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Figure 1: The Buddha model deforms to a planar mesh.

Abstract

We present a unified mesh paramterization algorithm for both planar and spheric domains based on mesh deformation. Unlike
previous methods, our approach can produce intermediate frames from the original to target meshes. We derive and define
a novel geometric flow: unit normal flow(UNF) and prove that if unit normal flow converges, it will deform a surface to a
constant mean curvature(CMC) surface, such as plane and sphere. Our method works by deforming meshes of disk topology to
planes, meshes of spheric topology to spheres. The unit normal flow we propose also suggests a potential direction for creating
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1. Introduction

In this paper, we present a simple and novel algorithm of planar and
spheric mesh parameterization. Our methodology is different from
previous ones: we are not computing a direct embedding of a mesh
onto planar or spheric domain, instead we deform it towards planar
and spheric shape. Previous planar parameterization algorithms all
have an implicit constraint: the target domain is the specific fixed
{XY} plane for all meshes. This limitation does not take the orien-
tations and shapes of meshes into consideration. It also narrows the
solution space and makes it difficult to achieve ideal solution. Our
deformation based on approach unlocks this limitation, such that
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different shapes unfold naturally to the planes of varying orienta-
tions. Our method is more natural and intuitive.

Our method unifies planar and spheric mesh parameterization
into a single framework, which consists of the iterations of two
steps: average of face normals and surface deformation. For meshes
of disk or sphere topology, they will converge to planar or spheric
shapes automatically under the iterations. Figure 1, 2 and 3 demon-
strate the deformations and their planar and spheric parameteriz-
tions respectively. Our approach produces bijective mappings in
practice, although we do not prove it theoretically.

Firstly we compute the new normal of every point by averaging
the normals of its neighbours. Secondly we reconstruct a surface
which fits the current normals. The iterations of these two steps
emerge a heat-like geometric flow on surfaces. We call it unit nor-
mal flow(UNF). This observation guides the design of our algo-
rithm. And our experiments on hundreds of discrete meshes suggest
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Figure 2: (a) is the texturing; (b) is the original mesh; (c),(d),(e)
are the intermediate deforming frames; (f) is the final planar map-
ping.
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(d) 665 step (e) 3795 step (f) Final sphere

Figure 3: The deforamtion of bimba model and its spheric param-
eterization.
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Figure 4: The texturing of the buddha model.

that, as far as sphere and plane are concerned, the flow probably
will converge.

The most important application of planar parameterization is tex-

turing meshes. We render the planar mesh 1f with the normals in
the corresponding original 3D mesh, such as shown in Figure 4a;
then we draw textures on the rendered image 4b; finally the tex-
turing 3D mesh is exhibited in Figure 4c. In our attached video, we
also show the special effect of two dimensional foil described in the
science-fiction books [Liul4, Liul5, Morl7].

In summary, our contributions in this paper are: 1) defining a
novel geometric flow on surfaces: unit normal flow; 2) establish-
ing and deriving the relationship between unit normal flow(UNF)
and constant mean curvature(CMC) surfaces; 3) proposing a robust,
simple-to-implement algorithm to discretizing and approximating
the non-linear UNF; 4) applying the algorithm in the application
of planar and spheric mesh parameterization, and our method has a
special feature of mapping the selected partial parts of meshes onto
a plane and keeping left parts unchanged.

2. Unit Normal Flow

Our motivation is deforming surfaces by the following criteria:
The time derivatives of surface normals should be equal to the
Laplacians of the normals. In this section, we define and pro-
pose unit normal flow mathematically. This flow is different from
well-known mean curvature flow [KSBCI12], averaged mean cur-
vature flow [XPB06], Willmore flow [BS05, WBH*07], Ricci flow
[JKLGOS], surface diffusion flow [SKO1, XPB06]. All these kinds
of flows can be modelled as geometric partial differential equa-
tions(PDE) [XPB06, XZ08]. As far as we know, this definition is
the first time to appear in the mathematical and graphic research
literatures.

Let S be a smoothly immersed surface in R3. Let g be the metric
on S restricted from R>. Let n be the smooth unit normal vector field
on S. Denote (,) as the inner product and Agn as the Laplacians of
the unit normals. The formal definition of unit normal flow is the
following:

dn

i
Notice that the norm of n is preserved under this flow, since
%(n,n) = (n, %n} = (n,Agn) — (n,Agn) =0

Lemma 1 If the Laplacians Agn of the unit normal field 7 is parallel
to n, i.e., Agn//n, then the mean curvature H of S is constant.

Agn— (Agn,n) - n. (1)

3. Our algorithms

The key point is the discreterization of the Laplace operator. In
graphics community, the well-known cotangent Laplace operator
[PP93] is for functions defined on vertice of meshes. Therefore it
can not be used for our face normals. In this paper, we propose
to use a simple method to approximate the Laplacian operator of
normal functions on faces by the following formula:

Agni(t) = n;(t) —ni(t) = Agn(t) )
JENeighbor(i)

Where () denote the unit normal of face i at time 7, Agn; repre-
sents the discrete Laplace operator of the face normal function, the
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Neighbor(i) denotes the neighbours of the face i, which includes i
itself. Then the new normal at time ¢ + 1 is computed by the fol-
lows:

ni(t+1) = Agni(t) +mi(t) = ), nj(r) 3)
JjENeighbor(i)
Our flow is defined on unit face normals. Even though face normals
n; are unit, Ayn; can not be guaranteed to be unit. We need normal-
ize it. In practice, the faces in Neighbor(i) are not constrained to be
one-ring, they could be k-ring neighbours.

After the new face normals are computed in every step, we ro-
tate all triangle faces from their old orientations to the current ones.
However the triangles are rotated independently, the result trian-
gle soup is not a valid mesh. We use the Poisson system based
method [ZLL*17,ZG16] to reconstruct the triangles into a unified
mesh. This step can be thought as solving a system of the unknown
positions from the known normal variables .

In summary, our algorithm consists of two steps: in the first step,
we average the unit face normals; in the second step, we deform
or reconstruct the surface by the constraints of the current unit face
normals. After the two steps, we get a new mesh which is smoother
than previous one. These two steps are iteratively calculated un-
til the flow converges and the shape of the mesh does not change
anymore.

4. Experiments

To demonstrate the efficiency and robustness of our algorithm, we
apply our algorithm to hundreds of challenging meshes of disk and
spheric topology.

We demonstrate our mapping and corresponding texturing of
disk-topology meshes in Figure 5. The intermediate deforming
frames are also exhibited in Figure 1, 2.

(@ (b) (0 (@)

Figure 5: The planar mapping and texturing of four multi-
boundary meshes.

The unfolded result of our algorithm is affected by the initial
normals of boundary faces. When the boundary of a mesh is small
and tight, possibly it can not unfolded towards a plane driven by its
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natural initial face normals. The mesh in Figure 6a will deform to
the non-planar shape of Figure 6f after 500 hundreds of iterations
through Figure 6d and 6e with its natural boundary face normals.
We solve the problem by assigning it a set of specific boundary
normals to pull faces apart, such that it is able to stretch to a plane
in Figure 6¢ whose the corresponding texturing is shown in Figure
6b.

) (e) ®)

Figure 6: The red arrows represent the natural face normals on
the boundary of the original mesh (a) and the green ones are the
normals we assigned; (d) (e) and(f) are the deforming meshes by
red normals; (c) is the planar mesh deformed by the green normals;
The texturing is exhibited in (b).

In Figure 3, we demonstrates the deformation and parameteri-
zation of spheric topology. Unlike the planar one, the spheric unit
normal flow converges slowly and needs thousands of iterations for
most meshes.

Plane and sphere are special and simple constant mean curva-
ture surfaces. Our approximation and discreterization of unit nor-
mal flow work successfully on them. For other kinds of CMC sur-
faces, our algorithm can also drive the flow to deform the corre-
sponding discrete meshes. However, the convergent shapes are not
CMC surfaces in exact mathematical sense. We call them CMC-
like surfaces.

In Figure 7, we demonstrate the convergent shapes of the cylin-
ders of a set of different radii and heights, constrained by two sets of
the different boundary face normals, under our unit normal flow. In
this experiment, the positions of the boundary vertice of the cylin-
ders are fixed. The red arrows are the representatives of the first set
of the boundary face normals; the green arrows are from the sec-
ond set. The convergent shapes are catenoid-like surfaces, however
the radii and heights we uses does not satisfy the exact mathemati-
cal formula of catenoids. In Figure 8, we deform a half-sphere and
a unit disk to the different CMC-like surfaces under varying face
normals constraints.

On one hand, CMC-like surfaces suggest and give us hint that
unit normal flow could be mathematically convergent on smooth
surfaces for all CMC surfaces. On the another hand, How to design
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Figure 7: The CMC-like surfaces generated by unit nor-
mal flow. The vradii and heights of the cylinders are
(10,10),(10,15),(10,20),(10,30),(10,40),(10,50) respectively.

Figure 8: The half-sphere and unit disk (a) are assigned three dif-
ferent set of boundary face normals; (b), (c), (d) show their corre-
sponding convergent shapes.

a more accurate discrete unit normal flow for other kinds of CMC
surfaces is a challenging problem and our future works.

5. Conclusion and future work

We propose a special unit normal flow(UNF) to deform surfaces.
This flow averages the normals of a smooth surface, and reconstruct
the geometry to fit the smoothed normals. We define the mathe-
matical equation of unit normal flow, and prove that the conver-
gent surface has constant mean curvature if the flow is stable and
converges. We also present an approximation method on discrete
meshes and apply it to the applications of planar and spheric mesh
parameterization. Our algorithm provides bijective mapping and it
outperforms many state-of-art methods.

There are still some important works left for future. The con-
vergence, singularity, existences and uniqueness of the unit normal
flow are waiting to be proved. It is also a great challenge to de-

sign an efficient, stable and accurate discrete algorithm to construct
other types of constant mean curvature surfaces besides planes and
spheres.
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