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(a) Spherical Fibonacci, SSIM=0.8717. (b) Ours (qs=90), SSIM=0.8973. (c) Reference (8192 light samples).

Figure 1: Comparison of our point set with the spherical Fibonacci point set in 64 light samples rendering.

Abstract
We present a physically based method which generates unstructured uniform point set directly on the S2-sphere. Spherical
uniform point sets are useful for illumination sampling in Quasi Monte Carlo (QMC) rendering but it is challenging to generate
high quality uniform point sets directly. Most methods rely on mapping the low discrepancy unit square point sets to the spherical
domain. However, these transformed point sets often exhibit sub-optimal uniformity due to the inability of preserving the low
discrepancy properties. Our method is designed specifically for direct generation of uniform point sets in the spherical domain.
We name our generated result as Spherical Blue Noise point set because it shares similar point distribution characteristics with
the 2D blue noise. Our point sets possess high spatial uniformity without a global structure, and we show that they deliver
competitive results for illumination integration in QMC rendering, and general numerical integration on the spherical domain.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Quasi Monte Carlo rendering methods [Kel13] rely on the uniform
point sets for sphere as sampling pattern to estimate the illumina-
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tion integral. These point sets are often produced by transforming
the low discrepancy point sets [S∗91,WLH97] designed for the unit
square. There exist many mapping techniques [SC97] which mini-
mize the distortion of transforming the unit square point set to the
unit sphere but most of them fail to preserve the original low dis-
crepancy properties. Marques et al. [MBR∗13] has recently pro-
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posed to use the spherical Fibonacci point set for illumination in-
tegral, and it demonstrates the advantage of a native uniform point
set for sphere over the transformed point sets.

(a) 2D Blue Noise. (b) Spherical Blue Noise.

Figure 2: Examples of blue noise point sets.

Blue noise [Uli88] is a well known sampling pattern for com-
puter graphics applications. This point set possesses good unifor-
mity without a global structure but its use is often limited to 2D
sampling. In this paper, we present a direct uniform point set gener-
ation method for the sphere using a physically based model, and we
name the produced point set as Spherical Blue Noise as it shares the
essential characteristics of blue noise point set on the unit square.
Fig. 2 shows an example of 2D blue noise and our spherical blue
noise point set.

2. Spherical Blue Noise

In this section, we describe our physically based model for uniform
point set generation on the sphere, and our simulation based imple-
mentation in detail.

2.1. Physically based model

We propose to model the members of a uniform point set on the
unit sphere as a collection of free-moving electrically charged par-
ticles on the spherical surface. When these particles carry identical
charges, each of them experiences repulsive force from its neigh-
bors, and moves accordingly. The whole system in motion can be
considered as undergoing a self-organizing process to minimize the
force experienced by each particle. Once the system reaches the sta-
tionary state, each particle should be found maintaining an equidis-
tant neighborhood, i.e. same distance to all its neighbors. A similar
physical model has been proposed by Wong and Wong [WW17]
whereas they model uniform point sets for the 2D plane.

We revisit quickly the simplified electrostatic model presented
by [WW17]. They proposed the net force Fi experienced by each
particle i of a N-particle collection on the 2D plane as follows:

Fi = q2
s

N

∑
j 6=i

1

‖ri− r j‖2 ê j,i (1)

where ri and r j are the positions of particles i and j respectively; ê j,i
is a unit vector pointing from r j to ri which represents the direction

of repulsive force, and qs is the amount of electrical charge carried
by each particle.

For a particle on the unit sphere, we notice that its motion can
always be regarded as the angular change with respect to an axis
of rotation. As shown in Fig. 3, the distance between two particles
A and B, can also be measured as the angle θ subtended by their
position vectors. Furthermore, particles A and B experience repul-
sive force from each other, and their motions caused by such force
can be mathematically represented by the angular acceleration vec-
tors α̂A and α̂B respectively. In short, we can formulate the system
of motion of these particles on the unit sphere by using the posi-
tion vector together with angular velocity and angular acceleration
vectors. We propose to transform the interaction model for 2D par-
ticles [WW17] in equation 1 to the unit sphere using the angular
motion formulation. Our N-particle interaction model on the unit
sphere, i.e. the net angular force Fi exerted on particle i can be ex-
pressed as follows:

Fi = q2
s

N

∑
j 6=i

1

‖θi, j‖2 α̂ j,i (2)

where θi, j is the angle subtended by the position vectors of particles
i and j; and α̂ j,i is an angular acceleration unit vector which repre-
sents the direction of repulsive force, and qs is the amount of charge
carried by each particle. The charge qs governs the distribution of
the generated point set similarly as in [WW17].

Fi = q2
s

N

∑
j 6=i

cos(θi, j)α̂ j,i (3)

According to our experiments, the force model is not limited to the
inverse square law only. Any isotropic force model with a smooth
drop-off characteristic should work reasonably well. We find that a
force model based on the cosine of the subtended angle (equation 3)
works very well, and its more gentle repulsion helps to stabilize the
convergence further.

A B
θ

α̂B

α̂A

Figure 3: Motion of particles on the unit sphere formulated as an-
gular motions.

2.2. Algorithm and Implementation

Based of the system of motion derived in last section, we may track
the positions of the particles by integrating the equations of mo-
tion. We use a customized Verlet integration algorithm [SABW82]
as shown in Algorithm 1. We apply two modifications to enhance
the stability and convergence speed of the algorithm; they are the
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maximum angular displacement threshold D applied in step (1) and
a factor S which reduces the sustained angular velocity in step (3).

Algorithm 1 Integration algorithm

1. Position update:
~x(t +δt) =~x(t)+min(D,~ω(t)δt + 1

2~α(t)δt2)

2. Angular acceleration update:
compute~α(t +δt) using~x(t +δt) via equation (3)

3. Angular velocity update:
~ω(t +δt) = min( D

δt ,S~ω(t)+
1
2 (~α(t)+~α(t +δt))δt)

4. Repeat

We implement our simulation engine using OpenGL GLSL com-
pute shader. In our simulations, we find a value of 1.6× 10−3rad.
for D, and a value of 0.95 for S work adequately in all cases. For a
4,096-point set with qs = 15, each iteration takes approximately 1.7
milliseconds on a commodity GPU, and it takes 1,000 iterations to
converge. However, the number of iterations depends on the initial
positions of the particles, and it can be shortened considerably by
using a roughly uniform point set to initialize particles’ positions.

3. Results and Evaluations

In this section, we demonstrate the point distribution behavior of
our blue noise point sets, and compare our results with other com-
monly used uniform point sets for the unit sphere. We also assess
the quality of our point set for illumination integration in QMC
rendering and general spherical quadrature.

3.1. Spherical blue noise samples distribution

In our model, the electrical charge qs has a direct impact on the
repulsive force exerted on the particles, and this quantity controls
directly the point distribution pattern of the resultant point set. Fig.
4 shows two spherical blue noise point sets generated using differ-
ent magnitudes of the electrical charge qs.

(a) Charge, qs = 30.0. (b) Charge, qs = 80.0.

Figure 4: Impact of the electrical charge qs to the generated spher-
ical 2048-point blue noise point sets.

The weak electrical charge of particles (Fig. 4a) results a force
field which dissipates more quickly, and the particles are only sen-
sitive to its smaller neighborhood. In contrast, a stronger charge
(Fig. 4b) results a force field which affects a bigger neighborhood,

and the particles become more structured locally with a tendency
of reaching hexagonal packing [SK97].

Figure 5: Distance based energy of various point sets.

3.2. Point set quality for spherical integration

We apply the energy metric proposed by [BD12,BSSW14] to assess
the quality of our point set for spherical numerical integration. The
distance based energy metric of a point set is given by

EN(Ps) =

(
4
3
− 1

N2

N

∑
j=1

N

∑
i=1
‖ri− r j‖

) 1
2

(4)

and a lower energy value implies better performance for spher-
ical quadrature. Fig. 5 shows the distance based energy plot of
different sample size of our point sets and other commonly used
point sets for spherical quadrature. The Sobol [Sob67], Hammers-
ley [WLH97] and [LP01] point sets are transformed point sets, and
since their uniformity are all sub-optimal (see Fig. 6), they all have
higher energy than ours and the spherical Fibonacci [MBR∗13]
point sets. Our point sets deliver similar integration quality as
spherical Fibonacci point sets but we perform consistently better
for low sample counts, and Table 1 compares the energy of our best
point sets with the spherical Fibonacci point sets in detail.

Table 1: Distance based energy (×10−3, lower is better)

Sample size Spherical Fibonacci Ours qs

64 4.016 3.976 120
128 2.379 2.366 115
256 1.411 1.407 105
512 0.838 0.837 115

1024 0.497 0.497 180
2048 0.297 0.296 170

3.3. Point set quality for illumination integration

As the distance based energy indicates that our point set performs
better in lower sample count, we validate this result with an appli-
cation of our point sets in QMC rendering. Fig. 1 and 7 show the
rendering results, and the perceptual metric SSIM indicates that our
rendering results are perceptually more similar to the reference ren-
derings.
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(a) Hammersley (mapped). (b) Spherical Fibonacci. (c) Ours (qs = 70).

Figure 6: Comparison of 2,048-point sets generated by different methods.

(a) Spherical Fibonacci,
SSIM=0.9216.

(b) Ours (qs=130),
SSIM=0.9580.

(c) Reference,
(8192 light samples).

Figure 7: Illumination integration quality with 32 light samples.

4. Discussions

Fig. 6 shows three different uniform point sets for the unit sphere.
Hammersley (Fig. 6a) is commonly used in QMC rendering but
its uniformity is obviously imperfect. Spherical Fibonacci point set
(Fig. 6b) recently introduced by [MBR∗13] has good uniformity
and low distance-based energy. However, spherical Fibonacci point
set possesses an axis of formation and it is seemingly more struc-
tured especially in the areas away from the axis. There may be
some potential issues on certain sampling problems such as tem-
poral aliasing but we have not pursued further.

Our spherical blue noise (Fig. 6c) has good uniformity, and the
absence of a global structure makes our point set potentially more
resilient to certain aliasing problems as blue noise sampling is
known to be capable of transforming high frequency aliases into
noise. One obvious limitation of our method is its computationally
expensive simulation step when compared with other methods.

5. Conclusions

We have presented a novel physically based method for direct gen-
eration of uniform point sets for the unit sphere. Our method has
a user parameter (electrical charge) for fine-tuning the distribution.
Our spherical blue noise point sets deliver on par or better integra-
tion results than the state-of-the-art method especially for the low
sampling rate scenarios.
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