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Abstract

We present a novel approach for efficient limit volume evaluation on Catmull-Clark (CC) subdivision solids. Although several
analogies exist between subdivision surfaces and subdivision volumes, extending Stam’s limit evaluation technique from 2 to 3
dimensions is not straightforward, as irregularities and boundaries introduce new challenges in the volumetric case. We present
new direct evaluation techniques for irregular volumetric topologies and boundary cells, which allow for calculating the limit of
CC subdivision solids at arbitrary parameter values in constant time. Evaluation of limit points is a central aspect when using
CC solids for applications such as simulation and multi-material additive manufacturing, or as a compact volumetric represen-
tation scheme for continuous scalar fields. We demonstrate that our approach is faster than existing evaluation techniques for
every topological configuration or target parameter (u,v,w) that requires more than two local subdivision steps.

CCS Concepts
•Computing methodologies → Volumetric models; •Mathematics of computing → Geometric topology;

1. Introduction

Subdivision surfaces are the dominant representation scheme for
3D models in the entertainment industry. A conceptually infinite
refinement generates the so-called limit — the smooth surface of
the geometry — from a mesh of discrete control points. Iteratively
applying the subdivision rules to calculate the limit is obviously
inefficient. Stam overcame this deficiency with his groundbreak-
ing algorithm [Sta98] for evaluating limit points in constant time.
When processing subdivision surfaces, efficient limit point evalua-
tion is vital. Therefore, Stam’s algorithm decisively contributed to
the wide acceptance of subdivision surfaces in many industries, in-
cluding manufacturing. However, subdivision solids have yet to be
taken up to the same extent, although they have great potential in
applications such as physically based simulation and efficient data
representation, e.g. for scalar fields. Volumetric subdivision control
meshes can be used to store additional information, such as material
parameters (stiffness/density), which can then be evaluated directly
at arbitrary parameter values. This could be especially useful when
using subdivision solids for multi-material 3D printing. In their sur-
vey paper of 2003, Chang et al. already documented the growing in-
terest in and importance of subdivision solids [CQ03]. We suspect
that an efficient volumetric limit evaluation algorithm could con-
tribute to subdivision solids in a similar way as Stam’s algorithm
did for surfaces. Extending his ideas to the volumetric case, we en-
countered challenging topological configurations that require novel

solutions for direct and exact evaluation. These configurations com-
prise volumetric irregularities, boundaries and sharp features.

Up to now, only cells in a regular neighborhood can be evaluated
directly. Using the algorithm by Burkhart et al. [BHU10], evalua-
tion only works for a small set of topologies and a limited set of
parameter values (u,v,w). For all other cases, iterative subdivision
has to be used or Stam’s approach has to be applied multiple times.

In this paper, we investigate efficient limit evaluation for CC sub-
division solids. Based on the subdivision scheme by Joy and Mac-
Cracken [JM99], we present new direct evaluation techniques for
irregular volumetric structures as well as for regular and irregular
volumetric boundary cells. In summary, we present a volumetric
limit evaluation method for CC subdivision solids that works in
constant time.

2. Related Work

Subdivision techniques have been around for more than four
decades. From Chaikin’s iterative refinement algorithm for cre-
ating smooth curves, to Doo’s and Sabin’s as well as Cat-
mull’s and Clark’s approaches to create smooth surfaces [DS78,
CC78], to volumetric subdivision techniques, e.g. by Joy and
MacCracken [JM99], Bajaj et al. [BSWX02] and McDonnel et
al. [MCQ04]. A good overview about existing subdivision schemes
can be found in a survey paper by Chang et al. [CQ03].

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/pg.20181285 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/pg.20181285


C. Altenhofen et al. / Direct Limit Volumes

In order to create sharp features on otherwise smooth subdivi-
sion surfaces, Hoppe et al. presented adapted subdivision rules that
create so-called crease edges [HDD∗94]. Those rules were later ex-
tended, e.g. by Biermann et al. [BLZ00] for increased control and
flexibility. Schweitzer presented a geometric approach for crease
edges that is based on creating so-called ghost/phantom points to
obtain sharp features [Sch96]. This concept was also used by others
to define sharp features as well as boundaries on subdivision sur-
faces [Hav05,LB07]. Introducing crease edges alters the underlying
basis functions required when evaluating the limit surface, leading
to crease basis functions as shown by Kosinka et al. [KSD14].

Jos Stam presented a method for exactly evaluating the limit of
Catmull-Clark as well as Loop subdivision surfaces in constant
time [Sta98]. Zorin and Kristjansson developed an extended ver-
sion of Stam’s evaluation by incorporating piecewise smooth sur-
faces and boundaries [ZK02] using Biermann’s rules [BLZ00].

Motivated by efficient limit evaluation, several approaches for
simulating thin shell objects using subdivision surfaces were devel-
oped, e.g. by Grinspun et al. [GCSO99]. Burkhart et al. [BHU10]
presented an FEM-like approach for Catmull-Clark solids that eval-
uates the volumetrical limit by applying a high number of local
subdivision steps near irregular vertices.

Since direct limit evaluation is substantially more complex for
solids than for surfaces, prior to our method, the the partially itera-
tive evaluation approach by Burkhart et al. [BHU10] was the only
viable way to evaluate the limit of unstructured volumetric subdi-
vision models. In our paper, we present the first constant-time limit
evaluation technique for Catmull-Clark subdivision solids.

3. Direct Limit Volume Evaluation

The structure of volumetric models inherently differs from that of
surface models. While surface meshes consist of vertices, edges
and faces, volumetric meshes are defined by cells, each being
bounded by a set of faces. Finally, subdivision solids are evaluated
on a per-cell, instead of a per-face basis.

Our direct limit evaluation technique is built upon the concepts
of Stam’s method for constant-time limit evaluation of Catmull-
Clark subdivision surfaces [Sta98]. As in the surface case, regu-
lar topologies can be evaluated directly, using cubic B-spline basis
functions. Irregular topologies have to be subdivided locally until
the target point (u,v,w) can be evaluated. As for Stam’s approach,
the key idea is to perform all required local subdivision steps us-
ing a local subdivision matrix that does not change throughout the
steps. This way, the eigenstructure of this subdivision matrix can be
used to combine all local subdivision steps and evaluate the limit
in constant time. However, in the volumetric case, local subdivi-
sion does not isolate irregularities as easily as in the surface case.
While every edge of a closed 2-manifold surface mesh must have
two neighboring faces in order to form a valid topology, edges in
volumetric meshes can have arbitrarily many faces (at least two).
Therefore, subdivision volumes might not only contain extraordi-
nary vertices (EVs) – vertices with a valence other than six – but
also extraordinary edges (EEs) – edges with a valence other than
four – that require special handling. As Bajaj et al. observed, re-
peated subdivision steps form layered structures in the neighbor-

hood of extraordinary edges [BSWX02]. We exploit this fact for
constructing our constant-time limit evaluation technique (see Sec-
tion 3.2). Furthermore, in R3, subdivision surfaces are typically
closed, whereas subdivision solids have a boundary which requires
special treatment (see Section 3.3).

3.1. The Regular Case

The generalization of bivariate B-spline surface evaluation to the
trivariate case is straightforward. The definition of the trivariate ba-
sis functions Ni(u,v,w) can be found in the supplemental material.

3.2. Irregular Cases

As local control meshes of a volumetric subdivision model do not
form regular 4× 4× 4-grids near irregularities, elements with an
irregular topology, i.e., elements that contain extraordinary edges
and/or vertices, cannot be processed using standard B-spline eval-
uation. Figure 1(a) shows an example of a volumetric mesh with
extraordinary edges of valence 3. When evaluating the highlighted
cell in Figure 1(a), it is first necessary to select an extraordinary
vertex. If the cell contains more than one EE, the EV is uniquely
defined as the vertex that is shared by all EEs. Otherwise, the EV is
chosen as one of the endpoints of the EE. All EEs in a local control
mesh must be radiating from the EV. If this is not the case, the mesh
has to be subdivided once to achieve this property.

In order to evaluate the limit in constant time, the control points
have to be numbered, such that the topology of the local control
mesh stays consistent in each subdivision step. Additionally, the
index of each point and its corresponding subdivided point must be
the same in each subdivision step. In contrast to the surface case, a
local volumetric mesh is not uniquely defined by the valence alone
and can have an arbitrary topological configuration in the direct
neighborhood of its EV. Therefore, we employ a volumetric data
structure to iterate over all control points in the neighborhood of
the EV in a consistent way, assigning a unique index to each con-
trol point. We start at the extraordinary vertex and traverse the lo-
cal control mesh in a breadth-first manner, assigning indices first
to all control points that share an edge with the EV, then to those
that share a face with the EV and finally to all control points that
share a cell with the EV. This way, we can assemble the block of
the subdivision matrix corresponding to the vertices in the direct
neighborhood of the extraordinary vertex. The exact formulation of
the subdivision rules and the subdivision stencils that are used to
calculate the entries of the subdivision matrix can be found in the
paper by Joy and MacCracken [JM99].

In the next step, we process the remaining vertices that do not
share an edge, face or cell with the EV. These vertices make up
the three outer layers of the control mesh, each forming a two-
dimensional control mesh with the same valence as the correspond-
ing edge coming from the EV (see Figures 1(a) and (c)). This allows
us to locally use Stam’s 2D numbering scheme [Sta98].

To calculate the eigenstructure, the M×K-subdivision matrix is
transformed into a square matrix by removing the last M−K rows,
where K and M are the total number of vertices in the original and
the subdivided local control mesh, respectively. The rows that are
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removed from the matrix correspond to the three outer layers of the
subdivided control mesh.

The partitioning around the extraordinary vertex results in eight
sub-elements per local subdivision step. This process together with
the numbering of the sub-elements is depicted in Figure 2. In the
volumetric case – unlike in the surface case – only four out of eight
elements become regular (k = 0,1,2,4) while the other four ele-
ments may still contain EEs (k = 3,5,6,7).

With a naive approach, we would have to subdivide further until
the point to be evaluated lies inside a fully regular cell. If the point
is close to an EE but not close to the EV, the local (u,v,w) coordi-
nate system has to be rearranged in order to continue the evaluation
process. This corrupts the local numbering scheme and requires the
use of multiple diagonalized eigenvalue matrices, resulting in addi-
tional matrix-matrix multiplications. Fortunately, the sub-elements
along the EEs are defined by a control mesh with a layered structure
that allows for direct evaluation with some ingenuity.

While fully irregular constellations as in Figures 1(a) and (c) fea-
ture multiple EEs in a single cell, layered control meshes consist
of four layers of an irregular 2D control mesh as in Figures 1(b)
and (d). Within each layer the valence of the EE is always equal to
the valence of the 2D EV. Similar to Bajaj et al.’s approach for their
MLCA subdivision scheme [BSWX02], we construct the trivariate
basis functions using a tensor product of the bivariate subdivision
basis functions ϕ(u,v) for the corresponding two-dimensional con-
figuration and a regular cubic B-spline basis function Ni(w). The
resulting trivariate basis function Ni, j(u,v,w) corresponds to the j-
th control point in layer i of the local control mesh, with K denoting
the number of control points in each layer.

Ni, j(u,v,w) = ϕ j(u,v)Ni(w) i = 1, ...,4, j = 1, ...,K (1)

Similar to the two-dimensional case, the number of local subdi-
vision steps required for the evaluation is defined by

n = dmin{− log2 (u) , − log2 (v) , − log2 (w)}e .

As we do not have to rearrange the (u,v,w) coordinate system, the
required local subdivisions are performed using a single diagonal
matrix Λ

n−1 containing the eigenvalues of the subdivision matrix.

Cn = ĀVΛ
n−1V−1C0 (2)

Given the basis functions and the eigenstructure of the subdivi-
sion matrix, we can evaluate the volumetric limit points as

p(u,v,w) =CT
0 V−T

Λ
n−1VT ĀT PT

k N
(
φk,n (u,v,w)

)
(3)

=: CT
0 ϕ(u,v,w) , (4)

with a volumetric picking matrix Pk defined analogously to the 2D
case for k = 0, ...,6, and a transformation φk,n, which maps (u,v,w)
onto the local parameter space of sub-element k at subdivision level
n. We call ϕ(u,v,w) the trivariate subdivision basis functions.

3.3. Boundary Elements

Boundary cases that usually do not arise for subdivision surfaces
are omnipresent in volumetric subdivision models. As the topology
of cells on the boundary of the control mesh differs significantly

in comparison to interior cells, the evaluation of the corresponding
elements must be examined closely. In the following, we present a
method for direct evaluation of boundary elements. We make use of
so-called crease basis functions derived from the geometric concept
of ghost/phantom points [Sch96, Hav05].

Figure 3 shows four distinct boundary cases that have to be han-
dled individually. In the first case, depicted in Figure 3(a), the top
layer represents the boundary. The mesh features a 4×4×3 config-
uration. As stated above, boundary faces in the trivariate case can
be treated analogously to crease edges in the bivariate case. Thus,
the boundary can be represented by a corresponding 2D configura-
tion of crease edges (see Figure 3(c)). For direct evaluation of the
highlighted boundary element, the corresponding regular B-spline
basis function is substituted by the crease basis function C. Each
of the three individual crease functions corresponds to one layer of
the control mesh, where the first function, starting at value 1, cor-
responds to the boundary layer. The new boundary basis functions
Bi(u,v,w) then write

Bi(u,v,w) = Ndi/16e(u) Ndi/4e%4(v) Ci%4(w). (5)

The second case, depicted in Figure 3(b), contains an extraor-
dinary edge orthogonal to the boundary. Besides its boundary, the
mesh features the same layered configuration as the mesh in Fig-
ure 1(d). Therefore, we perform the direct evaluation similarly to
Case (1) but use irregular 2D subdivision basis functions in u and
v, combined with the crease basis functions in the w dimension.
The corresponding boundary basis functions Bi, j(u,v,w) write

Bi, j(u,v,w) = ϕ j(u,v)Ci(w) i = 1, ...,3, j = 1, ...,K. (6)

In the third boundary case shown in Figure 3(d), the EE is in-
cluded in the boundary. The 2D configuration with the correspond-
ing crease edges is shown in Figure 3(f). Calculating the subdivi-
sion basis functions for the crease irregular 2D mesh in u,v and
multiplying a regular B-spline basis function in the w dimension as
in Equation (1), results in the corresponding trivariate basis func-
tions that describe the shape of the element.

In the fourth case (Figure 3(e)), the top layer as well as the
back side are covered with boundary faces. This boundary case is
evaluated in analogy to the non-boundary irregular case (see Sec-
tion 3.2), by employing a subdivision matrix to mathematically per-
form n local subdivision steps. After those the cell with the target
point corresponds to one of the boundary Cases (1) - (3) and we
can perform our direct evaluation accordingly.

Volumetric limit points inside boundary cells can finally be eval-
uated using Equation 3 and replacing N with the obtained boundary
basis functions B. If a hexahedral cell contains boundary faces on
opposite sides, the control mesh has to be subdivided once. The
resulting cells automatically form one of the four boundary cases
presented here. Additionally, our method supports crease edges on
the boundary of the model. Again, it is assumed that only edges
radiating from the EV are defined as crease edges.

In addition to the 3D positions of the limit points, the limit values
of scalar properties stored per control point can be evaluated as
well. As in the two-dimensional case, our method also supports the
calculation of derivatives.
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4. Results

With our method, we are able to efficiently evaluate CC subdivi-
sion solids at arbitrary parameter values. We measured the time re-
quired for the main parts of our volumetric evaluation algorithm for
three different topologies. These include an irregular interior cell, a
boundary cell of Case (4) (see Section 3.3) and a corner cell.

Our algorithm consists of the following three steps: construc-
tion of the subdivision matrix, calculation of its eigenstructure and
evaluation with the subdivision basis functions. The first two only
have to be performed once for all distinct topologies and thus can
be precomputed. The third step represents the actual evaluation and
consists of four matrix-matrix multiplications and the exponentia-
tion of a diagonal matrix. Table 1 lists the relative and absolute time
required for each step. Since calculating the subdivision matrix and
its eigenstructure accounts for a major part of the computational
cost, precomputation significantly speeds up the evaluation process.

For the non-direct approach by Burkhart et al. [BHU10], the
computational cost increases linearly with the number of subdivi-
sions required for the evaluation. In contrast, we are able to evalu-
ate the limit in constant time with our direct evaluation method. As
shown in Table 2, performing the subdivisions is faster for a small
number of subdivision steps. However, beyond a certain break-even
point, our direct method starts to outperform this approach (see Ta-
ble 1). Table 2 summarizes the inter-dependencies of target param-
eters u,v,w, number of subdivision steps and required rearrange-
ments for a non-direct limit evaluation approach. As can be seen,
our approach evaluates all limit points in around 72 milliseconds.

We assessed our method using the three example models shown
in Figure 4. We evaluate their limit at an increasing number of regu-
lar sample points (motivated by applications such as slicing e.g. for
3D printing), as well as Gauss-Legendre quadrature points (moti-
vated by the application of subdivision solids in finite element sim-
ulations). Figure 5 shows the results of our performance measure-
ments for regular sampling. As can be seen, our approach scales
linearly with the number of sample points, evaluating every sin-
gle limit point in constant time, while the non-direct evaluation
technique shows non-linear performance. However, when only per-
forming one or two subdivisions, Burkhart’s methods is still faster.

5. Conclusions and Future Work

We presented a novel approach for efficient, constant-time limit
evaluation of Catmull-Clark subdivision solids. Our direct evalua-
tion technique can handle all possible topologies in a manifold vol-
umetric mesh that subdivide into solely hexahedra after one subdi-
vision step. The approach has been shown to be more efficient than
the iterative approach for more than two local subdivision steps. For
volumetric subdivision, irregularities cannot be isolated as easily by
local refinement as for subdivision surfaces. However, we demon-
strated that layered structures, which can be evaluated, are formed
after conceptually performing n local subdivision steps. Further-
more, we make use of crease basis functions to also evaluate the
limit volume for boundary cells in constant time. To that end, we
derived the trivariate subdivision basis functions for irregular volu-
metric topologies which enable us to evaluate the limit in constant
time without explicitly computing subdivision steps.

In the future, we want to extend our method to a broader class of
polyhedra, i.e. those that do not result in hexahedra after one sub-
division step, as well as to other volumetric subdivision schemes.
Furthermore, we plan to apply our proposed algorithm to applica-
tions such as physically based simulation and volumetric data rep-
resentation and analyze its strengths and weaknesses.
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