020. Online publication date: 1-Jan-2020.

    https://doi.org/10.1155/2020/6929546

  • Chen G, Lu G, Xie Z, Shang W and Versaci M. (2020). Anomaly Detection in EEG Signals. Computational Intelligence and Neuroscience. 2020. Online publication date: 1-Jan-2020.

    https://doi.org/10.1155/2020/6925107

  • Chao H, Dong L, Liu Y, Lu B and Gambuzza L. (2020). Improved Deep Feature Learning by Synchronization Measurements for Multi-Channel EEG Emotion Recognition. Complexity. 2020. Online publication date: 1-Jan-2020.

    https://doi.org/10.1155/2020/6816502

  • Halim Z and Rehan M. (2020). On identification of driving-induced stress using electroencephalogram signals. Information Fusion. 53:C. (66-79). Online publication date: 1-Jan-2020.

    https://doi.org/10.1016/j.inffus.2019.06.006

  • Xu H, Wang X, Li W, Wang H and Bi Q. Research on EEG Channel Selection Method for Emotion Recognition. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). (2528-2535).

    https://doi.org/10.1109/ROBIO49542.2019.8961740

  • Qayyum H, Majid M, Haq E and Anwar S. (2019). Generation of personalized video summaries by detecting viewer’s emotion using electroencephalography. Journal of Visual Communication and Image Representation. 65:C. Online publication date: 1-Dec-2019.

    https://doi.org/10.1016/j.jvcir.2019.102672

  • Imani M and Montazer G. (2019). A survey of emotion recognition methods with emphasis on E-Learning environments. Journal of Network and Computer Applications. 147:C. Online publication date: 1-Dec-2019.

    https://doi.org/10.1016/j.jnca.2019.102423

  • Mehmood R, Yang H and Kim S. Predictive human emotion recognition system using deep functional affective state modeling. Proceedings of the 1st International Conference on Advanced Information Science and System. (1-5).

    https://doi.org/10.1145/3373477.3373706

  • Hassan M, Alam M, Uddin M, Huda S, Almogren A and Fortino G. (2019). Human emotion recognition using deep belief network architecture. Information Fusion. 51:C. (10-18). Online publication date: 1-Nov-2019.

    https://doi.org/10.1016/j.inffus.2018.10.009

  • El-Amin A, Eldawlatly S, Attia A, Hammad O, Nasr O, Ghozlan O, Raouf R, Hamed A, Eldawlatly H and El-Moursy M. Brain-in-Car: A Brain Activity-based Emotion Recognition Embedded System for Automotive. 2019 IEEE International Conference of Vehicular Electronics and Safety (ICVES). (1-5).

    https://doi.org/10.1109/ICVES.2019.8906392

  • Bi C, Fu B, Chen J, Zhao Y, Yang L, Duan Y and Shi Y. (2019). Machine learning based fast multi-layer liquefaction disaster assessment. World Wide Web. 22:5. (1935-1950). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s11280-018-0632-8

  • Zhou Y, Xu T, Li S and Shi R. (2022). Beyond engagement: an EEG-based methodology for assessing user’s confusion in an educational game. Universal Access in the Information Society. 18:3. (551-563). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s10209-019-00678-7

  • Alarcão S and Fonseca M. (2019). Emotions Recognition Using EEG Signals: A Survey. IEEE Transactions on Affective Computing. 10:3. (374-393). Online publication date: 1-Jul-2019.

    https://doi.org/10.1109/TAFFC.2017.2714671

  • Zheng W, Zhu J and Lu B. (2019). Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Transactions on Affective Computing. 10:3. (417-429). Online publication date: 1-Jul-2019.

    https://doi.org/10.1109/TAFFC.2017.2712143

  • Wankhade S and Doye D. (2019). IKKN Predictor. Wireless Personal Communications: An International Journal. 107:2. (1135-1153). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s11277-019-06328-8

  • Sun Z, Cai Y, Wang S, Wang C, Zheng Y, Chen Y and Chen Y. (2019). Multi-View Intact Space Learning for Tinnitus Classification in Resting State EEG. Neural Processing Letters. 49:2. (611-624). Online publication date: 1-Apr-2019.

    https://doi.org/10.1007/s11063-018-9845-1

  • Yang Y, Wu Q, Fu Y and Chen X. Continuous Convolutional Neural Network with 3D Input for EEG-Based Emotion Recognition. Neural Information Processing. (433-443).

    https://doi.org/10.1007/978-3-030-04239-4_39

  • Li H, Jin Y, Zheng W and Lu B. Cross-Subject Emotion Recognition Using Deep Adaptation Networks. Neural Information Processing. (403-413).

    https://doi.org/10.1007/978-3-030-04221-9_36

  • Luo Y, Zhang S, Zheng W and Lu B. WGAN Domain Adaptation for EEG-Based Emotion Recognition. Neural Information Processing. (275-286).

    https://doi.org/10.1007/978-3-030-04221-9_25

  • Zhao L, Li X, Zheng W and Lu B. Active Feedback Framework with Scan-Path Clustering for Deep Affective Models. Neural Information Processing. (330-340).

    https://doi.org/10.1007/978-3-030-04179-3_29

  • Kurbalija V, Ivanović M, Radovanović M, Geler Z, Dai W and Zhao W. (2018). Emotion perception and recognition. Cognitive Systems Research. 52:C. (103-116). Online publication date: 1-Dec-2018.

    https://doi.org/10.1016/j.cogsys.2018.06.009

  • Papakostas M, Tsiakas K, Abujelala M, Bell M and Makedon F. v-CAT. Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference. (570-574).

    https://doi.org/10.1145/3197768.3201545

  • Girardi D, Lanubile F, Novielli N and Fucci D. Sensing developers' emotions. Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering. (51-54).

    https://doi.org/10.1145/3194932.3194940

  • Ceballos R, Ionascu B, Park W and Eid M. (2017). Implicit Emotion Communication. ACM Transactions on Multimedia Computing, Communications, and Applications. 14:1. (1-18). Online publication date: 28-Feb-2018.

    https://doi.org/10.1145/3152128

  • Mert A and Akan A. (2018). Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Analysis & Applications. 21:1. (81-89). Online publication date: 1-Feb-2018.

    https://doi.org/10.1007/s10044-016-0567-6

  • Kim S and Kang H. (2018). An analysis of smartphone overuse recognition in terms of emotions using brainwaves and deep learning. Neurocomputing. 275:C. (1393-1406). Online publication date: 31-Jan-2018.

    https://doi.org/10.1016/j.neucom.2017.09.081

  • Li M, Xu H, Liu X, Lu S, Gómez C, Schwarzacher S and Zhou H. (2018). Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technology and Health Care. 26:S1. (509-519). Online publication date: 1-Jan-2018.

    https://doi.org/10.3233/THC-174836

  • Chao H, Zhi H, Dong L, Liu Y and Dauwels J. (2018). Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework. Computational Intelligence and Neuroscience. 2018. Online publication date: 1-Jan-2018.

    https://doi.org/10.1155/2018/9750904

  • Munoz R, Olivares R, Taramasco C, Villarroel R, Soto R, Barcelos T, Merino E, Alonso-Sánchez M and de Albuquerque V. (2018). Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition. Computational Intelligence and Neuroscience. 2018. Online publication date: 1-Jan-2018.

    https://doi.org/10.1155/2018/3050214

  • Tang C, Wang D, Tan A and Miao C. EEG-Based Emotion Recognition via Fast and Robust Feature Smoothing. Brain Informatics. (83-92).

    https://doi.org/10.1007/978-3-319-70772-3_8

  • Mutasim A, Tipu R, Raihanul Bashar M and Ashraful Amin M. Video Category Classification Using Wireless EEG. Brain Informatics. (39-48).

    https://doi.org/10.1007/978-3-319-70772-3_4

  • Yan X, Zheng W, Liu W and Lu B. Investigating Gender Differences of Brain Areas in Emotion Recognition Using LSTM Neural Network. Neural Information Processing. (820-829).

    https://doi.org/10.1007/978-3-319-70093-9_87

  • Tang H, Liu W, Zheng W and Lu B. Multimodal Emotion Recognition Using Deep Neural Networks. Neural Information Processing. (811-819).

    https://doi.org/10.1007/978-3-319-70093-9_86

  • Cui G, Zhu L, Zhao Q, Cao J and Cichocki A. A Graph Theory Analysis on Distinguishing EEG-Based Brain Death and Coma. Neural Information Processing. (589-595).

    https://doi.org/10.1007/978-3-319-70093-9_62

  • Zhao W, Fang S, Ji T, Ji Q, Zheng W and Lu B. Emotion Annotation Using Hierarchical Aligned Cluster Analysis. Neural Information Processing. (572-580).

    https://doi.org/10.1007/978-3-319-70093-9_60

  • Yan X, Zheng W, Liu W and Lu B. Identifying Gender Differences in Multimodal Emotion Recognition Using Bimodal Deep AutoEncoder. Neural Information Processing. (533-542).

    https://doi.org/10.1007/978-3-319-70093-9_56

  • Chatchinarat A, Wong K and Fung C. Emotion Classification from Electroencephalogram Using Fuzzy Support Vector Machine. Neural Information Processing. (455-462).

    https://doi.org/10.1007/978-3-319-70087-8_48

  • Hashem Y, Takabi H, Dantu R and Nielsen R. A Multi-Modal Neuro-Physiological Study of Malicious Insider Threats. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. (33-44).

    https://doi.org/10.1145/3139923.3139930

  • Bozhkov L, Koprinkova-Hristova P and Georgieva P. (2017). Reservoir computing for emotion valence discrimination from EEG signals. Neurocomputing. 231:C. (28-40). Online publication date: 29-Mar-2017.

    https://doi.org/10.1016/j.neucom.2016.03.108

  • Willis S. (2017). You Never Forget Your First Project. Computer. 50:3. (74-76). Online publication date: 1-Mar-2017.

    https://doi.org/10.1109/MC.2017.88

  • Zhang T, Fruchter R and Frank M. (2017). Are They Paying Attention? A Model-Based Method to Identify Individuals' Mental States. Computer. 50:3. (40-49). Online publication date: 1-Mar-2017.

    https://doi.org/10.1109/MC.2017.84

  • (2017). 50 & 25 Years Ago. Computer. 50:3. (10-11). Online publication date: 1-Mar-2017.

    https://doi.org/10.1109/MC.2017.69

  • Sulam J, Romano Y and Talmon R. (2017). Dynamical system classification with diffusion embedding for ECG-based person identification. Signal Processing. 130:C. (403-411). Online publication date: 1-Jan-2017.

    https://doi.org/10.1016/j.sigpro.2016.07.026

  • Bhatti A, Majid M, Anwar S and Khan B. (2016). Human emotion recognition and analysis in response to audio music using brain signals. Computers in Human Behavior. 65:C. (267-275). Online publication date: 1-Dec-2016.

    https://doi.org/10.1016/j.chb.2016.08.029

  • Li X, Hu B, Sun S and Cai H. (2016). EEG-based mild depressive detection using feature selection methods and classifiers. Computer Methods and Programs in Biomedicine. 136:C. (151-161). Online publication date: 1-Nov-2016.

    https://doi.org/10.1016/j.cmpb.2016.08.010

  • Liu W, Zheng W and Lu B. Emotion Recognition Using Multimodal Deep Learning. Proceedings of the 23rd International Conference on Neural Information Processing - Volume 9948. (521-529).

    https://doi.org/10.1007/978-3-319-46672-9_58

  • Chen S and Jin Q. Multi-modal Conditional Attention Fusion for Dimensional Emotion Prediction. Proceedings of the 24th ACM international conference on Multimedia. (571-575).

    https://doi.org/10.1145/2964284.2967286

  • Yano K and Suyama T. (2016). A Novel Fixed Low-Rank Constrained EEG Spatial Filter Estimation with Application to Movie-Induced Emotion Recognition. Computational Intelligence and Neuroscience. 2016. (18). Online publication date: 1-Aug-2016.

    https://doi.org/10.1155/2016/6734720

  • Gupta R, ur Rehman Laghari K and Falk T. (2016). Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing. 174:PB. (875-884). Online publication date: 22-Jan-2016.

    https://doi.org/10.1016/j.neucom.2015.09.085

  • Mehmood I, Sajjad M, Rho S and Baik S. (2016). Divide-and-conquer based summarization framework for extracting affective video content. Neurocomputing. 174:PA. (393-403). Online publication date: 22-Jan-2016.

    https://doi.org/10.1016/j.neucom.2015.05.126

  • Zeng K, Yan J, Wang Y, Sik A, Ouyang G and Li X. (2016). Automatic detection of absence seizures with compressive sensing EEG. Neurocomputing. 171:C. (497-502). Online publication date: 1-Jan-2016.

    https://doi.org/10.1016/j.neucom.2015.06.076

  • Irtiza N and Farooq H. (2015). Feature Reduction Using Genetic Algorithm for Cognitive Man-Machine Communication. International Journal of Software Science and Computational Intelligence. 7:4. (1-17). Online publication date: 1-Oct-2015.

    https://doi.org/10.4018/IJSSCI.2015100101

  • Wei-Long Zheng and Bao-Liang Lu . (2015). Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Transactions on Autonomous Mental Development. 7:3. (162-175). Online publication date: 1-Sep-2015.

    https://doi.org/10.1109/TAMD.2015.2431497

  • Lu Y, Zheng W, Li B and Lu B. Combining eye movements and EEG to enhance emotion recognition. Proceedings of the 24th International Conference on Artificial Intelligence. (1170-1176).

    /doi/10.5555/2832249.2832411

  • Placidi G, Avola D, Petracca A, Sgallari F and Spezialetti M. (2015). Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors. Neurocomputing. 160:C. (308-318). Online publication date: 21-Jul-2015.

    https://doi.org/10.1016/j.neucom.2015.02.034