Pacific Graphics (2017)
J. Barbic, W.-C. Lin, and O. Sorkine-Hornung (Editors)

Short Paper

Computing Restricted Voronoi Diagram on Graphics Hardware

Jiawei Han' Dong-Ming Yan?

Lili Wang?! Qinping Zhao!

I'State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University
2National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China

Abstract

The 3D restricted Voronoi diagram (RVD), defined as the intersection of the 3D Voronoi diagram of a pointset with a mesh
surface, has many applications in geometry processing. There exist several CPU algorithms for computing RVDs. However,
such algorithms still cannot compute RVDs in realtime. In this short paper, we propose an efficient algorithm for computing
RVDs on graphics hardware. We demonstrate the robustness and the efficiency of the proposed GPU algorithm by applying it

to surface remeshing based on centroidal Voronoi tessellation.

1. Introduction

The Voronoi diagram is ubiquitous in nature and science. In many
graphics applications, one has to compute Voronoi diagrams on giv-
en manifolds, usually represented by triangle meshes. This geomet-
ric structure is called Restricted Voronoi Diagram (RVD), which is
defined as the intersection of a 3D Voronoi diagram and a mesh sur-
face [ES97]. The RVD computation is exhaustively involved in sur-
face remeshing based on Centroidal Voronoi Tessellation (CVT).
Fig. 1 illustrates the typical process of the CVT framework.

There exist several efficient versions of RVD implementa-
tion [YLL*09,LB12, YBZW14], all on CPUs. It is still inefficient
for applications where real-time remeshing is desired, since RVD
computation is invoked repeatedly in remeshing process. To fur-
ther improve the efficiency, we propose a GPU implementation of
the RVD algorithm, which is approximately one order of magnitude
faster than current CPU implementations.

2. Related Work

Yan et al. [YLL*09] first propose a practical algorithm to compute
the exact RVD on a triangle mesh for a given set of points. They
have to build a kd-tree and construct the 3D Voronoi diagram of the
point set during the computation. To accelerate this process, Lévy
and Bonnel [LB12] drop the requirement of explicitly constructing
the 3D Voronoi diagram, which is the most time consuming com-
ponent in [YLL*09]. In their work [LB12], only a kd-tree is used
to dynamically access the incident bisectors of each triangle, which
avoids the explicit construction of the 3D Voronoi diagram. A se-
curity radius is used to terminate the processing of each triangle.

t Corresponding author (wanglily @buaa.edu.cn)

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

DOI: 10.2312/pg.20171320

Figure 1: [llustration of CVT optimization. (a) The Botiji model
with 6k facets and 3k sampled points. (b) Restricted Voronoi dia-
gram of the pointset. (c) Result after one iteration. (d) Result after
126 iterations. (e) The restricted Deluanay triangulation.

Several GPU-based approaches have been developed to improve
the performance of the CVT-based remeshing framework. Rong et
al. [RLW*11] propose an GPU implementation of the centroidal
Voronoi tessellation, where the Voronoi diagram is computed in
a 2D image space using the jump flooding algorithm [RTO06]. Al-
though this approach improves the efficiency a lot, the scalability
of their method is limited by the size of graphical memory, where
only several thousands of points can be involved in the compu-
tation, and the input mesh has to be drastically simplified to cre-
ate the geometry image representation. Later, Fei et al. [FWW14]
present a GPU implementation of the L-BFGS algorithm, which is
also used in CVT framework together with the RVD computation.
This approach can also be used in our framework to replace the
CPU counterpart for further improvement. More recently, Leung
et al. [LWH™* 15] propose a unified framework for isotropic surface
remeshing. The input surface is discretized in voxels, and the RVD
is approximated by clustering neighboring voxels. This approach

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pg.20171320

24 Jiawei Han et al. / Computing Restricted Voronoi Diagram on Graphics Hardware

can deal with only uniform remeshing, and it is not clear how it
can be extended to the adaptive case. In contrast to these methods,
we compute the exact RVD on GPUs directly (up to the machine
precision). We do not have any limitation on the input points size,
and can also be used in adaptive remeshing without involving any
overhead computation.

3. Preliminaries

In this section, we review the definitions of the Voronoi diagram,
the restricted Voronoi diagram and the centroidal Voronoi diagram.

3.1. Voronoi Diagram

Given a set of points X = (x1,...,.X,) € R4, the Voronoi diagram
O(X) is the collection of Voronoi cells Q(x;) (denoted as Q); for
short), i.e., Q(X) = {Q);}. A Voronoi cell is defined as:

Q,-:{XEIRd\d(X,X,-) <d(x,xj),Yj}, (1)

where d(-,-) denotes the Euclidean distance. The subset (); is
called the Voronoi cell of x;.

3.2. Restricted Voronoi Diagram

Given a two-manifold surface S C R3, and a set of finite samples
X = {x;}!_, sampled on S, the restricted Voronoi diagram is de-
fined as the intersection of the 3D Voronoi diagram Q) = {Q);}7 ;
of X and the surface S, as shown in Fig. 1(b-d).

A Restricted Voronoi Cell (RVC) is defined as:
Qs ={x€S.d(x,x;) <d(x.x;),Vx; €X,j #i}.

The dual of the RVD is a subcomplex of the 3D Delaunay trian-
gulation, called the Restricted Delaunay Triangulation (RDT) (see
Fig. 1(e)). If the e-sampling property [ABK98] and the topological
ball property [ES97] are met, each RVC is a single connected com-
ponent and the RDT is topologically equivalent to the underlying
surface S.

3.3. Centroidal Voronoi Tessellation

The centroidal Voronoi tessellation is a special type of the Voronoi
diagram, which requires the generator of each Voronoi cell coin-
cides with its centroid. The CVT on mesh surface can be achieved
by minimizing the following energy function [YLL*09]:

F(x) = ;/QV‘SW(X)HX—X,-szX,)

where w(x) is a density function defined over the surface. We de-
note w; as the weight defined at each vertex v; of the input mesh.
The weight is linearly interpolated within each triangle.

4. GPU-RVD Algorithm

In this section, we first introduce the basic concepts required by the
latest CPU-RVD algorithm [LB12]. Then, we explain our GPU-
RVD implementation and propose a method that can reduce the
writing data conflict.

4.1. Preliminaries of RVD

As defined in Sec. 3.2, we have to compute the Voronoi diagram
O(X), which is required by the RVD computation. However, con-
structing the Voronoi diagram is quite time-consuming. Since each
Voronoi cell is a convex polytope, it can be defined as the intersec-
tion of half-spaces:

+
Q= [T G de)s

where [T+ (i, jx) denotes the half space bounded by the bisector
of (x;,x;) (called b(i, j) for short) that contains x;. Lévy and Bon-
nel [LB12] demonstrate that this representation of the Voronoi cell
is well suited for the computation of the Voronoi cells by clipping
planes (see Fig. 2 (c¢)). The classic Sutherland & Hodgman’s re-
entrant clipping [SH74] can be used for clipping a polygon by con-
vex half-planes. To compute bisectors, the vertices X are organized
in a geometric search data structure, i.e., kd-tree, such that for any
x; one can efficiently retrieve the list of the nearest k neighbors
{x;} sorted by increasing distance to x;. These k-nearest neigh-
bors are then used as bisectors of Voronoi planes of current point
to clip incident facets of the input mesh. A safe radius is estimated
for each facet-point pair, which is used to terminate the clipping
process [LB12].

4.2. GPU-RVD implementation

The key to the RVD algorithm is to compute the intersection of
O(X) and the surface S, which consists of a set of triangles (or
facets). Since the intersection of a Voronoi cell and a facet is inde-
pendent from both the other facet and the other cell, the computa-
tion process has a great potential of parallelism.

We first propose a per facet-based parallel version of RVD com-
putation. The pseudo code is given in Alg. 1. In the pre-process
stage, we build a kd-tree to obtain two segments of data. We use
a multi-core CPU parallel implementation kd-tree for this purpose.
One keeps the k nearest indices of each point Xx; in linear mem-
ory which will be used to compute the bisectors representing the
Voronoi cell ();. The other stores the nearest neighbor of the cen-
troid of each facet. Since Voronoi cell of the nearest point has a
non-empty intersection with the corresponding facet, we initialize
an incident cell stack S of the facet by the index of this point.

In each iteration, if the stack S is not empty, we parallelly han-
dle each pair of the incident cell-facet (see Fig. 2(e)). The pro-
cess is showed in Alg. 2. We propose a data structure which is
called polygon. Since the GPU programming is not allowed to allo-
cate the memory dynamically, polygon statically contains n vertices
(n = 15 in our implementation). Each vertex contains five attributes
(x,,2, w,s) which represent the position, the weight, and the oppo-
site neighbor of current computing bisector. The polygon is initial-
ized with the three vertices of current facet. During the clipping
process, the polygon is updated by its intersection with bisectors.
Once the clipping is done, the position and the weight are used
to update the coordination of the x; while the attribute s specifies
the index of points of the next iteration since both two sides of the
clipped bisector should have an intersection of the current polygon.

© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

Jiawei Han et al. / Computing Restricted Voronoi Diagram on Graphics Hardware 25

per triangle parallel

I thread0 thread3

Ve

Loop 1:

threadl I thread2

Loop2:

Figure 2: (a): Choose a triangle in model Genius (13k facets). (b): Find the nearest point (blue dot) of centroid (red dot) and the neighbors of
the point (black dots). (c): Compute the bisectors (b(i, j)) of X; and its neighbors and clip with the polygon. (d): Initialize vertex’s s attribute
with -1. In the process of clipping, we update it by the index of the opposite point with the bisector intersects the polygon. (e): Parallel loops.
In the first loop, we initialize the computing stack with the nearest point X;. In the later loop, we simultaneously handle the points which are

stored in the clipped polygon’s vertex (s property).

Algorithm 1 compute RVD (per triangle parallel)

Input: a point set X; a triangle mesh M;
Output: QN M
find k nearest neighbors for each point x; € X
find the nearest neighbor for each triangle facet of M
for each r € M in parallel do
update stack S from the preserved nearest neighbor
while S £ @ do
for each x; € S in parallel do
clip the current triangle ¢ with Q(x;)
for each vertex v in clipped polygon do
if the label index has not been processed then
add the index into §
end if
end for
atomic update location of point x;
end for
end while
end for

4.3. Parallel strategy and conflict optimization

Not only the facets are independent to each other but also the cell-
s. We can also create one thread per cell for parallelization. Al-
though this strategy shows lower performance in most conditions
as the index-search of this method causes more bandwidth of da-
ta transmission in GPU, when a triangle has more than 20 points
to process, the operations of static stacks in per-facet strategy will
greatly slow down the speed. Then we will use per-cell strategy as
an alternative.

To store the RVD data in each thread of the processing units,
we have to use atomic operations to ensure the correctness of our
algorithm. However, when thousands of threads are trying to access
a segment of memory locations, a great deal of contention for our
bins can occur. To address this issue, we split our atomic operations
into two phases. In phase 1, each parallel block will be assigned a
segment of shared-memory to store the temporary data. In phase

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Algorithm 2 clip a facet by Q(x;)

Input: x;; its neighbors’ index plk]; a triangle facet 7;
Output: clipped polygon p
initialize the p from triangle facet
for each neighbor j from p[0] to p[k — 1] do
compute the bisector b of the x; and p|[j]
if p intersects the bisector b then
clip the triangle facet into a polygon p
record the index j into the vertex of the intersection
end if
end for
Return p

2, after all the threads finish the tasks, we merge the data into the
global memory and copy them into CPU for the next iteration. The
atomic operations only consume about 10% percentages of the time
if we use this optimization, while it will take up to 20% if not. This
strategy greatly reduces the contention and improves the writing
performance.

5. Experimental Results

We test our algorithm on a PC with an Intel 4.00GHz and 8GB
memory. The graphics card is an Nvidia GTX 1070 with 1920 CU-
DA cores and 4.0GB GPU memory. Our program is compiled using
CUDA version 8.0.

Performance. We first evaluate the performance of our GPU-RVD
computation algorithm. As shown in Fig. 3 (left), we use the Bun-
ny model (69k facets) as input mesh and test our algorithm with an
increasing number of points, from 20 to 10°, sampled on the sur-
face. From the timing curves, our parallel algorithm outperforms
the existing CPU algorithm in one order of magnitude. Fig. 3 (right)
shows the performance of our parallel algorithm and the serial algo-
rithm when we fix the number of points while increasing the mesh
resolution from 3k to 100k.

The time complexity of our algorithm is O(logy,) in per-facet

26 Jiawei Han et al. / Computing Restricted Voronoi Diagram on Graphics Hardware

60 20
oo | e
50. — GPU P e

40

Jtags D .
30 LT i; 10 s — GPU
20 o
54¢
104 .

time(s)
time(s)

0 2¢10° 4x10¢ 6x10° Bx10¢ 1x10° 0 10 20 30 40 50 60 70 80 90 100
#Seed #Facets(k)

Figure 3: Left: Running time comparison between our parallel al-
gorithm and linear algorithm on model Bunny (69k facets). Right:
Fixing the number of points (10k), increase the mesh resolution.

strategy and O(n/mlog,,) in per-cell strategy while the CPU-
version is O(nlog,,). The space complexity is O(log,,), where n
and m represent the number of triangles and samples, respectively.

Comparison. We compare the performance with [LWH*15]
(Fig. 4(left)) using the same input mesh with different number of
samples. Our algorithm is roughly 3~5 times faster. Moreover, the
RVD in their method is approximated by clustering voxels while
our approach computes the exact version. Another difference is that
our method works well for adaptive CVT, which is a limitation of
theirs. Fig. 4(right) shows the performance comparison of our al-
gorithm with [RLW*11]. Ours is approximately 3~7 times faster.
The key differences between our approach and theirs are two-folds.
First, our approach does not involve any parameterization, leading
to better remeshing quality. Second, we do not have any limitation
on the number of samples, since all the computation is performed
on-the-fly, while their method is limited by the graphical memory.

GPU CPU Multi-core CPU
time | time |speedup|time| speedup
Davidhead(24k)| 1.5e4 | 5.9 | 77.6 | 13.1 |18.4 3.1
Gargoyle(60k) | 2e4 | 9.1 |141.2] 15.1 |31.1 34
Dragon(100k) | Se4 [24.9|308.9| 12.4 [64.3 2.6

Models(facets) |Points

Table 1: The running time(ms) of per iteration of the computation
of RVD with GPU, CPU, Multi-CPU algorithm.

Table 1 shows the timing comparison with the CPU algorith-
m and the multi-core CPU algorithm. For each input model, we
choose a proper number of seeds which is comparable to the vertex
number of each model. Then we record the average time of one iter-
ation of the RVD computation. Our algorithm is 8~15 times faster
than the CPU algorithm and 2~4 times faster than the multi-core
CPU algorithm.

6. Conclusion and Future Work

We have presented a simple yet efficient algorithm to compute the
restricted Voronoi Diagram on a mesh surface. Our approach signif-
icantly speeds up over its CPU counterparts without loss of quality,
especially in the high-resolution models.

The main advantage of our approach over the CPU version is the
computation efficiency. However, our algorithm is not well suited

Bl Our method
B Rong's method

time(s)

2.0x10® 4.0x10” 6.0x10” 8.0x10° 1.0x10* torus lion body
#Seed #Model

Figure 4: Comparisons of our method and other similar GPU-CVT
methods. Left: the Dragon model with 50k facets and different sam-
ples from 1k to 9k. Right:Three models with 8k, 10 and 28k facets
respectively. Computing CVT with 1k sites using 500, 135 and 262
iterations, our method shows better performance in speed.

for the pointset with varying number of points in different itera-
tions, since the GPU memory size is assigned statically. Further-
more, although we use the lightweight data structure in GPU, the
data transmission is still the main factor that limits the algorithm
performance. In the future, we would like to exploit more strate-
gies to optimize this part and accelerate the parallel algorithm.

Acknowledgments

We would like to thank the authors of [LWH*15] for providing us
with their software for comparison. This work is partially fund-
ed by the NSFC (61772051, 61772523, 61372168, 61620106003,
61272349, and 61190121).

References

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new Voronoi-
based surface reconstruction algorithm. In Proc. ACM SIGGRAPH
(1998), pp. 415-421. 2

[ES97] EDELSBRUNNER H., SHAH N. R.: Triangulating topological s-
paces. IJCGA 7,4 (1997), 365-378. 1,2

[FWW14] FE1Y., WANG W., WANG B.: Parallelize 1-bfgs-b on the gpu.
Computers & Graphics 40, 1-9 (2014). 1

[LB12] LEvVY B., BONNEEL N.: Variational anisotropic surface mesh-
ing with Voronoi parallel linear enumeration. In Proc. of the 21st IMR
(2012), pp. 349-366. 1,2

[LWH*15] LEUNG Y.-S., WANG X., HE Y., L1U Y.-J., WANG C. C.-
L.: A unified framework for isotropic meshing based on narrowband eu-
clidean distance transformation. Comput. Vis. Media 1, 239-251 (2015).
1,4

[RLW*11] RONG G., L1U Y., WANG W., YIN X., GU X., Guo X.:

GPU-assisted computation of centroidal Voronoi tessellation. [EEE
Trans. on Vis. and Comp. Graphics 17,3 (2011), 345-356. 1, 4

[RT06] RONG G., TAN T. S.: Jump flooding in GPU with applications to
Voronoi diagram and distance transform. In /3D (2006), pp. 109-116. 1

[SH74] SUTHERLAND E., HODGMENT W.: Reentrant polygon clipping.
Communications of the ACM 17,1 (1974). 2

[YBZW14] YAN D.-M., BAO G., ZHANG X., WONKA P.: Low-
resolution remeshing using the localized restricted Voronoi diagram.
IEEE Trans. on Vis. and Comp. Graphics 20, 10 (2014), 418-1427. 1

[YLL*09] YAND.-M.,LEvVY B., LU Y., SUN F., WANG W.: Isotropic
remeshing with fast and exact computation of restricted Voronoi dia-
gram. Computer Graphics Forum (Proc. SGP) 28, 5 (2009), 1445-1454.
1,2

© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

