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Abstract

We propose a novel implementation of a parallel priority queue in the context of multithreaded mesh decimation. Previous
parallel priority queues either have a major bottleneck when extracting nodes, cannot guarantee reasonable node quality for
the extracted nodes, or cannot be used for mesh decimation. Our data structure allows the extraction of multiple high-priority
elements at the same time. For this, we relax the requirement of returning the highest priority element to returning an element
that belongs to the top k elements. We demonstrate its use in the context of parallel mesh decimation and show that our
decimated mesh is almost indistinguishable from an optimally decimated mesh while being 2 to 2.6 times faster than a naive

parallel priority queue implementation.
CCS Concepts

e Computing methodologies — Mesh models; Parallel algorithms;

1. Introduction

Most 3D models are represented by triangle meshes and are used in
many fields such as architecture, movie production or games. The
models are usually created by artists who like to work with a high
number of triangles per mesh. Alternatively, the meshes can be ob-
tained from 3D scans, which also have a high number of triangles.
For real-time applications, such high-resolution 3D models can be
difficult to render, and lower resolution meshes are often required
to maintain real-time frame rates.

The state-of-the-art algorithms to reduce the triangle count are
based on incremental mesh decimation and vertex clustering. Incre-
mental mesh decimation generally results in higher quality meshes,
but is sequential by definition, while vertex clustering can be easily
parallelized and is much faster. Since mesh decimation is usually
an offline process, meaning that it is performed once and not ev-
ery frame, higher quality is desirable, and longer decimation times
are tolerable. Therefore, we decided to focus on incremental mesh
decimation.

1.1. Incremental Mesh Decimation

In incremental mesh decimation [BKP* 10], two connected vertices
(one edge) of the triangle mesh are selected and merged into a sin-
gle vertex. This reduces the number of vertices by one and is re-
peated until the target number of vertices is reached. The edge se-
lection is driven by an error metric, which is usually the quadric
error metric by Garland and Heckbert [GH97]. The merging of the
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vertices is called edge collapse [KCS98] and we use the simple
half-edge collapse, where one vertex collapses onto the other.

It is recommended to precompute all error quadrics and store the
vertex IDs ordered by their lowest possible error in a (heap-based)
priority queue. The best possible half-edge collapse can then be ex-
tracted in logarithmic time for each iteration. After performing an
edge collapse, the quadric errors of all neighboring vertices need
to be updated as well. In order to realize this with a priority queue,
one needs the possibility to locate specific vertices in the priority
queue, and also the ability to change their priorities afterwards. Ver-
tices can be located in constant time by maintaining a lookup table
that maps from vertex IDs to the position in the priority queue heap.
The change of priority can be implemented in logarithmic time by
performing a bubble down or bubble up of the heap element, de-
pending on the priority change. The runtime of this algorithm is
O(mlog, n) where n is the total number of vertices of the original
mesh and m < n is the number of vertices that need to be removed.

To summarize: A priority queue with mutable priorities, and a
lookup table from vertex IDs to priority queue elements is required
to implement an efficient incremental mesh decimation algorithm.

2. Related Work

In this section, we will first go over the most relevant mesh dec-
imation algorithms and the available parallel implementations. In
the second subsection, we will further list available parallel priority
queues and discuss their suitability for parallelizing the incremental
mesh decimation algorithm from Sec. 1.1.
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2.1. Mesh Decimation

Incremental Mesh Decimation algorithms decimate the model
through edge collapses [Hop96]. Garland and Heckbert [GH97]
propose an additional aggregation step, which joins previously un-
connected vertices that allows for more aggressive optimizations.

Parallel implementations of incremental mesh decimation have
been attempted: Dehne et al. [DLRO02] partitions the mesh and dec-
imates each partition using the sequential algorithm. A similar ap-
proach has recently been implemented on the GPU using partition-
ing and a skip list based priority queue design [MH21]. Franc and
Skala [FSO1] create a super independent set of vertices, where each
vertex can perform its edge collapse independently of all other ver-
tices in the set. In their implementation, the set is created sequen-
tially, and the collapses are executed in parallel. After a thread syn-
chronization, this procedure is repeated until the target decimation
is achieved. This was implemented on the GPU by Papageorgiou
and Platis [PP15]. Note that all the parallel approaches do not work
toward the same result as the sequential decimation algorithm be-
cause the order and choice of edge collapses differ significantly.

Multiple-Choice Mesh Decimation [WKO02] is a variant of incre-
mental mesh decimation, where the best edge collapse out of eight
randomly chosen edges is executed in each iteration. The idea is
that at least one out of eight randomly chosen edge collapses will
be performed anyway at some point. This variant was implemented
on the GPU by Koh et al. [KZZC18].

Vertex Decimation [SZ1.92,DFP95] describes algorithms that re-
move a vertex with all adjacent faces, and then retriangulate the
resulting hole accordingly.

Vertex Clustering [RB93] uses a different approach by aligning
the mesh in a uniform grid. In the next step, a single vertex repre-
sentative is determined for all vertices, that fall into the same grid
cell. Finally, proper connectivity is restored. This has been imple-
mented on the GPU by DeCoro et al. [DTO7].

Hllumination-driven mesh reduction [RGG15,BJG20] sets the fo-
cus on producing a visually identical image from a fixed viewpoint
with a reduced mesh representation. In addition to surface curva-
ture, the change in visible radiance in the image, determined by
a global illumination simulation, is used as the priority for edge
collapses. The intentions are to reduce the overall rendering time
and to transform out-of-core scenes to in-core scenes through mesh
decimation.

2.2. Priority Queue

The Heap-Based Concurrent Priority Queue with Mutable Priori-
ties [TMR16] implements all operations that are necessary for par-
allel mesh decimation. However, we will show in Sec. 4.3 that this
priority queue has a major bottleneck for parallel mesh decima-
tion, which results in almost no performance improvements when
compared to the sequential decimation. The problem is that only
the root element of the priority queue can be removed, which is
problematic when many threads try to pop from the priority queue.
To work around this problem, a couple of relaxed priority queues
have been introduced, that allow the removal of an arbitrary good
element, that is not necessarily the best:

The Lock-free k-LSM Relaxed Priority Queue [WGTT15] guar-
antees that a pop operation returns any of the k- ¢ best elements,
where k is a configurable parameter and ¢ is the number of threads.
Unfortunately, mutable priorities are not supported and are proba-
bly not possible without violating the lock-free policy.

MultiQueues [RSD15] describes another implementation of a re-
laxed priority queue. Internally, ¢ - 2 sequential priority queues are
allocated, where 7 is the number of threads. For the insert operation,
a random priority queue is locked, and the element is inserted. For
the pop operation, two random priority queues are locked, and the
best element from the two queues is popped and returned. Since
each thread can hold at most two locks, each operation can seem-
ingly be performed "lock-free" since one can always find two un-
locked queues for a thread. Mutable priorities are not intended in
the original design, but can be implemented trivially in this case.

The SprayList [AKLS15] is a relaxed priority queue that is im-
plemented with a lock-free skip list. Here, the removal of a good
element has a high probability, but no guarantees are given. Muta-
ble priorities are again not intended, and such an addition does not
appear trivial for the skip list based design.

3. Our Priority Queue and Mesh Decimation Algorithm

In this section, we will first discuss the problem of the state-of-the-
art methods. Then we describe our novel relaxed parallel priority
queue with mutable priorities. Next, we will describe how to deci-
mate meshes using our priority queue.

In particular, our contributions are:

1. A novel relaxed parallel priority queue with mutable priorities
and filter levels, that guarantees the extraction of a good ele-
ment. The extracted element is guaranteed to be one of the top
k elements, where k is a configurable parameter.

2. The integration of our novel priority queue into a mesh decima-
tion algorithm. We will show that this parallel mesh decimation
produces almost identical results to the sequential algorithm.

3.1. Problem Analysis

Mesh Decimation is usually an offline process, that is done once
before shipping an application or deploying an asset. Therefore, a
high-quality decimation is preferred, and longer processing times
are tolerable. Current state-of-the-art mesh decimation algorithms
focus on minimizing the processing time, but also accept significant
quality losses to achieve their goal. We believe that a high-quality
mesh decimation is possible when following certain rules:

1. Using incremental mesh decimation [BKP* 10] with the quadric
error metric [GH97] appears to be the best practical solution.

2. The best possible element should always be removed when pos-
sible (i. e. when it is not currently locked by another thread).

3. If the best possible element cannot be removed, there needs to
be a strong guarantee for the removed element (i. e. the elements
need to be in the top k of all elements).

Existing parallel incremental mesh decimation algorithms can-
not guarantee a fixed k for the removed element [DLR02, FSO1,
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Figure 1: Our priority queue with filter levels.

PP15] or the value of k is too large to guarantee a good re-
sult [MH21]. Similarly, the MultiQueues [RSD15] and SprayList
[AKLS15] cannot guarantee a fixed k. The Lock-free k-LSM Re-
laxed Priority Queue [WGTT15] guarantees a fixed k, but it ap-
pears difficult to adapt this data structure for efficient mesh decima-
tion. Finally, the Heap-Based Concurrent Priority Queue with Mu-
table Priorities [TMR16] always returns the best elements, aside
from the elements that are bubbling up in the heap in parallel
(which can be neglected). Due to the strict policy of always re-
turning the best element, the parallel implementation with this data
structure is very slow. We would like to extend this data structure
to allow the removal of not only the top element, but any good ele-
ment, if the top element is being processed by another thread.

3.2. Parallel Priority Queue with filter levels

We extend the Heap-Based Concurrent Priority Queue with Muta-
ble Priorities [TMR16] in two ways:

1. We allow the removal of more than just the top element. If the
top element is locked, we traverse the heap to find the next un-
locked element within a certain maximum distance.

2. To guarantee the removal of a good element, we add additional
filter levels to the heap, which guarantees that all the best ele-
ments are within the top nodes.

First, we introduce our notation: Since our priority queue is heap
based, we can refer to the individual elements through an array
index. The root node has index zero, its children have index one
and two (see Fig. 1a). The priority of node i is P(i) and we work
with a min-heap, where P(0) < P(i) Vi € {1,2,--- ,n}.

Next, we will describe the implementation of our filter levels.

In Fig. 1b we show an example with a single filter level. The
filter level is inserted into the heap after the second level. Nodes
in the filter level always have two parents. This means, that such
nodes need to be compared to two parents, e. g. for node 3 it should
hold that: P(1) < P(3) and P(2) < P(3). The connections to the
parent nodes are chosen in such a way that all elements above the
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1 def bubbleUpDefault (nodelD) :

2 if nodelID == return

3 parent = getParentID(nodelD)

4 if P(node) < P(parent):

5 swapNodes (node, parent)

6 bubbleUp* (parent)

7

8 def bubbleUpFilter (nodelD) :

9 parent = getParentlID(nodelD)
10 parent2 = getParent2ID(nodelD)
11 # use parent with worst priority
12 if P(parent2) > P(parent):

13 parent = parent2

14 if P(node) < P(parent):

15 swapNodes (node, parent)

16 bubbleUp* (parent)

Figure 2: Pseudocode of the bubble up operation: bubbleUp*()
needs to select between the default and the filter method, depending
on the node location.

Figure 3: Worst case illustration of the blue nodes. In each heap,
green nodes are better than the blue node and gray nodes are worse
due to the parent-child relationship. White nodes could potentially
be better than the blue node.

filter levels will be better than all nodes below the filter levels. In
our implementation, the first parent of a node is directly above. For
the second parent, an offset is added which is doubling at each level
when going from bottom to top.

Fig. 2 describes how a bubble up operation with filter levels
would be implemented: If the priority of a node is better than at
least one of its parents, the node is swapped with its worst parent
and the operation is continued recursively. In Fig. 1b, this guaran-
tees that the first three nodes are always the best three in the heap.

In Fig. 1c we show an example with two filter levels, that were
inserted after the third level. Here, the connection of the nodes is
more complicated. In the end, we need to ensure that each node
in the last filter level was compared to each node above the filter
levels. In our example, nodes 11, 12, 13 and 14 have to be compared
tonodes 3, 4, 5 and 6. Let us inspect node 11 for instance: This node
is directly compared with nodes 7 and 10. Node 7 has already been
compared to nodes 3 and 5. Node 10 has already been compared
to nodes 4 and 6. Therefore, node 11 is guaranteed have a lower
priority than nodes 3, 4, 5 and 6.

Note that, node 7 in Fig. 1¢ might have a better priority than node
4 or node 6, since it has not been compared to either of them. This
means that the first 7 elements of the heap are not necessarily the
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Table 1: Relations in our priority queue with Ly filter levels

Description Symbol Formula
Filter levels ly

Top levels Iy ly+1
Number of top nodes n 2
Width of one filter level w 2 = mtl
Total number of filter nodes ny ly-w
Node index i

Filter column index (left to right) ic (i —nt +w)%w
Filter row index (bottom to top) ir LWJ
1st child of node i if i < ny —w 2i+1
ifn;—w§i<n;+nf—w i+w

else 2i+1—ny

2nd child of node i if i < ny —w 2i+2

ifng —w<i<nm+ng—w i+w7i6+(ic+2i’7l)%w
else 2i+2—ny

Ist parent of node i if i < n; L%J
ifn;§i<n,+nf i—w

else LH%J

2nd parent of i if ny <i<m+ny | i—w—ic+(wW+ic—2")%w

Table 2: Overview of the k-best node guarantee depending on the

number of filter levels.

Filter Levels ly 1{2] 3 4 5
Top Nodes ny 317 15| 31 63

k=2"-1,+1[3]9]25]65] 16l

Top Guarantee

best 7 elements. However, it is guaranteed that the first 7 elements
include only elements from the top 9. This is illustrated in Fig. 3:
For each node marked in blue, there are at most 8 other nodes in
the heap, that could have a lower P-value, due to the parent-child
relationships.

Our priority queue can be implemented with an arbitrary amount
of filter levels, and the important variables are described in Tab. 1.
When we use Iy filter levels, which implies I = I + 1 top levels,
we can guarantee that any element in the top nodes belongs to the
best k =2/ .1 7+ 1 elements in the heap. This can be proven by
inspecting Fig. 4: One of the top nodes can only be worse than the
total number of nodes in the top and filter levels, minus the nodes it
is directly connected to, in the filter levels (top nodes + filter nodes
- gray nodes). Formally:

k=n+ns—g (D

Where g =2+ 4+ 8+ 16 = 30 are the number of gray nodes in
Fig. 4 and can be described in general through g =2+4 48+
et w/24w=2w—2:

k=n+ny—(2w-2)
=Q2w—1)4+nr—(2w—2)
=np+l=Ilr-w+tl
=12 41 @)
The most common values for k are shown in Tab. 2.

Finally, after the addition of filter levels, arbitrary elements from

Figure 4: Node guarantee of the blue nodes visualized: The green
nodes are better than the blue node and the gray nodes are worse
due to the parent-child relationship marked in red. White nodes
could potentially be better than the blue node.

the top of the heap can be removed while ensuring a fixed qual-
ity. Originally, the priority queue obtains a lock for the root ele-
ment whenever a pop- or insert-operation is executed [TMR16].
This lock also protects the node count from concurrent accesses.

In our implementation, we allow the removal of any of the top
nodes, that are above the filter levels (see Fig. 1). To allow a con-
current removal of elements, we first change the node count of the
heap to an atomic integer, to prevent lost updates. During a pop op-
eration, we try to lock the root node first. If the lock is being held
by another thread, we try locking the next node. If we could not
obtain a lock for any of the top nodes, we repeat the process again.
Next, the locked node is removed with the default pop-operation as
described by Tamir et al. [TMR16]: The locked node is replaced
with the last node of the heap, and a bubble down is executed.

3.3. Mesh Decimation

The vertex data of our mesh is stored in an array and contains posi-
tions, the error quadric, the error of its best half-edge collapse and
the vertex ID for its best half-edge collapse. The priority queue only
contains vertex IDs, and the priority of each element is represented
by the error stored by its vertex.

The triangles are stored in a default index array.

To store connected triangles we use the data structure by Pa-
pageorgiou and Platis [PP15] which is a map from vertex IDs to
triangle IDs.

For querying adjacent vertices, we utilize a similar data structure
but store vertex IDs of the connected vertices instead.

Additionally, we protect each vertex with an atomic integer sim-
ilar to Koh et al. [KZZC18]. If the corresponding atomic integers
of a vertex and its connected vertices could be exchanged from O
to 1, we have acquired a lock for the vertices and can perform a
half-edge collapse without race conditions.

We use multiple threads for the decimation, and each thread ex-
ecutes the kernel from Fig. 5 until the target number of vertices is
reached.
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1 # extension of pop() for decimation
2 def popVertexToCollapse() :

3 i =0 # node ID

4 while true:

5 if 'tryLock(i):

6 i=(1+ 1) % n_t

7 continue

8

9 v = getVertex (i)

10 if !'lockConnectedVerticesAtomic (V) :
11 # could not lock surroundings
12 unlock (1)

13 i=(i+ 1) % n_t

14 continue

15

16 # vertex sourrounding is locked
17 # (do topology check)

18 return pop (i)

19

20 # core decimation algorithm

21 def decimateOneVertex():

22 # obtain vertex for collapse

23 v = popVertexToCollapse ()

24 # collapse vertex to v2

25 v2 = v.collapseTarget ()

26 v2.updateErrorQuadric(v.errorQuadric)
27 for tri in v.Triangles():

28 tri.replaceVertices(old=v, new=v2)
29 for cv in v.connectedVertices() :

30 cv.updateConnVertices (old=v, new=v2)
31 # update priority of vertex

32 cv.updateBestError (old=v, new=v2)

33 unlockVertexAtomic (cv)

34 unlockVertexAtomic (v)

Figure 5: Pseudocode of the decimation algorithm: First, we at-
tempt to lock a vertex from the top nodes of the priority queue (line
4-7). After obtaining a vertex, we first test if none of the surround-
ing vertices are involved in another collapse (line 10-14). A check
is done afterwards, to prevent the collapse if it causes topological
inconsistencies, but was left out for simplicity in the pseudocode
(line 17). Finally, we remove the vertex from the priority queue (line
18) and continue with the collapse from vertex v to vertex v2 (line
25+). At first, the error quadric of v2 is updated (line 26). For the
collapse, we replace the vertex IDs of all connected triangles (line
27-28). Next, we need to update the connected vertices of all ver-
tices cv that were connected to v (line 29-30). (Note: It is important
to update v2 last because of the used data structure.) Additionally,
the error values are recalculated and the priority queue is updated
accordingly (line 32). Finally, we release the atomic lock of the con-
nected vertices cv to allow collapses in this area again (line 33). At
last, the now unused lock of Vv is also unlocked (line 34).

© 2022 The Author(s)
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Table 3: Hausdorff Distance compared to the original mesh.

Model MultiQ PPQ RPPQ FPPQ

Dragon 1% 9.22¢-4 | 9.22¢-4 | 9.51e-4 | 9.22¢-4

ADragon 0.1% | 5.70e-3 | 5.71e-3 | 5.76e-3 | 5.69e-3

Lucy 0.1% 5.41e-4 | 541e-4 | 5.46e-4 | 5.41e-4
4. Results

We compare our Filter Parallel Priority Queue (FPPQ) in the con-
text of mesh decimation with:

o OpenMesh (OM) [Kob20]. An open source project with a single-
threaded incremental decimation algorithm using half-edge col-
lapses.

o Multi Queues (MultiQ) [RSD15] with our decimation algorithm
(Sec. 3.3) and adjusted priority queue operations.

e Farallel Priority Queue (PPQ) by Tamir et al. [TMR16] with
our decimation algorithm (Sec. 3.3) and adjusted priority queue
operations.

e Relaxed Parallel Priority Queue (RPPQ), which is a variant of
PPQ, that also allows the extraction of any top node, but does
not have any filter levels. We include this variant to emphasize
the relevance of filter levels.

For our Filter-PPQ, we use [y = 4 filter levels which guaran-
tees that any of the removed nodes are within the top k = 65 ele-
ments. We chose Iy = 4 filter levels because our CPU has 32 log-
ical cores and this results in n; = 31 top nodes, which minimizes
the probability of thread starvation. Adding more filter levels would
only decrease the mesh quality and introduces more overhead. All
tests were performed on an AMD Ryzen 3950X using DDR4-3600
RAM.

We used three models from the Stanford 3D Repository [Stal4]:

e Dragon: 405k vertices, 810k triangles.
e Asian Dragon: 3.6m vertices, 7.2m triangles.
e Lucy: 14m vertices, 28m triangles.

Some meshes were modified to make them manifold.

We inspect the quality after mesh decimation in Sec. 4.1. Then
we will examine the performance in Sec. 4.2. Finally, we will ana-
lyze the scalability of the presented methods in Sec. 4.3.

4.1. Quality

Fig. 6-Fig. 8 show the results of mesh decimation for various pri-
ority queues with 32 threads. We observed that the PPQ produces
almost indistinguishable results to a single-threaded implementa-
tion. Our Filter-PPQ produces results very similar to the PPQ (see
subfigure (f)). The absence of filter levels is clearly noticeable for
the Relaxed-PPQ: The Asian Dragon in Fig. 7 has a flat toe com-
pared to the PPQ (red arrow) and Lucy in Fig. 8 has a pointy nose
and different features for her mouth and eyes. The MultiQueue has
some differences as well, as the flat toe in Fig. 7, but is overall
ranked between the Filter-PPQ and the Relaxed-PPQ.

We also inspected the Hausdorff distances [CRS98] to the origi-
nal mesh in Tab. 3. However, we use a modified Hausdorff distance
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(d) Relaxed-PPQ (e) Filter-PPQ (f) Differences of (a, b, d, e) to b

Figure 6: Dragon reduced to 1% with different parallel priority queues and 32 threads.
) 1

\

(d) Relaxed-PPQ (e) Filter-PPQ (f) Differences of (a, b, d, e) to b

Figure 7: Asian Dragon reduced to 0.1% with different parallel priority queues and 32 threads.
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(d) Relaxed-PPQ

(e) Filter-PPQ

(¢) Original

(f) Differences of (a, b, d, e) to b

Figure 8: Lucy reduced to 0.1% with different parallel priority queues and 32 threads.

Table 4: Vertex similarity compared to sequential decimation.

Model MultiQ | PPQ | RPPQ | FPPQ
Dragon 1% 86.6% | 100% | 22.2% | 98.3%
ADragon0.1% | 79.3% | 100% | 8.6% 96%
Lucy 0.1% 91.2% | 100% | 8.5% | 98.9%
that contains the average minimal distances:
h(M,N) = \/ Lvem mirilq;‘zv(v —aq)’ 3)

Where M and N are sets with vertices and M is the original mesh.

In Tab. 3 we can see that the Hausdorff distances between PPQ,
Filter-PPQ and MultiQ are almost the same. Only the distances of
the Relaxed-PPQ appear larger.

For a better analysis of the similarity to a sequential decimation
algorithm, we developed a vertex similarity metric: The vertex sim-
ilarity is defined as the number of vertices that are identical between
the sequential and the parallel decimation result, divided by the to-
tal number of remaining vertices. In Tab. 4 we can see that the PPQ
and the sequential decimation algorithm have a (rounded) 100%
vertex similarity in all meshes. This is followed by the Filter-PPQ
with 96%-99%, the MultiQ with 80%-91% and the Relaxed-PPQ
with 8%-22%.

4.2. Performance

‘We measured the runtimes for all methods with 32 threads in Tab. 5.
The only exceptions are OpenMesh, which is a single-threaded im-
plementation, and the PPQ, which performed best with 4 threads
(see Sec. 4.3). The MultiQ is faster than any other method and is
followed by the Relaxed-PPQ, which is around 40% slower. The
addition of filter levels does further impact the runtime by another
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Table 5: Times in seconds with 32 threads for our tested mod-
els with remaining vertex count in percent (OM is single-threaded,
PPQ uses 4 threads for best performance).

Model OM | MultiQ | PPQ | RPPQ | FPPQ
Dragon 25% 329 | 0.128 | 0432 | 0.172 | 0.226
Dragon 5% 420 | 0.139 | 0535 | 0.195 | 0.256
Dragon 1% 436 | 0.141 | 0558 | 0.202 | 0.263
ADragon 5% | 43.0 | 144 | 556 | 2.00 | 2.38
ADragon 1% | 459 | 147 | 576 | 205 | 2.44
ADragon 0.1% | 464 | 147 | 580 | 2.05 | 245

Lucy 5% 189 6.52 274 8.88 10.5
Lucy 1% 204 6.67 28.3 9.13 10.8
Lucy 0.1% 206 6.68 28.6 9.21 10.9

20%-30% compared to the Relaxed-PPQ. The normal PPQ and the
single-threaded OpenMesh are significantly slower than the previ-
ous methods. Our Filter-PPQ is around 2 to 2.6 times faster than
the original PPQ in the context of mesh decimation.

Fig. 9a depicts a profiling of our Filter-PPQ: 70% of the time
is spent in our extended pop operation (Fig. 5 popVertexToCol-
lapse()): Only 4% of the time is spent to find an unlocked top node
(line 4-7). Around 3% is spent to lock the connected vertices, fol-
lowed by 7% for the topology check. The remaining 56% are spent
in the actual pop operation, where 30% of the total time is required
to obtain locks during the bubble down.

30% of the time is used for the actual collapse (line 25+). Here,
the priorities of the connected vertices may need to be updated in
the priority queue (line 32). Depending on the new priority, a node
needs to either bubble up or bubble down in the heap. Moving the
node inside the heap costs 6% of the time, however, obtaining the
required locks to safely perform the move requires 9%. The remain-
ing 15% are used to perform the half-edge collapse.
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Figure 9: Performance analysis for Lucy decimation to 0.1%

4.3. Scalability

Fig. 9b shows the presented multithreaded methods with varying
thread counts for our biggest mesh (Lucy). The ranking remains
the same as in Sec. 4.2. The data of the original PPQ confirms our
assumptions from Sec. 2.2: Too many threads try to extract from the
queue and the performance gets even worse after a specific thread
count, since every thread is fighting for locks.

5. Conclusion

We showed that the original parallel priority queue by Tamir et
al. [TMR16] has a significant bottleneck for incremental mesh dec-
imation. We developed a priority queue with filter levels (FPPQ)
for a better performance while also maintaining a high decimation
quality (96%-99% vertex similarity). We proved the relevance of
the filter level concept with various error metrics. We also com-
pared against an alternative technique, the Multi Queues [RSD15],
which is around 60% faster than our approach for bigger mod-
els. However, Multi Queues result in lower vertex similarity and
a higher deviation to the sequential decimation algorithm.

We believe that our novel priority queue with filter levels might
be useful in other areas of research due to its top node guarantee.

Source code is available at: https://github.com/
Darkwilli/FilteredParallelPriorityQueue

The work was supported by the German Research Foundation
(DFG) grant GR 3833/3-2.
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